未验证 提交 0b8d6d70 编写于 作者: M Maxim Smolskiy 提交者: GitHub

Add Project Euler problem 205 solution 1 (#5781)

* updating DIRECTORY.md

* Add solution

* updating DIRECTORY.md

* Fix

* Fix
Co-authored-by: Ngithub-actions <${GITHUB_ACTOR}@users.noreply.github.com>
上级 ed4c92d9
......@@ -865,6 +865,8 @@
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_191/sol1.py)
* Problem 203
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_203/sol1.py)
* Problem 205
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_205/sol1.py)
* Problem 206
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_206/sol1.py)
* Problem 207
......
"""
Project Euler Problem 205: https://projecteuler.net/problem=205
Peter has nine four-sided (pyramidal) dice, each with faces numbered 1, 2, 3, 4.
Colin has six six-sided (cubic) dice, each with faces numbered 1, 2, 3, 4, 5, 6.
Peter and Colin roll their dice and compare totals: the highest total wins.
The result is a draw if the totals are equal.
What is the probability that Pyramidal Peter beats Cubic Colin?
Give your answer rounded to seven decimal places in the form 0.abcdefg
"""
from itertools import product
def total_frequency_distribution(sides_number: int, dice_number: int) -> list[int]:
"""
Returns frequency distribution of total
>>> total_frequency_distribution(sides_number=6, dice_number=1)
[0, 1, 1, 1, 1, 1, 1]
>>> total_frequency_distribution(sides_number=4, dice_number=2)
[0, 0, 1, 2, 3, 4, 3, 2, 1]
"""
max_face_number = sides_number
max_total = max_face_number * dice_number
totals_frequencies = [0] * (max_total + 1)
min_face_number = 1
faces_numbers = range(min_face_number, max_face_number + 1)
for dice_numbers in product(faces_numbers, repeat=dice_number):
total = sum(dice_numbers)
totals_frequencies[total] += 1
return totals_frequencies
def solution() -> float:
"""
Returns probability that Pyramidal Peter beats Cubic Colin
rounded to seven decimal places in the form 0.abcdefg
>>> solution()
0.5731441
"""
peter_totals_frequencies = total_frequency_distribution(
sides_number=4, dice_number=9
)
colin_totals_frequencies = total_frequency_distribution(
sides_number=6, dice_number=6
)
peter_wins_count = 0
min_peter_total = 9
max_peter_total = 4 * 9
min_colin_total = 6
for peter_total in range(min_peter_total, max_peter_total + 1):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total]
)
total_games_number = (4 ** 9) * (6 ** 6)
peter_win_probability = peter_wins_count / total_games_number
rounded_peter_win_probability = round(peter_win_probability, ndigits=7)
return rounded_peter_win_probability
if __name__ == "__main__":
print(f"{solution() = }")
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册