/* Format of STDIN stream: stream ::= cmd*; cmd ::= new_blob | new_commit | new_branch | new_tag ; new_blob ::= 'blob' blob_data; new_commit ::= 'comt' ref_name author_committer_msg file_change* '0'; new_branch ::= 'brch' dst_ref_name src_ref_name; dst_ref_name ::= ref_name; src_ref_name ::= ref_name | sha1_exp; new_tag ::= 'tagg' ref_name tag_name tagger_msg; file_change ::= 'M' path_name hexsha1 | 'D' path_name ; author_committer_msg ::= len32 'author' sp name '<' email '>' ts tz lf 'committer' sp name '<' email '>' ts tz lf lf binary_data; tagger_msg ::= len32 'tagger' sp name '<' email '>' ts tz lf lf binary_data; blob_data ::= len32 binary_data; # max len is 2^32-1 path_name ::= len32 path; # max len is PATH_MAX-1 ref_name ::= len32 ref; # max len is PATH_MAX-1 tag_name ::= len32 tag; # max len is PATH_MAX-1 sha1_exp ::= len32 sha1exp; # max len is PATH_MAX-1 len32 ::= # unsigned 32 bit value, native format; binary_data ::= # file content, not interpreted; sp ::= # ASCII space character; lf ::= # ASCII newline (LF) character; path ::= # GIT style file path, e.g. "a/b/c"; ref ::= # GIT ref name, e.g. "refs/heads/MOZ_GECKO_EXPERIMENT"; tag ::= # GIT tag name, e.g. "FIREFOX_1_5"; sha1exp ::= # Any valid GIT SHA1 expression; hexsha1 ::= # SHA1 in hexadecimal format; name ::= # valid GIT author/committer name; email ::= # valid GIT author/committer email; ts ::= # time since the epoch in seconds, ascii decimal; tz ::= # GIT style timezone; */ #include "builtin.h" #include "cache.h" #include "object.h" #include "blob.h" #include "tree.h" #include "delta.h" #include "pack.h" #include "refs.h" #include "csum-file.h" struct object_entry { struct object_entry *next; enum object_type type; unsigned long offset; unsigned char sha1[20]; }; struct object_entry_pool { struct object_entry_pool *next_pool; struct object_entry *next_free; struct object_entry *end; struct object_entry entries[FLEX_ARRAY]; /* more */ }; struct last_object { void *data; unsigned int len; unsigned int depth; unsigned char sha1[20]; }; struct mem_pool { struct mem_pool *next_pool; char *next_free; char *end; char space[FLEX_ARRAY]; /* more */ }; struct atom_str { struct atom_str *next_atom; int str_len; char str_dat[FLEX_ARRAY]; /* more */ }; struct tree_content; struct tree_entry { struct tree_content *tree; struct atom_str* name; unsigned int mode; unsigned char sha1[20]; }; struct tree_content { unsigned int entry_capacity; /* must match avail_tree_content */ unsigned int entry_count; struct tree_entry *entries[FLEX_ARRAY]; /* more */ }; struct avail_tree_content { unsigned int entry_capacity; /* must match tree_content */ struct avail_tree_content *next_avail; }; struct branch { struct branch *table_next_branch; struct branch *active_next_branch; const char *name; unsigned long last_commit; struct tree_entry branch_tree; unsigned char sha1[20]; }; /* Stats and misc. counters */ static int max_depth = 10; static unsigned long alloc_count; static unsigned long branch_count; static unsigned long object_count; static unsigned long duplicate_count; static unsigned long object_count_by_type[9]; static unsigned long duplicate_count_by_type[9]; /* Memory pools */ static size_t mem_pool_alloc = 2*1024*1024 - sizeof(struct mem_pool); static size_t total_allocd; static struct mem_pool *mem_pool; /* atom management */ static unsigned int atom_table_sz = 4451; static unsigned int atom_cnt; static struct atom_str **atom_table; /* The .pack file being generated */ static int pack_fd; static unsigned long pack_offset; static unsigned char pack_sha1[20]; /* Table of objects we've written. */ static unsigned int object_entry_alloc = 1000; static struct object_entry_pool *blocks; static struct object_entry *object_table[1 << 16]; /* Our last blob */ static struct last_object last_blob; /* Tree management */ static unsigned int tree_entry_alloc = 1000; static void *avail_tree_entry; static unsigned int avail_tree_table_sz = 100; static struct avail_tree_content **avail_tree_table; /* Branch data */ static unsigned int max_active_branches = 5; static unsigned int cur_active_branches; static unsigned int branch_table_sz = 1039; static struct branch **branch_table; static struct branch *active_branches; static void alloc_objects(int cnt) { struct object_entry_pool *b; b = xmalloc(sizeof(struct object_entry_pool) + cnt * sizeof(struct object_entry)); b->next_pool = blocks; b->next_free = b->entries; b->end = b->entries + cnt; blocks = b; alloc_count += cnt; } static struct object_entry* new_object(unsigned char *sha1) { struct object_entry *e; if (blocks->next_free == blocks->end) alloc_objects(object_entry_alloc); e = blocks->next_free++; memcpy(e->sha1, sha1, sizeof(e->sha1)); return e; } static struct object_entry* find_object(unsigned char *sha1) { unsigned int h = sha1[0] << 8 | sha1[1]; struct object_entry *e; for (e = object_table[h]; e; e = e->next) if (!memcmp(sha1, e->sha1, sizeof(e->sha1))) return e; return NULL; } static struct object_entry* insert_object(unsigned char *sha1) { unsigned int h = sha1[0] << 8 | sha1[1]; struct object_entry *e = object_table[h]; struct object_entry *p = NULL; while (e) { if (!memcmp(sha1, e->sha1, sizeof(e->sha1))) return e; p = e; e = e->next; } e = new_object(sha1); e->next = NULL; e->offset = 0; if (p) p->next = e; else object_table[h] = e; return e; } static unsigned int hc_str(const char *s, size_t len) { unsigned int r = 0; while (len-- > 0) r = r * 31 + *s++; return r; } static void* pool_alloc(size_t len) { struct mem_pool *p; void *r; for (p = mem_pool; p; p = p->next_pool) if ((p->end - p->next_free >= len)) break; if (!p) { if (len >= (mem_pool_alloc/2)) { total_allocd += len; return xmalloc(len); } total_allocd += sizeof(struct mem_pool) + mem_pool_alloc; p = xmalloc(sizeof(struct mem_pool) + mem_pool_alloc); p->next_pool = mem_pool; p->next_free = p->space; p->end = p->next_free + mem_pool_alloc; mem_pool = p; } r = p->next_free; p->next_free += len; return r; } static void* pool_calloc(size_t count, size_t size) { size_t len = count * size; void *r = pool_alloc(len); memset(r, 0, len); return r; } static char* pool_strdup(const char *s) { char *r = pool_alloc(strlen(s) + 1); strcpy(r, s); return r; } static struct atom_str* to_atom(const char *s, size_t len) { unsigned int hc = hc_str(s, len) % atom_table_sz; struct atom_str *c; for (c = atom_table[hc]; c; c = c->next_atom) if (c->str_len == len && !strncmp(s, c->str_dat, len)) return c; c = pool_alloc(sizeof(struct atom_str) + len + 1); c->str_len = len; strncpy(c->str_dat, s, len); c->str_dat[len] = 0; c->next_atom = atom_table[hc]; atom_table[hc] = c; atom_cnt++; return c; } static struct branch* lookup_branch(const char *name) { unsigned int hc = hc_str(name, strlen(name)) % branch_table_sz; struct branch *b; for (b = branch_table[hc]; b; b = b->table_next_branch) if (!strcmp(name, b->name)) return b; return NULL; } static struct branch* new_branch(const char *name) { unsigned int hc = hc_str(name, strlen(name)) % branch_table_sz; struct branch* b = lookup_branch(name); if (b) die("Invalid attempt to create duplicate branch: %s", name); b = pool_calloc(1, sizeof(struct branch)); b->name = pool_strdup(name); b->table_next_branch = branch_table[hc]; branch_table[hc] = b; branch_count++; return b; } static unsigned int hc_entries(unsigned int cnt) { cnt = cnt & 7 ? (cnt / 8) + 1 : cnt / 8; return cnt < avail_tree_table_sz ? cnt : avail_tree_table_sz - 1; } static struct tree_content* new_tree_content(unsigned int cnt) { struct avail_tree_content *f, *l = NULL; struct tree_content *t; unsigned int hc = hc_entries(cnt); for (f = avail_tree_table[hc]; f; l = f, f = f->next_avail) if (f->entry_capacity >= cnt) break; if (f) { if (l) l->next_avail = f->next_avail; else avail_tree_table[hc] = f->next_avail; } else { cnt = cnt & 7 ? ((cnt / 8) + 1) * 8 : cnt; f = pool_alloc(sizeof(*t) + sizeof(t->entries[0]) * cnt); f->entry_capacity = cnt; } t = (struct tree_content*)f; t->entry_count = 0; return t; } static void release_tree_entry(struct tree_entry *e); static void release_tree_content(struct tree_content *t) { struct avail_tree_content *f = (struct avail_tree_content*)t; unsigned int hc = hc_entries(f->entry_capacity); unsigned int i; for (i = 0; i < t->entry_count; i++) release_tree_entry(t->entries[i]); f->next_avail = avail_tree_table[hc]; avail_tree_table[hc] = f; } static struct tree_content* grow_tree_content( struct tree_content *t, int amt) { struct tree_content *r = new_tree_content(t->entry_count + amt); r->entry_count = t->entry_count; memcpy(r->entries,t->entries,t->entry_count*sizeof(t->entries[0])); release_tree_content(t); return r; } static struct tree_entry* new_tree_entry() { struct tree_entry *e; if (!avail_tree_entry) { unsigned int n = tree_entry_alloc; avail_tree_entry = e = xmalloc(n * sizeof(struct tree_entry)); while (n--) { *((void**)e) = e + 1; e++; } } e = avail_tree_entry; avail_tree_entry = *((void**)e); return e; } static void release_tree_entry(struct tree_entry *e) { if (e->tree) release_tree_content(e->tree); *((void**)e) = avail_tree_entry; avail_tree_entry = e; } static void yread(int fd, void *buffer, size_t length) { ssize_t ret = 0; while (ret < length) { ssize_t size = xread(fd, (char *) buffer + ret, length - ret); if (!size) die("Read from descriptor %i: end of stream", fd); if (size < 0) die("Read from descriptor %i: %s", fd, strerror(errno)); ret += size; } } static int optional_read(int fd, void *buffer, size_t length) { ssize_t ret = 0; while (ret < length) { ssize_t size = xread(fd, (char *) buffer + ret, length - ret); if (!size && !ret) return 1; if (!size) die("Read from descriptor %i: end of stream", fd); if (size < 0) die("Read from descriptor %i: %s", fd, strerror(errno)); ret += size; } return 0; } static void ywrite(int fd, void *buffer, size_t length) { ssize_t ret = 0; while (ret < length) { ssize_t size = xwrite(fd, (char *) buffer + ret, length - ret); if (!size) die("Write to descriptor %i: end of file", fd); if (size < 0) die("Write to descriptor %i: %s", fd, strerror(errno)); ret += size; } } static const char* read_path() { static char sn[PATH_MAX]; unsigned long slen; yread(0, &slen, 4); if (!slen) die("Expected string command parameter, didn't find one"); if (slen > (PATH_MAX - 1)) die("Can't handle excessive string length %lu", slen); yread(0, sn, slen); sn[slen] = 0; return sn; } static unsigned long encode_header( enum object_type type, unsigned long size, unsigned char *hdr) { int n = 1; unsigned char c; if (type < OBJ_COMMIT || type > OBJ_DELTA) die("bad type %d", type); c = (type << 4) | (size & 15); size >>= 4; while (size) { *hdr++ = c | 0x80; c = size & 0x7f; size >>= 7; n++; } *hdr = c; return n; } static int store_object( enum object_type type, void *dat, unsigned long datlen, struct last_object *last, unsigned char *sha1out) { void *out, *delta; struct object_entry *e; unsigned char hdr[96]; unsigned char sha1[20]; unsigned long hdrlen, deltalen; SHA_CTX c; z_stream s; hdrlen = sprintf((char*)hdr,"%s %lu",type_names[type],datlen) + 1; SHA1_Init(&c); SHA1_Update(&c, hdr, hdrlen); SHA1_Update(&c, dat, datlen); SHA1_Final(sha1, &c); if (sha1out) memcpy(sha1out, sha1, sizeof(sha1)); e = insert_object(sha1); if (e->offset) { duplicate_count++; duplicate_count_by_type[type]++; return 1; } e->type = type; e->offset = pack_offset; object_count++; object_count_by_type[type]++; if (last && last->data && last->depth < max_depth) delta = diff_delta(last->data, last->len, dat, datlen, &deltalen, 0); else delta = 0; memset(&s, 0, sizeof(s)); deflateInit(&s, zlib_compression_level); if (delta) { last->depth++; s.next_in = delta; s.avail_in = deltalen; hdrlen = encode_header(OBJ_DELTA, deltalen, hdr); ywrite(pack_fd, hdr, hdrlen); ywrite(pack_fd, last->sha1, sizeof(sha1)); pack_offset += hdrlen + sizeof(sha1); } else { if (last) last->depth = 0; s.next_in = dat; s.avail_in = datlen; hdrlen = encode_header(type, datlen, hdr); ywrite(pack_fd, hdr, hdrlen); pack_offset += hdrlen; } s.avail_out = deflateBound(&s, s.avail_in); s.next_out = out = xmalloc(s.avail_out); while (deflate(&s, Z_FINISH) == Z_OK) /* nothing */; deflateEnd(&s); ywrite(pack_fd, out, s.total_out); pack_offset += s.total_out; free(out); if (delta) free(delta); if (last) { if (last->data) free(last->data); last->data = dat; last->len = datlen; memcpy(last->sha1, sha1, sizeof(sha1)); } return 0; } static const char *get_mode(const char *str, unsigned int *modep) { unsigned char c; unsigned int mode = 0; while ((c = *str++) != ' ') { if (c < '0' || c > '7') return NULL; mode = (mode << 3) + (c - '0'); } *modep = mode; return str; } static void load_tree(struct tree_entry *root) { struct object_entry *myoe; struct tree_content *t; unsigned long size; char *buf; const char *c; char type[20]; root->tree = t = new_tree_content(8); if (!memcmp(root->sha1, null_sha1, 20)) return; myoe = find_object(root->sha1); if (myoe) { die("FIXME"); } else { buf = read_sha1_file(root->sha1, type, &size); if (!buf || strcmp(type, tree_type)) die("Can't load existing tree %s", sha1_to_hex(root->sha1)); } c = buf; while (c != (buf + size)) { struct tree_entry *e = new_tree_entry(); if (t->entry_count == t->entry_capacity) root->tree = t = grow_tree_content(t, 8); t->entries[t->entry_count++] = e; e->tree = NULL; c = get_mode(c, &e->mode); if (!c) die("Corrupt mode in %s", sha1_to_hex(root->sha1)); e->name = to_atom(c, strlen(c)); c += e->name->str_len + 1; memcpy(e->sha1, c, sizeof(e->sha1)); c += 20; } free(buf); } static int tecmp (const void *_a, const void *_b) { struct tree_entry *a = *((struct tree_entry**)_a); struct tree_entry *b = *((struct tree_entry**)_b); return base_name_compare( a->name->str_dat, a->name->str_len, a->mode, b->name->str_dat, b->name->str_len, b->mode); } static void store_tree(struct tree_entry *root) { struct tree_content *t = root->tree; unsigned int i; size_t maxlen; char *buf, *c; if (memcmp(root->sha1, null_sha1, 20)) return; maxlen = 0; for (i = 0; i < t->entry_count; i++) { maxlen += t->entries[i]->name->str_len + 34; if (t->entries[i]->tree) store_tree(t->entries[i]); } qsort(t->entries, t->entry_count, sizeof(t->entries[0]), tecmp); buf = c = xmalloc(maxlen); for (i = 0; i < t->entry_count; i++) { struct tree_entry *e = t->entries[i]; c += sprintf(c, "%o", e->mode); *c++ = ' '; strcpy(c, e->name->str_dat); c += e->name->str_len + 1; memcpy(c, e->sha1, 20); c += 20; } store_object(OBJ_TREE, buf, c - buf, NULL, root->sha1); free(buf); } static int tree_content_set( struct tree_entry *root, const char *p, const unsigned char *sha1, const unsigned int mode) { struct tree_content *t = root->tree; const char *slash1; unsigned int i, n; struct tree_entry *e; slash1 = strchr(p, '/'); if (slash1) n = slash1 - p; else n = strlen(p); for (i = 0; i < t->entry_count; i++) { e = t->entries[i]; if (e->name->str_len == n && !strncmp(p, e->name->str_dat, n)) { if (!slash1) { if (e->mode == mode && !memcmp(e->sha1, sha1, 20)) return 0; e->mode = mode; memcpy(e->sha1, sha1, 20); if (e->tree) { release_tree_content(e->tree); e->tree = NULL; } memcpy(root->sha1, null_sha1, 20); return 1; } if (!S_ISDIR(e->mode)) { e->tree = new_tree_content(8); e->mode = S_IFDIR; } if (!e->tree) load_tree(e); if (tree_content_set(e, slash1 + 1, sha1, mode)) { memcpy(root->sha1, null_sha1, 20); return 1; } return 0; } } if (t->entry_count == t->entry_capacity) root->tree = t = grow_tree_content(t, 8); e = new_tree_entry(); e->name = to_atom(p, n); t->entries[t->entry_count++] = e; if (slash1) { e->tree = new_tree_content(8); e->mode = S_IFDIR; tree_content_set(e, slash1 + 1, sha1, mode); } else { e->tree = NULL; e->mode = mode; memcpy(e->sha1, sha1, 20); } memcpy(root->sha1, null_sha1, 20); return 1; } static int tree_content_remove(struct tree_entry *root, const char *p) { struct tree_content *t = root->tree; const char *slash1; unsigned int i, n; struct tree_entry *e; slash1 = strchr(p, '/'); if (slash1) n = slash1 - p; else n = strlen(p); for (i = 0; i < t->entry_count; i++) { e = t->entries[i]; if (e->name->str_len == n && !strncmp(p, e->name->str_dat, n)) { if (!slash1 || !S_ISDIR(e->mode)) goto del_entry; if (!e->tree) load_tree(e); if (tree_content_remove(e, slash1 + 1)) { if (!e->tree->entry_count) goto del_entry; memcpy(root->sha1, null_sha1, 20); return 1; } return 0; } } return 0; del_entry: for (i++; i < t->entry_count; i++) t->entries[i-1] = t->entries[i]; t->entry_count--; release_tree_entry(e); memcpy(root->sha1, null_sha1, 20); return 1; } static void init_pack_header() { const char* magic = "PACK"; unsigned long version = 3; unsigned long zero = 0; version = htonl(version); ywrite(pack_fd, (char*)magic, 4); ywrite(pack_fd, &version, 4); ywrite(pack_fd, &zero, 4); pack_offset = 4 * 3; } static void fixup_header_footer() { SHA_CTX c; char hdr[8]; unsigned long cnt; char *buf; size_t n; if (lseek(pack_fd, 0, SEEK_SET) != 0) die("Failed seeking to start: %s", strerror(errno)); SHA1_Init(&c); yread(pack_fd, hdr, 8); SHA1_Update(&c, hdr, 8); cnt = htonl(object_count); SHA1_Update(&c, &cnt, 4); ywrite(pack_fd, &cnt, 4); buf = xmalloc(128 * 1024); for (;;) { n = xread(pack_fd, buf, 128 * 1024); if (n <= 0) break; SHA1_Update(&c, buf, n); } free(buf); SHA1_Final(pack_sha1, &c); ywrite(pack_fd, pack_sha1, sizeof(pack_sha1)); } static int oecmp (const void *_a, const void *_b) { struct object_entry *a = *((struct object_entry**)_a); struct object_entry *b = *((struct object_entry**)_b); return memcmp(a->sha1, b->sha1, sizeof(a->sha1)); } static void write_index(const char *idx_name) { struct sha1file *f; struct object_entry **idx, **c, **last; struct object_entry *e; struct object_entry_pool *o; unsigned int array[256]; int i; /* Build the sorted table of object IDs. */ idx = xmalloc(object_count * sizeof(struct object_entry*)); c = idx; for (o = blocks; o; o = o->next_pool) for (e = o->entries; e != o->next_free; e++) *c++ = e; last = idx + object_count; qsort(idx, object_count, sizeof(struct object_entry*), oecmp); /* Generate the fan-out array. */ c = idx; for (i = 0; i < 256; i++) { struct object_entry **next = c;; while (next < last) { if ((*next)->sha1[0] != i) break; next++; } array[i] = htonl(next - idx); c = next; } f = sha1create("%s", idx_name); sha1write(f, array, 256 * sizeof(int)); for (c = idx; c != last; c++) { unsigned int offset = htonl((*c)->offset); sha1write(f, &offset, 4); sha1write(f, (*c)->sha1, sizeof((*c)->sha1)); } sha1write(f, pack_sha1, sizeof(pack_sha1)); sha1close(f, NULL, 1); free(idx); } static void dump_branches() { static const char *msg = "fast-import"; unsigned int i; struct branch *b; struct ref_lock *lock; for (i = 0; i < branch_table_sz; i++) { for (b = branch_table[i]; b; b = b->table_next_branch) { lock = lock_any_ref_for_update(b->name, NULL, 0); if (!lock || write_ref_sha1(lock, b->sha1, msg) < 0) die("Can't write %s", b->name); } } } static void cmd_new_blob() { unsigned long datlen; unsigned char sha1[20]; void *dat; yread(0, &datlen, 4); dat = xmalloc(datlen); yread(0, dat, datlen); if (store_object(OBJ_BLOB, dat, datlen, &last_blob, sha1)) free(dat); } static void unload_one_branch() { while (cur_active_branches >= max_active_branches) { unsigned long min_commit = ULONG_MAX; struct branch *e, *l = NULL, *p = NULL; for (e = active_branches; e; e = e->active_next_branch) { if (e->last_commit < min_commit) { p = l; min_commit = e->last_commit; } l = e; } if (p) { e = p->active_next_branch; p->active_next_branch = e->active_next_branch; } else { e = active_branches; active_branches = e->active_next_branch; } e->active_next_branch = NULL; if (e->branch_tree.tree) { release_tree_content(e->branch_tree.tree); e->branch_tree.tree = NULL; } cur_active_branches--; } } static void load_branch(struct branch *b) { load_tree(&b->branch_tree); b->active_next_branch = active_branches; active_branches = b; cur_active_branches++; } static void file_change_m(struct branch *b) { const char *path = read_path(); struct object_entry *oe; char hexsha1[41]; unsigned char sha1[20]; char type[20]; yread(0, hexsha1, 40); hexsha1[40] = 0; if (get_sha1_hex(hexsha1, sha1)) die("Invalid sha1 %s for %s", hexsha1, path); oe = find_object(sha1); if (oe) { if (oe->type != OBJ_BLOB) die("%s is a %s not a blob (for %s)", hexsha1, type_names[oe->type], path); } else { if (sha1_object_info(sha1, type, NULL)) die("No blob %s for %s", hexsha1, path); if (strcmp(blob_type, type)) die("%s is a %s not a blob (for %s)", hexsha1, type, path); } tree_content_set(&b->branch_tree, path, sha1, S_IFREG | 0644); } static void file_change_d(struct branch *b) { tree_content_remove(&b->branch_tree, read_path()); } static void cmd_new_commit() { static const unsigned int max_hdr_len = 94; const char *name = read_path(); struct branch *b = lookup_branch(name); unsigned int acmsglen; char *body, *c; if (!b) die("Branch not declared: %s", name); if (!b->branch_tree.tree) { unload_one_branch(); load_branch(b); } /* author_committer_msg */ yread(0, &acmsglen, 4); body = xmalloc(acmsglen + max_hdr_len); c = body + max_hdr_len; yread(0, c, acmsglen); /* oddly enough this is all that fsck-objects cares about */ if (memcmp(c, "author ", 7)) die("Invalid commit format on branch %s", name); /* file_change* */ for (;;) { unsigned char cmd; yread(0, &cmd, 1); if (cmd == '0') break; else if (cmd == 'M') file_change_m(b); else if (cmd == 'D') file_change_d(b); else die("Unsupported file_change: %c", cmd); } if (memcmp(b->sha1, null_sha1, 20)) { sprintf(c - 48, "parent %s", sha1_to_hex(b->sha1)); *(c - 1) = '\n'; c -= 48; } store_tree(&b->branch_tree); sprintf(c - 46, "tree %s", sha1_to_hex(b->branch_tree.sha1)); *(c - 1) = '\n'; c -= 46; store_object(OBJ_COMMIT, c, (body + max_hdr_len + acmsglen) - c, NULL, b->sha1); free(body); b->last_commit = object_count_by_type[OBJ_COMMIT]; } static void cmd_new_branch() { struct branch *b = new_branch(read_path()); const char *base = read_path(); struct branch *s = lookup_branch(base); if (!strcmp(b->name, base)) die("Can't create a branch from itself: %s", base); else if (s) { memcpy(b->sha1, s->sha1, 20); memcpy(b->branch_tree.sha1, s->branch_tree.sha1, 20); } else if (!get_sha1(base, b->sha1)) { if (!memcmp(b->sha1, null_sha1, 20)) memcpy(b->branch_tree.sha1, null_sha1, 20); else { unsigned long size; char *buf; buf = read_object_with_reference(b->sha1, type_names[OBJ_COMMIT], &size, b->sha1); if (!buf || size < 46) die("Not a valid commit: %s", base); if (memcmp("tree ", buf, 5) || get_sha1_hex(buf + 5, b->branch_tree.sha1)) die("The commit %s is corrupt", sha1_to_hex(b->sha1)); free(buf); } } else die("Not a SHA1 or branch: %s", base); } int main(int argc, const char **argv) { const char *base_name = argv[1]; int est_obj_cnt = atoi(argv[2]); char *pack_name; char *idx_name; struct stat sb; setup_ident(); git_config(git_default_config); pack_name = xmalloc(strlen(base_name) + 6); sprintf(pack_name, "%s.pack", base_name); idx_name = xmalloc(strlen(base_name) + 5); sprintf(idx_name, "%s.idx", base_name); pack_fd = open(pack_name, O_RDWR|O_CREAT|O_EXCL, 0666); if (pack_fd < 0) die("Can't create %s: %s", pack_name, strerror(errno)); alloc_objects(est_obj_cnt); atom_table = xcalloc(atom_table_sz, sizeof(struct atom_str*)); branch_table = xcalloc(branch_table_sz, sizeof(struct branch*)); avail_tree_table = xcalloc(avail_tree_table_sz, sizeof(struct avail_tree_content*)); init_pack_header(); for (;;) { unsigned long cmd; if (optional_read(0, &cmd, 4)) break; switch (ntohl(cmd)) { case 'blob': cmd_new_blob(); break; case 'comt': cmd_new_commit(); break; case 'brch': cmd_new_branch(); break; default: die("Invalid command %lu", cmd); } } fixup_header_footer(); close(pack_fd); write_index(idx_name); dump_branches(); fprintf(stderr, "%s statistics:\n", argv[0]); fprintf(stderr, "---------------------------------------------------\n"); fprintf(stderr, "Alloc'd objects: %10lu (%10lu overflow )\n", alloc_count, alloc_count - est_obj_cnt); fprintf(stderr, "Total objects: %10lu (%10lu duplicates)\n", object_count, duplicate_count); fprintf(stderr, " blobs : %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_BLOB], duplicate_count_by_type[OBJ_BLOB]); fprintf(stderr, " trees : %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_TREE], duplicate_count_by_type[OBJ_TREE]); fprintf(stderr, " commits: %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_COMMIT], duplicate_count_by_type[OBJ_COMMIT]); fprintf(stderr, " tags : %10lu (%10lu duplicates)\n", object_count_by_type[OBJ_TAG], duplicate_count_by_type[OBJ_TAG]); fprintf(stderr, "Total branches: %10lu\n", branch_count); fprintf(stderr, "Total atoms: %10u\n", atom_cnt); fprintf(stderr, "Memory total: %10lu KiB\n", (total_allocd + alloc_count*sizeof(struct object_entry))/1024); fprintf(stderr, " pools: %10lu KiB\n", total_allocd/1024); fprintf(stderr, " objects: %10lu KiB\n", (alloc_count*sizeof(struct object_entry))/1024); fprintf(stderr, "---------------------------------------------------\n"); stat(pack_name, &sb); fprintf(stderr, "Pack size: %10lu KiB\n", (unsigned long)(sb.st_size/1024)); stat(idx_name, &sb); fprintf(stderr, "Index size: %10lu KiB\n", (unsigned long)(sb.st_size/1024)); fprintf(stderr, "\n"); return 0; }