opr_impl.cpp 15.1 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/naive/conv_bias/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16
 */
#include "src/naive/conv_bias/opr_impl.h"
#include "src/naive/convolution/helper.h"

#include <cstring>
#include "megdnn/dtype.h"
17 18
#include "src/common/conv_bias.h"
#include "src/common/opr_delegate.h"
19 20 21 22 23 24 25 26 27 28
#include "src/common/utils.h"
#include "src/naive/handle.h"
#include "src/naive/lowbit_utils.h"

#include "midout.h"
MIDOUT_DECL(megdnn_naive_conv_bias_fwd)

namespace megdnn {
namespace naive {

29 30 31 32 33 34 35
//! Only used for naive implementation. DO NOT use the following function in
//! other backends.
void handle_z_inp_and_activation_naive(
        param::ConvBias::NonlineMode nonline_mode,
        const TensorND& conv_bias_tensor, const TensorND& z_tensor,
        const TensorND& dst_tensor, dt_byte* workspace_ptr) {
    auto res = dst_tensor, z_float = z_tensor;
36
    //! create naive inplace handle
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    auto handle = inplace_cpu_handle(2);
    if (z_tensor.layout.ndim > 0 &&
        z_tensor.layout.dtype.category() != DTypeCategory::FLOAT) {
        dt_byte *res_float_workspace_ptr = nullptr,
                *z_float_workspace_ptr = nullptr;
        megdnn_assert(z_tensor.layout.eq_shape(dst_tensor.layout));
        res_float_workspace_ptr = workspace_ptr;
        z_float_workspace_ptr = res_float_workspace_ptr +
                                TensorLayout{z_tensor.layout, dtype::Float32()}
                                        .span()
                                        .dist_byte();
        res = TensorND{res_float_workspace_ptr,
                       TensorLayout{dst_tensor.layout, dtype::Float32()}};
        z_float = TensorND{z_float_workspace_ptr,
                           TensorLayout{z_tensor.layout, dtype::Float32()}};
    }
    // ====================sfb + z_tensor=====================
    if (z_tensor.layout.ndim > 0) {
        if (z_tensor.layout.dtype.category() != DTypeCategory::FLOAT) {
            auto&& type_cvt = handle->create_operator<TypeCvt>();
            type_cvt->exec(conv_bias_tensor, res);
            type_cvt->exec(z_tensor, z_float);
        }
        auto add_opr = handle->create_operator<ElemwiseForward>();
        add_opr->param().mode = Elemwise::Param::Mode::ADD;
        add_opr->exec({res, z_float}, res);
    } else {
        res = conv_bias_tensor;
    }

    using NonlineMode = param::ConvBias::NonlineMode;

    switch (nonline_mode) {
#define cb(_mode)                                                          \
    case NonlineMode::_mode: {                                             \
        if (res.layout.dtype.category() != DTypeCategory::QUANTIZED) {     \
            auto nonlinear = handle->create_operator<ElemwiseForward>();   \
            nonlinear->param().mode = Elemwise::Param::Mode::_mode;        \
            if (res.layout.dtype == dst_tensor.layout.dtype) {             \
                nonlinear->exec({res}, dst_tensor);                        \
            } else {                                                       \
                nonlinear->exec({res}, res);                               \
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor); \
            }                                                              \
        } else {                                                           \
            auto nonlinear = handle->create_operator<ElemwiseMultiType>(); \
            nonlinear->param().mode =                                      \
                    ElemwiseMultiType::Param::Mode::Q##_mode;              \
            nonlinear->exec({res}, dst_tensor);                            \
        }                                                                  \
        break;                                                             \
    }
        cb(RELU);
        cb(H_SWISH);
#undef cb
        case NonlineMode::SIGMOID: {
            megdnn_assert(res.layout.dtype.category() !=
                          DTypeCategory::QUANTIZED);
            auto nonlinear = handle->create_operator<ElemwiseForward>();
            nonlinear->param().mode = Elemwise::Param::Mode::SIGMOID;
            nonlinear->exec({res}, res);
            if (res.raw_ptr != dst_tensor.raw_ptr) {
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor);
            }
            break;
        }
        case NonlineMode::IDENTITY: {
            if (res.raw_ptr != dst_tensor.raw_ptr) {
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor);
            }
            break;
        }
        default:
            megdnn_assert(false);
    }
}

114 115 116 117 118 119 120 121 122 123 124
namespace convolution {

template <>
void forward_bias<dt_quint4, dt_quint4, dt_qint32, dt_qint32>(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
        _megdnn_tensor_out dst, dt_byte* workspace_ptr,
        const ConvBiasForward::CanonizedFilterMeta& filter_meta) {
    auto convert_layout = [](const TensorLayout& layout) {
        auto ret = layout;
        auto param = layout.dtype.param<dtype::Quantized4Asymm>();
        ret.dtype = dtype::Quantized8Asymm(param.scale, param.zero_point);
125
        ret.format = TensorFormat(ret.dtype);
126
        ret.init_contiguous_stride();
127 128 129 130 131 132 133 134 135 136 137 138 139
        return ret;
    };
    TensorND new_src = {workspace_ptr, convert_layout(src.layout)};
    TensorND new_flt = {workspace_ptr + new_src.layout.span().dist_byte(),
                        convert_layout(filter.layout)};

    uint4_to_uint8(src, new_src);
    uint4_to_uint8(filter, new_flt);
    auto new_filter_meta = filter_meta;
    new_filter_meta.dtype = new_flt.layout.dtype;
    forward_bias<dt_quint8, dt_quint8, dt_qint32, dt_qint32>(
            new_src, new_flt, bias, dst, nullptr, new_filter_meta);
}
140 141 142 143 144 145 146 147 148 149 150

template <>
void forward_bias<dt_qint4, dt_qint4, dt_qint32, dt_qint32>(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
        _megdnn_tensor_out dst, dt_byte* workspace_ptr,
        const ConvBiasForward::CanonizedFilterMeta& filter_meta) {
    auto convert_layout = [](const TensorLayout& layout) {
        auto ret = layout;
        auto param = layout.dtype.param<dtype::QuantizedS4>();
        ret.dtype = dtype::QuantizedS8(param.scale);
        ret.format = TensorFormat(ret.dtype);
151
        ret.init_contiguous_stride();
152 153 154 155 156 157 158 159 160 161 162 163
        return ret;
    };
    TensorND new_src = {workspace_ptr, convert_layout(src.layout)};
    TensorND new_flt = {workspace_ptr + new_src.layout.span().dist_byte(),
                        convert_layout(filter.layout)};
    int4_to_int8(src, new_src);
    int4_to_int8(filter, new_flt);
    auto new_filter_meta = filter_meta;
    new_filter_meta.dtype = new_flt.layout.dtype;
    forward_bias<dt_qint8, dt_qint8, dt_qint32, dt_qint32>(
            new_src, new_flt, bias, dst, nullptr, new_filter_meta);
}
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

template <>
void forward_bias<dt_quint4, dt_qint4, dt_qint32, dt_qint32>(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
        _megdnn_tensor_out dst, dt_byte* workspace_ptr,
        const ConvBiasForward::CanonizedFilterMeta& filter_meta) {
    auto convert_layout_src = [](const TensorLayout& layout) {
        auto ret = layout;
        auto param = layout.dtype.param<dtype::Quantized4Asymm>();
        ret.dtype = dtype::QuantizedS8(param.scale);
        ret.format = TensorFormat(ret.dtype);
        ret.init_contiguous_stride();
        return ret;
    };
    auto convert_layout_flt = [](const TensorLayout& layout) {
        auto ret = layout;
        auto param = layout.dtype.param<dtype::QuantizedS4>();
        ret.dtype = dtype::QuantizedS8(param.scale);
        ret.format = TensorFormat(ret.dtype);
        ret.init_contiguous_stride();
        return ret;
    };
    TensorND new_src = {workspace_ptr, convert_layout_src(src.layout)};
    TensorND new_flt = {workspace_ptr + new_src.layout.span().dist_byte(),
                        convert_layout_flt(filter.layout)};
    uint4_to_int8(src, new_src);
    int4_to_int8(filter, new_flt);
    auto new_filter_meta = filter_meta;
    new_filter_meta.dtype = new_flt.layout.dtype;
    forward_bias<dt_qint8, dt_qint8, dt_qint32, dt_qint32>(
            new_src, new_flt, bias, dst, nullptr, new_filter_meta);
}
196 197 198 199 200 201
}  // namespace convolution

size_t ConvBiasForwardImpl::get_workspace_in_bytes(const TensorLayout& src,
                                                   const TensorLayout& flt,
                                                   const TensorLayout& bias,
                                                   const TensorLayout& z,
202 203
                                                   const TensorLayout& dst,
                                                   const PreprocessedFilter*) {
204 205 206 207 208 209 210 211
    size_t float_workspace_size = 0;

    if (z.ndim > 0 && z.dtype.category() != DTypeCategory::FLOAT) {
        megdnn_assert(z.eq_shape(dst));
        // (w * f + b).astype(float) + (z).astype(float)
        float_workspace_size =
                2 * TensorLayout{z, dtype::Float32()}.span().dist_byte();
    }
212 213 214 215 216 217 218
    
    if ((src.dtype.enumv() == DTypeEnum::Quantized4Asymm ||
         src.dtype.enumv() == DTypeEnum::QuantizedS4) &&
        bias.dtype.enumv() == DTypeEnum::QuantizedS32) {
        float_workspace_size +=
                (src.total_nr_elems() + flt.total_nr_elems()) * sizeof(uint8_t);
    }
219 220

    if (bias.dtype.enumv() != dst.dtype.enumv()) {
221 222
        float_workspace_size +=
                TensorLayout{dst, bias.dtype}.span().dist_byte();
223 224 225 226 227 228 229
    }
    return float_workspace_size;
}

void ConvBiasForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                               _megdnn_tensor_in bias, _megdnn_tensor_in z,
                               _megdnn_tensor_out dst,
230
                               const PreprocessedFilter* preprocessed_filter,
231 232
                               _megdnn_workspace workspace) {
    MIDOUT_BEGIN(megdnn_naive_conv_bias_fwd) {
233
        dt_byte* workspace_ptr = workspace.raw_ptr;
234 235
        // ============================w * f + b================================

236 237 238
        auto filter_meta = check_exec_allow_noncontiguous(
                src.layout, filter.layout, bias.layout, z.layout, dst.layout,
                workspace.size, preprocessed_filter);
239 240 241 242 243 244 245
        auto sfb = dst;
        if (bias.layout.dtype.enumv() != dst.layout.dtype.enumv()) {
            // intermediate result
            sfb = TensorND{workspace_ptr,
                           TensorLayout{dst.layout, bias.layout.dtype}};
            workspace_ptr += sfb.layout.span().dist_byte();
        }
246
#define DISPATCH_RAW(in_dt, flt_dt, bias_dt, out_dt, cmode, func)              \
247
    else if (src.layout.dtype.enumv() == DTypeTrait<dtype::in_dt>::enumv &&    \
248 249
             filter.layout.dtype.enumv() ==                                    \
                     DTypeTrait<dtype::flt_dt>::enumv &&                       \
250 251 252 253 254 255 256 257
             bias.layout.dtype.enumv() == DTypeTrait<dtype::bias_dt>::enumv && \
             sfb.layout.dtype.enumv() == DTypeTrait<dtype::out_dt>::enumv &&   \
             param().compute_mode == Param::ComputeMode::cmode) {              \
        MEGDNN_DISPATCH_CPU_KERN_OPR(                                          \
                func(src, filter, bias, sfb, workspace_ptr, filter_meta));     \
    }
#define DISPATCH(in_dt, out_dt)                                          \
    DISPATCH_RAW(                                                        \
258
            in_dt, in_dt, out_dt, out_dt, DEFAULT,                       \
259 260 261 262
            (convolution::forward_bias<DTypeTrait<dtype::in_dt>::ctype,  \
                                       DTypeTrait<dtype::in_dt>::ctype,  \
                                       DTypeTrait<dtype::out_dt>::ctype, \
                                       DTypeTrait<dtype::out_dt>::ctype>))
263 264
        if (0) {
        }
265 266 267 268
        DISPATCH(Float32, Float32)
        DISPATCH(Int8, Int16)
        DISPATCH(Int8, Int32)
        DISPATCH(QuantizedS8, QuantizedS32)
269
        DISPATCH(QuantizedS8, Float32)
270 271
        DISPATCH(Quantized8Asymm, QuantizedS32)
        DISPATCH(Quantized4Asymm, QuantizedS32)
272 273
        DISPATCH_RAW(QuantizedS8, QuantizedS8, QuantizedS32, QuantizedS32,
                     FLOAT32,
274 275
                     (convolution::forward_bias<dt_int8, dt_int8, dt_int32,
                                                dt_int32>))
276
        DISPATCH(QuantizedS4, QuantizedS32)
277 278 279 280
        DISPATCH_RAW(Quantized4Asymm, QuantizedS4, QuantizedS32, QuantizedS32,
                     DEFAULT,
                     (convolution::forward_bias<dt_quint4, dt_qint4, dt_qint32,
                                                dt_qint32>))
281 282
#if !MEGDNN_DISABLE_FLOAT16
        DISPATCH(Float16, Float16)
283
        DISPATCH_RAW(Float16, Float16, Float16, Float16, FLOAT32,
284 285
                     (convolution::forward_bias<dt_float16, dt_float16,
                                                dt_float16, dt_float32>))
286
        DISPATCH_RAW(BFloat16, BFloat16, BFloat16, BFloat16, FLOAT32,
287 288
                     (convolution::forward_bias<dt_bfloat16, dt_bfloat16,
                                                dt_bfloat16, dt_float32>))
289 290 291 292 293 294 295 296 297 298
#endif
        else {
            megdnn_throw(ssprintf(
                    "unsupported naive ConvBias(%s, %s, %s, %s) -> %s",
                    src.layout.dtype.name(), filter.layout.dtype.name(),
                    bias.layout.dtype.name(), z.layout.dtype.name(),
                    dst.layout.dtype.name()));
        }
#undef DISPATCH
#undef DISPATCH_RAW
299 300
        MEGDNN_DISPATCH_CPU_KERN_OPR(handle_z_inp_and_activation_naive(
                param().nonlineMode, sfb, z, dst, workspace_ptr));
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    }
    MIDOUT_END();
}

std::vector<ConvBiasForward::Algorithm*>
ConvBiasForwardImpl::get_all_algorithms(const TensorLayout&,
                                        const TensorLayout&,
                                        const TensorLayout&,
                                        const TensorLayout&,
                                        const TensorLayout&) {
    return {static_cast<HandleImpl*>(handle())->default_conv_bias_fwd_algo()};
}

ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic(
        const TensorLayout& /* src */, const TensorLayout& /* filter */,
        const TensorLayout& /* bias */, const TensorLayout& /* z */,
        const TensorLayout& /* dst */, size_t /* workspace_limit_in_bytes */,
318 319
        const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
320 321
    auto algo =
            static_cast<HandleImpl*>(handle())->default_conv_bias_fwd_algo();
322
    algo->check_attribute(positive_attr, negative_attr);
323 324 325
    return algo;
}

326
ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_from_desc(
327 328 329 330 331 332 333
        const AlgorithmDesc& desc) {
    Algorithm* ret =
            static_cast<HandleImpl*>(handle())->default_conv_bias_fwd_algo();
    megdnn_assert(desc == ret->info().desc);
    return ret;
}

334 335 336 337 338 339 340 341
const char* ConvBiasForwardImpl::get_algorithm_set_name() const {
    return "DEFAULT";
}

}  // namespace naive
}  // namespace megdnn

// vim: syntax=cpp.doxygen