fast-import.c 26.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/*
Format of STDIN stream:

  stream ::= cmd*;

  cmd ::= new_blob
        | new_commit
        | new_branch
        | new_tag
        ;

  new_blob ::= 'blob' blob_data;

  new_commit ::= 'comt' ref_name author_committer_msg
    file_change*
    '0';

  new_branch ::= 'brch' dst_ref_name src_ref_name;
  dst_ref_name ::= ref_name;
  src_ref_name ::= ref_name | sha1_exp;

  new_tag ::= 'tagg' ref_name tag_name tagger_msg;

  file_change ::= 'M' path_name hexsha1
                | 'D' path_name
                ;

  author_committer_msg ::= len32
    'author' sp name '<' email '>' ts tz lf
    'committer' sp name '<' email '>' ts tz lf
    lf
    binary_data;

  tagger_msg ::= len32
    'tagger' sp name '<' email '>' ts tz lf
    lf
    binary_data;

  blob_data ::= len32 binary_data; # max len is 2^32-1
  path_name ::= len32 path;        # max len is PATH_MAX-1
  ref_name  ::= len32 ref;         # max len is PATH_MAX-1
  tag_name  ::= len32 tag;         # max len is PATH_MAX-1
  sha1_exp  ::= len32 sha1exp;     # max len is PATH_MAX-1

  len32 ::= # unsigned 32 bit value, native format;
  binary_data ::= # file content, not interpreted;
  sp ::= # ASCII space character;
  lf ::= # ASCII newline (LF) character;
  path ::= # GIT style file path, e.g. "a/b/c";
  ref ::= # GIT ref name, e.g. "refs/heads/MOZ_GECKO_EXPERIMENT";
  tag ::= # GIT tag name, e.g. "FIREFOX_1_5";
  sha1exp ::= # Any valid GIT SHA1 expression;
  hexsha1 ::= # SHA1 in hexadecimal format;
  name ::= # valid GIT author/committer name;
  email ::= # valid GIT author/committer email;
  ts ::= # time since the epoch in seconds, ascii decimal;
  tz ::= # GIT style timezone;
*/

60 61 62 63
#include "builtin.h"
#include "cache.h"
#include "object.h"
#include "blob.h"
64
#include "tree.h"
65 66
#include "delta.h"
#include "pack.h"
67
#include "refs.h"
68 69
#include "csum-file.h"

70 71 72
struct object_entry
{
	struct object_entry *next;
73
	enum object_type type;
74 75 76 77
	unsigned long offset;
	unsigned char sha1[20];
};

78
struct object_entry_pool
79
{
80
	struct object_entry_pool *next_pool;
81 82
	struct object_entry *next_free;
	struct object_entry *end;
83
	struct object_entry entries[FLEX_ARRAY]; /* more */
84 85
};

86 87 88
struct last_object
{
	void *data;
89 90
	unsigned int len;
	unsigned int depth;
91 92 93
	unsigned char sha1[20];
};

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
struct mem_pool
{
	struct mem_pool *next_pool;
	char *next_free;
	char *end;
	char space[FLEX_ARRAY]; /* more */
};

struct atom_str
{
	struct atom_str *next_atom;
	int str_len;
	char str_dat[FLEX_ARRAY]; /* more */
};

struct tree_content;
110 111
struct tree_entry
{
112 113 114
	struct tree_content *tree;
	struct atom_str* name;
	unsigned int mode;
115 116 117
	unsigned char sha1[20];
};

118
struct tree_content
119
{
120 121 122 123 124 125 126 127 128
	unsigned int entry_capacity; /* must match avail_tree_content */
	unsigned int entry_count;
	struct tree_entry *entries[FLEX_ARRAY]; /* more */
};

struct avail_tree_content
{
	unsigned int entry_capacity; /* must match tree_content */
	struct avail_tree_content *next_avail;
129 130 131 132
};

struct branch
{
133 134
	struct branch *table_next_branch;
	struct branch *active_next_branch;
135
	const char *name;
136 137 138
	unsigned long last_commit;
	struct tree_entry branch_tree;
	unsigned char sha1[20];
139 140
};

141 142

/* Stats and misc. counters */
143
static int max_depth = 10;
144
static unsigned long alloc_count;
145
static unsigned long branch_count;
146
static unsigned long object_count;
147
static unsigned long duplicate_count;
148 149
static unsigned long object_count_by_type[9];
static unsigned long duplicate_count_by_type[9];
150

151 152 153 154 155 156 157 158 159 160 161
/* Memory pools */
static size_t mem_pool_alloc = 2*1024*1024 - sizeof(struct mem_pool);
static size_t total_allocd;
static struct mem_pool *mem_pool;

/* atom management */
static unsigned int atom_table_sz = 4451;
static unsigned int atom_cnt;
static struct atom_str **atom_table;

/* The .pack file being generated */
162 163 164 165 166
static int pack_fd;
static unsigned long pack_offset;
static unsigned char pack_sha1[20];

/* Table of objects we've written. */
167 168 169
static unsigned int object_entry_alloc = 1000;
static struct object_entry_pool *blocks;
static struct object_entry *object_table[1 << 16];
170 171

/* Our last blob */
172 173 174 175 176 177 178
static struct last_object last_blob;

/* Tree management */
static unsigned int tree_entry_alloc = 1000;
static void *avail_tree_entry;
static unsigned int avail_tree_table_sz = 100;
static struct avail_tree_content **avail_tree_table;
179

180
/* Branch data */
181 182 183 184 185 186
static unsigned int max_active_branches = 5;
static unsigned int cur_active_branches;
static unsigned int branch_table_sz = 1039;
static struct branch **branch_table;
static struct branch *active_branches;

187

188
static void alloc_objects(int cnt)
189
{
190
	struct object_entry_pool *b;
191

192
	b = xmalloc(sizeof(struct object_entry_pool)
193
		+ cnt * sizeof(struct object_entry));
194
	b->next_pool = blocks;
195 196 197 198 199
	b->next_free = b->entries;
	b->end = b->entries + cnt;
	blocks = b;
	alloc_count += cnt;
}
200

201
static struct object_entry* new_object(unsigned char *sha1)
202
{
203
	struct object_entry *e;
204

205
	if (blocks->next_free == blocks->end)
206
		alloc_objects(object_entry_alloc);
207

208 209 210
	e = blocks->next_free++;
	memcpy(e->sha1, sha1, sizeof(e->sha1));
	return e;
211 212
}

213 214 215 216 217 218 219 220 221 222
static struct object_entry* find_object(unsigned char *sha1)
{
	unsigned int h = sha1[0] << 8 | sha1[1];
	struct object_entry *e;
	for (e = object_table[h]; e; e = e->next)
		if (!memcmp(sha1, e->sha1, sizeof(e->sha1)))
			return e;
	return NULL;
}

223 224 225
static struct object_entry* insert_object(unsigned char *sha1)
{
	unsigned int h = sha1[0] << 8 | sha1[1];
226
	struct object_entry *e = object_table[h];
227
	struct object_entry *p = NULL;
228 229 230 231 232 233 234 235 236

	while (e) {
		if (!memcmp(sha1, e->sha1, sizeof(e->sha1)))
			return e;
		p = e;
		e = e->next;
	}

	e = new_object(sha1);
237
	e->next = NULL;
238 239 240 241
	e->offset = 0;
	if (p)
		p->next = e;
	else
242
		object_table[h] = e;
243 244
	return e;
}
245

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
static unsigned int hc_str(const char *s, size_t len)
{
	unsigned int r = 0;
	while (len-- > 0)
		r = r * 31 + *s++;
	return r;
}

static void* pool_alloc(size_t len)
{
	struct mem_pool *p;
	void *r;

	for (p = mem_pool; p; p = p->next_pool)
		if ((p->end - p->next_free >= len))
			break;

	if (!p) {
		if (len >= (mem_pool_alloc/2)) {
			total_allocd += len;
			return xmalloc(len);
		}
		total_allocd += sizeof(struct mem_pool) + mem_pool_alloc;
		p = xmalloc(sizeof(struct mem_pool) + mem_pool_alloc);
		p->next_pool = mem_pool;
		p->next_free = p->space;
		p->end = p->next_free + mem_pool_alloc;
		mem_pool = p;
	}

	r = p->next_free;
	p->next_free += len;
	return r;
}

static void* pool_calloc(size_t count, size_t size)
{
	size_t len = count * size;
	void *r = pool_alloc(len);
	memset(r, 0, len);
	return r;
}

static char* pool_strdup(const char *s)
{
	char *r = pool_alloc(strlen(s) + 1);
	strcpy(r, s);
	return r;
}

static struct atom_str* to_atom(const char *s, size_t len)
{
	unsigned int hc = hc_str(s, len) % atom_table_sz;
	struct atom_str *c;

	for (c = atom_table[hc]; c; c = c->next_atom)
		if (c->str_len == len && !strncmp(s, c->str_dat, len))
			return c;

	c = pool_alloc(sizeof(struct atom_str) + len + 1);
	c->str_len = len;
	strncpy(c->str_dat, s, len);
	c->str_dat[len] = 0;
	c->next_atom = atom_table[hc];
	atom_table[hc] = c;
	atom_cnt++;
	return c;
}

static struct branch* lookup_branch(const char *name)
{
	unsigned int hc = hc_str(name, strlen(name)) % branch_table_sz;
	struct branch *b;

	for (b = branch_table[hc]; b; b = b->table_next_branch)
		if (!strcmp(name, b->name))
			return b;
	return NULL;
}

static struct branch* new_branch(const char *name)
{
	unsigned int hc = hc_str(name, strlen(name)) % branch_table_sz;
	struct branch* b = lookup_branch(name);

	if (b)
		die("Invalid attempt to create duplicate branch: %s", name);

	b = pool_calloc(1, sizeof(struct branch));
	b->name = pool_strdup(name);
	b->table_next_branch = branch_table[hc];
	branch_table[hc] = b;
	branch_count++;
	return b;
}

static unsigned int hc_entries(unsigned int cnt)
{
	cnt = cnt & 7 ? (cnt / 8) + 1 : cnt / 8;
	return cnt < avail_tree_table_sz ? cnt : avail_tree_table_sz - 1;
}

static struct tree_content* new_tree_content(unsigned int cnt)
{
	struct avail_tree_content *f, *l = NULL;
	struct tree_content *t;
	unsigned int hc = hc_entries(cnt);

	for (f = avail_tree_table[hc]; f; l = f, f = f->next_avail)
		if (f->entry_capacity >= cnt)
			break;

	if (f) {
		if (l)
			l->next_avail = f->next_avail;
		else
			avail_tree_table[hc] = f->next_avail;
	} else {
		cnt = cnt & 7 ? ((cnt / 8) + 1) * 8 : cnt;
		f = pool_alloc(sizeof(*t) + sizeof(t->entries[0]) * cnt);
		f->entry_capacity = cnt;
	}

	t = (struct tree_content*)f;
	t->entry_count = 0;
	return t;
}

static void release_tree_entry(struct tree_entry *e);
static void release_tree_content(struct tree_content *t)
{
	struct avail_tree_content *f = (struct avail_tree_content*)t;
	unsigned int hc = hc_entries(f->entry_capacity);
	unsigned int i;
	for (i = 0; i < t->entry_count; i++)
		release_tree_entry(t->entries[i]);
	f->next_avail = avail_tree_table[hc];
	avail_tree_table[hc] = f;
}

static struct tree_content* grow_tree_content(
	struct tree_content *t,
	int amt)
{
	struct tree_content *r = new_tree_content(t->entry_count + amt);
	r->entry_count = t->entry_count;
	memcpy(r->entries,t->entries,t->entry_count*sizeof(t->entries[0]));
	release_tree_content(t);
	return r;
}

static struct tree_entry* new_tree_entry()
{
	struct tree_entry *e;

	if (!avail_tree_entry) {
		unsigned int n = tree_entry_alloc;
		avail_tree_entry = e = xmalloc(n * sizeof(struct tree_entry));
		while (n--) {
			*((void**)e) = e + 1;
			e++;
		}
	}

	e = avail_tree_entry;
	avail_tree_entry = *((void**)e);
	return e;
}

static void release_tree_entry(struct tree_entry *e)
{
	if (e->tree)
		release_tree_content(e->tree);
	*((void**)e) = avail_tree_entry;
	avail_tree_entry = e;
}

static void yread(int fd, void *buffer, size_t length)
424 425 426 427
{
	ssize_t ret = 0;
	while (ret < length) {
		ssize_t size = xread(fd, (char *) buffer + ret, length - ret);
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		if (!size)
			die("Read from descriptor %i: end of stream", fd);
		if (size < 0)
			die("Read from descriptor %i: %s", fd, strerror(errno));
		ret += size;
	}
}

static int optional_read(int fd, void *buffer, size_t length)
{
	ssize_t ret = 0;
	while (ret < length) {
		ssize_t size = xread(fd, (char *) buffer + ret, length - ret);
		if (!size && !ret)
			return 1;
		if (!size)
			die("Read from descriptor %i: end of stream", fd);
		if (size < 0)
			die("Read from descriptor %i: %s", fd, strerror(errno));
447 448
		ret += size;
	}
449
	return 0;
450 451
}

452
static void ywrite(int fd, void *buffer, size_t length)
453 454 455 456
{
	ssize_t ret = 0;
	while (ret < length) {
		ssize_t size = xwrite(fd, (char *) buffer + ret, length - ret);
457 458 459 460
		if (!size)
			die("Write to descriptor %i: end of file", fd);
		if (size < 0)
			die("Write to descriptor %i: %s", fd, strerror(errno));
461 462 463 464
		ret += size;
	}
}

465
static const char* read_path()
466 467 468 469
{
	static char sn[PATH_MAX];
	unsigned long slen;

470
	yread(0, &slen, 4);
471
	if (!slen)
472
		die("Expected string command parameter, didn't find one");
473 474
	if (slen > (PATH_MAX - 1))
		die("Can't handle excessive string length %lu", slen);
475
	yread(0, sn, slen);
476 477 478 479
	sn[slen] = 0;
	return sn;
}

480 481 482 483
static unsigned long encode_header(
	enum object_type type,
	unsigned long size,
	unsigned char *hdr)
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
	int n = 1;
	unsigned char c;

	if (type < OBJ_COMMIT || type > OBJ_DELTA)
		die("bad type %d", type);

	c = (type << 4) | (size & 15);
	size >>= 4;
	while (size) {
		*hdr++ = c | 0x80;
		c = size & 0x7f;
		size >>= 7;
		n++;
	}
	*hdr = c;
	return n;
}

503 504 505 506
static int store_object(
	enum object_type type,
	void *dat,
	unsigned long datlen,
507 508
	struct last_object *last,
	unsigned char *sha1out)
509 510
{
	void *out, *delta;
511 512 513
	struct object_entry *e;
	unsigned char hdr[96];
	unsigned char sha1[20];
514
	unsigned long hdrlen, deltalen;
515 516 517 518 519 520 521 522
	SHA_CTX c;
	z_stream s;

	hdrlen = sprintf((char*)hdr,"%s %lu",type_names[type],datlen) + 1;
	SHA1_Init(&c);
	SHA1_Update(&c, hdr, hdrlen);
	SHA1_Update(&c, dat, datlen);
	SHA1_Final(sha1, &c);
523 524
	if (sha1out)
		memcpy(sha1out, sha1, sizeof(sha1));
525 526 527 528

	e = insert_object(sha1);
	if (e->offset) {
		duplicate_count++;
529
		duplicate_count_by_type[type]++;
530
		return 1;
531
	}
532
	e->type = type;
533 534
	e->offset = pack_offset;
	object_count++;
535
	object_count_by_type[type]++;
536

537
	if (last && last->data && last->depth < max_depth)
538
		delta = diff_delta(last->data, last->len,
539 540
			dat, datlen,
			&deltalen, 0);
541
	else
542 543 544 545 546 547
		delta = 0;

	memset(&s, 0, sizeof(s));
	deflateInit(&s, zlib_compression_level);

	if (delta) {
548
		last->depth++;
549 550 551
		s.next_in = delta;
		s.avail_in = deltalen;
		hdrlen = encode_header(OBJ_DELTA, deltalen, hdr);
552 553
		ywrite(pack_fd, hdr, hdrlen);
		ywrite(pack_fd, last->sha1, sizeof(sha1));
554
		pack_offset += hdrlen + sizeof(sha1);
555
	} else {
556 557
		if (last)
			last->depth = 0;
558 559
		s.next_in = dat;
		s.avail_in = datlen;
560
		hdrlen = encode_header(type, datlen, hdr);
561
		ywrite(pack_fd, hdr, hdrlen);
562
		pack_offset += hdrlen;
563 564 565 566 567 568 569 570
	}

	s.avail_out = deflateBound(&s, s.avail_in);
	s.next_out = out = xmalloc(s.avail_out);
	while (deflate(&s, Z_FINISH) == Z_OK)
		/* nothing */;
	deflateEnd(&s);

571
	ywrite(pack_fd, out, s.total_out);
572
	pack_offset += s.total_out;
573 574 575 576

	free(out);
	if (delta)
		free(delta);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	if (last) {
		if (last->data)
			free(last->data);
		last->data = dat;
		last->len = datlen;
		memcpy(last->sha1, sha1, sizeof(sha1));
	}
	return 0;
}

static const char *get_mode(const char *str, unsigned int *modep)
{
	unsigned char c;
	unsigned int mode = 0;

	while ((c = *str++) != ' ') {
		if (c < '0' || c > '7')
			return NULL;
		mode = (mode << 3) + (c - '0');
	}
	*modep = mode;
	return str;
}

static void load_tree(struct tree_entry *root)
{
	struct object_entry *myoe;
	struct tree_content *t;
	unsigned long size;
	char *buf;
	const char *c;
	char type[20];

	root->tree = t = new_tree_content(8);
	if (!memcmp(root->sha1, null_sha1, 20))
		return;

	myoe = find_object(root->sha1);
	if (myoe) {
		die("FIXME");
	} else {
		buf = read_sha1_file(root->sha1, type, &size);
		if (!buf || strcmp(type, tree_type))
			die("Can't load existing tree %s", sha1_to_hex(root->sha1));
	}

	c = buf;
	while (c != (buf + size)) {
		struct tree_entry *e = new_tree_entry();

		if (t->entry_count == t->entry_capacity)
			root->tree = t = grow_tree_content(t, 8);
		t->entries[t->entry_count++] = e;

		e->tree = NULL;
		c = get_mode(c, &e->mode);
		if (!c)
			die("Corrupt mode in %s", sha1_to_hex(root->sha1));
		e->name = to_atom(c, strlen(c));
		c += e->name->str_len + 1;
		memcpy(e->sha1, c, sizeof(e->sha1));
		c += 20;
	}
	free(buf);
}

static int tecmp (const void *_a, const void *_b)
{
	struct tree_entry *a = *((struct tree_entry**)_a);
	struct tree_entry *b = *((struct tree_entry**)_b);
	return base_name_compare(
		a->name->str_dat, a->name->str_len, a->mode,
		b->name->str_dat, b->name->str_len, b->mode);
}

static void store_tree(struct tree_entry *root)
{
	struct tree_content *t = root->tree;
	unsigned int i;
	size_t maxlen;
	char *buf, *c;

	if (memcmp(root->sha1, null_sha1, 20))
		return;

	maxlen = 0;
	for (i = 0; i < t->entry_count; i++) {
		maxlen += t->entries[i]->name->str_len + 34;
		if (t->entries[i]->tree)
			store_tree(t->entries[i]);
	}

	qsort(t->entries, t->entry_count, sizeof(t->entries[0]), tecmp);
	buf = c = xmalloc(maxlen);
	for (i = 0; i < t->entry_count; i++) {
		struct tree_entry *e = t->entries[i];
		c += sprintf(c, "%o", e->mode);
		*c++ = ' ';
		strcpy(c, e->name->str_dat);
		c += e->name->str_len + 1;
		memcpy(c, e->sha1, 20);
		c += 20;
	}
	store_object(OBJ_TREE, buf, c - buf, NULL, root->sha1);
	free(buf);
}

static int tree_content_set(
	struct tree_entry *root,
	const char *p,
	const unsigned char *sha1,
	const unsigned int mode)
{
	struct tree_content *t = root->tree;
	const char *slash1;
	unsigned int i, n;
	struct tree_entry *e;

	slash1 = strchr(p, '/');
	if (slash1)
		n = slash1 - p;
	else
		n = strlen(p);

	for (i = 0; i < t->entry_count; i++) {
		e = t->entries[i];
		if (e->name->str_len == n && !strncmp(p, e->name->str_dat, n)) {
			if (!slash1) {
				if (e->mode == mode && !memcmp(e->sha1, sha1, 20))
					return 0;
				e->mode = mode;
				memcpy(e->sha1, sha1, 20);
				if (e->tree) {
					release_tree_content(e->tree);
					e->tree = NULL;
				}
				memcpy(root->sha1, null_sha1, 20);
				return 1;
			}
			if (!S_ISDIR(e->mode)) {
				e->tree = new_tree_content(8);
718
				e->mode = S_IFDIR;
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
			}
			if (!e->tree)
				load_tree(e);
			if (tree_content_set(e, slash1 + 1, sha1, mode)) {
				memcpy(root->sha1, null_sha1, 20);
				return 1;
			}
			return 0;
		}
	}

	if (t->entry_count == t->entry_capacity)
		root->tree = t = grow_tree_content(t, 8);
	e = new_tree_entry();
	e->name = to_atom(p, n);
	t->entries[t->entry_count++] = e;
	if (slash1) {
		e->tree = new_tree_content(8);
737
		e->mode = S_IFDIR;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
		tree_content_set(e, slash1 + 1, sha1, mode);
	} else {
		e->tree = NULL;
		e->mode = mode;
		memcpy(e->sha1, sha1, 20);
	}
	memcpy(root->sha1, null_sha1, 20);
	return 1;
}

static int tree_content_remove(struct tree_entry *root, const char *p)
{
	struct tree_content *t = root->tree;
	const char *slash1;
	unsigned int i, n;
	struct tree_entry *e;

	slash1 = strchr(p, '/');
	if (slash1)
		n = slash1 - p;
	else
		n = strlen(p);

	for (i = 0; i < t->entry_count; i++) {
		e = t->entries[i];
		if (e->name->str_len == n && !strncmp(p, e->name->str_dat, n)) {
			if (!slash1 || !S_ISDIR(e->mode))
				goto del_entry;
			if (!e->tree)
				load_tree(e);
			if (tree_content_remove(e, slash1 + 1)) {
				if (!e->tree->entry_count)
					goto del_entry;
				memcpy(root->sha1, null_sha1, 20);
				return 1;
			}
			return 0;
		}
	}
	return 0;

del_entry:
	for (i++; i < t->entry_count; i++)
		t->entries[i-1] = t->entries[i];
	t->entry_count--;
	release_tree_entry(e);
	memcpy(root->sha1, null_sha1, 20);
785
	return 1;
786 787
}

788
static void init_pack_header()
789 790
{
	const char* magic = "PACK";
791
	unsigned long version = 3;
792 793 794
	unsigned long zero = 0;

	version = htonl(version);
795 796 797
	ywrite(pack_fd, (char*)magic, 4);
	ywrite(pack_fd, &version, 4);
	ywrite(pack_fd, &zero, 4);
798
	pack_offset = 4 * 3;
799 800
}

801
static void fixup_header_footer()
802 803 804 805 806 807 808
{
	SHA_CTX c;
	char hdr[8];
	unsigned long cnt;
	char *buf;
	size_t n;

809
	if (lseek(pack_fd, 0, SEEK_SET) != 0)
810 811 812
		die("Failed seeking to start: %s", strerror(errno));

	SHA1_Init(&c);
813
	yread(pack_fd, hdr, 8);
814 815 816 817
	SHA1_Update(&c, hdr, 8);

	cnt = htonl(object_count);
	SHA1_Update(&c, &cnt, 4);
818
	ywrite(pack_fd, &cnt, 4);
819 820 821

	buf = xmalloc(128 * 1024);
	for (;;) {
822
		n = xread(pack_fd, buf, 128 * 1024);
823 824 825 826 827 828
		if (n <= 0)
			break;
		SHA1_Update(&c, buf, n);
	}
	free(buf);

829
	SHA1_Final(pack_sha1, &c);
830
	ywrite(pack_fd, pack_sha1, sizeof(pack_sha1));
831 832
}

833
static int oecmp (const void *_a, const void *_b)
834
{
835 836 837 838 839 840 841 842 843 844
	struct object_entry *a = *((struct object_entry**)_a);
	struct object_entry *b = *((struct object_entry**)_b);
	return memcmp(a->sha1, b->sha1, sizeof(a->sha1));
}

static void write_index(const char *idx_name)
{
	struct sha1file *f;
	struct object_entry **idx, **c, **last;
	struct object_entry *e;
845
	struct object_entry_pool *o;
846 847 848 849 850 851
	unsigned int array[256];
	int i;

	/* Build the sorted table of object IDs. */
	idx = xmalloc(object_count * sizeof(struct object_entry*));
	c = idx;
852
	for (o = blocks; o; o = o->next_pool)
853 854
		for (e = o->entries; e != o->next_free; e++)
			*c++ = e;
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	last = idx + object_count;
	qsort(idx, object_count, sizeof(struct object_entry*), oecmp);

	/* Generate the fan-out array. */
	c = idx;
	for (i = 0; i < 256; i++) {
		struct object_entry **next = c;;
		while (next < last) {
			if ((*next)->sha1[0] != i)
				break;
			next++;
		}
		array[i] = htonl(next - idx);
		c = next;
	}

	f = sha1create("%s", idx_name);
	sha1write(f, array, 256 * sizeof(int));
	for (c = idx; c != last; c++) {
		unsigned int offset = htonl((*c)->offset);
		sha1write(f, &offset, 4);
		sha1write(f, (*c)->sha1, sizeof((*c)->sha1));
	}
878
	sha1write(f, pack_sha1, sizeof(pack_sha1));
879 880 881 882
	sha1close(f, NULL, 1);
	free(idx);
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
static void dump_branches()
{
	static const char *msg = "fast-import";
	unsigned int i;
	struct branch *b;
	struct ref_lock *lock;

	for (i = 0; i < branch_table_sz; i++) {
		for (b = branch_table[i]; b; b = b->table_next_branch) {
			lock = lock_any_ref_for_update(b->name, NULL, 0);
			if (!lock || write_ref_sha1(lock, b->sha1, msg) < 0)
				die("Can't write %s", b->name);
		}
	}
}

static void cmd_new_blob()
900 901
{
	unsigned long datlen;
902
	unsigned char sha1[20];
903 904
	void *dat;

905
	yread(0, &datlen, 4);
906
	dat = xmalloc(datlen);
907 908
	yread(0, dat, datlen);
	if (store_object(OBJ_BLOB, dat, datlen, &last_blob, sha1))
909 910 911
		free(dat);
}

912
static void unload_one_branch()
913
{
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	while (cur_active_branches >= max_active_branches) {
		unsigned long min_commit = ULONG_MAX;
		struct branch *e, *l = NULL, *p = NULL;

		for (e = active_branches; e; e = e->active_next_branch) {
			if (e->last_commit < min_commit) {
				p = l;
				min_commit = e->last_commit;
			}
			l = e;
		}

		if (p) {
			e = p->active_next_branch;
			p->active_next_branch = e->active_next_branch;
		} else {
			e = active_branches;
			active_branches = e->active_next_branch;
		}
		e->active_next_branch = NULL;
		if (e->branch_tree.tree) {
			release_tree_content(e->branch_tree.tree);
			e->branch_tree.tree = NULL;
		}
		cur_active_branches--;
939 940 941
	}
}

942
static void load_branch(struct branch *b)
943
{
944 945 946 947
	load_tree(&b->branch_tree);
	b->active_next_branch = active_branches;
	active_branches = b;
	cur_active_branches++;
948 949
}

950
static void file_change_m(struct branch *b)
951
{
952
	const char *path = read_path();
953
	struct object_entry *oe;
954 955
	char hexsha1[41];
	unsigned char sha1[20];
956
	char type[20];
957

958 959
	yread(0, hexsha1, 40);
	hexsha1[40] = 0;
960

961 962
	if (get_sha1_hex(hexsha1, sha1))
		die("Invalid sha1 %s for %s", hexsha1, path);
963 964 965 966 967 968 969 970 971 972
	oe = find_object(sha1);
	if (oe) {
		if (oe->type != OBJ_BLOB)
			die("%s is a %s not a blob (for %s)", hexsha1, type_names[oe->type], path);
	} else {
		if (sha1_object_info(sha1, type, NULL))
			die("No blob %s for %s", hexsha1, path);
		if (strcmp(blob_type, type))
			die("%s is a %s not a blob (for %s)", hexsha1, type, path);
	}
973

974
	tree_content_set(&b->branch_tree, path, sha1, S_IFREG | 0644);
975
}
976

977 978 979
static void file_change_d(struct branch *b)
{
	tree_content_remove(&b->branch_tree, read_path());
980 981
}

982
static void cmd_new_commit()
983
{
984 985 986 987 988 989 990 991 992 993 994 995
	static const unsigned int max_hdr_len = 94;
	const char *name = read_path();
	struct branch *b = lookup_branch(name);
	unsigned int acmsglen;
	char *body, *c;

	if (!b)
		die("Branch not declared: %s", name);
	if (!b->branch_tree.tree) {
		unload_one_branch();
		load_branch(b);
	}
996

997 998 999 1000 1001 1002
	/* author_committer_msg */
	yread(0, &acmsglen, 4);
	body = xmalloc(acmsglen + max_hdr_len);
	c = body + max_hdr_len;
	yread(0, c, acmsglen);

1003 1004 1005 1006
	/* oddly enough this is all that fsck-objects cares about */
	if (memcmp(c, "author ", 7))
		die("Invalid commit format on branch %s", name);

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	/* file_change* */
	for (;;) {
		unsigned char cmd;
		yread(0, &cmd, 1);
		if (cmd == '0')
			break;
		else if (cmd == 'M')
			file_change_m(b);
		else if (cmd == 'D')
			file_change_d(b);
		else
			die("Unsupported file_change: %c", cmd);
1019 1020
	}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	if (memcmp(b->sha1, null_sha1, 20)) {
		sprintf(c - 48, "parent %s", sha1_to_hex(b->sha1));
		*(c - 1) = '\n';
		c -= 48;
	}
	store_tree(&b->branch_tree);
	sprintf(c - 46, "tree %s", sha1_to_hex(b->branch_tree.sha1));
	*(c - 1) = '\n';
	c -= 46;

	store_object(OBJ_COMMIT,
		c, (body + max_hdr_len + acmsglen) - c,
		NULL, b->sha1);
	free(body);
	b->last_commit = object_count_by_type[OBJ_COMMIT];
1036 1037
}

1038
static void cmd_new_branch()
1039
{
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	struct branch *b = new_branch(read_path());
	const char *base = read_path();
	struct branch *s = lookup_branch(base);

	if (!strcmp(b->name, base))
		die("Can't create a branch from itself: %s", base);
	else if (s) {
		memcpy(b->sha1, s->sha1, 20);
		memcpy(b->branch_tree.sha1, s->branch_tree.sha1, 20);
	}
	else if (!get_sha1(base, b->sha1)) {
		if (!memcmp(b->sha1, null_sha1, 20))
			memcpy(b->branch_tree.sha1, null_sha1, 20);
		else {
			unsigned long size;
			char *buf;

			buf = read_object_with_reference(b->sha1,
				type_names[OBJ_COMMIT], &size, b->sha1);
			if (!buf || size < 46)
				die("Not a valid commit: %s", base);
			if (memcmp("tree ", buf, 5)
				|| get_sha1_hex(buf + 5, b->branch_tree.sha1))
				die("The commit %s is corrupt", sha1_to_hex(b->sha1));
			free(buf);
		}
	} else
		die("Not a SHA1 or branch: %s", base);
1068 1069
}

1070 1071 1072 1073 1074 1075
int main(int argc, const char **argv)
{
	const char *base_name = argv[1];
	int est_obj_cnt = atoi(argv[2]);
	char *pack_name;
	char *idx_name;
1076
	struct stat sb;
1077

1078 1079 1080
	setup_ident();
	git_config(git_default_config);

1081 1082 1083 1084 1085
	pack_name = xmalloc(strlen(base_name) + 6);
	sprintf(pack_name, "%s.pack", base_name);
	idx_name = xmalloc(strlen(base_name) + 5);
	sprintf(idx_name, "%s.idx", base_name);

1086 1087
	pack_fd = open(pack_name, O_RDWR|O_CREAT|O_EXCL, 0666);
	if (pack_fd < 0)
1088
		die("Can't create %s: %s", pack_name, strerror(errno));
1089

1090
	alloc_objects(est_obj_cnt);
1091 1092 1093 1094 1095

	atom_table = xcalloc(atom_table_sz, sizeof(struct atom_str*));
	branch_table = xcalloc(branch_table_sz, sizeof(struct branch*));
	avail_tree_table = xcalloc(avail_tree_table_sz, sizeof(struct avail_tree_content*));

1096 1097
	init_pack_header();
	for (;;) {
1098
		unsigned long cmd;
1099
		if (optional_read(0, &cmd, 4))
1100 1101
			break;

1102 1103 1104 1105
		switch (ntohl(cmd)) {
		case 'blob': cmd_new_blob();   break;
		case 'comt': cmd_new_commit(); break;
		case 'brch': cmd_new_branch(); break;
1106 1107 1108
		default:
			die("Invalid command %lu", cmd);
		}
1109 1110
	}
	fixup_header_footer();
1111
	close(pack_fd);
1112
	write_index(idx_name);
1113
	dump_branches();
1114

1115 1116 1117 1118 1119 1120 1121 1122
	fprintf(stderr, "%s statistics:\n", argv[0]);
	fprintf(stderr, "---------------------------------------------------\n");
	fprintf(stderr, "Alloc'd objects: %10lu (%10lu overflow  )\n", alloc_count, alloc_count - est_obj_cnt);
	fprintf(stderr, "Total objects:   %10lu (%10lu duplicates)\n", object_count, duplicate_count);
	fprintf(stderr, "      blobs  :   %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_BLOB], duplicate_count_by_type[OBJ_BLOB]);
	fprintf(stderr, "      trees  :   %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_TREE], duplicate_count_by_type[OBJ_TREE]);
	fprintf(stderr, "      commits:   %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_COMMIT], duplicate_count_by_type[OBJ_COMMIT]);
	fprintf(stderr, "      tags   :   %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_TAG], duplicate_count_by_type[OBJ_TAG]);
1123
	fprintf(stderr, "Total branches:  %10lu\n", branch_count);
1124
	fprintf(stderr, "Total atoms:     %10u\n", atom_cnt);
1125 1126 1127
	fprintf(stderr, "Memory total:    %10lu KiB\n", (total_allocd + alloc_count*sizeof(struct object_entry))/1024);
	fprintf(stderr, "       pools:    %10lu KiB\n", total_allocd/1024);
	fprintf(stderr, "     objects:    %10lu KiB\n", (alloc_count*sizeof(struct object_entry))/1024);
1128 1129 1130 1131 1132 1133 1134 1135
	fprintf(stderr, "---------------------------------------------------\n");

	stat(pack_name, &sb);
	fprintf(stderr, "Pack size:       %10lu KiB\n", (unsigned long)(sb.st_size/1024));
	stat(idx_name, &sb);
	fprintf(stderr, "Index size:      %10lu KiB\n", (unsigned long)(sb.st_size/1024));

	fprintf(stderr, "\n");
1136 1137 1138

	return 0;
}