mod.rs 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use libc::c_uint;
use llvm::{self, ValueRef};
13
use llvm::debuginfo::DIScope;
14
use rustc::ty;
15 16
use rustc::mir::repr as mir;
use rustc::mir::tcx::LvalueTy;
17
use session::config::FullDebugInfo;
18
use base;
19
use common::{self, Block, BlockAndBuilder, CrateContext, FunctionContext};
20 21 22 23 24
use debuginfo::{self, declare_local, DebugLoc, VariableAccess, VariableKind};
use machine;
use type_of;

use syntax::codemap::DUMMY_SP;
25
use syntax::parse::token::keywords;
26

27 28 29
use std::ops::Deref;
use std::rc::Rc;

30
use basic_block::BasicBlock;
31

32 33
use rustc_data_structures::bitvec::BitVector;

34 35
pub use self::constant::trans_static_initializer;

36
use self::lvalue::{LvalueRef, get_dataptr, get_meta};
37 38
use rustc_mir::traversal;

39
use self::operand::{OperandRef, OperandValue};
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
#[derive(Clone)]
pub enum CachedMir<'mir, 'tcx: 'mir> {
    Ref(&'mir mir::Mir<'tcx>),
    Owned(Rc<mir::Mir<'tcx>>)
}

impl<'mir, 'tcx: 'mir> Deref for CachedMir<'mir, 'tcx> {
    type Target = mir::Mir<'tcx>;
    fn deref(&self) -> &mir::Mir<'tcx> {
        match *self {
            CachedMir::Ref(r) => r,
            CachedMir::Owned(ref rc) => rc
        }
    }
}

57 58
/// Master context for translating MIR.
pub struct MirContext<'bcx, 'tcx:'bcx> {
59
    mir: CachedMir<'bcx, 'tcx>,
60

61 62 63
    /// Function context
    fcx: &'bcx common::FunctionContext<'bcx, 'tcx>,

64 65 66 67 68 69 70 71 72 73 74 75
    /// When unwinding is initiated, we have to store this personality
    /// value somewhere so that we can load it and re-use it in the
    /// resume instruction. The personality is (afaik) some kind of
    /// value used for C++ unwinding, which must filter by type: we
    /// don't really care about it very much. Anyway, this value
    /// contains an alloca into which the personality is stored and
    /// then later loaded when generating the DIVERGE_BLOCK.
    llpersonalityslot: Option<ValueRef>,

    /// A `Block` for each MIR `BasicBlock`
    blocks: Vec<Block<'bcx, 'tcx>>,

76 77 78 79 80 81 82
    /// The funclet status of each basic block
    cleanup_kinds: Vec<analyze::CleanupKind>,

    /// This stores the landing-pad block for a given BB, computed lazily on GNU
    /// and eagerly on MSVC.
    landing_pads: Vec<Option<Block<'bcx, 'tcx>>>,

83 84 85
    /// Cached unreachable block
    unreachable_block: Option<Block<'bcx, 'tcx>>,

86 87 88
    /// An LLVM alloca for each MIR `VarDecl`
    vars: Vec<LvalueRef<'tcx>>,

89 90 91 92 93 94 95 96 97 98 99 100
    /// The location where each MIR `TempDecl` is stored. This is
    /// usually an `LvalueRef` representing an alloca, but not always:
    /// sometimes we can skip the alloca and just store the value
    /// directly using an `OperandRef`, which makes for tighter LLVM
    /// IR. The conditions for using an `OperandRef` are as follows:
    ///
    /// - the type of the temporary must be judged "immediate" by `type_is_immediate`
    /// - the operand must never be referenced indirectly
    ///     - we should not take its address using the `&` operator
    ///     - nor should it appear in an lvalue path like `tmp.a`
    /// - the operand must be defined by an rvalue that can generate immediate
    ///   values
N
Niko Matsakis 已提交
101 102 103
    ///
    /// Avoiding allocs can also be important for certain intrinsics,
    /// notably `expect`.
104
    temps: Vec<TempRef<'tcx>>,
105 106 107 108 109

    /// The arguments to the function; as args are lvalues, these are
    /// always indirect, though we try to avoid creating an alloca
    /// when we can (and just reuse the pointer the caller provided).
    args: Vec<LvalueRef<'tcx>>,
110 111 112

    /// Debug information for MIR scopes.
    scopes: Vec<DIScope>
113 114
}

115 116 117 118 119
enum TempRef<'tcx> {
    Lvalue(LvalueRef<'tcx>),
    Operand(Option<OperandRef<'tcx>>),
}

J
James Miller 已提交
120
impl<'tcx> TempRef<'tcx> {
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    fn new_operand<'bcx>(ccx: &CrateContext<'bcx, 'tcx>,
                         ty: ty::Ty<'tcx>) -> TempRef<'tcx> {
        if common::type_is_zero_size(ccx, ty) {
            // Zero-size temporaries aren't always initialized, which
            // doesn't matter because they don't contain data, but
            // we need something in the operand.
            let val = OperandValue::Immediate(common::C_nil(ccx));
            let op = OperandRef {
                val: val,
                ty: ty
            };
            TempRef::Operand(Some(op))
        } else {
            TempRef::Operand(None)
        }
J
James Miller 已提交
136 137 138
    }
}

139 140
///////////////////////////////////////////////////////////////////////////

141
pub fn trans_mir<'blk, 'tcx: 'blk>(fcx: &'blk FunctionContext<'blk, 'tcx>) {
142
    let bcx = fcx.init(false, None).build();
143 144
    let mir = bcx.mir();

145
    let mir_blocks = mir.all_basic_blocks();
146

147 148
    // Analyze the temps to determine which must be lvalues
    // FIXME
149 150 151
    let (lvalue_temps, cleanup_kinds) = bcx.with_block(|bcx| {
        (analyze::lvalue_temps(bcx, &mir),
         analyze::cleanup_kinds(bcx, &mir))
152
    });
153

154 155 156
    // Compute debuginfo scopes from MIR scopes.
    let scopes = debuginfo::create_mir_scopes(fcx);

157
    // Allocate variable and temp allocas
158
    let args = arg_value_refs(&bcx, &mir, &scopes);
159
    let vars = mir.var_decls.iter()
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
                            .map(|decl| (bcx.monomorphize(&decl.ty), decl))
                            .map(|(mty, decl)| {
        let lvalue = LvalueRef::alloca(&bcx, mty, &decl.name.as_str());

        let scope = scopes[decl.scope.index()];
        if !scope.is_null() && bcx.sess().opts.debuginfo == FullDebugInfo {
            bcx.with_block(|bcx| {
                declare_local(bcx, decl.name, mty, scope,
                              VariableAccess::DirectVariable { alloca: lvalue.llval },
                              VariableKind::LocalVariable, decl.span);
            });
        }

        lvalue
    }).collect();
175 176 177
    let temps = mir.temp_decls.iter()
                              .map(|decl| bcx.monomorphize(&decl.ty))
                              .enumerate()
178
                              .map(|(i, mty)| if lvalue_temps.contains(i) {
179
                                  TempRef::Lvalue(LvalueRef::alloca(&bcx,
180 181 182 183 184 185
                                                                    mty,
                                                                    &format!("temp{:?}", i)))
                              } else {
                                  // If this is an immediate temp, we do not create an
                                  // alloca in advance. Instead we wait until we see the
                                  // definition and update the operand there.
186
                                  TempRef::new_operand(bcx.ccx(), mty)
187
                              })
188 189 190
                              .collect();

    // Allocate a `Block` for every basic block
191
    let block_bcxs: Vec<Block<'blk,'tcx>> =
192
        mir_blocks.iter()
193
                  .map(|&bb|{
194 195 196 197 198
                      if bb == mir::START_BLOCK {
                          fcx.new_block("start", None)
                      } else {
                          fcx.new_block(&format!("{:?}", bb), None)
                      }
199
                  })
200 201 202 203
                  .collect();

    // Branch to the START block
    let start_bcx = block_bcxs[mir::START_BLOCK.index()];
204
    bcx.br(start_bcx.llbb);
205

206 207 208 209 210
    // Up until here, IR instructions for this function have explicitly not been annotated with
    // source code location, so we don't step into call setup code. From here on, source location
    // emitting should be enabled.
    debuginfo::start_emitting_source_locations(fcx);

211
    let mut mircx = MirContext {
212
        mir: mir.clone(),
213
        fcx: fcx,
214 215
        llpersonalityslot: None,
        blocks: block_bcxs,
216
        unreachable_block: None,
217 218
        cleanup_kinds: cleanup_kinds,
        landing_pads: mir_blocks.iter().map(|_| None).collect(),
219 220 221
        vars: vars,
        temps: temps,
        args: args,
222
        scopes: scopes
223 224
    };

225 226
    let mut visited = BitVector::new(mir_blocks.len());

227 228 229 230 231 232 233 234
    let mut rpo = traversal::reverse_postorder(&mir);

    // Prepare each block for translation.
    for (bb, _) in rpo.by_ref() {
        mircx.init_cpad(bb);
    }
    rpo.reset();

235 236
    // Translate the body of each block using reverse postorder
    for (bb, _) in rpo {
237
        visited.insert(bb.index());
S
Simonas Kazlauskas 已提交
238
        mircx.trans_block(bb);
239
    }
240

241 242
    // Remove blocks that haven't been visited, or have no
    // predecessors.
243
    for &bb in &mir_blocks {
244 245 246
        let block = mircx.blocks[bb.index()];
        let block = BasicBlock(block.llbb);
        // Unreachable block
247
        if !visited.contains(bb.index()) {
248
            debug!("trans_mir: block {:?} was not visited", bb);
249
            block.delete();
250 251 252
        }
    }

253
    DebugLoc::None.apply(fcx);
254
    fcx.cleanup();
255 256 257 258 259
}

/// Produce, for each argument, a `ValueRef` pointing at the
/// argument's value. As arguments are lvalues, these are always
/// indirect.
260
fn arg_value_refs<'bcx, 'tcx>(bcx: &BlockAndBuilder<'bcx, 'tcx>,
261 262
                              mir: &mir::Mir<'tcx>,
                              scopes: &[DIScope])
263
                              -> Vec<LvalueRef<'tcx>> {
264
    let fcx = bcx.fcx();
265
    let tcx = bcx.tcx();
266 267
    let mut idx = 0;
    let mut llarg_idx = fcx.fn_ty.ret.is_indirect() as usize;
268 269 270 271 272 273 274 275 276 277 278 279

    // Get the argument scope assuming ScopeId(0) has no parent.
    let arg_scope = mir.scopes.get(0).and_then(|data| {
        let scope = scopes[0];
        if data.parent_scope.is_none() && !scope.is_null() &&
           bcx.sess().opts.debuginfo == FullDebugInfo {
            Some(scope)
        } else {
            None
        }
    });

280
    mir.arg_decls.iter().enumerate().map(|(arg_index, arg_decl)| {
281 282 283 284 285 286 287 288 289
        let arg_ty = bcx.monomorphize(&arg_decl.ty);
        if arg_decl.spread {
            // This argument (e.g. the last argument in the "rust-call" ABI)
            // is a tuple that was spread at the ABI level and now we have
            // to reconstruct it into a tuple local variable, from multiple
            // individual LLVM function arguments.

            let tupled_arg_tys = match arg_ty.sty {
                ty::TyTuple(ref tys) => tys,
290
                _ => bug!("spread argument isn't a tuple?!")
291 292
            };

293
            let lltuplety = type_of::type_of(bcx.ccx(), arg_ty);
294 295 296 297 298 299
            let lltemp = bcx.with_block(|bcx| {
                base::alloc_ty(bcx, arg_ty, &format!("arg{}", arg_index))
            });
            for (i, &tupled_arg_ty) in tupled_arg_tys.iter().enumerate() {
                let dst = bcx.struct_gep(lltemp, i);
                let arg = &fcx.fn_ty.args[idx];
300
                idx += 1;
301
                if common::type_is_fat_ptr(tcx, tupled_arg_ty) {
302 303
                        // We pass fat pointers as two words, but inside the tuple
                        // they are the two sub-fields of a single aggregate field.
304 305 306 307 308 309
                    let meta = &fcx.fn_ty.args[idx];
                    idx += 1;
                    arg.store_fn_arg(bcx, &mut llarg_idx, get_dataptr(bcx, dst));
                    meta.store_fn_arg(bcx, &mut llarg_idx, get_meta(bcx, dst));
                } else {
                    arg.store_fn_arg(bcx, &mut llarg_idx, dst);
310
                }
311 312 313 314 315

                bcx.with_block(|bcx| arg_scope.map(|scope| {
                    let byte_offset_of_var_in_tuple =
                        machine::llelement_offset(bcx.ccx(), lltuplety, i);

316
                    let ops = unsafe {
317 318 319 320 321 322 323
                        [llvm::LLVMDIBuilderCreateOpDeref(),
                         llvm::LLVMDIBuilderCreateOpPlus(),
                         byte_offset_of_var_in_tuple as i64]
                    };

                    let variable_access = VariableAccess::IndirectVariable {
                        alloca: lltemp,
324
                        address_operations: &ops
325
                    };
326
                    declare_local(bcx, keywords::Invalid.name(),
327 328 329 330
                                  tupled_arg_ty, scope, variable_access,
                                  VariableKind::ArgumentVariable(arg_index + i + 1),
                                  bcx.fcx().span.unwrap_or(DUMMY_SP));
                }));
331 332
            }
            return LvalueRef::new_sized(lltemp, LvalueTy::from_ty(arg_ty));
333 334
        }

335 336
        let arg = &fcx.fn_ty.args[idx];
        idx += 1;
337
        let llval = if arg.is_indirect() && bcx.sess().opts.debuginfo != FullDebugInfo {
338 339 340
            // Don't copy an indirect argument to an alloca, the caller
            // already put it in a temporary alloca and gave it up, unless
            // we emit extra-debug-info, which requires local allocas :(.
341
            // FIXME: lifetimes
342 343 344 345
            let llarg = llvm::get_param(fcx.llfn, llarg_idx as c_uint);
            llarg_idx += 1;
            llarg
        } else {
346
            if common::type_is_fat_ptr(tcx, arg_ty) {
S
Simonas Kazlauskas 已提交
347 348 349
                let lltemp = bcx.with_block(|bcx| {
                    base::alloc_ty(bcx, arg_ty, &format!("arg{}", arg_index))
                });
350 351 352 353 354 355 356
                // we pass fat pointers as two words, but we want to
                // represent them internally as a pointer to two words,
                // so make an alloca to store them in.
                let meta = &fcx.fn_ty.args[idx];
                idx += 1;
                arg.store_fn_arg(bcx, &mut llarg_idx, get_dataptr(bcx, lltemp));
                meta.store_fn_arg(bcx, &mut llarg_idx, get_meta(bcx, lltemp));
S
Simonas Kazlauskas 已提交
357
                lltemp
358
            } else  {
S
Simonas Kazlauskas 已提交
359 360 361 362 363
                // otherwise, arg is passed by value, so store it into a temporary.
                let llarg_ty = arg.cast.unwrap_or(arg.memory_ty(bcx.ccx()));
                let lltemp = bcx.with_block(|bcx| {
                    base::alloca(bcx, llarg_ty, &format!("arg{}", arg_index))
                });
364
                arg.store_fn_arg(bcx, &mut llarg_idx, lltemp);
S
Simonas Kazlauskas 已提交
365 366
                // And coerce the temporary into the type we expect.
                bcx.pointercast(lltemp, arg.memory_ty(bcx.ccx()).ptr_to())
367
            }
368
        };
369
        bcx.with_block(|bcx| arg_scope.map(|scope| {
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
            // Is this a regular argument?
            if arg_index > 0 || mir.upvar_decls.is_empty() {
                declare_local(bcx, arg_decl.debug_name, arg_ty, scope,
                              VariableAccess::DirectVariable { alloca: llval },
                              VariableKind::ArgumentVariable(arg_index + 1),
                              bcx.fcx().span.unwrap_or(DUMMY_SP));
                return;
            }

            // Or is it the closure environment?
            let (closure_ty, env_ref) = if let ty::TyRef(_, mt) = arg_ty.sty {
                (mt.ty, true)
            } else {
                (arg_ty, false)
            };
            let upvar_tys = if let ty::TyClosure(_, ref substs) = closure_ty.sty {
                &substs.upvar_tys[..]
            } else {
                bug!("upvar_decls with non-closure arg0 type `{}`", closure_ty);
            };

            // Store the pointer to closure data in an alloca for debuginfo
            // because that's what the llvm.dbg.declare intrinsic expects.

            // FIXME(eddyb) this shouldn't be necessary but SROA seems to
            // mishandle DW_OP_plus not preceded by DW_OP_deref, i.e. it
            // doesn't actually strip the offset when splitting the closure
            // environment into its components so it ends up out of bounds.
            let env_ptr = if !env_ref {
                use base::*;
                use build::*;
                use common::*;
                let alloc = alloca(bcx, val_ty(llval), "__debuginfo_env_ptr");
                Store(bcx, llval, alloc);
                alloc
            } else {
                llval
            };

            let llclosurety = type_of::type_of(bcx.ccx(), closure_ty);
            for (i, (decl, ty)) in mir.upvar_decls.iter().zip(upvar_tys).enumerate() {
                let byte_offset_of_var_in_env =
                    machine::llelement_offset(bcx.ccx(), llclosurety, i);

                let ops = unsafe {
                    [llvm::LLVMDIBuilderCreateOpDeref(),
                     llvm::LLVMDIBuilderCreateOpPlus(),
                     byte_offset_of_var_in_env as i64,
                     llvm::LLVMDIBuilderCreateOpDeref()]
                };

                // The environment and the capture can each be indirect.

                // FIXME(eddyb) see above why we have to keep
                // a pointer in an alloca for debuginfo atm.
                let mut ops = if env_ref || true { &ops[..] } else { &ops[1..] };

                let ty = if let (true, &ty::TyRef(_, mt)) = (decl.by_ref, &ty.sty) {
                    mt.ty
                } else {
                    ops = &ops[..ops.len() - 1];
                    ty
                };

                let variable_access = VariableAccess::IndirectVariable {
                    alloca: env_ptr,
                    address_operations: &ops
                };
                declare_local(bcx, decl.debug_name, ty, scope, variable_access,
                              VariableKind::CapturedVariable,
                              bcx.fcx().span.unwrap_or(DUMMY_SP));
            }
442
        }));
443 444
        LvalueRef::new_sized(llval, LvalueTy::from_ty(arg_ty))
    }).collect()
445 446
}

447
mod analyze;
448 449 450 451
mod block;
mod constant;
mod lvalue;
mod operand;
452
mod rvalue;
453
mod statement;