提交 a422b421 编写于 作者: R Ralf Jung

don't allow ZST in ScalarInt

There are several indications that we should not ZST as a ScalarInt:
- We had two ways to have ZST valtrees, either an empty `Branch` or a `Leaf` with a ZST in it.
  `ValTree::zst()` used the former, but the latter could possibly arise as well.
- Likewise, the interpreter had `Immediate::Uninit` and `Immediate::Scalar(Scalar::ZST)`.
- LLVM codegen already had to special-case ZST ScalarInt.

So instead add new ZST variants to those types that did not have other variants
which could be used for this purpose.
上级 c4693bc9
......@@ -13,7 +13,6 @@
use rustc_middle::bug;
use rustc_middle::mir::interpret::{ConstAllocation, GlobalAlloc, Scalar};
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_middle::ty::ScalarInt;
use rustc_target::abi::{self, AddressSpace, HasDataLayout, Pointer, Size};
use libc::{c_char, c_uint};
......@@ -223,13 +222,13 @@ fn const_to_opt_u128(&self, v: &'ll Value, sign_ext: bool) -> Option<u128> {
})
}
fn zst_to_backend(&self, _llty: &'ll Type) -> &'ll Value {
self.const_undef(self.type_ix(0))
}
fn scalar_to_backend(&self, cv: Scalar, layout: abi::Scalar, llty: &'ll Type) -> &'ll Value {
let bitsize = if layout.is_bool() { 1 } else { layout.size(self).bits() };
match cv {
Scalar::Int(ScalarInt::ZST) => {
assert_eq!(0, layout.size(self).bytes());
self.const_undef(self.type_ix(0))
}
Scalar::Int(int) => {
let data = int.assert_bits(layout.size(self));
let llval = self.const_uint_big(self.type_ix(bitsize), data);
......
......@@ -84,6 +84,10 @@ pub fn from_const<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
let llval = bx.scalar_to_backend(x, scalar, bx.immediate_backend_type(layout));
OperandValue::Immediate(llval)
}
ConstValue::ZST => {
let llval = bx.zst_to_backend(bx.immediate_backend_type(layout));
OperandValue::Immediate(llval)
}
ConstValue::Slice { data, start, end } => {
let Abi::ScalarPair(a_scalar, _) = layout.abi else {
bug!("from_const: invalid ScalarPair layout: {:#?}", layout);
......
......@@ -29,6 +29,7 @@ pub trait ConstMethods<'tcx>: BackendTypes {
fn const_data_from_alloc(&self, alloc: ConstAllocation<'tcx>) -> Self::Value;
fn scalar_to_backend(&self, cv: Scalar, layout: abi::Scalar, llty: Self::Type) -> Self::Value;
fn zst_to_backend(&self, llty: Self::Type) -> Self::Value;
fn from_const_alloc(
&self,
layout: TyAndLayout<'tcx>,
......
......@@ -2,7 +2,7 @@
use crate::interpret::eval_nullary_intrinsic;
use crate::interpret::{
intern_const_alloc_recursive, Allocation, ConstAlloc, ConstValue, CtfeValidationMode, GlobalId,
Immediate, InternKind, InterpCx, InterpResult, MPlaceTy, MemoryKind, OpTy, RefTracking, Scalar,
Immediate, InternKind, InterpCx, InterpResult, MPlaceTy, MemoryKind, OpTy, RefTracking,
ScalarMaybeUninit, StackPopCleanup,
};
......@@ -157,7 +157,7 @@ pub(super) fn op_to_const<'tcx>(
"this MPlaceTy must come from a validated constant, thus we can assume the \
alignment is correct",
);
ConstValue::Scalar(Scalar::ZST)
ConstValue::ZST
}
}
};
......
......@@ -272,7 +272,7 @@ pub fn valtree_to_const_value<'tcx>(
match ty.kind() {
ty::FnDef(..) => {
assert!(valtree.unwrap_branch().is_empty());
ConstValue::Scalar(Scalar::ZST)
ConstValue::ZST
}
ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char => match valtree {
ty::ValTree::Leaf(scalar_int) => ConstValue::Scalar(Scalar::Int(scalar_int)),
......@@ -344,11 +344,7 @@ fn valtree_into_mplace<'tcx>(
match ty.kind() {
ty::FnDef(_, _) => {
ecx.write_immediate(
Immediate::Scalar(ScalarMaybeUninit::Scalar(Scalar::ZST)),
&place.into(),
)
.unwrap();
ecx.write_immediate(Immediate::Uninit, &place.into()).unwrap();
}
ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char => {
let scalar_int = valtree.unwrap_leaf();
......
......@@ -297,8 +297,8 @@ fn read_immediate_from_mplace_raw(
let Some(alloc) = self.get_place_alloc(mplace)? else {
return Ok(Some(ImmTy {
// zero-sized type
imm: Scalar::ZST.into(),
// zero-sized type can be left uninit
imm: Immediate::Uninit,
layout: mplace.layout,
}));
};
......@@ -441,8 +441,8 @@ pub fn operand_field(
// This makes several assumptions about what layouts we will encounter; we match what
// codegen does as good as we can (see `extract_field` in `rustc_codegen_ssa/src/mir/operand.rs`).
let field_val: Immediate<_> = match (*base, base.layout.abi) {
// the field contains no information
_ if field_layout.is_zst() => Scalar::ZST.into(),
// the field contains no information, can be left uninit
_ if field_layout.is_zst() => Immediate::Uninit,
// the field covers the entire type
_ if field_layout.size == base.layout.size => {
assert!(match (base.layout.abi, field_layout.abi) {
......@@ -553,8 +553,8 @@ pub fn local_to_op(
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
let layout = self.layout_of_local(frame, local, layout)?;
let op = if layout.is_zst() {
// Do not read from ZST, they might not be initialized
Operand::Immediate(Scalar::ZST.into())
// Bypass `access_local` (helps in ConstProp)
Operand::Immediate(Immediate::Uninit)
} else {
*M::access_local(frame, local)?
};
......@@ -709,6 +709,7 @@ pub(crate) fn const_val_to_op(
Operand::Indirect(MemPlace::from_ptr(ptr.into()))
}
ConstValue::Scalar(x) => Operand::Immediate(tag_scalar(x)?.into()),
ConstValue::ZST => Operand::Immediate(Immediate::Uninit),
ConstValue::Slice { data, start, end } => {
// We rely on mutability being set correctly in `data` to prevent writes
// where none should happen.
......
......@@ -59,6 +59,7 @@
#![feature(drain_filter)]
#![feature(intra_doc_pointers)]
#![feature(yeet_expr)]
#![feature(const_option)]
#![recursion_limit = "512"]
#![allow(rustc::potential_query_instability)]
......
......@@ -29,11 +29,14 @@ pub struct ConstAlloc<'tcx> {
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord, TyEncodable, TyDecodable, Hash)]
#[derive(HashStable)]
pub enum ConstValue<'tcx> {
/// Used only for types with `layout::abi::Scalar` ABI and ZSTs.
/// Used only for types with `layout::abi::Scalar` ABI.
///
/// Not using the enum `Value` to encode that this must not be `Uninit`.
Scalar(Scalar),
/// Only used for ZSTs.
ZST,
/// Used only for `&[u8]` and `&str`
Slice { data: ConstAllocation<'tcx>, start: usize, end: usize },
......@@ -55,6 +58,7 @@ impl<'a, 'tcx> Lift<'tcx> for ConstValue<'a> {
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<ConstValue<'tcx>> {
Some(match self {
ConstValue::Scalar(s) => ConstValue::Scalar(s),
ConstValue::ZST => ConstValue::ZST,
ConstValue::Slice { data, start, end } => {
ConstValue::Slice { data: tcx.lift(data)?, start, end }
}
......@@ -69,7 +73,7 @@ impl<'tcx> ConstValue<'tcx> {
#[inline]
pub fn try_to_scalar(&self) -> Option<Scalar<AllocId>> {
match *self {
ConstValue::ByRef { .. } | ConstValue::Slice { .. } => None,
ConstValue::ByRef { .. } | ConstValue::Slice { .. } | ConstValue::ZST => None,
ConstValue::Scalar(val) => Some(val),
}
}
......@@ -111,10 +115,6 @@ pub fn from_u64(i: u64) -> Self {
pub fn from_machine_usize(i: u64, cx: &impl HasDataLayout) -> Self {
ConstValue::Scalar(Scalar::from_machine_usize(i, cx))
}
pub fn zst() -> Self {
Self::Scalar(Scalar::ZST)
}
}
/// A `Scalar` represents an immediate, primitive value existing outside of a
......@@ -194,8 +194,6 @@ fn from(ptr: ScalarInt) -> Self {
}
impl<Tag> Scalar<Tag> {
pub const ZST: Self = Scalar::Int(ScalarInt::ZST);
#[inline(always)]
pub fn from_pointer(ptr: Pointer<Tag>, cx: &impl HasDataLayout) -> Self {
Scalar::Ptr(ptr, u8::try_from(cx.pointer_size().bytes()).unwrap())
......
......@@ -1711,7 +1711,7 @@ pub fn function_handle(
Operand::Constant(Box::new(Constant {
span,
user_ty: None,
literal: ConstantKind::Val(ConstValue::zst(), ty),
literal: ConstantKind::Val(ConstValue::ZST, ty),
}))
}
......@@ -2196,7 +2196,7 @@ pub fn from_bool(tcx: TyCtxt<'tcx>, v: bool) -> Self {
#[inline]
pub fn zero_sized(ty: Ty<'tcx>) -> Self {
let cv = ConstValue::Scalar(Scalar::ZST);
let cv = ConstValue::ZST;
Self::Val(cv, ty)
}
......
......@@ -449,6 +449,7 @@ fn visit_constant(&mut self, constant: &Constant<'tcx>, _location: Location) {
}
let fmt_val = |val: &ConstValue<'tcx>| match val {
ConstValue::ZST => format!("ZST"),
ConstValue::Scalar(s) => format!("Scalar({:?})", s),
ConstValue::Slice { .. } => format!("Slice(..)"),
ConstValue::ByRef { .. } => format!("ByRef(..)"),
......@@ -679,6 +680,7 @@ fn alloc_ids_from_const_val(val: ConstValue<'_>) -> impl Iterator<Item = AllocId
ConstValue::Scalar(interpret::Scalar::Int { .. }) => {
Either::Left(Either::Right(std::iter::empty()))
}
ConstValue::ZST => Either::Left(Either::Right(std::iter::empty())),
ConstValue::ByRef { alloc, .. } | ConstValue::Slice { data: alloc, .. } => {
Either::Right(alloc_ids_from_alloc(alloc))
}
......
......@@ -419,6 +419,10 @@ pub enum ExprKind<'tcx> {
lit: ty::ScalarInt,
user_ty: Option<Canonical<'tcx, UserType<'tcx>>>,
},
/// A literal of a ZST type.
ZstLiteral {
user_ty: Option<Canonical<'tcx, UserType<'tcx>>>,
},
/// Associated constants and named constants
NamedConst {
def_id: DefId,
......@@ -456,7 +460,7 @@ pub enum ExprKind<'tcx> {
impl<'tcx> ExprKind<'tcx> {
pub fn zero_sized_literal(user_ty: Option<Canonical<'tcx, UserType<'tcx>>>) -> Self {
ExprKind::NonHirLiteral { lit: ty::ScalarInt::ZST, user_ty }
ExprKind::ZstLiteral { user_ty }
}
}
......
......@@ -129,6 +129,7 @@ pub fn walk_expr<'a, 'tcx: 'a, V: Visitor<'a, 'tcx>>(visitor: &mut V, expr: &Exp
Closure { closure_id: _, substs: _, upvars: _, movability: _, fake_reads: _ } => {}
Literal { lit: _, neg: _ } => {}
NonHirLiteral { lit: _, user_ty: _ } => {}
ZstLiteral { user_ty: _ } => {}
NamedConst { def_id: _, substs: _, user_ty: _ } => {}
ConstParam { param: _, def_id: _ } => {}
StaticRef { alloc_id: _, ty: _, def_id: _ } => {}
......
......@@ -4,6 +4,7 @@
use rustc_target::abi::Size;
use std::convert::{TryFrom, TryInto};
use std::fmt;
use std::num::NonZeroU8;
use crate::ty::TyCtxt;
......@@ -123,7 +124,7 @@ pub struct ScalarInt {
/// The first `size` bytes of `data` are the value.
/// Do not try to read less or more bytes than that. The remaining bytes must be 0.
data: u128,
size: u8,
size: NonZeroU8,
}
// Cannot derive these, as the derives take references to the fields, and we
......@@ -135,33 +136,31 @@ fn hash_stable(&self, hcx: &mut CTX, hasher: &mut crate::ty::StableHasher) {
// Since `Self` is a packed struct, that would create a possibly unaligned reference,
// which is UB.
{ self.data }.hash_stable(hcx, hasher);
self.size.hash_stable(hcx, hasher);
self.size.get().hash_stable(hcx, hasher);
}
}
impl<S: Encoder> Encodable<S> for ScalarInt {
fn encode(&self, s: &mut S) {
s.emit_u128(self.data);
s.emit_u8(self.size);
s.emit_u8(self.size.get());
}
}
impl<D: Decoder> Decodable<D> for ScalarInt {
fn decode(d: &mut D) -> ScalarInt {
ScalarInt { data: d.read_u128(), size: d.read_u8() }
ScalarInt { data: d.read_u128(), size: NonZeroU8::new(d.read_u8()).unwrap() }
}
}
impl ScalarInt {
pub const TRUE: ScalarInt = ScalarInt { data: 1_u128, size: 1 };
pub const TRUE: ScalarInt = ScalarInt { data: 1_u128, size: NonZeroU8::new(1).unwrap() };
pub const FALSE: ScalarInt = ScalarInt { data: 0_u128, size: 1 };
pub const ZST: ScalarInt = ScalarInt { data: 0_u128, size: 0 };
pub const FALSE: ScalarInt = ScalarInt { data: 0_u128, size: NonZeroU8::new(1).unwrap() };
#[inline]
pub fn size(self) -> Size {
Size::from_bytes(self.size)
Size::from_bytes(self.size.get())
}
/// Make sure the `data` fits in `size`.
......@@ -185,7 +184,7 @@ fn check_data(self) {
#[inline]
pub fn null(size: Size) -> Self {
Self { data: 0, size: size.bytes() as u8 }
Self { data: 0, size: NonZeroU8::new(size.bytes() as u8).unwrap() }
}
#[inline]
......@@ -197,7 +196,7 @@ pub fn is_null(self) -> bool {
pub fn try_from_uint(i: impl Into<u128>, size: Size) -> Option<Self> {
let data = i.into();
if size.truncate(data) == data {
Some(Self { data, size: size.bytes() as u8 })
Some(Self { data, size: NonZeroU8::new(size.bytes() as u8).unwrap() })
} else {
None
}
......@@ -209,7 +208,7 @@ pub fn try_from_int(i: impl Into<i128>, size: Size) -> Option<Self> {
// `into` performed sign extension, we have to truncate
let truncated = size.truncate(i as u128);
if size.sign_extend(truncated) as i128 == i {
Some(Self { data: truncated, size: size.bytes() as u8 })
Some(Self { data: truncated, size: NonZeroU8::new(size.bytes() as u8).unwrap() })
} else {
None
}
......@@ -225,7 +224,7 @@ pub fn assert_bits(self, target_size: Size) -> u128 {
#[inline]
pub fn to_bits(self, target_size: Size) -> Result<u128, Size> {
assert_ne!(target_size.bytes(), 0, "you should never look at the bits of a ZST");
if target_size.bytes() == u64::from(self.size) {
if target_size.bytes() == u64::from(self.size.get()) {
self.check_data();
Ok(self.data)
} else {
......@@ -339,7 +338,7 @@ impl From<$ty> for ScalarInt {
fn from(u: $ty) -> Self {
Self {
data: u128::from(u),
size: std::mem::size_of::<$ty>() as u8,
size: NonZeroU8::new(std::mem::size_of::<$ty>() as u8).unwrap(),
}
}
}
......@@ -382,7 +381,7 @@ fn try_from(int: ScalarInt) -> Result<Self, Size> {
impl From<char> for ScalarInt {
#[inline]
fn from(c: char) -> Self {
Self { data: c as u128, size: std::mem::size_of::<char>() as u8 }
Self { data: c as u128, size: NonZeroU8::new(std::mem::size_of::<char>() as u8).unwrap() }
}
}
......@@ -409,7 +408,7 @@ impl From<Single> for ScalarInt {
#[inline]
fn from(f: Single) -> Self {
// We trust apfloat to give us properly truncated data.
Self { data: f.to_bits(), size: 4 }
Self { data: f.to_bits(), size: NonZeroU8::new((Single::BITS / 8) as u8).unwrap() }
}
}
......@@ -425,7 +424,7 @@ impl From<Double> for ScalarInt {
#[inline]
fn from(f: Double) -> Self {
// We trust apfloat to give us properly truncated data.
Self { data: f.to_bits(), size: 8 }
Self { data: f.to_bits(), size: NonZeroU8::new((Double::BITS / 8) as u8).unwrap() }
}
}
......@@ -439,13 +438,8 @@ fn try_from(int: ScalarInt) -> Result<Self, Size> {
impl fmt::Debug for ScalarInt {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.size == 0 {
self.check_data();
write!(f, "<ZST>")
} else {
// Dispatch to LowerHex below.
write!(f, "0x{:x}", self)
}
// Dispatch to LowerHex below.
write!(f, "0x{:x}", self)
}
}
......@@ -463,7 +457,7 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// would thus borrow `self.data`. Since `Self`
// is a packed struct, that would create a possibly unaligned reference, which
// is UB.
write!(f, "{:01$x}", { self.data }, self.size as usize * 2)
write!(f, "{:01$x}", { self.data }, self.size.get() as usize * 2)
}
}
......@@ -477,7 +471,7 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// would thus borrow `self.data`. Since `Self`
// is a packed struct, that would create a possibly unaligned reference, which
// is UB.
write!(f, "{:01$X}", { self.data }, self.size as usize * 2)
write!(f, "{:01$X}", { self.data }, self.size.get() as usize * 2)
}
}
......
......@@ -1355,10 +1355,6 @@ fn pretty_print_const_scalar_int(
" as ",
)?;
}
// For function type zsts just printing the path is enough
ty::FnDef(d, s) if int == ScalarInt::ZST => {
p!(print_value_path(*d, s))
}
// Nontrivial types with scalar bit representation
_ => {
let print = |mut this: Self| {
......
......@@ -49,11 +49,22 @@ pub(crate) fn as_constant(&mut self, expr: &Expr<'tcx>) -> Constant<'tcx> {
inferred_ty: ty,
})
});
let literal = ConstantKind::Val(ConstValue::Scalar(Scalar::Int(lit)), ty);
Constant { span, user_ty: user_ty, literal }
}
ExprKind::ZstLiteral { user_ty } => {
let user_ty = user_ty.map(|user_ty| {
this.canonical_user_type_annotations.push(CanonicalUserTypeAnnotation {
span,
user_ty,
inferred_ty: ty,
})
});
let literal = ConstantKind::Val(ConstValue::ZST, ty);
Constant { span, user_ty: user_ty, literal }
}
ExprKind::NamedConst { def_id, substs, user_ty } => {
let user_ty = user_ty.map(|user_ty| {
this.canonical_user_type_annotations.push(CanonicalUserTypeAnnotation {
......
......@@ -603,6 +603,7 @@ fn expr_as_place(
| ExprKind::Literal { .. }
| ExprKind::NamedConst { .. }
| ExprKind::NonHirLiteral { .. }
| ExprKind::ZstLiteral { .. }
| ExprKind::ConstParam { .. }
| ExprKind::ConstBlock { .. }
| ExprKind::StaticRef { .. }
......
......@@ -415,6 +415,7 @@ pub(crate) fn as_rvalue(
ExprKind::Literal { .. }
| ExprKind::NamedConst { .. }
| ExprKind::NonHirLiteral { .. }
| ExprKind::ZstLiteral { .. }
| ExprKind::ConstParam { .. }
| ExprKind::ConstBlock { .. }
| ExprKind::StaticRef { .. } => {
......
......@@ -72,6 +72,7 @@ pub(crate) fn of(ek: &ExprKind<'_>) -> Option<Category> {
ExprKind::ConstBlock { .. }
| ExprKind::Literal { .. }
| ExprKind::NonHirLiteral { .. }
| ExprKind::ZstLiteral { .. }
| ExprKind::ConstParam { .. }
| ExprKind::StaticRef { .. }
| ExprKind::NamedConst { .. } => Some(Category::Constant),
......
......@@ -559,6 +559,7 @@ pub(crate) fn expr_into_dest(
| ExprKind::Literal { .. }
| ExprKind::NamedConst { .. }
| ExprKind::NonHirLiteral { .. }
| ExprKind::ZstLiteral { .. }
| ExprKind::ConstParam { .. }
| ExprKind::ThreadLocalRef(_)
| ExprKind::StaticRef { .. } => {
......
......@@ -307,6 +307,7 @@ fn visit_expr(&mut self, expr: &Expr<'tcx>) {
| ExprKind::Literal { .. }
| ExprKind::NamedConst { .. }
| ExprKind::NonHirLiteral { .. }
| ExprKind::ZstLiteral { .. }
| ExprKind::ConstParam { .. }
| ExprKind::ConstBlock { .. }
| ExprKind::Deref { .. }
......
......@@ -451,6 +451,10 @@ fn recurse_build(&mut self, node: thir::ExprId) -> Result<NodeId, ErrorGuarantee
let val = ty::ValTree::from_scalar_int(lit);
self.nodes.push(Node::Leaf(ty::Const::from_value(self.tcx, val, node.ty)))
}
&ExprKind::ZstLiteral { user_ty: _ } => {
let val = ty::ValTree::zst();
self.nodes.push(Node::Leaf(ty::Const::from_value(self.tcx, val, node.ty)))
}
&ExprKind::NamedConst { def_id, substs, user_ty: _ } => {
let uneval = ty::Unevaluated::new(ty::WithOptConstParam::unknown(def_id), substs);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册