# -*- coding: utf-8 -*- from ctypes import * import numpy as np from .base import _Cnetwork, _Ctensor, _lib, _LiteCObjBase from .struct import * from .tensor import * class LiteOptions(Structure): """ the inference options will be used to config a network """ _fields_ = [ ("weight_preprocess", c_int), ("fuse_preprocess", c_int), ("fake_next_exec", c_int), ("var_sanity_check_first_run", c_int), ("const_shape", c_int), ("force_dynamic_alloc", c_int), ("force_output_dynamic_alloc", c_int), ("force_output_use_user_specified_memory", c_int), ("no_profiling_on_shape_change", c_int), ("jit_level", c_int), ("comp_node_seq_record_level", c_int), ("graph_opt_level", c_int), ("async_exec_level", c_int), # layout transform options ("enable_nchw44", c_int), ("enable_nchw44_dot", c_int), ("enable_nchw88", c_int), ("enable_nhwcd4", c_int), ("enable_nchw4", c_int), ("enable_nchw32", c_int), ("enable_nchw64", c_int), ] def __init__(self): self.weight_preprocess = False self.fuse_preprocess = False self.fake_next_exec = False self.var_sanity_check_first_run = True self.const_shape = False self.force_dynamic_alloc = False self.force_output_dynamic_alloc = False self.force_output_use_user_specified_memory = False self.no_profiling_on_shape_change = False self.jit_level = 0 self.comp_node_seq_record_level = 0 self.graph_opt_level = 2 self.async_exec_level = 1 def __repr__(self): data = { "weight_preprocess": bool(self.weight_preprocess), "fuse_preprocess": bool(self.fuse_preprocess), "fake_next_exec": bool(self.fake_next_exec), "var_sanity_check_first_run": bool(self.var_sanity_check_first_run), "const_shape": bool(self.const_shape), "force_dynamic_alloc": bool(self.force_dynamic_alloc), "force_output_dynamic_alloc": bool(self.force_output_dynamic_alloc), "force_output_use_user_specified_memory": bool( self.force_output_use_user_specified_memory ), "no_profiling_on_shape_change": bool(self.no_profiling_on_shape_change), "jit_level": self.jit_level, "comp_node_seq_record_level": self.comp_node_seq_record_level, "graph_opt_level": self.graph_opt_level, "async_exec_level": self.async_exec_level, } return data.__repr__() class LiteConfig(Structure): """ Configuration when load and compile the graph bare_model_cryption_name: is the bare model cryption method name, bare model is not pack model info inside use_loader_dynamic_param: when model forward with device loader of npu, use_loader_dynamic_param used to flag whether the loader use device input or output, if use device input or output it will set Non-zero , else set zero has_compression: flag whether the model is compressed, the compress method will used to read the model """ _fields_ = [ ("has_compression", c_int), ("device_id", c_int), ("device_type", c_int), ("backend", c_int), ("_bare_model_cryption_name", c_char_p), ("options", LiteOptions), ] def __init__(self, device_type=LiteDeviceType.LITE_CPU, option=None): self.device_type = device_type if option: self.options = option else: self.options = LiteOptions() self._bare_model_cryption_name = c_char_p(b"") self.use_loader_dynamic_param = 0 self.has_compression = 0 self.backend = LiteBackend.LITE_DEFAULT @property def bare_model_cryption_name(self): return self._bare_model_cryption_name.decode("utf-8") @bare_model_cryption_name.setter def bare_model_cryption_name(self, name): if isinstance(name, str): self._bare_model_cryption_name = name.encode("utf-8") else: assert isinstance(name, bytes), "name should be str or bytes type." self._bare_model_cryption_name = name def __repr__(self): data = { "has_compression": bool(self.has_compression), "device_id": LiteDeviceType(self.device_id), "device_type": LiteDeviceType(self.device_type), "backend": LiteBackend(self.backend), "bare_model_cryption_name": self.bare_model_cryption_name, "options": self.options, } return data.__repr__() class LiteIO(Structure): """ config the network input and output item name: the tensor name in the graph corresponding to the IO is_host: Used to mark where the input tensor comes from and the output where copy to, if is_host is true, the input is from host and output copy to host, otherwise device. Sometimes The input is from device and output no need copy to host, default is true. io_type: The IO type, it can be SHAPE or VALUE, when SHAPE is set, the input or output tensor value is invaid, only shape will be set, default is VALUE config_layout: The layout of the config from user, if other layout is set before forward or get after forward, this layout will by pass. if no other layout is set before forward, this layout will work. if this layout is no set, the model will forward with its origin layout. if in output, it will used to check. """ _fields_ = [ ("_name", c_char_p), ("is_host", c_int), ("io_type", c_int), ("config_layout", LiteLayout), ] def __init__( self, name, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None ): if type(name) == str: self._name = c_char_p(name.encode("utf-8")) else: self._name = c_char_p(name) if layout: self.config_layout = layout else: self.config_layout = LiteLayout() self.is_host = is_host self.io_type = io_type @property def name(self): return self._name.decode("utf-8") @name.setter def name(self, name): if isinstance(name, str): self._name = name.encode("utf-8") else: assert isinstance(name, bytes), "name should be str or bytes type." self._name = name def __repr__(self): data = { "name": self.name, "is_host": bool(self.is_host), "io_type": LiteIOType(self.io_type), "config_layout": self.config_layout, } return data.__repr__() def __hash__(self): return hash(self.name) class _LiteNetworkIO(Structure): """ the input and output information when load the network """ _fields_ = [ ("inputs", POINTER(LiteIO)), ("outputs", POINTER(LiteIO)), ("input_size", c_size_t), ("output_size", c_size_t), ] def __init__(self): self.inputs = POINTER(LiteIO)() self.outputs = POINTER(LiteIO)() self.input_size = 0 self.output_size = 0 class LiteNetworkIO(object): """ the input and output information for user to construct _LiteNetWorkIO """ def __init__(self, inputs=None, outputs=None): self.inputs = [] self.outputs = [] if inputs: for i in inputs: if isinstance(i, list): self.inputs.append(LiteIO(*i)) else: assert isinstance( i, LiteIO ), "the param to construct LiteNetworkIO must be list of the LiteIO member or the LiteIO." self.inputs.append(i) if outputs: for i in outputs: if isinstance(i, list): self.outputs.append(LiteIO(*i)) else: assert isinstance( i, LiteIO ), "the param to construct LiteNetworkIO must be list of the LiteIO member or the LiteIO." self.outputs.append(i) def add_input( self, obj, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None ): if isinstance(obj, LiteIO): self.inputs.append(obj) else: name = obj self.add_input(LiteIO(name, is_host, io_type, layout)) def add_output( self, obj, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None ): if isinstance(obj, LiteIO): self.outputs.append(obj) else: name = obj self.add_output(LiteIO(name, is_host, io_type, layout)) def _create_network_io(self): network_io = _LiteNetworkIO() length = 1 if len(self.inputs) == 0 else len(self.inputs) self.c_inputs = (LiteIO * length)(*self.inputs) length = 1 if len(self.outputs) == 0 else len(self.outputs) self.c_outputs = (LiteIO * length)(*self.outputs) network_io.inputs = pointer(self.c_inputs[0]) network_io.outputs = pointer(self.c_outputs[0]) network_io.input_size = len(self.inputs) network_io.output_size = len(self.outputs) return network_io def __repr__(self): data = {"inputs": list(self.inputs), "outputs": list(self.outputs)} return data.__repr__() LiteAsyncCallback = CFUNCTYPE(c_int) LiteStartCallback = CFUNCTYPE(c_int, POINTER(LiteIO), POINTER(_Ctensor), c_size_t) LiteFinishCallback = CFUNCTYPE(c_int, POINTER(LiteIO), POINTER(_Ctensor), c_size_t) def wrap_async_callback(func): global wrapper @CFUNCTYPE(c_int) def wrapper(): return func() return wrapper def start_finish_callback(func): global wrapper @CFUNCTYPE(c_int, POINTER(LiteIO), POINTER(_Ctensor), c_size_t) def wrapper(c_ios, c_tensors, size): ios = {} for i in range(size): tensor = LiteTensor() tensor._tensor = c_void_p(c_tensors[i]) tensor.update() io = c_ios[i] ios[io] = tensor return func(ios) return wrapper class _NetworkAPI(_LiteCObjBase): """ get the network api from the lib """ _api_ = [ ("LITE_make_default_network", [POINTER(_Cnetwork)]), ("LITE_make_network", [POINTER(_Cnetwork), LiteConfig, _LiteNetworkIO]), ("LITE_load_model_from_mem", [_Cnetwork, c_void_p, c_size_t]), ("LITE_load_model_from_path", [_Cnetwork, c_char_p]), ("LITE_shared_weight_with_network", [_Cnetwork, _Ctensor]), ("LITE_destroy_network", [_Cnetwork]), ("LITE_forward", [_Cnetwork]), ("LITE_wait", [_Cnetwork]), ("LITE_get_io_tensor", [_Cnetwork, c_char_p, c_int, POINTER(_Ctensor)]), ("LITE_get_input_name", [_Cnetwork, c_size_t, POINTER(c_char_p)]), ("LITE_get_output_name", [_Cnetwork, c_size_t, POINTER(c_char_p)]), ("LITE_get_all_input_name", [_Cnetwork, POINTER(c_size_t), POINTER(c_char_p)]), ("LITE_get_all_output_name", [_Cnetwork, POINTER(c_size_t), POINTER(c_char_p)]), ("LITE_is_cpu_inplace_mode", [_Cnetwork, POINTER(c_int)]), ("LITE_get_cpu_threads_number", [_Cnetwork, POINTER(c_size_t)]), ("LITE_get_device_id", [_Cnetwork, POINTER(c_int)]), ("LITE_set_device_id", [_Cnetwork, c_int]), ("LITE_set_cpu_inplace_mode", [_Cnetwork]), ("LITE_use_tensorrt", [_Cnetwork]), ("LITE_set_cpu_threads_number", [_Cnetwork, c_size_t]), ("LITE_set_stream_id", [_Cnetwork, c_int]), ("LITE_get_stream_id", [_Cnetwork, POINTER(c_int)]), ("LITE_set_network_algo_policy", [_Cnetwork, c_int]), ("LITE_set_network_algo_fastrun_config", [_Cnetwork, c_int, c_int]), ("LITE_set_network_algo_workspace_limit", [_Cnetwork, c_size_t]), ("LITE_share_runtime_memroy", [_Cnetwork, _Cnetwork]), ("LITE_enable_profile_performance", [_Cnetwork, c_char_p]), ("LITE_enable_io_txt_dump", [_Cnetwork, c_char_p]), ("LITE_enable_io_bin_dump", [_Cnetwork, c_char_p]), ("LITE_set_async_callback", [_Cnetwork, LiteAsyncCallback]), ("LITE_set_start_callback", [_Cnetwork, LiteStartCallback]), ("LITE_set_finish_callback", [_Cnetwork, LiteFinishCallback]), ("LITE_get_static_memory_alloc_info", [_Cnetwork, c_char_p]), ("LITE_enable_global_layout_transform", [_Cnetwork]), ("LITE_dump_layout_transform_model", [_Cnetwork, c_char_p]), ( "LITE_get_model_io_info_by_path", [c_char_p, LiteConfig, POINTER(_LiteNetworkIO)], ), ( "LITE_get_model_io_info_by_memory", [c_char_p, c_size_t, LiteConfig, POINTER(_LiteNetworkIO)], ), ] class LiteNetwork(object): """ the network to load a model and forward """ _api = _NetworkAPI()._lib def __init__(self, config=None, io=None): """ create a network with config and networkio """ self._network = _Cnetwork() if config: self.config = config else: self.config = LiteConfig() if io: self.network_io = io else: self.network_io = LiteNetworkIO() c_network_io = self.network_io._create_network_io() self._api.LITE_make_network(byref(self._network), self.config, c_network_io) def __repr__(self): data = {"config": self.config, "IOs": self.network_io} return data.__repr__() def __del__(self): self._api.LITE_destroy_network(self._network) def load(self, path): c_path = c_char_p(path.encode("utf-8")) self._api.LITE_load_model_from_path(self._network, c_path) def forward(self): self._api.LITE_forward(self._network) def wait(self): self._api.LITE_wait(self._network) def is_cpu_inplace_mode(self): """ whether the network run in cpu inpalce mode """ inplace = c_int() self._api.LITE_is_cpu_inplace_mode(self._network, byref(inplace)) return bool(inplace.value) def enable_cpu_inplace_mode(self): """ set cpu forward in inplace mode with which cpu forward only create one thread Note: this must be set before the network loaded """ self._api.LITE_set_cpu_inplace_mode(self._network) def use_tensorrt(self): """ Note: this must be set before the network loaded """ self._api.LITE_use_tensorrt(self._network) @property def device_id(self): """ get the device id """ device_id = c_int() self._api.LITE_get_device_id(self._network, byref(device_id)) return device_id.value @device_id.setter def device_id(self, device_id): """ set the device id Note: this must be set before the network loaded """ self._api.LITE_set_device_id(self._network, device_id) @property def stream_id(self): """ get the stream id """ stream_id = c_int() self._api.LITE_get_stream_id(self._network, byref(stream_id)) return stream_id.value @stream_id.setter def stream_id(self, stream_id): """ set the stream id Note: this must be set before the network loaded """ self._api.LITE_set_stream_id(self._network, stream_id) @property def threads_number(self): """ get the thread number of the netwrok """ nr_thread = c_size_t() self._api.LITE_get_cpu_threads_number(self._network, byref(nr_thread)) return nr_thread.value @threads_number.setter def threads_number(self, nr_threads): """ set the network forward in multithread mode, and the thread number Note: this must be set before the network loaded """ self._api.LITE_set_cpu_threads_number(self._network, nr_threads) def get_io_tensor(self, name, phase=LiteTensorPhase.LITE_IO): """ get input or output tensor by its name """ if type(name) == str: c_name = c_char_p(name.encode("utf-8")) else: c_name = c_char_p(name) tensor = LiteTensor() self._api.LITE_get_io_tensor( self._network, c_name, phase, byref(tensor._tensor) ) tensor.update() return tensor def get_input_name(self, index): """ get the input name by the index in the network """ c_name = c_char_p() self._api.LITE_get_input_name(self._network, index, byref(c_name)) return c_name.value.decode("utf-8") def get_output_name(self, index): """ get the output name by the index in the network """ c_name = c_char_p() self._api.LITE_get_output_name(self._network, index, byref(c_name)) return c_name.value.decode("utf-8") def get_all_input_name(self): """ get all the input tensor name in the network """ nr_input = c_size_t() self._api.LITE_get_all_input_name(self._network, byref(nr_input), None) if nr_input.value > 0: names = (c_char_p * nr_input.value)() self._api.LITE_get_all_input_name(self._network, None, names) ret_name = [names[i].decode("utf-8") for i in range(nr_input.value)] return ret_name def get_all_output_name(self): """ get all the output tensor name in the network """ nr_output = c_size_t() self._api.LITE_get_all_output_name(self._network, byref(nr_output), None) if nr_output.value > 0: names = (c_char_p * nr_output.value)() self._api.LITE_get_all_output_name(self._network, None, names) ret_name = [names[i].decode("utf-8") for i in range(nr_output.value)] return ret_name def share_weights_with(self, src_network): """ share weights with the loaded network """ assert isinstance(src_network, LiteNetwork) self._api.LITE_shared_weight_with_network(self._network, src_network._network) def share_runtime_memroy(self, src_network): """ share runtime memory with the srouce network """ assert isinstance(src_network, LiteNetwork) self._api.LITE_share_runtime_memroy(self._network, src_network._network) def async_with_callback(self, async_callback): callback = wrap_async_callback(async_callback) self._api.LITE_set_async_callback(self._network, callback) def set_start_callback(self, start_callback): """ when the network start forward, the callback will be called, the start_callback with param mapping from LiteIO to the corresponding LiteTensor """ callback = start_finish_callback(start_callback) self._api.LITE_set_start_callback(self._network, callback) def set_finish_callback(self, finish_callback): """ when the network finish forward, the callback will be called, the finish_callback with param mapping from LiteIO to the corresponding LiteTensor """ callback = start_finish_callback(finish_callback) self._api.LITE_set_finish_callback(self._network, callback) def enable_profile_performance(self, profile_file): c_file = profile_file.encode("utf-8") self._api.LITE_enable_profile_performance(self._network, c_file) def set_network_algo_workspace_limit(self, size_limit): self._api.LITE_set_network_algo_workspace_limit(self._network, size_limit) def set_network_algo_policy( self, policy, shared_batch_size=0, binary_equal_between_batch=False ): """ shared_batch_size: the batch size used by fastrun, Non-zero value means that fastrun use this batch size regardless of the batch size of the model. Zero means fastrun use batch size of the model binary_equal_between_batch: if the content of each input batch is binary equal,whether the content of each output batch is promised to be equal """ self._api.LITE_set_network_algo_policy(self._network, policy) self._api.LITE_set_network_algo_fastrun_config( self._network, shared_batch_size, binary_equal_between_batch ) def io_txt_dump(self, txt_file): c_file = txt_file.encode("utf-8") self._api.LITE_enable_io_txt_dump(self._network, c_file) def io_bin_dump(self, bin_dir): c_dir = bin_dir.encode("utf-8") self._api.LITE_enable_io_bin_dump(self._network, c_dir) def get_static_memory_alloc_info(self, log_dir="logs/test"): c_log_dir = log_dir.encode("utf-8") self._api.LITE_get_static_memory_alloc_info(self._network, c_log_dir) def enable_global_layout_transform(self): self._api.LITE_enable_global_layout_transform(self._network) def dump_layout_transform_model(self, model_file): c_file = model_file.encode("utf-8") self._api.LITE_dump_layout_transform_model(self._network, c_file) def get_model_io_info(model_path, config=None): """ get the model IO information before create the NetWork, this IO information can be used to configuration the NetWork. """ api = _NetworkAPI()._lib c_path = c_char_p(model_path.encode("utf-8")) ios = _LiteNetworkIO() if config is not None: api.LITE_get_model_io_info_by_path(c_path, config, byref(ios)) else: config = LiteConfig() api.LITE_get_model_io_info_by_path(c_path, config, byref(ios)) ret_ios = LiteNetworkIO() for i in range(ios.input_size): ret_ios.add_input(ios.inputs[i]) for i in range(ios.output_size): ret_ios.add_output(ios.outputs[i]) return ret_ios