mod.rs 43.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

11 12
/*! Synchronous I/O

B
Brian Anderson 已提交
13 14
This module defines the Rust interface for synchronous I/O.
It models byte-oriented input and output with the Reader and Writer traits.
15 16
Types that implement both `Reader` and `Writer` are called 'streams',
and automatically implement the `Stream` trait.
B
Brian Anderson 已提交
17 18 19 20
Implementations are provided for common I/O streams like
file, TCP, UDP, Unix domain sockets.
Readers and Writers may be composed to add capabilities like string
parsing, encoding, and compression.
21 22 23 24 25 26 27

# Examples

Some examples of obvious things you might want to do

* Read lines from stdin

28
    ```rust
A
Alex Crichton 已提交
29 30 31
    use std::io::buffered::BufferedReader;
    use std::io::stdin;

A
Alex Crichton 已提交
32
    # let _g = ::std::io::ignore_io_error();
33 34
    let mut stdin = BufferedReader::new(stdin());
    for line in stdin.lines() {
35
        print!("{}", line);
36
    }
37
    ```
38

39
* Read a complete file
40

41
    ```rust
A
Alex Crichton 已提交
42 43
    use std::io::File;

A
Alex Crichton 已提交
44
    # let _g = ::std::io::ignore_io_error();
45 46
    let contents = File::open(&Path::new("message.txt")).read_to_end();
    ```
47 48 49

* Write a line to a file

50
    ```rust
A
Alex Crichton 已提交
51 52
    use std::io::File;

A
Alex Crichton 已提交
53
    # let _g = ::std::io::ignore_io_error();
54 55
    let mut file = File::create(&Path::new("message.txt"));
    file.write(bytes!("hello, file!\n"));
56 57
    # drop(file);
    # ::std::io::fs::unlink(&Path::new("message.txt"));
58
    ```
59 60 61

* Iterate over the lines of a file

62
    ```rust
A
Alex Crichton 已提交
63 64 65
    use std::io::buffered::BufferedReader;
    use std::io::File;

A
Alex Crichton 已提交
66
    # let _g = ::std::io::ignore_io_error();
67 68 69
    let path = Path::new("message.txt");
    let mut file = BufferedReader::new(File::open(&path));
    for line in file.lines() {
70
        print!("{}", line);
71 72
    }
    ```
73

74 75
* Pull the lines of a file into a vector of strings

76
    ```rust
A
Alex Crichton 已提交
77 78 79
    use std::io::buffered::BufferedReader;
    use std::io::File;

A
Alex Crichton 已提交
80
    # let _g = ::std::io::ignore_io_error();
81 82 83 84
    let path = Path::new("message.txt");
    let mut file = BufferedReader::new(File::open(&path));
    let lines: ~[~str] = file.lines().collect();
    ```
85 86

* Make an simple HTTP request
87 88
  XXX This needs more improvement: TcpStream constructor taking &str,
  `write_str` and `write_line` methods.
89

A
Alex Crichton 已提交
90
    ```rust,should_fail
A
Alex Crichton 已提交
91 92 93
    use std::io::net::ip::SocketAddr;
    use std::io::net::tcp::TcpStream;

A
Alex Crichton 已提交
94
    # let _g = ::std::io::ignore_io_error();
95 96 97
    let addr = from_str::<SocketAddr>("127.0.0.1:8080").unwrap();
    let mut socket = TcpStream::connect(addr).unwrap();
    socket.write(bytes!("GET / HTTP/1.0\n\n"));
98
    let response = socket.read_to_end();
99
    ```
100

101 102 103
* Connect based on URL? Requires thinking about where the URL type lives
  and how to make protocol handlers extensible, e.g. the "tcp" protocol
  yields a `TcpStream`.
104
  XXX this is not implemented now.
105

106 107 108
    ```rust
    // connect("tcp://localhost:8080");
    ```
109 110 111

# Terms

B
Brian Anderson 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
* Reader - An I/O source, reads bytes into a buffer
* Writer - An I/O sink, writes bytes from a buffer
* Stream - Typical I/O sources like files and sockets are both Readers and Writers,
  and are collectively referred to a `streams`.
  such as encoding or decoding

# Blocking and synchrony

When discussing I/O you often hear the terms 'synchronous' and
'asynchronous', along with 'blocking' and 'non-blocking' compared and
contrasted. A synchronous I/O interface performs each I/O operation to
completion before proceeding to the next. Synchronous interfaces are
usually used in imperative style as a sequence of commands. An
asynchronous interface allows multiple I/O requests to be issued
simultaneously, without waiting for each to complete before proceeding
to the next.

Asynchronous interfaces are used to achieve 'non-blocking' I/O. In
traditional single-threaded systems, performing a synchronous I/O
operation means that the program stops all activity (it 'blocks')
until the I/O is complete. Blocking is bad for performance when
there are other computations that could be done.

Asynchronous interfaces are most often associated with the callback
(continuation-passing) style popularised by node.js. Such systems rely
on all computations being run inside an event loop which maintains a
list of all pending I/O events; when one completes the registered
139
callback is run and the code that made the I/O request continues.
B
Brian Anderson 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
Such interfaces achieve non-blocking at the expense of being more
difficult to reason about.

Rust's I/O interface is synchronous - easy to read - and non-blocking by default.

Remember that Rust tasks are 'green threads', lightweight threads that
are multiplexed onto a single operating system thread. If that system
thread blocks then no other task may proceed. Rust tasks are
relatively cheap to create, so as long as other tasks are free to
execute then non-blocking code may be written by simply creating a new
task.

When discussing blocking in regards to Rust's I/O model, we are
concerned with whether performing I/O blocks other Rust tasks from
proceeding. In other words, when a task calls `read`, it must then
wait (or 'sleep', or 'block') until the call to `read` is complete.
During this time, other tasks may or may not be executed, depending on
how `read` is implemented.


Rust's default I/O implementation is non-blocking; by cooperating
directly with the task scheduler it arranges to never block progress
of *other* tasks. Under the hood, Rust uses asynchronous I/O via a
per-scheduler (and hence per-thread) event loop. Synchronous I/O
requests are implemented by descheduling the running task and
performing an asynchronous request; the task is only resumed once the
asynchronous request completes.

168 169
# Error Handling

B
Brian Anderson 已提交
170 171 172 173 174 175 176 177 178
I/O is an area where nearly every operation can result in unexpected
errors. It should allow errors to be handled efficiently.
It needs to be convenient to use I/O when you don't care
about dealing with specific errors.

Rust's I/O employs a combination of techniques to reduce boilerplate
while still providing feedback about errors. The basic strategy:

* Errors are fatal by default, resulting in task failure
179
* Errors raise the `io_error` condition which provides an opportunity to inspect
B
Brian Anderson 已提交
180 181 182 183 184 185 186 187
  an IoError object containing details.
* Return values must have a sensible null or zero value which is returned
  if a condition is handled successfully. This may be an `Option`, an empty
  vector, or other designated error value.
* Common traits are implemented for `Option`, e.g. `impl<R: Reader> Reader for Option<R>`,
  so that nullable values do not have to be 'unwrapped' before use.

These features combine in the API to allow for expressions like
A
Adrien Tétar 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
`File::create(&Path::new("diary.txt")).write(bytes!("Met a girl.\n"))`
without having to worry about whether "diary.txt" exists or whether
the write succeeds. As written, if either `new` or `write_line`
encounters an error the task will fail.

If you wanted to handle the error though you might write:

```rust
use std::io::File;
use std::io::{IoError, io_error};

let mut error = None;
io_error::cond.trap(|e: IoError| {
    error = Some(e);
}).inside(|| {
    File::create(&Path::new("diary.txt")).write(bytes!("Met a girl.\n"));
});

if error.is_some() {
207
    println!("failed to write my diary");
A
Adrien Tétar 已提交
208 209 210
}
# ::std::io::fs::unlink(&Path::new("diary.txt"));
```
B
Brian Anderson 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

XXX: Need better condition handling syntax

In this case the condition handler will have the opportunity to
inspect the IoError raised by either the call to `new` or the call to
`write_line`, but then execution will continue.

So what actually happens if `new` encounters an error? To understand
that it's important to know that what `new` returns is not a `File`
but an `Option<File>`.  If the file does not open, and the condition
is handled, then `new` will simply return `None`. Because there is an
implementation of `Writer` (the trait required ultimately required for
types to implement `write_line`) there is no need to inspect or unwrap
the `Option<File>` and we simply call `write_line` on it.  If `new`
returned a `None` then the followup call to `write_line` will also
raise an error.

## Concerns about this strategy

This structure will encourage a programming style that is prone
to errors similar to null pointer dereferences.
In particular code written to ignore errors and expect conditions to be unhandled
will start passing around null or zero objects when wrapped in a condition handler.

* XXX: How should we use condition handlers that return values?
236
* XXX: Should EOF raise default conditions when EOF is not an error?
B
Brian Anderson 已提交
237

238
# Issues with i/o scheduler affinity, work stealing, task pinning
B
Brian Anderson 已提交
239

240 241 242 243
# Resource management

* `close` vs. RAII

B
Brian Anderson 已提交
244 245 246
# Paths, URLs and overloaded constructors


247

B
Brian Anderson 已提交
248 249 250 251 252
# Scope

In scope for core

* Url?
253 254 255 256 257 258 259 260

Some I/O things don't belong in core

  - url
  - net - `fn connect`
    - http
  - flate

B
Brian Anderson 已提交
261 262 263 264 265 266
Out of scope

* Async I/O. We'll probably want it eventually


# XXX Questions and issues
267 268 269 270 271 272 273 274 275

* Should default constructors take `Path` or `&str`? `Path` makes simple cases verbose.
  Overloading would be nice.
* Add overloading for Path and &str and Url &str
* stdin/err/out
* print, println, etc.
* fsync
* relationship with filesystem querying, Directory, File types etc.
* Rename Reader/Writer to ByteReader/Writer, make Reader/Writer generic?
B
Brian Anderson 已提交
276
* Can Port and Chan be implementations of a generic Reader<T>/Writer<T>?
277 278 279 280 281 282 283
* Trait for things that are both readers and writers, Stream?
* How to handle newline conversion
* String conversion
* open vs. connect for generic stream opening
* Do we need `close` at all? dtors might be good enough
* How does I/O relate to the Iterator trait?
* std::base64 filters
B
Brian Anderson 已提交
284
* Using conditions is a big unknown since we don't have much experience with them
285
* Too many uses of OtherIoError
286 287 288

*/

A
Alex Crichton 已提交
289 290
#[allow(missing_doc)];

291
use cast;
292
use char::Char;
293
use condition::Guard;
A
Alex Crichton 已提交
294
use container::Container;
295
use int;
A
Alex Crichton 已提交
296
use iter::Iterator;
297
use option::{Option, Some, None};
A
Alex Crichton 已提交
298
use path::Path;
299
use result::{Ok, Err, Result};
A
Alex Crichton 已提交
300
use str;
A
Alex Crichton 已提交
301
use str::{StrSlice, OwnedStr};
302 303 304
use to_str::ToStr;
use uint;
use unstable::finally::Finally;
A
Alex Crichton 已提交
305
use vec::{OwnedVector, MutableVector, ImmutableVector, OwnedCopyableVector};
306
use vec;
307 308 309 310 311 312 313 314

// Reexports
pub use self::stdio::stdin;
pub use self::stdio::stdout;
pub use self::stdio::stderr;
pub use self::stdio::print;
pub use self::stdio::println;

315
pub use self::fs::File;
J
Jeff Olson 已提交
316
pub use self::timer::Timer;
317 318 319 320
pub use self::net::ip::IpAddr;
pub use self::net::tcp::TcpListener;
pub use self::net::tcp::TcpStream;
pub use self::net::udp::UdpStream;
321 322
pub use self::pipe::PipeStream;
pub use self::process::Process;
323

324 325
/// Various utility functions useful for writing I/O tests
pub mod test;
A
Alex Crichton 已提交
326

327 328
/// Synchronous, non-blocking filesystem operations.
pub mod fs;
329

330 331 332 333 334 335
/// Synchronous, in-memory I/O.
pub mod pipe;

/// Child process management.
pub mod process;

336
/// Synchronous, non-blocking network I/O.
337
pub mod net;
338 339 340 341 342 343 344

/// Readers and Writers for memory buffers and strings.
pub mod mem;

/// Non-blocking access to stdin, stdout, stderr
pub mod stdio;

345 346 347
/// Implementations for Option
mod option;

348 349 350 351
/// Basic stream compression. XXX: Belongs with other flate code
pub mod flate;

/// Extension traits
352
pub mod extensions;
353

J
Jeff Olson 已提交
354
/// Basic Timer
355
pub mod timer;
J
Jeff Olson 已提交
356

S
Steven Fackler 已提交
357 358 359
/// Buffered I/O wrappers
pub mod buffered;

360 361 362
/// Signal handling
pub mod signal;

S
Steven Fackler 已提交
363 364 365
/// Utility implementations of Reader and Writer
pub mod util;

A
Alex Crichton 已提交
366 367 368
/// Adapatation of Chan/Port types to a Writer/Reader type.
pub mod comm_adapters;

369
/// The default buffer size for various I/O operations
370
static DEFAULT_BUF_SIZE: uint = 1024 * 64;
371

372 373
/// The type passed to I/O condition handlers to indicate error
///
B
Tidy  
Brian Anderson 已提交
374
/// # XXX
375 376 377 378 379 380 381 382
///
/// Is something like this sufficient? It's kind of archaic
pub struct IoError {
    kind: IoErrorKind,
    desc: &'static str,
    detail: Option<~str>
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396
// FIXME: #8242 implementing manually because deriving doesn't work for some reason
impl ToStr for IoError {
    fn to_str(&self) -> ~str {
        let mut s = ~"IoError { kind: ";
        s.push_str(self.kind.to_str());
        s.push_str(", desc: ");
        s.push_str(self.desc);
        s.push_str(", detail: ");
        s.push_str(self.detail.to_str());
        s.push_str(" }");
        s
    }
}

397
#[deriving(Eq)]
398
pub enum IoErrorKind {
399 400 401
    PreviousIoError,
    OtherIoError,
    EndOfFile,
402
    FileNotFound,
403
    PermissionDenied,
404 405
    ConnectionFailed,
    Closed,
406
    ConnectionRefused,
B
Brian Anderson 已提交
407
    ConnectionReset,
408
    ConnectionAborted,
K
klutzy 已提交
409
    NotConnected,
410 411 412
    BrokenPipe,
    PathAlreadyExists,
    PathDoesntExist,
413
    MismatchedFileTypeForOperation,
414
    ResourceUnavailable,
415
    IoUnavailable,
416
    InvalidInput,
417
}
418

419 420 421 422 423 424 425 426 427 428 429 430 431
// FIXME: #8242 implementing manually because deriving doesn't work for some reason
impl ToStr for IoErrorKind {
    fn to_str(&self) -> ~str {
        match *self {
            PreviousIoError => ~"PreviousIoError",
            OtherIoError => ~"OtherIoError",
            EndOfFile => ~"EndOfFile",
            FileNotFound => ~"FileNotFound",
            PermissionDenied => ~"PermissionDenied",
            ConnectionFailed => ~"ConnectionFailed",
            Closed => ~"Closed",
            ConnectionRefused => ~"ConnectionRefused",
            ConnectionReset => ~"ConnectionReset",
K
klutzy 已提交
432
            NotConnected => ~"NotConnected",
433 434 435
            BrokenPipe => ~"BrokenPipe",
            PathAlreadyExists => ~"PathAlreadyExists",
            PathDoesntExist => ~"PathDoesntExist",
436 437
            MismatchedFileTypeForOperation => ~"MismatchedFileTypeForOperation",
            IoUnavailable => ~"IoUnavailable",
438
            ResourceUnavailable => ~"ResourceUnavailable",
439
            ConnectionAborted => ~"ConnectionAborted",
440
            InvalidInput => ~"InvalidInput",
441 442 443 444
        }
    }
}

445
// XXX: Can't put doc comments on macros
446
// Raised by `I/O` operations on error.
447
condition! {
A
Alex Crichton 已提交
448
    pub io_error: IoError -> ();
449 450
}

451 452
/// Helper for wrapper calls where you want to
/// ignore any io_errors that might be raised
453
pub fn ignore_io_error() -> Guard<'static,IoError,()> {
454
    io_error::cond.trap(|_| {
455 456 457
        // just swallow the error.. downstream users
        // who can make a decision based on a None result
        // won't care
458
    }).guard()
459 460
}

461 462 463
/// Helper for catching an I/O error and wrapping it in a Result object. The
/// return result will be the last I/O error that happened or the result of the
/// closure if no error occurred.
464
pub fn result<T>(cb: || -> T) -> Result<T, IoError> {
465
    let mut err = None;
466 467 468 469 470
    let ret = io_error::cond.trap(|e| {
        if err.is_none() {
            err = Some(e);
        }
    }).inside(cb);
471 472 473 474 475 476
    match err {
        Some(e) => Err(e),
        None => Ok(ret),
    }
}

477
pub trait Reader {
478 479 480

    // Only two methods which need to get implemented for this trait

481
    /// Read bytes, up to the length of `buf` and place them in `buf`.
482 483
    /// Returns the number of bytes read. The number of bytes read my
    /// be less than the number requested, even 0. Returns `None` on EOF.
484 485 486
    ///
    /// # Failure
    ///
A
Alex Crichton 已提交
487
    /// Raises the `io_error` condition on error. If the condition
488 489 490
    /// is handled then no guarantee is made about the number of bytes
    /// read and the contents of `buf`. If the condition is handled
    /// returns `None` (XXX see below).
491
    ///
B
Tidy  
Brian Anderson 已提交
492
    /// # XXX
493
    ///
494
    /// * Should raise_default error on eof?
495
    /// * If the condition is handled it should still return the bytes read,
496 497
    ///   in which case there's no need to return Option - but then you *have*
    ///   to install a handler to detect eof.
498
    ///
499 500 501
    /// This doesn't take a `len` argument like the old `read`.
    /// Will people often need to slice their vectors to call this
    /// and will that be annoying?
502
    /// Is it actually possible for 0 bytes to be read successfully?
503
    fn read(&mut self, buf: &mut [u8]) -> Option<uint>;
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    // Convenient helper methods based on the above methods

    /// Reads a single byte. Returns `None` on EOF.
    ///
    /// # Failure
    ///
    /// Raises the same conditions as the `read` method. Returns
    /// `None` if the condition is handled.
    fn read_byte(&mut self) -> Option<u8> {
        let mut buf = [0];
        match self.read(buf) {
            Some(0) => {
                debug!("read 0 bytes. trying again");
                self.read_byte()
            }
            Some(1) => Some(buf[0]),
            Some(_) => unreachable!(),
            None => None
        }
    }

    /// Reads `len` bytes and appends them to a vector.
    ///
    /// May push fewer than the requested number of bytes on error
    /// or EOF. Returns true on success, false on EOF or error.
    ///
    /// # Failure
    ///
    /// Raises the same conditions as `read`. Additionally raises `io_error`
    /// on EOF. If `io_error` is handled then `push_bytes` may push less
    /// than the requested number of bytes.
    fn push_bytes(&mut self, buf: &mut ~[u8], len: uint) {
        unsafe {
            let start_len = buf.len();
            let mut total_read = 0;

            buf.reserve_additional(len);
542
            buf.set_len(start_len + len);
543

544
            (|| {
545 546 547 548 549 550 551 552 553 554 555 556 557
                while total_read < len {
                    let len = buf.len();
                    let slice = buf.mut_slice(start_len + total_read, len);
                    match self.read(slice) {
                        Some(nread) => {
                            total_read += nread;
                        }
                        None => {
                            io_error::cond.raise(standard_error(EndOfFile));
                            break;
                        }
                    }
                }
558
            }).finally(|| buf.set_len(start_len + total_read))
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        }
    }

    /// Reads `len` bytes and gives you back a new vector of length `len`
    ///
    /// # Failure
    ///
    /// Raises the same conditions as `read`. Additionally raises `io_error`
    /// on EOF. If `io_error` is handled then the returned vector may
    /// contain less than the requested number of bytes.
    fn read_bytes(&mut self, len: uint) -> ~[u8] {
        let mut buf = vec::with_capacity(len);
        self.push_bytes(&mut buf, len);
        return buf;
    }

    /// Reads all remaining bytes from the stream.
    ///
    /// # Failure
    ///
579 580
    /// Raises the same conditions as the `read` method except for
    /// `EndOfFile` which is swallowed.
581 582 583
    fn read_to_end(&mut self) -> ~[u8] {
        let mut buf = vec::with_capacity(DEFAULT_BUF_SIZE);
        let mut keep_reading = true;
584
        io_error::cond.trap(|e| {
585 586 587 588 589
            if e.kind == EndOfFile {
                keep_reading = false;
            } else {
                io_error::cond.raise(e)
            }
590
        }).inside(|| {
591 592 593
            while keep_reading {
                self.push_bytes(&mut buf, DEFAULT_BUF_SIZE)
            }
594
        });
595 596 597
        return buf;
    }

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    /// Reads all of the remaining bytes of this stream, interpreting them as a
    /// UTF-8 encoded stream. The corresponding string is returned.
    ///
    /// # Failure
    ///
    /// This function will raise all the same conditions as the `read` method,
    /// along with raising a condition if the input is not valid UTF-8.
    fn read_to_str(&mut self) -> ~str {
        match str::from_utf8_owned_opt(self.read_to_end()) {
            Some(s) => s,
            None => {
                io_error::cond.raise(standard_error(InvalidInput));
                ~""
            }
        }
    }

615 616 617 618 619 620 621 622
    /// Create an iterator that reads a single byte on
    /// each iteration, until EOF.
    ///
    /// # Failure
    ///
    /// Raises the same conditions as the `read` method, for
    /// each call to its `.next()` method.
    /// Ends the iteration if the condition is handled.
623
    fn bytes<'r>(&'r mut self) -> extensions::ByteIterator<'r, Self> {
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        extensions::ByteIterator::new(self)
    }

    // Byte conversion helpers

    /// Reads `n` little-endian unsigned integer bytes.
    ///
    /// `n` must be between 1 and 8, inclusive.
    fn read_le_uint_n(&mut self, nbytes: uint) -> u64 {
        assert!(nbytes > 0 && nbytes <= 8);

        let mut val = 0u64;
        let mut pos = 0;
        let mut i = nbytes;
        while i > 0 {
            val += (self.read_u8() as u64) << pos;
            pos += 8;
            i -= 1;
        }
        val
    }

    /// Reads `n` little-endian signed integer bytes.
    ///
    /// `n` must be between 1 and 8, inclusive.
    fn read_le_int_n(&mut self, nbytes: uint) -> i64 {
        extend_sign(self.read_le_uint_n(nbytes), nbytes)
    }

    /// Reads `n` big-endian unsigned integer bytes.
    ///
    /// `n` must be between 1 and 8, inclusive.
    fn read_be_uint_n(&mut self, nbytes: uint) -> u64 {
        assert!(nbytes > 0 && nbytes <= 8);

        let mut val = 0u64;
        let mut i = nbytes;
        while i > 0 {
            i -= 1;
            val += (self.read_u8() as u64) << i * 8;
        }
        val
    }

    /// Reads `n` big-endian signed integer bytes.
    ///
    /// `n` must be between 1 and 8, inclusive.
    fn read_be_int_n(&mut self, nbytes: uint) -> i64 {
        extend_sign(self.read_be_uint_n(nbytes), nbytes)
    }

    /// Reads a little-endian unsigned integer.
    ///
    /// The number of bytes returned is system-dependant.
    fn read_le_uint(&mut self) -> uint {
        self.read_le_uint_n(uint::bytes) as uint
    }

    /// Reads a little-endian integer.
    ///
    /// The number of bytes returned is system-dependant.
    fn read_le_int(&mut self) -> int {
        self.read_le_int_n(int::bytes) as int
    }

    /// Reads a big-endian unsigned integer.
    ///
    /// The number of bytes returned is system-dependant.
    fn read_be_uint(&mut self) -> uint {
        self.read_be_uint_n(uint::bytes) as uint
    }

    /// Reads a big-endian integer.
    ///
    /// The number of bytes returned is system-dependant.
    fn read_be_int(&mut self) -> int {
        self.read_be_int_n(int::bytes) as int
    }

    /// Reads a big-endian `u64`.
    ///
    /// `u64`s are 8 bytes long.
    fn read_be_u64(&mut self) -> u64 {
707
        self.read_be_uint_n(8)
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    }

    /// Reads a big-endian `u32`.
    ///
    /// `u32`s are 4 bytes long.
    fn read_be_u32(&mut self) -> u32 {
        self.read_be_uint_n(4) as u32
    }

    /// Reads a big-endian `u16`.
    ///
    /// `u16`s are 2 bytes long.
    fn read_be_u16(&mut self) -> u16 {
        self.read_be_uint_n(2) as u16
    }

    /// Reads a big-endian `i64`.
    ///
    /// `i64`s are 8 bytes long.
    fn read_be_i64(&mut self) -> i64 {
728
        self.read_be_int_n(8)
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    }

    /// Reads a big-endian `i32`.
    ///
    /// `i32`s are 4 bytes long.
    fn read_be_i32(&mut self) -> i32 {
        self.read_be_int_n(4) as i32
    }

    /// Reads a big-endian `i16`.
    ///
    /// `i16`s are 2 bytes long.
    fn read_be_i16(&mut self) -> i16 {
        self.read_be_int_n(2) as i16
    }

    /// Reads a big-endian `f64`.
    ///
    /// `f64`s are 8 byte, IEEE754 double-precision floating point numbers.
    fn read_be_f64(&mut self) -> f64 {
        unsafe {
            cast::transmute::<u64, f64>(self.read_be_u64())
        }
    }

    /// Reads a big-endian `f32`.
    ///
    /// `f32`s are 4 byte, IEEE754 single-precision floating point numbers.
    fn read_be_f32(&mut self) -> f32 {
        unsafe {
            cast::transmute::<u32, f32>(self.read_be_u32())
        }
    }

    /// Reads a little-endian `u64`.
    ///
    /// `u64`s are 8 bytes long.
    fn read_le_u64(&mut self) -> u64 {
767
        self.read_le_uint_n(8)
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
    }

    /// Reads a little-endian `u32`.
    ///
    /// `u32`s are 4 bytes long.
    fn read_le_u32(&mut self) -> u32 {
        self.read_le_uint_n(4) as u32
    }

    /// Reads a little-endian `u16`.
    ///
    /// `u16`s are 2 bytes long.
    fn read_le_u16(&mut self) -> u16 {
        self.read_le_uint_n(2) as u16
    }

    /// Reads a little-endian `i64`.
    ///
    /// `i64`s are 8 bytes long.
    fn read_le_i64(&mut self) -> i64 {
788
        self.read_le_int_n(8)
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
    }

    /// Reads a little-endian `i32`.
    ///
    /// `i32`s are 4 bytes long.
    fn read_le_i32(&mut self) -> i32 {
        self.read_le_int_n(4) as i32
    }

    /// Reads a little-endian `i16`.
    ///
    /// `i16`s are 2 bytes long.
    fn read_le_i16(&mut self) -> i16 {
        self.read_le_int_n(2) as i16
    }

    /// Reads a little-endian `f64`.
    ///
    /// `f64`s are 8 byte, IEEE754 double-precision floating point numbers.
    fn read_le_f64(&mut self) -> f64 {
        unsafe {
            cast::transmute::<u64, f64>(self.read_le_u64())
        }
    }

    /// Reads a little-endian `f32`.
    ///
    /// `f32`s are 4 byte, IEEE754 single-precision floating point numbers.
    fn read_le_f32(&mut self) -> f32 {
        unsafe {
            cast::transmute::<u32, f32>(self.read_le_u32())
        }
    }

    /// Read a u8.
    ///
    /// `u8`s are 1 byte.
    fn read_u8(&mut self) -> u8 {
        match self.read_byte() {
828
            Some(b) => b,
829 830 831 832 833 834 835 836 837 838 839 840 841 842
            None => 0
        }
    }

    /// Read an i8.
    ///
    /// `i8`s are 1 byte.
    fn read_i8(&mut self) -> i8 {
        match self.read_byte() {
            Some(b) => b as i8,
            None => 0
        }
    }

843
}
844

845 846 847 848
impl Reader for ~Reader {
    fn read(&mut self, buf: &mut [u8]) -> Option<uint> { self.read(buf) }
}

E
Erik Price 已提交
849
impl<'a> Reader for &'a mut Reader {
850 851 852
    fn read(&mut self, buf: &mut [u8]) -> Option<uint> { self.read(buf) }
}

853 854 855 856 857
fn extend_sign(val: u64, nbytes: uint) -> i64 {
    let shift = (8 - nbytes) * 8;
    (val << shift) as i64 >> shift
}

858
pub trait Writer {
859 860 861 862
    /// Write the given buffer
    ///
    /// # Failure
    ///
863 864 865
    /// Raises the `io_error` condition on error
    fn write(&mut self, buf: &[u8]);

866 867 868
    /// Flush this output stream, ensuring that all intermediately buffered
    /// contents reach their destination.
    ///
H
Huon Wilson 已提交
869
    /// This is by default a no-op and implementers of the `Writer` trait should
870 871
    /// decide whether their stream needs to be buffered or not.
    fn flush(&mut self) {}
872

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    /// Write a rust string into this sink.
    ///
    /// The bytes written will be the UTF-8 encoded version of the input string.
    /// If other encodings are desired, it is recommended to compose this stream
    /// with another performing the conversion, or to use `write` with a
    /// converted byte-array instead.
    fn write_str(&mut self, s: &str) {
        self.write(s.as_bytes());
    }

    /// Writes a string into this sink, and then writes a literal newline (`\n`)
    /// byte afterwards. Note that the writing of the newline is *not* atomic in
    /// the sense that the call to `write` is invoked twice (once with the
    /// string and once with a newline character).
    ///
    /// If other encodings or line ending flavors are desired, it is recommended
    /// that the `write` method is used specifically instead.
    fn write_line(&mut self, s: &str) {
        self.write_str(s);
        self.write(['\n' as u8]);
    }

895 896 897 898 899 900 901
    /// Write a single char, encoded as UTF-8.
    fn write_char(&mut self, c: char) {
        let mut buf = [0u8, ..4];
        let n = c.encode_utf8(buf.as_mut_slice());
        self.write(buf.slice_to(n));
    }

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    /// Write the result of passing n through `int::to_str_bytes`.
    fn write_int(&mut self, n: int) {
        int::to_str_bytes(n, 10u, |bytes| self.write(bytes))
    }

    /// Write the result of passing n through `uint::to_str_bytes`.
    fn write_uint(&mut self, n: uint) {
        uint::to_str_bytes(n, 10u, |bytes| self.write(bytes))
    }

    /// Write a little-endian uint (number of bytes depends on system).
    fn write_le_uint(&mut self, n: uint) {
        extensions::u64_to_le_bytes(n as u64, uint::bytes, |v| self.write(v))
    }

    /// Write a little-endian int (number of bytes depends on system).
    fn write_le_int(&mut self, n: int) {
        extensions::u64_to_le_bytes(n as u64, int::bytes, |v| self.write(v))
    }

    /// Write a big-endian uint (number of bytes depends on system).
    fn write_be_uint(&mut self, n: uint) {
        extensions::u64_to_be_bytes(n as u64, uint::bytes, |v| self.write(v))
    }

    /// Write a big-endian int (number of bytes depends on system).
    fn write_be_int(&mut self, n: int) {
        extensions::u64_to_be_bytes(n as u64, int::bytes, |v| self.write(v))
    }

    /// Write a big-endian u64 (8 bytes).
    fn write_be_u64(&mut self, n: u64) {
        extensions::u64_to_be_bytes(n, 8u, |v| self.write(v))
    }

    /// Write a big-endian u32 (4 bytes).
    fn write_be_u32(&mut self, n: u32) {
        extensions::u64_to_be_bytes(n as u64, 4u, |v| self.write(v))
    }

    /// Write a big-endian u16 (2 bytes).
    fn write_be_u16(&mut self, n: u16) {
        extensions::u64_to_be_bytes(n as u64, 2u, |v| self.write(v))
    }

    /// Write a big-endian i64 (8 bytes).
    fn write_be_i64(&mut self, n: i64) {
        extensions::u64_to_be_bytes(n as u64, 8u, |v| self.write(v))
    }

    /// Write a big-endian i32 (4 bytes).
    fn write_be_i32(&mut self, n: i32) {
        extensions::u64_to_be_bytes(n as u64, 4u, |v| self.write(v))
    }

    /// Write a big-endian i16 (2 bytes).
    fn write_be_i16(&mut self, n: i16) {
        extensions::u64_to_be_bytes(n as u64, 2u, |v| self.write(v))
    }

    /// Write a big-endian IEEE754 double-precision floating-point (8 bytes).
    fn write_be_f64(&mut self, f: f64) {
        unsafe {
            self.write_be_u64(cast::transmute(f))
        }
    }

    /// Write a big-endian IEEE754 single-precision floating-point (4 bytes).
    fn write_be_f32(&mut self, f: f32) {
        unsafe {
            self.write_be_u32(cast::transmute(f))
        }
    }

    /// Write a little-endian u64 (8 bytes).
    fn write_le_u64(&mut self, n: u64) {
        extensions::u64_to_le_bytes(n, 8u, |v| self.write(v))
    }

    /// Write a little-endian u32 (4 bytes).
    fn write_le_u32(&mut self, n: u32) {
        extensions::u64_to_le_bytes(n as u64, 4u, |v| self.write(v))
    }

    /// Write a little-endian u16 (2 bytes).
    fn write_le_u16(&mut self, n: u16) {
        extensions::u64_to_le_bytes(n as u64, 2u, |v| self.write(v))
    }

    /// Write a little-endian i64 (8 bytes).
    fn write_le_i64(&mut self, n: i64) {
        extensions::u64_to_le_bytes(n as u64, 8u, |v| self.write(v))
    }

    /// Write a little-endian i32 (4 bytes).
    fn write_le_i32(&mut self, n: i32) {
        extensions::u64_to_le_bytes(n as u64, 4u, |v| self.write(v))
    }

    /// Write a little-endian i16 (2 bytes).
    fn write_le_i16(&mut self, n: i16) {
        extensions::u64_to_le_bytes(n as u64, 2u, |v| self.write(v))
    }

    /// Write a little-endian IEEE754 double-precision floating-point
    /// (8 bytes).
    fn write_le_f64(&mut self, f: f64) {
        unsafe {
            self.write_le_u64(cast::transmute(f))
        }
    }

    /// Write a little-endian IEEE754 single-precision floating-point
    /// (4 bytes).
    fn write_le_f32(&mut self, f: f32) {
        unsafe {
            self.write_le_u32(cast::transmute(f))
        }
    }

    /// Write a u8 (1 byte).
    fn write_u8(&mut self, n: u8) {
        self.write([n])
    }

    /// Write a i8 (1 byte).
    fn write_i8(&mut self, n: i8) {
        self.write([n as u8])
    }
1031 1032
}

1033 1034 1035 1036 1037
impl Writer for ~Writer {
    fn write(&mut self, buf: &[u8]) { self.write(buf) }
    fn flush(&mut self) { self.flush() }
}

E
Erik Price 已提交
1038
impl<'a> Writer for &'a mut Writer {
1039 1040 1041 1042
    fn write(&mut self, buf: &[u8]) { self.write(buf) }
    fn flush(&mut self) { self.flush() }
}

B
Brian Anderson 已提交
1043
pub trait Stream: Reader + Writer { }
1044

1045
impl<T: Reader + Writer> Stream for T {}
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/// An iterator that reads a line on each iteration,
/// until `.read_line()` returns `None`.
///
/// # Notes about the Iteration Protocol
///
/// The `LineIterator` may yield `None` and thus terminate
/// an iteration, but continue to yield elements if iteration
/// is attempted again.
///
/// # Failure
///
/// Raises the same conditions as the `read` method except for `EndOfFile`
/// which is swallowed.
/// Iteration yields `None` if the condition is handled.
struct LineIterator<'r, T> {
    priv buffer: &'r mut T,
}

impl<'r, T: Buffer> Iterator<~str> for LineIterator<'r, T> {
    fn next(&mut self) -> Option<~str> {
        self.buffer.read_line()
    }
}

A
Alex Crichton 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/// A Buffer is a type of reader which has some form of internal buffering to
/// allow certain kinds of reading operations to be more optimized than others.
/// This type extends the `Reader` trait with a few methods that are not
/// possible to reasonably implement with purely a read interface.
pub trait Buffer: Reader {
    /// Fills the internal buffer of this object, returning the buffer contents.
    /// Note that none of the contents will be "read" in the sense that later
    /// calling `read` may return the same contents.
    ///
    /// The `consume` function must be called with the number of bytes that are
    /// consumed from this buffer returned to ensure that the bytes are never
    /// returned twice.
    ///
    /// # Failure
    ///
    /// This function will raise on the `io_error` condition if a read error is
    /// encountered.
    fn fill<'a>(&'a mut self) -> &'a [u8];

    /// Tells this buffer that `amt` bytes have been consumed from the buffer,
    /// so they should no longer be returned in calls to `fill` or `read`.
    fn consume(&mut self, amt: uint);

1094
    /// Reads the next line of input, interpreted as a sequence of UTF-8
A
Alex Crichton 已提交
1095 1096 1097
    /// encoded unicode codepoints. If a newline is encountered, then the
    /// newline is contained in the returned string.
    ///
A
Adrien Tétar 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
    /// # Example
    ///
    /// ```rust
    /// use std::io::buffered::BufferedReader;
    /// use std::io;
    /// # let _g = ::std::io::ignore_io_error();
    ///
    /// let mut reader = BufferedReader::new(io::stdin());
    ///
    /// let input = reader.read_line().unwrap_or(~"nothing");
    /// ```
    ///
A
Alex Crichton 已提交
1110 1111
    /// # Failure
    ///
1112 1113 1114
    /// This function will raise on the `io_error` condition (except for
    /// `EndOfFile` which is swallowed) if a read error is encountered.
    /// The task will also fail if sequence of bytes leading up to
1115
    /// the newline character are not valid UTF-8.
A
Alex Crichton 已提交
1116 1117 1118 1119
    fn read_line(&mut self) -> Option<~str> {
        self.read_until('\n' as u8).map(str::from_utf8_owned)
    }

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    /// Create an iterator that reads a line on each iteration until EOF.
    ///
    /// # Failure
    ///
    /// Iterator raises the same conditions as the `read` method
    /// except for `EndOfFile`.
    fn lines<'r>(&'r mut self) -> LineIterator<'r, Self> {
        LineIterator {
            buffer: self,
        }
    }

H
Huon Wilson 已提交
1132
    /// Reads a sequence of bytes leading up to a specified delimiter. Once the
A
Alex Crichton 已提交
1133 1134 1135 1136 1137 1138
    /// specified byte is encountered, reading ceases and the bytes up to and
    /// including the delimiter are returned.
    ///
    /// # Failure
    ///
    /// This function will raise on the `io_error` condition if a read error is
1139
    /// encountered, except that `EndOfFile` is swallowed.
A
Alex Crichton 已提交
1140 1141
    fn read_until(&mut self, byte: u8) -> Option<~[u8]> {
        let mut res = ~[];
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

        io_error::cond.trap(|e| {
            if e.kind != EndOfFile {
                io_error::cond.raise(e);
            }
        }).inside(|| {
            let mut used;
            loop {
                {
                    let available = self.fill();
                    match available.iter().position(|&b| b == byte) {
                        Some(i) => {
                            res.push_all(available.slice_to(i + 1));
                            used = i + 1;
                            break
                        }
                        None => {
                            res.push_all(available);
                            used = available.len();
                        }
A
Alex Crichton 已提交
1162 1163
                    }
                }
1164 1165 1166 1167
                if used == 0 {
                    break
                }
                self.consume(used);
A
Alex Crichton 已提交
1168 1169
            }
            self.consume(used);
1170
        });
A
Alex Crichton 已提交
1171
        return if res.len() == 0 {None} else {Some(res)};
1172

A
Alex Crichton 已提交
1173
    }
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

    /// Reads the next utf8-encoded character from the underlying stream.
    ///
    /// This will return `None` if the following sequence of bytes in the
    /// stream are not a valid utf8-sequence, or if an I/O error is encountered.
    ///
    /// # Failure
    ///
    /// This function will raise on the `io_error` condition if a read error is
    /// encountered.
    fn read_char(&mut self) -> Option<char> {
        let width = {
            let available = self.fill();
            if available.len() == 0 { return None } // read error
            str::utf8_char_width(available[0])
        };
        if width == 0 { return None } // not uf8
        let mut buf = [0, ..4];
1192 1193 1194 1195 1196 1197 1198 1199 1200
        {
            let mut start = 0;
            loop {
                match self.read(buf.mut_slice(start, width)) {
                    Some(n) if n == width - start => break,
                    Some(n) if n < width - start => { start += n; }
                    Some(..) | None => return None // read error
                }
            }
1201
        }
1202
        match str::from_utf8_opt(buf.slice_to(width)) {
1203 1204 1205 1206
            Some(s) => Some(s.char_at(0)),
            None => None
        }
    }
A
Alex Crichton 已提交
1207 1208
}

1209 1210 1211 1212 1213 1214 1215 1216 1217
pub enum SeekStyle {
    /// Seek from the beginning of the stream
    SeekSet,
    /// Seek from the end of the stream
    SeekEnd,
    /// Seek from the current position
    SeekCur,
}

B
Tidy  
Brian Anderson 已提交
1218
/// # XXX
1219
/// * Are `u64` and `i64` the right choices?
1220
pub trait Seek {
1221
    /// Return position of file cursor in the stream
1222
    fn tell(&self) -> u64;
1223 1224 1225 1226 1227 1228 1229 1230

    /// Seek to an offset in a stream
    ///
    /// A successful seek clears the EOF indicator.
    ///
    /// # XXX
    ///
    /// * What is the behavior when seeking past the end of a stream?
1231 1232 1233
    fn seek(&mut self, pos: i64, style: SeekStyle);
}

1234 1235 1236
/// A listener is a value that can consume itself to start listening for connections.
/// Doing so produces some sort of Acceptor.
pub trait Listener<T, A: Acceptor<T>> {
H
Huon Wilson 已提交
1237
    /// Spin up the listener and start queuing incoming connections
1238 1239 1240 1241
    ///
    /// # Failure
    ///
    /// Raises `io_error` condition. If the condition is handled,
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    /// then `listen` returns `None`.
    fn listen(self) -> Option<A>;
}

/// An acceptor is a value that presents incoming connections
pub trait Acceptor<T> {
    /// Wait for and accept an incoming connection
    ///
    /// # Failure
    /// Raise `io_error` condition. If the condition is handled,
1252
    /// then `accept` returns `None`.
1253 1254
    fn accept(&mut self) -> Option<T>;

1255
    /// Create an iterator over incoming connection attempts
1256 1257 1258 1259 1260 1261 1262
    fn incoming<'r>(&'r mut self) -> IncomingIterator<'r, Self> {
        IncomingIterator { inc: self }
    }
}

/// An infinite iterator over incoming connection attempts.
/// Calling `next` will block the task until a connection is attempted.
1263 1264 1265 1266 1267
///
/// Since connection attempts can continue forever, this iterator always returns Some.
/// The Some contains another Option representing whether the connection attempt was succesful.
/// A successful connection will be wrapped in Some.
/// A failed connection is represented as a None and raises a condition.
E
Erik Price 已提交
1268 1269
struct IncomingIterator<'a, A> {
    priv inc: &'a mut A,
1270 1271
}

E
Erik Price 已提交
1272
impl<'a, T, A: Acceptor<T>> Iterator<Option<T>> for IncomingIterator<'a, A> {
1273 1274
    fn next(&mut self) -> Option<Option<T>> {
        Some(self.inc.accept())
1275
    }
1276 1277
}

1278
pub fn standard_error(kind: IoErrorKind) -> IoError {
1279 1280 1281 1282 1283
    let desc = match kind {
        PreviousIoError => "failing due to previous I/O error",
        EndOfFile => "end of file",
        IoUnavailable => "I/O is unavailable",
        InvalidInput => "invalid input",
1284
        _ => fail!()
1285 1286 1287 1288 1289
    };
    IoError {
        kind: kind,
        desc: desc,
        detail: None,
1290 1291
    }
}
1292 1293 1294 1295 1296 1297 1298

pub fn placeholder_error() -> IoError {
    IoError {
        kind: OtherIoError,
        desc: "Placeholder error. You shouldn't be seeing this",
        detail: None
    }
1299
}
1300

1301 1302 1303
/// A mode specifies how a file should be opened or created. These modes are
/// passed to `File::open_mode` and are used to control where the file is
/// positioned when it is initially opened.
1304
pub enum FileMode {
1305
    /// Opens a file positioned at the beginning.
1306
    Open,
1307
    /// Opens a file positioned at EOF.
1308
    Append,
1309
    /// Opens a file, truncating it if it already exists.
1310 1311 1312
    Truncate,
}

1313 1314
/// Access permissions with which the file should be opened. `File`s
/// opened with `Read` will raise an `io_error` condition if written to.
1315 1316 1317
pub enum FileAccess {
    Read,
    Write,
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    ReadWrite,
}

/// Different kinds of files which can be identified by a call to stat
#[deriving(Eq)]
pub enum FileType {
    TypeFile,
    TypeDirectory,
    TypeNamedPipe,
    TypeBlockSpecial,
    TypeSymlink,
    TypeUnknown,
1330
}
J
Jeff Olson 已提交
1331 1332

pub struct FileStat {
1333
    /// The path that this stat structure is describing
J
Jeff Olson 已提交
1334
    path: Path,
1335
    /// The size of the file, in bytes
J
Jeff Olson 已提交
1336
    size: u64,
1337 1338 1339 1340 1341
    /// The kind of file this path points to (directory, file, pipe, etc.)
    kind: FileType,
    /// The file permissions currently on the file
    perm: FilePermission,

1342 1343 1344
    // FIXME(#10301): These time fields are pretty useless without an actual
    //                time representation, what are the milliseconds relative
    //                to?
1345 1346 1347

    /// The time that the file was created at, in platform-dependent
    /// milliseconds
J
Jeff Olson 已提交
1348
    created: u64,
1349 1350
    /// The time that this file was last modified, in platform-dependent
    /// milliseconds
J
Jeff Olson 已提交
1351
    modified: u64,
1352 1353
    /// The time that this file was last accessed, in platform-dependent
    /// milliseconds
J
Jeff Olson 已提交
1354
    accessed: u64,
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
    /// Information returned by stat() which is not guaranteed to be
    /// platform-independent. This information may be useful on some platforms,
    /// but it may have different meanings or no meaning at all on other
    /// platforms.
    ///
    /// Usage of this field is discouraged, but if access is desired then the
    /// fields are located here.
    #[unstable]
    unstable: UnstableFileStat,
}

/// This structure represents all of the possible information which can be
/// returned from a `stat` syscall which is not contained in the `FileStat`
/// structure. This information is not necessarily platform independent, and may
/// have different meanings or no meaning at all on some platforms.
#[unstable]
pub struct UnstableFileStat {
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
    device: u64,
    inode: u64,
    rdev: u64,
    nlink: u64,
    uid: u64,
    gid: u64,
    blksize: u64,
    blocks: u64,
    flags: u64,
    gen: u64,
J
Jeff Olson 已提交
1383
}
1384

1385 1386
/// A set of permissions for a file or directory is represented by a set of
/// flags which are or'd together.
1387
pub type FilePermission = u32;
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

// Each permission bit
pub static UserRead: FilePermission     = 0x100;
pub static UserWrite: FilePermission    = 0x080;
pub static UserExecute: FilePermission  = 0x040;
pub static GroupRead: FilePermission    = 0x020;
pub static GroupWrite: FilePermission   = 0x010;
pub static GroupExecute: FilePermission = 0x008;
pub static OtherRead: FilePermission    = 0x004;
pub static OtherWrite: FilePermission   = 0x002;
pub static OtherExecute: FilePermission = 0x001;

// Common combinations of these bits
pub static UserRWX: FilePermission  = UserRead | UserWrite | UserExecute;
pub static GroupRWX: FilePermission = GroupRead | GroupWrite | GroupExecute;
pub static OtherRWX: FilePermission = OtherRead | OtherWrite | OtherExecute;

/// A set of permissions for user owned files, this is equivalent to 0644 on
/// unix-like systems.
pub static UserFile: FilePermission = UserRead | UserWrite | GroupRead | OtherRead;
/// A set of permissions for user owned directories, this is equivalent to 0755
/// on unix-like systems.
pub static UserDir: FilePermission = UserRWX | GroupRead | GroupExecute |
                                     OtherRead | OtherExecute;
/// A set of permissions for user owned executables, this is equivalent to 0755
/// on unix-like systems.
pub static UserExec: FilePermission = UserDir;

/// A mask for all possible permission bits
pub static AllPermissions: FilePermission = 0x1ff;