mod.rs 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use libc::c_uint;
use llvm::{self, ValueRef};
13
use llvm::debuginfo::DIScope;
14
use rustc::ty;
15 16
use rustc::mir::repr as mir;
use rustc::mir::tcx::LvalueTy;
17
use session::config::FullDebugInfo;
18
use base;
19
use common::{self, Block, BlockAndBuilder, CrateContext, FunctionContext};
20 21 22 23 24
use debuginfo::{self, declare_local, DebugLoc, VariableAccess, VariableKind};
use machine;
use type_of;

use syntax::codemap::DUMMY_SP;
25
use syntax::parse::token::keywords;
26

27 28 29
use std::ops::Deref;
use std::rc::Rc;

30
use basic_block::BasicBlock;
31

32 33
use rustc_data_structures::bitvec::BitVector;

34
use self::lvalue::{LvalueRef, get_dataptr, get_meta};
35 36
use rustc_mir::traversal;

37
use self::operand::{OperandRef, OperandValue};
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#[derive(Clone)]
pub enum CachedMir<'mir, 'tcx: 'mir> {
    Ref(&'mir mir::Mir<'tcx>),
    Owned(Rc<mir::Mir<'tcx>>)
}

impl<'mir, 'tcx: 'mir> Deref for CachedMir<'mir, 'tcx> {
    type Target = mir::Mir<'tcx>;
    fn deref(&self) -> &mir::Mir<'tcx> {
        match *self {
            CachedMir::Ref(r) => r,
            CachedMir::Owned(ref rc) => rc
        }
    }
}

55 56
/// Master context for translating MIR.
pub struct MirContext<'bcx, 'tcx:'bcx> {
57
    mir: CachedMir<'bcx, 'tcx>,
58

59 60 61
    /// Function context
    fcx: &'bcx common::FunctionContext<'bcx, 'tcx>,

62 63 64 65 66 67 68 69 70 71 72 73
    /// When unwinding is initiated, we have to store this personality
    /// value somewhere so that we can load it and re-use it in the
    /// resume instruction. The personality is (afaik) some kind of
    /// value used for C++ unwinding, which must filter by type: we
    /// don't really care about it very much. Anyway, this value
    /// contains an alloca into which the personality is stored and
    /// then later loaded when generating the DIVERGE_BLOCK.
    llpersonalityslot: Option<ValueRef>,

    /// A `Block` for each MIR `BasicBlock`
    blocks: Vec<Block<'bcx, 'tcx>>,

74 75 76
    /// Cached unreachable block
    unreachable_block: Option<Block<'bcx, 'tcx>>,

77 78 79
    /// An LLVM alloca for each MIR `VarDecl`
    vars: Vec<LvalueRef<'tcx>>,

80 81 82 83 84 85 86 87 88 89 90 91
    /// The location where each MIR `TempDecl` is stored. This is
    /// usually an `LvalueRef` representing an alloca, but not always:
    /// sometimes we can skip the alloca and just store the value
    /// directly using an `OperandRef`, which makes for tighter LLVM
    /// IR. The conditions for using an `OperandRef` are as follows:
    ///
    /// - the type of the temporary must be judged "immediate" by `type_is_immediate`
    /// - the operand must never be referenced indirectly
    ///     - we should not take its address using the `&` operator
    ///     - nor should it appear in an lvalue path like `tmp.a`
    /// - the operand must be defined by an rvalue that can generate immediate
    ///   values
N
Niko Matsakis 已提交
92 93 94
    ///
    /// Avoiding allocs can also be important for certain intrinsics,
    /// notably `expect`.
95
    temps: Vec<TempRef<'tcx>>,
96 97 98 99 100

    /// The arguments to the function; as args are lvalues, these are
    /// always indirect, though we try to avoid creating an alloca
    /// when we can (and just reuse the pointer the caller provided).
    args: Vec<LvalueRef<'tcx>>,
101 102 103

    /// Debug information for MIR scopes.
    scopes: Vec<DIScope>
104 105
}

106 107 108 109 110
enum TempRef<'tcx> {
    Lvalue(LvalueRef<'tcx>),
    Operand(Option<OperandRef<'tcx>>),
}

J
James Miller 已提交
111
impl<'tcx> TempRef<'tcx> {
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    fn new_operand<'bcx>(ccx: &CrateContext<'bcx, 'tcx>,
                         ty: ty::Ty<'tcx>) -> TempRef<'tcx> {
        if common::type_is_zero_size(ccx, ty) {
            // Zero-size temporaries aren't always initialized, which
            // doesn't matter because they don't contain data, but
            // we need something in the operand.
            let val = OperandValue::Immediate(common::C_nil(ccx));
            let op = OperandRef {
                val: val,
                ty: ty
            };
            TempRef::Operand(Some(op))
        } else {
            TempRef::Operand(None)
        }
J
James Miller 已提交
127 128 129
    }
}

130 131
///////////////////////////////////////////////////////////////////////////

132
pub fn trans_mir<'blk, 'tcx: 'blk>(fcx: &'blk FunctionContext<'blk, 'tcx>) {
133
    let bcx = fcx.init(false, None).build();
134 135
    let mir = bcx.mir();

136
    let mir_blocks = mir.all_basic_blocks();
137

138 139
    // Analyze the temps to determine which must be lvalues
    // FIXME
140
    let lvalue_temps = bcx.with_block(|bcx| {
141
      analyze::lvalue_temps(bcx, &mir)
142
    });
143

144 145 146
    // Compute debuginfo scopes from MIR scopes.
    let scopes = debuginfo::create_mir_scopes(fcx);

147
    // Allocate variable and temp allocas
148
    let args = arg_value_refs(&bcx, &mir, &scopes);
149
    let vars = mir.var_decls.iter()
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
                            .map(|decl| (bcx.monomorphize(&decl.ty), decl))
                            .map(|(mty, decl)| {
        let lvalue = LvalueRef::alloca(&bcx, mty, &decl.name.as_str());

        let scope = scopes[decl.scope.index()];
        if !scope.is_null() && bcx.sess().opts.debuginfo == FullDebugInfo {
            bcx.with_block(|bcx| {
                declare_local(bcx, decl.name, mty, scope,
                              VariableAccess::DirectVariable { alloca: lvalue.llval },
                              VariableKind::LocalVariable, decl.span);
            });
        }

        lvalue
    }).collect();
165 166 167
    let temps = mir.temp_decls.iter()
                              .map(|decl| bcx.monomorphize(&decl.ty))
                              .enumerate()
168
                              .map(|(i, mty)| if lvalue_temps.contains(i) {
169
                                  TempRef::Lvalue(LvalueRef::alloca(&bcx,
170 171 172 173 174 175
                                                                    mty,
                                                                    &format!("temp{:?}", i)))
                              } else {
                                  // If this is an immediate temp, we do not create an
                                  // alloca in advance. Instead we wait until we see the
                                  // definition and update the operand there.
176
                                  TempRef::new_operand(bcx.ccx(), mty)
177
                              })
178 179 180
                              .collect();

    // Allocate a `Block` for every basic block
181
    let block_bcxs: Vec<Block<'blk,'tcx>> =
182
        mir_blocks.iter()
183
                  .map(|&bb|{
184 185 186 187 188
                      if bb == mir::START_BLOCK {
                          fcx.new_block("start", None)
                      } else {
                          fcx.new_block(&format!("{:?}", bb), None)
                      }
189
                  })
190 191 192 193
                  .collect();

    // Branch to the START block
    let start_bcx = block_bcxs[mir::START_BLOCK.index()];
194
    bcx.br(start_bcx.llbb);
195

196 197 198 199 200
    // Up until here, IR instructions for this function have explicitly not been annotated with
    // source code location, so we don't step into call setup code. From here on, source location
    // emitting should be enabled.
    debuginfo::start_emitting_source_locations(fcx);

201
    let mut mircx = MirContext {
202
        mir: mir.clone(),
203
        fcx: fcx,
204 205
        llpersonalityslot: None,
        blocks: block_bcxs,
206
        unreachable_block: None,
207 208 209
        vars: vars,
        temps: temps,
        args: args,
210
        scopes: scopes
211 212
    };

213 214 215
    let mut visited = BitVector::new(mir_blocks.len());

    let rpo = traversal::reverse_postorder(&mir);
216 217
    // Translate the body of each block using reverse postorder
    for (bb, _) in rpo {
218
        visited.insert(bb.index());
S
Simonas Kazlauskas 已提交
219
        mircx.trans_block(bb);
220
    }
221

222 223
    // Remove blocks that haven't been visited, or have no
    // predecessors.
224
    for &bb in &mir_blocks {
225 226 227
        let block = mircx.blocks[bb.index()];
        let block = BasicBlock(block.llbb);
        // Unreachable block
228
        if !visited.contains(bb.index()) {
229 230 231
            block.delete();
        } else if block.pred_iter().count() == 0 {
            block.delete();
232 233 234
        }
    }

235
    DebugLoc::None.apply(fcx);
236
    fcx.cleanup();
237 238 239 240 241
}

/// Produce, for each argument, a `ValueRef` pointing at the
/// argument's value. As arguments are lvalues, these are always
/// indirect.
242
fn arg_value_refs<'bcx, 'tcx>(bcx: &BlockAndBuilder<'bcx, 'tcx>,
243 244
                              mir: &mir::Mir<'tcx>,
                              scopes: &[DIScope])
245
                              -> Vec<LvalueRef<'tcx>> {
246
    let fcx = bcx.fcx();
247
    let tcx = bcx.tcx();
248 249
    let mut idx = 0;
    let mut llarg_idx = fcx.fn_ty.ret.is_indirect() as usize;
250 251 252 253 254 255 256 257 258 259 260 261

    // Get the argument scope assuming ScopeId(0) has no parent.
    let arg_scope = mir.scopes.get(0).and_then(|data| {
        let scope = scopes[0];
        if data.parent_scope.is_none() && !scope.is_null() &&
           bcx.sess().opts.debuginfo == FullDebugInfo {
            Some(scope)
        } else {
            None
        }
    });

262
    mir.arg_decls.iter().enumerate().map(|(arg_index, arg_decl)| {
263 264 265 266 267 268 269 270 271
        let arg_ty = bcx.monomorphize(&arg_decl.ty);
        if arg_decl.spread {
            // This argument (e.g. the last argument in the "rust-call" ABI)
            // is a tuple that was spread at the ABI level and now we have
            // to reconstruct it into a tuple local variable, from multiple
            // individual LLVM function arguments.

            let tupled_arg_tys = match arg_ty.sty {
                ty::TyTuple(ref tys) => tys,
272
                _ => bug!("spread argument isn't a tuple?!")
273 274
            };

275
            let lltuplety = type_of::type_of(bcx.ccx(), arg_ty);
276 277 278 279 280 281
            let lltemp = bcx.with_block(|bcx| {
                base::alloc_ty(bcx, arg_ty, &format!("arg{}", arg_index))
            });
            for (i, &tupled_arg_ty) in tupled_arg_tys.iter().enumerate() {
                let dst = bcx.struct_gep(lltemp, i);
                let arg = &fcx.fn_ty.args[idx];
282
                idx += 1;
283
                if common::type_is_fat_ptr(tcx, tupled_arg_ty) {
284 285
                        // We pass fat pointers as two words, but inside the tuple
                        // they are the two sub-fields of a single aggregate field.
286 287 288 289 290 291
                    let meta = &fcx.fn_ty.args[idx];
                    idx += 1;
                    arg.store_fn_arg(bcx, &mut llarg_idx, get_dataptr(bcx, dst));
                    meta.store_fn_arg(bcx, &mut llarg_idx, get_meta(bcx, dst));
                } else {
                    arg.store_fn_arg(bcx, &mut llarg_idx, dst);
292
                }
293 294 295 296 297

                bcx.with_block(|bcx| arg_scope.map(|scope| {
                    let byte_offset_of_var_in_tuple =
                        machine::llelement_offset(bcx.ccx(), lltuplety, i);

298
                    let ops = unsafe {
299 300 301 302 303 304 305
                        [llvm::LLVMDIBuilderCreateOpDeref(),
                         llvm::LLVMDIBuilderCreateOpPlus(),
                         byte_offset_of_var_in_tuple as i64]
                    };

                    let variable_access = VariableAccess::IndirectVariable {
                        alloca: lltemp,
306
                        address_operations: &ops
307
                    };
308
                    declare_local(bcx, keywords::Invalid.name(),
309 310 311 312
                                  tupled_arg_ty, scope, variable_access,
                                  VariableKind::ArgumentVariable(arg_index + i + 1),
                                  bcx.fcx().span.unwrap_or(DUMMY_SP));
                }));
313 314
            }
            return LvalueRef::new_sized(lltemp, LvalueTy::from_ty(arg_ty));
315 316
        }

317 318
        let arg = &fcx.fn_ty.args[idx];
        idx += 1;
319
        let llval = if arg.is_indirect() && bcx.sess().opts.debuginfo != FullDebugInfo {
320 321 322
            // Don't copy an indirect argument to an alloca, the caller
            // already put it in a temporary alloca and gave it up, unless
            // we emit extra-debug-info, which requires local allocas :(.
323
            // FIXME: lifetimes
324 325 326 327
            let llarg = llvm::get_param(fcx.llfn, llarg_idx as c_uint);
            llarg_idx += 1;
            llarg
        } else {
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
            let lltemp = bcx.with_block(|bcx| {
                base::alloc_ty(bcx, arg_ty, &format!("arg{}", arg_index))
            });
            if common::type_is_fat_ptr(tcx, arg_ty) {
                // we pass fat pointers as two words, but we want to
                // represent them internally as a pointer to two words,
                // so make an alloca to store them in.
                let meta = &fcx.fn_ty.args[idx];
                idx += 1;
                arg.store_fn_arg(bcx, &mut llarg_idx, get_dataptr(bcx, lltemp));
                meta.store_fn_arg(bcx, &mut llarg_idx, get_meta(bcx, lltemp));
            } else  {
                // otherwise, arg is passed by value, so make a
                // temporary and store it there
                arg.store_fn_arg(bcx, &mut llarg_idx, lltemp);
            }
            lltemp
345
        };
346
        bcx.with_block(|bcx| arg_scope.map(|scope| {
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
            // Is this a regular argument?
            if arg_index > 0 || mir.upvar_decls.is_empty() {
                declare_local(bcx, arg_decl.debug_name, arg_ty, scope,
                              VariableAccess::DirectVariable { alloca: llval },
                              VariableKind::ArgumentVariable(arg_index + 1),
                              bcx.fcx().span.unwrap_or(DUMMY_SP));
                return;
            }

            // Or is it the closure environment?
            let (closure_ty, env_ref) = if let ty::TyRef(_, mt) = arg_ty.sty {
                (mt.ty, true)
            } else {
                (arg_ty, false)
            };
            let upvar_tys = if let ty::TyClosure(_, ref substs) = closure_ty.sty {
                &substs.upvar_tys[..]
            } else {
                bug!("upvar_decls with non-closure arg0 type `{}`", closure_ty);
            };

            // Store the pointer to closure data in an alloca for debuginfo
            // because that's what the llvm.dbg.declare intrinsic expects.

            // FIXME(eddyb) this shouldn't be necessary but SROA seems to
            // mishandle DW_OP_plus not preceded by DW_OP_deref, i.e. it
            // doesn't actually strip the offset when splitting the closure
            // environment into its components so it ends up out of bounds.
            let env_ptr = if !env_ref {
                use base::*;
                use build::*;
                use common::*;
                let alloc = alloca(bcx, val_ty(llval), "__debuginfo_env_ptr");
                Store(bcx, llval, alloc);
                alloc
            } else {
                llval
            };

            let llclosurety = type_of::type_of(bcx.ccx(), closure_ty);
            for (i, (decl, ty)) in mir.upvar_decls.iter().zip(upvar_tys).enumerate() {
                let byte_offset_of_var_in_env =
                    machine::llelement_offset(bcx.ccx(), llclosurety, i);

                let ops = unsafe {
                    [llvm::LLVMDIBuilderCreateOpDeref(),
                     llvm::LLVMDIBuilderCreateOpPlus(),
                     byte_offset_of_var_in_env as i64,
                     llvm::LLVMDIBuilderCreateOpDeref()]
                };

                // The environment and the capture can each be indirect.

                // FIXME(eddyb) see above why we have to keep
                // a pointer in an alloca for debuginfo atm.
                let mut ops = if env_ref || true { &ops[..] } else { &ops[1..] };

                let ty = if let (true, &ty::TyRef(_, mt)) = (decl.by_ref, &ty.sty) {
                    mt.ty
                } else {
                    ops = &ops[..ops.len() - 1];
                    ty
                };

                let variable_access = VariableAccess::IndirectVariable {
                    alloca: env_ptr,
                    address_operations: &ops
                };
                declare_local(bcx, decl.debug_name, ty, scope, variable_access,
                              VariableKind::CapturedVariable,
                              bcx.fcx().span.unwrap_or(DUMMY_SP));
            }
419
        }));
420 421
        LvalueRef::new_sized(llval, LvalueTy::from_ty(arg_ty))
    }).collect()
422 423
}

424
mod analyze;
425 426
mod block;
mod constant;
427
mod drop;
428 429
mod lvalue;
mod operand;
430
mod rvalue;
431
mod statement;