mod.rs 40.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

11 12
/*! Synchronous I/O

B
Brian Anderson 已提交
13 14
This module defines the Rust interface for synchronous I/O.
It models byte-oriented input and output with the Reader and Writer traits.
15 16
Types that implement both `Reader` and `Writer` are called 'streams',
and automatically implement the `Stream` trait.
B
Brian Anderson 已提交
17 18 19 20
Implementations are provided for common I/O streams like
file, TCP, UDP, Unix domain sockets.
Readers and Writers may be composed to add capabilities like string
parsing, encoding, and compression.
21 22 23 24 25 26 27 28 29 30 31 32 33

# Examples

Some examples of obvious things you might want to do

* Read lines from stdin

    for stdin().each_line |line| {
        println(line)
    }

* Read a complete file to a string, (converting newlines?)

B
Brian Anderson 已提交
34
    let contents = File::open("message.txt").read_to_str(); // read_to_str??
35 36 37

* Write a line to a file

B
Brian Anderson 已提交
38
    let file = File::open("message.txt", Create, Write);
39 40 41 42
    file.write_line("hello, file!");

* Iterate over the lines of a file

43
    File::open("message.txt").each_line(|line| {
44
        println(line)
45
    })
46

47 48
* Pull the lines of a file into a vector of strings

49
    let lines = File::open("message.txt").lines().to_vec();
50 51 52 53 54 55 56 57

* Make an simple HTTP request

    let socket = TcpStream::open("localhost:8080");
    socket.write_line("GET / HTTP/1.0");
    socket.write_line("");
    let response = socket.read_to_end();

58 59 60 61
* Connect based on URL? Requires thinking about where the URL type lives
  and how to make protocol handlers extensible, e.g. the "tcp" protocol
  yields a `TcpStream`.

62
    connect("tcp://localhost:8080");
63 64 65

# Terms

B
Brian Anderson 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
* Reader - An I/O source, reads bytes into a buffer
* Writer - An I/O sink, writes bytes from a buffer
* Stream - Typical I/O sources like files and sockets are both Readers and Writers,
  and are collectively referred to a `streams`.
* Decorator - A Reader or Writer that composes with others to add additional capabilities
  such as encoding or decoding

# Blocking and synchrony

When discussing I/O you often hear the terms 'synchronous' and
'asynchronous', along with 'blocking' and 'non-blocking' compared and
contrasted. A synchronous I/O interface performs each I/O operation to
completion before proceeding to the next. Synchronous interfaces are
usually used in imperative style as a sequence of commands. An
asynchronous interface allows multiple I/O requests to be issued
simultaneously, without waiting for each to complete before proceeding
to the next.

Asynchronous interfaces are used to achieve 'non-blocking' I/O. In
traditional single-threaded systems, performing a synchronous I/O
operation means that the program stops all activity (it 'blocks')
until the I/O is complete. Blocking is bad for performance when
there are other computations that could be done.

Asynchronous interfaces are most often associated with the callback
(continuation-passing) style popularised by node.js. Such systems rely
on all computations being run inside an event loop which maintains a
list of all pending I/O events; when one completes the registered
94
callback is run and the code that made the I/O request continues.
B
Brian Anderson 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
Such interfaces achieve non-blocking at the expense of being more
difficult to reason about.

Rust's I/O interface is synchronous - easy to read - and non-blocking by default.

Remember that Rust tasks are 'green threads', lightweight threads that
are multiplexed onto a single operating system thread. If that system
thread blocks then no other task may proceed. Rust tasks are
relatively cheap to create, so as long as other tasks are free to
execute then non-blocking code may be written by simply creating a new
task.

When discussing blocking in regards to Rust's I/O model, we are
concerned with whether performing I/O blocks other Rust tasks from
proceeding. In other words, when a task calls `read`, it must then
wait (or 'sleep', or 'block') until the call to `read` is complete.
During this time, other tasks may or may not be executed, depending on
how `read` is implemented.


Rust's default I/O implementation is non-blocking; by cooperating
directly with the task scheduler it arranges to never block progress
of *other* tasks. Under the hood, Rust uses asynchronous I/O via a
per-scheduler (and hence per-thread) event loop. Synchronous I/O
requests are implemented by descheduling the running task and
performing an asynchronous request; the task is only resumed once the
asynchronous request completes.

For blocking (but possibly more efficient) implementations, look
in the `io::native` module.
125 126 127

# Error Handling

B
Brian Anderson 已提交
128 129 130 131 132 133 134 135 136
I/O is an area where nearly every operation can result in unexpected
errors. It should allow errors to be handled efficiently.
It needs to be convenient to use I/O when you don't care
about dealing with specific errors.

Rust's I/O employs a combination of techniques to reduce boilerplate
while still providing feedback about errors. The basic strategy:

* Errors are fatal by default, resulting in task failure
137
* Errors raise the `io_error` condition which provides an opportunity to inspect
B
Brian Anderson 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  an IoError object containing details.
* Return values must have a sensible null or zero value which is returned
  if a condition is handled successfully. This may be an `Option`, an empty
  vector, or other designated error value.
* Common traits are implemented for `Option`, e.g. `impl<R: Reader> Reader for Option<R>`,
  so that nullable values do not have to be 'unwrapped' before use.

These features combine in the API to allow for expressions like
`File::new("diary.txt").write_line("met a girl")` without having to
worry about whether "diary.txt" exists or whether the write
succeeds. As written, if either `new` or `write_line` encounters
an error the task will fail.

If you wanted to handle the error though you might write

    let mut error = None;
    do io_error::cond(|e: IoError| {
        error = Some(e);
    }).in {
        File::new("diary.txt").write_line("met a girl");
    }

    if error.is_some() {
        println("failed to write my diary");
    }

XXX: Need better condition handling syntax

In this case the condition handler will have the opportunity to
inspect the IoError raised by either the call to `new` or the call to
`write_line`, but then execution will continue.

So what actually happens if `new` encounters an error? To understand
that it's important to know that what `new` returns is not a `File`
but an `Option<File>`.  If the file does not open, and the condition
is handled, then `new` will simply return `None`. Because there is an
implementation of `Writer` (the trait required ultimately required for
types to implement `write_line`) there is no need to inspect or unwrap
the `Option<File>` and we simply call `write_line` on it.  If `new`
returned a `None` then the followup call to `write_line` will also
raise an error.

## Concerns about this strategy

This structure will encourage a programming style that is prone
to errors similar to null pointer dereferences.
In particular code written to ignore errors and expect conditions to be unhandled
will start passing around null or zero objects when wrapped in a condition handler.

* XXX: How should we use condition handlers that return values?
188
* XXX: Should EOF raise default conditions when EOF is not an error?
B
Brian Anderson 已提交
189

190
# Issues with i/o scheduler affinity, work stealing, task pinning
B
Brian Anderson 已提交
191

192 193 194 195
# Resource management

* `close` vs. RAII

B
Brian Anderson 已提交
196 197 198
# Paths, URLs and overloaded constructors


199

B
Brian Anderson 已提交
200 201 202 203 204
# Scope

In scope for core

* Url?
205 206 207 208 209 210 211 212

Some I/O things don't belong in core

  - url
  - net - `fn connect`
    - http
  - flate

B
Brian Anderson 已提交
213 214 215 216 217 218
Out of scope

* Async I/O. We'll probably want it eventually


# XXX Questions and issues
219 220 221 222 223 224 225 226 227

* Should default constructors take `Path` or `&str`? `Path` makes simple cases verbose.
  Overloading would be nice.
* Add overloading for Path and &str and Url &str
* stdin/err/out
* print, println, etc.
* fsync
* relationship with filesystem querying, Directory, File types etc.
* Rename Reader/Writer to ByteReader/Writer, make Reader/Writer generic?
B
Brian Anderson 已提交
228
* Can Port and Chan be implementations of a generic Reader<T>/Writer<T>?
229 230 231 232 233 234 235
* Trait for things that are both readers and writers, Stream?
* How to handle newline conversion
* String conversion
* open vs. connect for generic stream opening
* Do we need `close` at all? dtors might be good enough
* How does I/O relate to the Iterator trait?
* std::base64 filters
B
Brian Anderson 已提交
236
* Using conditions is a big unknown since we don't have much experience with them
237
* Too many uses of OtherIoError
238 239 240

*/

A
Alex Crichton 已提交
241 242
#[allow(missing_doc)];

243
use cast;
A
Alex Crichton 已提交
244
use container::Container;
245
use int;
A
Alex Crichton 已提交
246
use iter::Iterator;
247
use option::{Option, Some, None};
A
Alex Crichton 已提交
248
use path::Path;
249
use result::{Ok, Err, Result};
A
Alex Crichton 已提交
250
use str;
A
Alex Crichton 已提交
251
use str::{StrSlice, OwnedStr};
252 253 254
use to_str::ToStr;
use uint;
use unstable::finally::Finally;
A
Alex Crichton 已提交
255
use vec::{OwnedVector, MutableVector, ImmutableVector, OwnedCopyableVector};
256
use vec;
257 258 259 260 261 262 263 264

// Reexports
pub use self::stdio::stdin;
pub use self::stdio::stdout;
pub use self::stdio::stderr;
pub use self::stdio::print;
pub use self::stdio::println;

265
pub use self::fs::File;
J
Jeff Olson 已提交
266
pub use self::timer::Timer;
267 268 269 270
pub use self::net::ip::IpAddr;
pub use self::net::tcp::TcpListener;
pub use self::net::tcp::TcpStream;
pub use self::net::udp::UdpStream;
271 272
pub use self::pipe::PipeStream;
pub use self::process::Process;
273

274 275
/// Synchronous, non-blocking filesystem operations.
pub mod fs;
276

277 278 279 280 281 282
/// Synchronous, in-memory I/O.
pub mod pipe;

/// Child process management.
pub mod process;

283
/// Synchronous, non-blocking network I/O.
284
pub mod net;
285 286 287 288 289 290 291

/// Readers and Writers for memory buffers and strings.
pub mod mem;

/// Non-blocking access to stdin, stdout, stderr
pub mod stdio;

292 293 294
/// Implementations for Option
mod option;

295 296 297 298 299 300 301
/// Basic stream compression. XXX: Belongs with other flate code
pub mod flate;

/// Interop between byte streams and pipes. Not sure where it belongs
pub mod comm_adapters;

/// Extension traits
302
pub mod extensions;
303

J
Jeff Olson 已提交
304
/// Basic Timer
305
pub mod timer;
J
Jeff Olson 已提交
306

S
Steven Fackler 已提交
307 308 309
/// Buffered I/O wrappers
pub mod buffered;

A
Alex Crichton 已提交
310
pub mod native;
311

312 313 314
/// Signal handling
pub mod signal;

315
/// The default buffer size for various I/O operations
316
static DEFAULT_BUF_SIZE: uint = 1024 * 64;
317

318 319
/// The type passed to I/O condition handlers to indicate error
///
B
Tidy  
Brian Anderson 已提交
320
/// # XXX
321 322 323 324 325 326 327 328
///
/// Is something like this sufficient? It's kind of archaic
pub struct IoError {
    kind: IoErrorKind,
    desc: &'static str,
    detail: Option<~str>
}

329 330 331 332 333 334 335 336 337 338 339 340 341 342
// FIXME: #8242 implementing manually because deriving doesn't work for some reason
impl ToStr for IoError {
    fn to_str(&self) -> ~str {
        let mut s = ~"IoError { kind: ";
        s.push_str(self.kind.to_str());
        s.push_str(", desc: ");
        s.push_str(self.desc);
        s.push_str(", detail: ");
        s.push_str(self.detail.to_str());
        s.push_str(" }");
        s
    }
}

343
#[deriving(Eq)]
344
pub enum IoErrorKind {
345 346 347
    PreviousIoError,
    OtherIoError,
    EndOfFile,
348
    FileNotFound,
349
    PermissionDenied,
350 351
    ConnectionFailed,
    Closed,
352
    ConnectionRefused,
B
Brian Anderson 已提交
353
    ConnectionReset,
354
    ConnectionAborted,
K
klutzy 已提交
355
    NotConnected,
356 357 358
    BrokenPipe,
    PathAlreadyExists,
    PathDoesntExist,
359
    MismatchedFileTypeForOperation,
360
    ResourceUnavailable,
361
    IoUnavailable,
362
}
363

364 365 366 367 368 369 370 371 372 373 374 375 376
// FIXME: #8242 implementing manually because deriving doesn't work for some reason
impl ToStr for IoErrorKind {
    fn to_str(&self) -> ~str {
        match *self {
            PreviousIoError => ~"PreviousIoError",
            OtherIoError => ~"OtherIoError",
            EndOfFile => ~"EndOfFile",
            FileNotFound => ~"FileNotFound",
            PermissionDenied => ~"PermissionDenied",
            ConnectionFailed => ~"ConnectionFailed",
            Closed => ~"Closed",
            ConnectionRefused => ~"ConnectionRefused",
            ConnectionReset => ~"ConnectionReset",
K
klutzy 已提交
377
            NotConnected => ~"NotConnected",
378 379 380
            BrokenPipe => ~"BrokenPipe",
            PathAlreadyExists => ~"PathAlreadyExists",
            PathDoesntExist => ~"PathDoesntExist",
381 382
            MismatchedFileTypeForOperation => ~"MismatchedFileTypeForOperation",
            IoUnavailable => ~"IoUnavailable",
383
            ResourceUnavailable => ~"ResourceUnavailable",
384
            ConnectionAborted => ~"ConnectionAborted",
385 386 387 388
        }
    }
}

389
// XXX: Can't put doc comments on macros
390
// Raised by `I/O` operations on error.
391
condition! {
A
Alex Crichton 已提交
392
    pub io_error: IoError -> ();
393 394
}

395 396
/// Helper for wrapper calls where you want to
/// ignore any io_errors that might be raised
397
pub fn ignore_io_error<T>(cb: || -> T) -> T {
398
    io_error::cond.trap(|_| {
399 400 401
        // just swallow the error.. downstream users
        // who can make a decision based on a None result
        // won't care
402
    }).inside(|| cb())
403 404
}

405 406 407
/// Helper for catching an I/O error and wrapping it in a Result object. The
/// return result will be the last I/O error that happened or the result of the
/// closure if no error occurred.
408
pub fn result<T>(cb: || -> T) -> Result<T, IoError> {
409
    let mut err = None;
410 411 412 413 414
    let ret = io_error::cond.trap(|e| {
        if err.is_none() {
            err = Some(e);
        }
    }).inside(cb);
415 416 417 418 419 420
    match err {
        Some(e) => Err(e),
        None => Ok(ret),
    }
}

421
pub trait Reader {
422 423 424

    // Only two methods which need to get implemented for this trait

425
    /// Read bytes, up to the length of `buf` and place them in `buf`.
426 427
    /// Returns the number of bytes read. The number of bytes read my
    /// be less than the number requested, even 0. Returns `None` on EOF.
428 429 430
    ///
    /// # Failure
    ///
A
Alex Crichton 已提交
431
    /// Raises the `io_error` condition on error. If the condition
432 433 434
    /// is handled then no guarantee is made about the number of bytes
    /// read and the contents of `buf`. If the condition is handled
    /// returns `None` (XXX see below).
435
    ///
B
Tidy  
Brian Anderson 已提交
436
    /// # XXX
437
    ///
438
    /// * Should raise_default error on eof?
439
    /// * If the condition is handled it should still return the bytes read,
440 441
    ///   in which case there's no need to return Option - but then you *have*
    ///   to install a handler to detect eof.
442
    ///
443 444 445
    /// This doesn't take a `len` argument like the old `read`.
    /// Will people often need to slice their vectors to call this
    /// and will that be annoying?
446
    /// Is it actually possible for 0 bytes to be read successfully?
447
    fn read(&mut self, buf: &mut [u8]) -> Option<uint>;
448

449 450 451 452
    /// Return whether the Reader has reached the end of the stream.
    ///
    /// # Example
    ///
453
    ///     let reader = File::open(&Path::init("foo.txt"))
454 455 456 457
    ///     while !reader.eof() {
    ///         println(reader.read_line());
    ///     }
    ///
H
Huon Wilson 已提交
458
    /// # Failure
459
    ///
460
    /// Returns `true` on failure.
461
    fn eof(&mut self) -> bool;
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

    // Convenient helper methods based on the above methods

    /// Reads a single byte. Returns `None` on EOF.
    ///
    /// # Failure
    ///
    /// Raises the same conditions as the `read` method. Returns
    /// `None` if the condition is handled.
    fn read_byte(&mut self) -> Option<u8> {
        let mut buf = [0];
        match self.read(buf) {
            Some(0) => {
                debug!("read 0 bytes. trying again");
                self.read_byte()
            }
            Some(1) => Some(buf[0]),
            Some(_) => unreachable!(),
            None => None
        }
    }

    /// Reads `len` bytes and appends them to a vector.
    ///
    /// May push fewer than the requested number of bytes on error
    /// or EOF. Returns true on success, false on EOF or error.
    ///
    /// # Failure
    ///
    /// Raises the same conditions as `read`. Additionally raises `io_error`
    /// on EOF. If `io_error` is handled then `push_bytes` may push less
    /// than the requested number of bytes.
    fn push_bytes(&mut self, buf: &mut ~[u8], len: uint) {
        unsafe {
            let start_len = buf.len();
            let mut total_read = 0;

            buf.reserve_additional(len);
            vec::raw::set_len(buf, start_len + len);

502
            (|| {
503 504 505 506 507 508 509 510 511 512 513 514 515
                while total_read < len {
                    let len = buf.len();
                    let slice = buf.mut_slice(start_len + total_read, len);
                    match self.read(slice) {
                        Some(nread) => {
                            total_read += nread;
                        }
                        None => {
                            io_error::cond.raise(standard_error(EndOfFile));
                            break;
                        }
                    }
                }
516
            }).finally(|| vec::raw::set_len(buf, start_len + total_read))
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
        }
    }

    /// Reads `len` bytes and gives you back a new vector of length `len`
    ///
    /// # Failure
    ///
    /// Raises the same conditions as `read`. Additionally raises `io_error`
    /// on EOF. If `io_error` is handled then the returned vector may
    /// contain less than the requested number of bytes.
    fn read_bytes(&mut self, len: uint) -> ~[u8] {
        let mut buf = vec::with_capacity(len);
        self.push_bytes(&mut buf, len);
        return buf;
    }

    /// Reads all remaining bytes from the stream.
    ///
    /// # Failure
    ///
    /// Raises the same conditions as the `read` method.
    fn read_to_end(&mut self) -> ~[u8] {
        let mut buf = vec::with_capacity(DEFAULT_BUF_SIZE);
        let mut keep_reading = true;
541
        io_error::cond.trap(|e| {
542 543 544 545 546
            if e.kind == EndOfFile {
                keep_reading = false;
            } else {
                io_error::cond.raise(e)
            }
547
        }).inside(|| {
548 549 550
            while keep_reading {
                self.push_bytes(&mut buf, DEFAULT_BUF_SIZE)
            }
551
        });
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
        return buf;
    }

    /// Create an iterator that reads a single byte on
    /// each iteration, until EOF.
    ///
    /// # Failure
    ///
    /// Raises the same conditions as the `read` method, for
    /// each call to its `.next()` method.
    /// Ends the iteration if the condition is handled.
    fn bytes(self) -> extensions::ByteIterator<Self> {
        extensions::ByteIterator::new(self)
    }

    // Byte conversion helpers

    /// Reads `n` little-endian unsigned integer bytes.
    ///
    /// `n` must be between 1 and 8, inclusive.
    fn read_le_uint_n(&mut self, nbytes: uint) -> u64 {
        assert!(nbytes > 0 && nbytes <= 8);

        let mut val = 0u64;
        let mut pos = 0;
        let mut i = nbytes;
        while i > 0 {
            val += (self.read_u8() as u64) << pos;
            pos += 8;
            i -= 1;
        }
        val
    }

    /// Reads `n` little-endian signed integer bytes.
    ///
    /// `n` must be between 1 and 8, inclusive.
    fn read_le_int_n(&mut self, nbytes: uint) -> i64 {
        extend_sign(self.read_le_uint_n(nbytes), nbytes)
    }

    /// Reads `n` big-endian unsigned integer bytes.
    ///
    /// `n` must be between 1 and 8, inclusive.
    fn read_be_uint_n(&mut self, nbytes: uint) -> u64 {
        assert!(nbytes > 0 && nbytes <= 8);

        let mut val = 0u64;
        let mut i = nbytes;
        while i > 0 {
            i -= 1;
            val += (self.read_u8() as u64) << i * 8;
        }
        val
    }

    /// Reads `n` big-endian signed integer bytes.
    ///
    /// `n` must be between 1 and 8, inclusive.
    fn read_be_int_n(&mut self, nbytes: uint) -> i64 {
        extend_sign(self.read_be_uint_n(nbytes), nbytes)
    }

    /// Reads a little-endian unsigned integer.
    ///
    /// The number of bytes returned is system-dependant.
    fn read_le_uint(&mut self) -> uint {
        self.read_le_uint_n(uint::bytes) as uint
    }

    /// Reads a little-endian integer.
    ///
    /// The number of bytes returned is system-dependant.
    fn read_le_int(&mut self) -> int {
        self.read_le_int_n(int::bytes) as int
    }

    /// Reads a big-endian unsigned integer.
    ///
    /// The number of bytes returned is system-dependant.
    fn read_be_uint(&mut self) -> uint {
        self.read_be_uint_n(uint::bytes) as uint
    }

    /// Reads a big-endian integer.
    ///
    /// The number of bytes returned is system-dependant.
    fn read_be_int(&mut self) -> int {
        self.read_be_int_n(int::bytes) as int
    }

    /// Reads a big-endian `u64`.
    ///
    /// `u64`s are 8 bytes long.
    fn read_be_u64(&mut self) -> u64 {
        self.read_be_uint_n(8) as u64
    }

    /// Reads a big-endian `u32`.
    ///
    /// `u32`s are 4 bytes long.
    fn read_be_u32(&mut self) -> u32 {
        self.read_be_uint_n(4) as u32
    }

    /// Reads a big-endian `u16`.
    ///
    /// `u16`s are 2 bytes long.
    fn read_be_u16(&mut self) -> u16 {
        self.read_be_uint_n(2) as u16
    }

    /// Reads a big-endian `i64`.
    ///
    /// `i64`s are 8 bytes long.
    fn read_be_i64(&mut self) -> i64 {
        self.read_be_int_n(8) as i64
    }

    /// Reads a big-endian `i32`.
    ///
    /// `i32`s are 4 bytes long.
    fn read_be_i32(&mut self) -> i32 {
        self.read_be_int_n(4) as i32
    }

    /// Reads a big-endian `i16`.
    ///
    /// `i16`s are 2 bytes long.
    fn read_be_i16(&mut self) -> i16 {
        self.read_be_int_n(2) as i16
    }

    /// Reads a big-endian `f64`.
    ///
    /// `f64`s are 8 byte, IEEE754 double-precision floating point numbers.
    fn read_be_f64(&mut self) -> f64 {
        unsafe {
            cast::transmute::<u64, f64>(self.read_be_u64())
        }
    }

    /// Reads a big-endian `f32`.
    ///
    /// `f32`s are 4 byte, IEEE754 single-precision floating point numbers.
    fn read_be_f32(&mut self) -> f32 {
        unsafe {
            cast::transmute::<u32, f32>(self.read_be_u32())
        }
    }

    /// Reads a little-endian `u64`.
    ///
    /// `u64`s are 8 bytes long.
    fn read_le_u64(&mut self) -> u64 {
        self.read_le_uint_n(8) as u64
    }

    /// Reads a little-endian `u32`.
    ///
    /// `u32`s are 4 bytes long.
    fn read_le_u32(&mut self) -> u32 {
        self.read_le_uint_n(4) as u32
    }

    /// Reads a little-endian `u16`.
    ///
    /// `u16`s are 2 bytes long.
    fn read_le_u16(&mut self) -> u16 {
        self.read_le_uint_n(2) as u16
    }

    /// Reads a little-endian `i64`.
    ///
    /// `i64`s are 8 bytes long.
    fn read_le_i64(&mut self) -> i64 {
        self.read_le_int_n(8) as i64
    }

    /// Reads a little-endian `i32`.
    ///
    /// `i32`s are 4 bytes long.
    fn read_le_i32(&mut self) -> i32 {
        self.read_le_int_n(4) as i32
    }

    /// Reads a little-endian `i16`.
    ///
    /// `i16`s are 2 bytes long.
    fn read_le_i16(&mut self) -> i16 {
        self.read_le_int_n(2) as i16
    }

    /// Reads a little-endian `f64`.
    ///
    /// `f64`s are 8 byte, IEEE754 double-precision floating point numbers.
    fn read_le_f64(&mut self) -> f64 {
        unsafe {
            cast::transmute::<u64, f64>(self.read_le_u64())
        }
    }

    /// Reads a little-endian `f32`.
    ///
    /// `f32`s are 4 byte, IEEE754 single-precision floating point numbers.
    fn read_le_f32(&mut self) -> f32 {
        unsafe {
            cast::transmute::<u32, f32>(self.read_le_u32())
        }
    }

    /// Read a u8.
    ///
    /// `u8`s are 1 byte.
    fn read_u8(&mut self) -> u8 {
        match self.read_byte() {
            Some(b) => b as u8,
            None => 0
        }
    }

    /// Read an i8.
    ///
    /// `i8`s are 1 byte.
    fn read_i8(&mut self) -> i8 {
        match self.read_byte() {
            Some(b) => b as i8,
            None => 0
        }
    }

783
}
784

785 786 787 788 789 790 791 792 793 794
impl Reader for ~Reader {
    fn read(&mut self, buf: &mut [u8]) -> Option<uint> { self.read(buf) }
    fn eof(&mut self) -> bool { self.eof() }
}

impl<'self> Reader for &'self mut Reader {
    fn read(&mut self, buf: &mut [u8]) -> Option<uint> { self.read(buf) }
    fn eof(&mut self) -> bool { self.eof() }
}

795 796 797 798 799
fn extend_sign(val: u64, nbytes: uint) -> i64 {
    let shift = (8 - nbytes) * 8;
    (val << shift) as i64 >> shift
}

800
pub trait Writer {
801 802 803 804
    /// Write the given buffer
    ///
    /// # Failure
    ///
805 806 807
    /// Raises the `io_error` condition on error
    fn write(&mut self, buf: &[u8]);

808 809 810 811 812 813
    /// Flush this output stream, ensuring that all intermediately buffered
    /// contents reach their destination.
    ///
    /// This is by default a no-op and implementors of the `Writer` trait should
    /// decide whether their stream needs to be buffered or not.
    fn flush(&mut self) {}
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

    /// Write the result of passing n through `int::to_str_bytes`.
    fn write_int(&mut self, n: int) {
        int::to_str_bytes(n, 10u, |bytes| self.write(bytes))
    }

    /// Write the result of passing n through `uint::to_str_bytes`.
    fn write_uint(&mut self, n: uint) {
        uint::to_str_bytes(n, 10u, |bytes| self.write(bytes))
    }

    /// Write a little-endian uint (number of bytes depends on system).
    fn write_le_uint(&mut self, n: uint) {
        extensions::u64_to_le_bytes(n as u64, uint::bytes, |v| self.write(v))
    }

    /// Write a little-endian int (number of bytes depends on system).
    fn write_le_int(&mut self, n: int) {
        extensions::u64_to_le_bytes(n as u64, int::bytes, |v| self.write(v))
    }

    /// Write a big-endian uint (number of bytes depends on system).
    fn write_be_uint(&mut self, n: uint) {
        extensions::u64_to_be_bytes(n as u64, uint::bytes, |v| self.write(v))
    }

    /// Write a big-endian int (number of bytes depends on system).
    fn write_be_int(&mut self, n: int) {
        extensions::u64_to_be_bytes(n as u64, int::bytes, |v| self.write(v))
    }

    /// Write a big-endian u64 (8 bytes).
    fn write_be_u64(&mut self, n: u64) {
        extensions::u64_to_be_bytes(n, 8u, |v| self.write(v))
    }

    /// Write a big-endian u32 (4 bytes).
    fn write_be_u32(&mut self, n: u32) {
        extensions::u64_to_be_bytes(n as u64, 4u, |v| self.write(v))
    }

    /// Write a big-endian u16 (2 bytes).
    fn write_be_u16(&mut self, n: u16) {
        extensions::u64_to_be_bytes(n as u64, 2u, |v| self.write(v))
    }

    /// Write a big-endian i64 (8 bytes).
    fn write_be_i64(&mut self, n: i64) {
        extensions::u64_to_be_bytes(n as u64, 8u, |v| self.write(v))
    }

    /// Write a big-endian i32 (4 bytes).
    fn write_be_i32(&mut self, n: i32) {
        extensions::u64_to_be_bytes(n as u64, 4u, |v| self.write(v))
    }

    /// Write a big-endian i16 (2 bytes).
    fn write_be_i16(&mut self, n: i16) {
        extensions::u64_to_be_bytes(n as u64, 2u, |v| self.write(v))
    }

    /// Write a big-endian IEEE754 double-precision floating-point (8 bytes).
    fn write_be_f64(&mut self, f: f64) {
        unsafe {
            self.write_be_u64(cast::transmute(f))
        }
    }

    /// Write a big-endian IEEE754 single-precision floating-point (4 bytes).
    fn write_be_f32(&mut self, f: f32) {
        unsafe {
            self.write_be_u32(cast::transmute(f))
        }
    }

    /// Write a little-endian u64 (8 bytes).
    fn write_le_u64(&mut self, n: u64) {
        extensions::u64_to_le_bytes(n, 8u, |v| self.write(v))
    }

    /// Write a little-endian u32 (4 bytes).
    fn write_le_u32(&mut self, n: u32) {
        extensions::u64_to_le_bytes(n as u64, 4u, |v| self.write(v))
    }

    /// Write a little-endian u16 (2 bytes).
    fn write_le_u16(&mut self, n: u16) {
        extensions::u64_to_le_bytes(n as u64, 2u, |v| self.write(v))
    }

    /// Write a little-endian i64 (8 bytes).
    fn write_le_i64(&mut self, n: i64) {
        extensions::u64_to_le_bytes(n as u64, 8u, |v| self.write(v))
    }

    /// Write a little-endian i32 (4 bytes).
    fn write_le_i32(&mut self, n: i32) {
        extensions::u64_to_le_bytes(n as u64, 4u, |v| self.write(v))
    }

    /// Write a little-endian i16 (2 bytes).
    fn write_le_i16(&mut self, n: i16) {
        extensions::u64_to_le_bytes(n as u64, 2u, |v| self.write(v))
    }

    /// Write a little-endian IEEE754 double-precision floating-point
    /// (8 bytes).
    fn write_le_f64(&mut self, f: f64) {
        unsafe {
            self.write_le_u64(cast::transmute(f))
        }
    }

    /// Write a little-endian IEEE754 single-precision floating-point
    /// (4 bytes).
    fn write_le_f32(&mut self, f: f32) {
        unsafe {
            self.write_le_u32(cast::transmute(f))
        }
    }

    /// Write a u8 (1 byte).
    fn write_u8(&mut self, n: u8) {
        self.write([n])
    }

    /// Write a i8 (1 byte).
    fn write_i8(&mut self, n: i8) {
        self.write([n as u8])
    }
944 945
}

946 947 948 949 950 951 952 953 954 955
impl Writer for ~Writer {
    fn write(&mut self, buf: &[u8]) { self.write(buf) }
    fn flush(&mut self) { self.flush() }
}

impl<'self> Writer for &'self mut Writer {
    fn write(&mut self, buf: &[u8]) { self.write(buf) }
    fn flush(&mut self) { self.flush() }
}

B
Brian Anderson 已提交
956
pub trait Stream: Reader + Writer { }
957

958
impl<T: Reader + Writer> Stream for T {}
959

A
Alex Crichton 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
/// A Buffer is a type of reader which has some form of internal buffering to
/// allow certain kinds of reading operations to be more optimized than others.
/// This type extends the `Reader` trait with a few methods that are not
/// possible to reasonably implement with purely a read interface.
pub trait Buffer: Reader {
    /// Fills the internal buffer of this object, returning the buffer contents.
    /// Note that none of the contents will be "read" in the sense that later
    /// calling `read` may return the same contents.
    ///
    /// The `consume` function must be called with the number of bytes that are
    /// consumed from this buffer returned to ensure that the bytes are never
    /// returned twice.
    ///
    /// # Failure
    ///
    /// This function will raise on the `io_error` condition if a read error is
    /// encountered.
    fn fill<'a>(&'a mut self) -> &'a [u8];

    /// Tells this buffer that `amt` bytes have been consumed from the buffer,
    /// so they should no longer be returned in calls to `fill` or `read`.
    fn consume(&mut self, amt: uint);

    /// Reads the next line of input, interpreted as a sequence of utf-8
    /// encoded unicode codepoints. If a newline is encountered, then the
    /// newline is contained in the returned string.
    ///
    /// # Failure
    ///
    /// This function will raise on the `io_error` condition if a read error is
    /// encountered. The task will also fail if sequence of bytes leading up to
    /// the newline character are not valid utf-8.
    fn read_line(&mut self) -> Option<~str> {
        self.read_until('\n' as u8).map(str::from_utf8_owned)
    }

    /// Reads a sequence of bytes leading up to a specified delimeter. Once the
    /// specified byte is encountered, reading ceases and the bytes up to and
    /// including the delimiter are returned.
    ///
    /// # Failure
    ///
    /// This function will raise on the `io_error` condition if a read error is
    /// encountered.
    fn read_until(&mut self, byte: u8) -> Option<~[u8]> {
        let mut res = ~[];
        let mut used;
        loop {
            {
                let available = self.fill();
                match available.iter().position(|&b| b == byte) {
                    Some(i) => {
                        res.push_all(available.slice_to(i + 1));
                        used = i + 1;
                        break
                    }
                    None => {
                        res.push_all(available);
                        used = available.len();
                    }
                }
            }
            if used == 0 {
                break
            }
            self.consume(used);
        }
        self.consume(used);
        return if res.len() == 0 {None} else {Some(res)};
    }
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

    /// Reads the next utf8-encoded character from the underlying stream.
    ///
    /// This will return `None` if the following sequence of bytes in the
    /// stream are not a valid utf8-sequence, or if an I/O error is encountered.
    ///
    /// # Failure
    ///
    /// This function will raise on the `io_error` condition if a read error is
    /// encountered.
    fn read_char(&mut self) -> Option<char> {
        let width = {
            let available = self.fill();
            if available.len() == 0 { return None } // read error
            str::utf8_char_width(available[0])
        };
        if width == 0 { return None } // not uf8
        let mut buf = [0, ..4];
        match self.read(buf.mut_slice_to(width)) {
            Some(n) if n == width => {}
A
Alex Crichton 已提交
1050
            Some(..) | None => return None // read error
1051 1052 1053 1054 1055 1056
        }
        match str::from_utf8_slice_opt(buf.slice_to(width)) {
            Some(s) => Some(s.char_at(0)),
            None => None
        }
    }
A
Alex Crichton 已提交
1057 1058
}

1059 1060 1061 1062 1063 1064 1065 1066 1067
pub enum SeekStyle {
    /// Seek from the beginning of the stream
    SeekSet,
    /// Seek from the end of the stream
    SeekEnd,
    /// Seek from the current position
    SeekCur,
}

B
Tidy  
Brian Anderson 已提交
1068
/// # XXX
1069
/// * Are `u64` and `i64` the right choices?
1070
pub trait Seek {
1071
    /// Return position of file cursor in the stream
1072
    fn tell(&self) -> u64;
1073 1074 1075 1076 1077 1078 1079 1080

    /// Seek to an offset in a stream
    ///
    /// A successful seek clears the EOF indicator.
    ///
    /// # XXX
    ///
    /// * What is the behavior when seeking past the end of a stream?
1081 1082 1083
    fn seek(&mut self, pos: i64, style: SeekStyle);
}

1084 1085 1086 1087
/// A listener is a value that can consume itself to start listening for connections.
/// Doing so produces some sort of Acceptor.
pub trait Listener<T, A: Acceptor<T>> {
    /// Spin up the listener and start queueing incoming connections
1088 1089 1090 1091
    ///
    /// # Failure
    ///
    /// Raises `io_error` condition. If the condition is handled,
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    /// then `listen` returns `None`.
    fn listen(self) -> Option<A>;
}

/// An acceptor is a value that presents incoming connections
pub trait Acceptor<T> {
    /// Wait for and accept an incoming connection
    ///
    /// # Failure
    /// Raise `io_error` condition. If the condition is handled,
1102
    /// then `accept` returns `None`.
1103 1104
    fn accept(&mut self) -> Option<T>;

1105
    /// Create an iterator over incoming connection attempts
1106 1107 1108 1109 1110 1111 1112
    fn incoming<'r>(&'r mut self) -> IncomingIterator<'r, Self> {
        IncomingIterator { inc: self }
    }
}

/// An infinite iterator over incoming connection attempts.
/// Calling `next` will block the task until a connection is attempted.
1113 1114 1115 1116 1117
///
/// Since connection attempts can continue forever, this iterator always returns Some.
/// The Some contains another Option representing whether the connection attempt was succesful.
/// A successful connection will be wrapped in Some.
/// A failed connection is represented as a None and raises a condition.
1118 1119 1120 1121
struct IncomingIterator<'self, A> {
    priv inc: &'self mut A,
}

1122 1123 1124
impl<'self, T, A: Acceptor<T>> Iterator<Option<T>> for IncomingIterator<'self, A> {
    fn next(&mut self) -> Option<Option<T>> {
        Some(self.inc.accept())
1125
    }
1126 1127
}

1128 1129 1130 1131 1132 1133
/// Common trait for decorator types.
///
/// Provides accessors to get the inner, 'decorated' values. The I/O library
/// uses decorators to add functionality like compression and encryption to I/O
/// streams.
///
B
Tidy  
Brian Anderson 已提交
1134
/// # XXX
1135 1136 1137 1138 1139
///
/// Is this worth having a trait for? May be overkill
pub trait Decorator<T> {
    /// Destroy the decorator and extract the decorated value
    ///
B
Tidy  
Brian Anderson 已提交
1140
    /// # XXX
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
    ///
    /// Because this takes `self' one could never 'undecorate' a Reader/Writer
    /// that has been boxed. Is that ok? This feature is mostly useful for
    /// extracting the buffer from MemWriter
    fn inner(self) -> T;

    /// Take an immutable reference to the decorated value
    fn inner_ref<'a>(&'a self) -> &'a T;

    /// Take a mutable reference to the decorated value
    fn inner_mut_ref<'a>(&'a mut self) -> &'a mut T;
1152
}
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

pub fn standard_error(kind: IoErrorKind) -> IoError {
    match kind {
        PreviousIoError => {
            IoError {
                kind: PreviousIoError,
                desc: "Failing due to a previous I/O error",
                detail: None
            }
        }
1163 1164 1165 1166 1167 1168 1169
        EndOfFile => {
            IoError {
                kind: EndOfFile,
                desc: "End of file",
                detail: None
            }
        }
1170 1171 1172 1173 1174 1175 1176
        IoUnavailable => {
            IoError {
                kind: IoUnavailable,
                desc: "I/O is unavailable",
                detail: None
            }
        }
1177
        _ => fail!()
1178 1179
    }
}
1180 1181 1182 1183 1184 1185 1186

pub fn placeholder_error() -> IoError {
    IoError {
        kind: OtherIoError,
        desc: "Placeholder error. You shouldn't be seeing this",
        detail: None
    }
1187
}
1188

1189 1190 1191
/// A mode specifies how a file should be opened or created. These modes are
/// passed to `File::open_mode` and are used to control where the file is
/// positioned when it is initially opened.
1192
pub enum FileMode {
1193
    /// Opens a file positioned at the beginning.
1194
    Open,
1195
    /// Opens a file positioned at EOF.
1196
    Append,
1197
    /// Opens a file, truncating it if it already exists.
1198 1199 1200
    Truncate,
}

1201 1202
/// Access permissions with which the file should be opened. `File`s
/// opened with `Read` will raise an `io_error` condition if written to.
1203 1204 1205
pub enum FileAccess {
    Read,
    Write,
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
    ReadWrite,
}

/// Different kinds of files which can be identified by a call to stat
#[deriving(Eq)]
pub enum FileType {
    TypeFile,
    TypeDirectory,
    TypeNamedPipe,
    TypeBlockSpecial,
    TypeSymlink,
    TypeUnknown,
1218
}
J
Jeff Olson 已提交
1219 1220

pub struct FileStat {
1221
    /// The path that this stat structure is describing
J
Jeff Olson 已提交
1222
    path: Path,
1223
    /// The size of the file, in bytes
J
Jeff Olson 已提交
1224
    size: u64,
1225 1226 1227 1228 1229
    /// The kind of file this path points to (directory, file, pipe, etc.)
    kind: FileType,
    /// The file permissions currently on the file
    perm: FilePermission,

1230 1231 1232
    // FIXME(#10301): These time fields are pretty useless without an actual
    //                time representation, what are the milliseconds relative
    //                to?
1233 1234 1235

    /// The time that the file was created at, in platform-dependent
    /// milliseconds
J
Jeff Olson 已提交
1236
    created: u64,
1237 1238
    /// The time that this file was last modified, in platform-dependent
    /// milliseconds
J
Jeff Olson 已提交
1239
    modified: u64,
1240 1241
    /// The time that this file was last accessed, in platform-dependent
    /// milliseconds
J
Jeff Olson 已提交
1242
    accessed: u64,
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    /// Information returned by stat() which is not guaranteed to be
    /// platform-independent. This information may be useful on some platforms,
    /// but it may have different meanings or no meaning at all on other
    /// platforms.
    ///
    /// Usage of this field is discouraged, but if access is desired then the
    /// fields are located here.
    #[unstable]
    unstable: UnstableFileStat,
}

/// This structure represents all of the possible information which can be
/// returned from a `stat` syscall which is not contained in the `FileStat`
/// structure. This information is not necessarily platform independent, and may
/// have different meanings or no meaning at all on some platforms.
#[unstable]
pub struct UnstableFileStat {
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    device: u64,
    inode: u64,
    rdev: u64,
    nlink: u64,
    uid: u64,
    gid: u64,
    blksize: u64,
    blocks: u64,
    flags: u64,
    gen: u64,
J
Jeff Olson 已提交
1271
}
1272

1273 1274
/// A set of permissions for a file or directory is represented by a set of
/// flags which are or'd together.
1275
pub type FilePermission = u32;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

// Each permission bit
pub static UserRead: FilePermission     = 0x100;
pub static UserWrite: FilePermission    = 0x080;
pub static UserExecute: FilePermission  = 0x040;
pub static GroupRead: FilePermission    = 0x020;
pub static GroupWrite: FilePermission   = 0x010;
pub static GroupExecute: FilePermission = 0x008;
pub static OtherRead: FilePermission    = 0x004;
pub static OtherWrite: FilePermission   = 0x002;
pub static OtherExecute: FilePermission = 0x001;

// Common combinations of these bits
pub static UserRWX: FilePermission  = UserRead | UserWrite | UserExecute;
pub static GroupRWX: FilePermission = GroupRead | GroupWrite | GroupExecute;
pub static OtherRWX: FilePermission = OtherRead | OtherWrite | OtherExecute;

/// A set of permissions for user owned files, this is equivalent to 0644 on
/// unix-like systems.
pub static UserFile: FilePermission = UserRead | UserWrite | GroupRead | OtherRead;
/// A set of permissions for user owned directories, this is equivalent to 0755
/// on unix-like systems.
pub static UserDir: FilePermission = UserRWX | GroupRead | GroupExecute |
                                     OtherRead | OtherExecute;
/// A set of permissions for user owned executables, this is equivalent to 0755
/// on unix-like systems.
pub static UserExec: FilePermission = UserDir;

/// A mask for all possible permission bits
pub static AllPermissions: FilePermission = 0x1ff;