vec.rs 61.9 KB
Newer Older
1
//! Vectors
B
Brian Anderson 已提交
2

3 4
import option::{some, none};
import ptr::addr_of;
5
import libc::size_t;
6

7
export append;
E
Eric Holk 已提交
8
export append_one;
9 10 11 12 13
export init_op;
export is_empty;
export is_not_empty;
export same_length;
export reserve;
14
export reserve_at_least;
B
Brian Anderson 已提交
15
export capacity;
16
export len;
17 18
export from_fn;
export from_elem;
19 20 21 22
export to_mut;
export from_mut;
export head;
export tail;
23
export tailn;
24 25 26 27
export init;
export last;
export last_opt;
export slice;
28
export view;
29 30 31 32 33
export split;
export splitn;
export rsplit;
export rsplitn;
export shift;
J
Jeff Olson 已提交
34
export unshift;
35
export pop;
36
export push, push_all, push_all_move;
37 38 39 40
export grow;
export grow_fn;
export grow_set;
export map;
41
export mapi;
42
export map2;
43
export flat_map;
44 45 46 47 48 49 50 51 52
export filter_map;
export filter;
export concat;
export connect;
export foldl;
export foldr;
export any;
export any2;
export all;
E
Eric Holk 已提交
53
export alli;
54 55 56 57
export all2;
export contains;
export count;
export find;
58
export find_between;
59
export rfind;
60
export rfind_between;
61
export position_elem;
62
export position;
63
export position_between;
64
export position_elem;
65
export rposition;
66
export rposition_between;
67 68 69 70 71
export unzip;
export zip;
export swap;
export reverse;
export reversed;
72
export iter, iter_between, each, eachi;
73 74 75 76 77 78 79 80
export iter2;
export iteri;
export riter;
export riteri;
export permute;
export windowed;
export as_buf;
export as_mut_buf;
81
export unpack_slice;
82
export unpack_const_slice;
83 84
export unsafe;
export u8;
85
export extensions;
86

87
#[abi = "cdecl"]
88
extern mod rustrt {
89 90 91 92 93 94
    fn vec_reserve_shared(++t: *sys::type_desc,
                          ++v: **unsafe::vec_repr,
                          ++n: libc::size_t);
    fn vec_from_buf_shared(++t: *sys::type_desc,
                           ++ptr: *(),
                           ++count: libc::size_t) -> *unsafe::vec_repr;
95 96
}

E
Eric Holk 已提交
97
#[abi = "rust-intrinsic"]
98
extern mod rusti {
E
Eric Holk 已提交
99 100 101
    fn move_val_init<T>(&dst: T, -src: T);
}

102
/// A function used to initialize the elements of a vector
N
Niko Matsakis 已提交
103
type init_op<T> = fn(uint) -> T;
104

105
/// Returns true if a vector contains no elements
106
pure fn is_empty<T>(v: &[const T]) -> bool {
B
Brian Anderson 已提交
107
    unpack_const_slice(v, |_p, len| len == 0u)
108 109
}

110
/// Returns true if a vector contains some elements
111
pure fn is_not_empty<T>(v: &[const T]) -> bool {
B
Brian Anderson 已提交
112
    unpack_const_slice(v, |_p, len| len > 0u)
113
}
114

115
/// Returns true if two vectors have the same length
116
pure fn same_length<T, U>(xs: &[const T], ys: &[const U]) -> bool {
117
    len(xs) == len(ys)
118 119
}

120 121 122 123 124 125 126 127 128 129 130
/**
 * Reserves capacity for exactly `n` elements in the given vector.
 *
 * If the capacity for `v` is already equal to or greater than the requested
 * capacity, then no action is taken.
 *
 * # Arguments
 *
 * * v - A vector
 * * n - The number of elements to reserve space for
 */
131
fn reserve<T>(&v: ~[const T], n: uint) {
132 133
    // Only make the (slow) call into the runtime if we have to
    if capacity(v) < n {
134
        let ptr = ptr::addr_of(v) as **unsafe::vec_repr;
135 136
        rustrt::vec_reserve_shared(sys::get_type_desc::<T>(),
                                   ptr, n as size_t);
137
    }
138 139
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/**
 * Reserves capacity for at least `n` elements in the given vector.
 *
 * This function will over-allocate in order to amortize the allocation costs
 * in scenarios where the caller may need to repeatedly reserve additional
 * space.
 *
 * If the capacity for `v` is already equal to or greater than the requested
 * capacity, then no action is taken.
 *
 * # Arguments
 *
 * * v - A vector
 * * n - The number of elements to reserve space for
 */
155
fn reserve_at_least<T>(&v: ~[const T], n: uint) {
156 157 158
    reserve(v, uint::next_power_of_two(n));
}

159
/// Returns the number of elements the vector can hold without reallocating
160
#[inline(always)]
161
pure fn capacity<T>(&&v: ~[const T]) -> uint {
162 163 164 165
    unsafe {
        let repr: **unsafe::vec_repr = ::unsafe::reinterpret_cast(addr_of(v));
        (**repr).alloc / sys::size_of::<T>()
    }
B
Brian Anderson 已提交
166 167
}

168
/// Returns the length of a vector
169
#[inline(always)]
170
pure fn len<T>(&&v: &[const T]) -> uint {
B
Brian Anderson 已提交
171
    unpack_const_slice(v, |_p, len| len)
172
}
173

174 175 176 177 178 179
/**
 * Creates and initializes an immutable vector.
 *
 * Creates an immutable vector of size `n_elts` and initializes the elements
 * to the value returned by the function `op`.
 */
180 181
pure fn from_fn<T>(n_elts: uint, op: init_op<T>) -> ~[T] {
    let mut v = ~[];
182
    unchecked{reserve(v, n_elts);}
183
    let mut i: uint = 0u;
184
    while i < n_elts unsafe { push(v, op(i)); i += 1u; }
185 186 187
    ret v;
}

188 189 190 191 192 193
/**
 * Creates and initializes an immutable vector.
 *
 * Creates an immutable vector of size `n_elts` and initializes the elements
 * to the value `t`.
 */
194 195
pure fn from_elem<T: copy>(n_elts: uint, t: T) -> ~[T] {
    let mut v = ~[];
196
    unchecked{reserve(v, n_elts)}
197
    let mut i: uint = 0u;
198 199 200
    unsafe { // because push is impure
        while i < n_elts { push(v, t); i += 1u; }
    }
201 202 203
    ret v;
}

204
/// Produces a mut vector from an immutable vector.
205
fn to_mut<T>(+v: ~[T]) -> ~[mut T] {
206
    unsafe { ::unsafe::transmute(v) }
207 208
}

209
/// Produces an immutable vector from a mut vector.
210
fn from_mut<T>(+v: ~[mut T]) -> ~[T] {
211
    unsafe { ::unsafe::transmute(v) }
212 213 214 215
}

// Accessors

216
/// Returns the first element of a vector
217
pure fn head<T: copy>(v: &[const T]) -> T { v[0] }
218

219
/// Returns a vector containing all but the first element of a slice
220
pure fn tail<T: copy>(v: &[const T]) -> ~[T] {
221 222 223
    ret slice(v, 1u, len(v));
}

224 225 226 227
/**
 * Returns a vector containing all but the first `n` \
 * elements of a slice
 */
228
pure fn tailn<T: copy>(v: &[const T], n: uint) -> ~[T] {
229 230 231
    slice(v, n, len(v))
}

232
/// Returns a vector containing all but the last element of a slice
233
pure fn init<T: copy>(v: &[const T]) -> ~[T] {
234 235 236 237
    assert len(v) != 0u;
    slice(v, 0u, len(v) - 1u)
}

238
/// Returns the last element of the slice `v`, failing if the slice is empty.
239
pure fn last<T: copy>(v: &[const T]) -> T {
240 241
    if len(v) == 0u { fail "last_unsafe: empty vector" }
    v[len(v) - 1u]
242 243
}

244 245 246 247
/**
 * Returns `some(x)` where `x` is the last element of the slice `v`,
 * or `none` if the vector is empty.
 */
248
pure fn last_opt<T: copy>(v: &[const T]) -> option<T> {
249
    if len(v) == 0u { ret none; }
250
    some(v[len(v) - 1u])
T
Tim Chevalier 已提交
251
}
252

253
/// Returns a copy of the elements from [`start`..`end`) from `v`.
254
pure fn slice<T: copy>(v: &[const T], start: uint, end: uint) -> ~[T] {
255 256
    assert (start <= end);
    assert (end <= len(v));
257
    let mut result = ~[];
258 259 260
    unchecked {
        push_all(result, view(v, start, end));
    }
261 262 263
    ret result;
}

264
/// Return a slice that points into another slice.
265
pure fn view<T: copy>(v: &[const T], start: uint, end: uint) -> &a.[T] {
266 267
    assert (start <= end);
    assert (end <= len(v));
B
Brian Anderson 已提交
268
    do unpack_slice(v) |p, _len| {
269 270 271 272 273 274 275
        unsafe {
            ::unsafe::reinterpret_cast(
                (ptr::offset(p, start), (end - start) * sys::size_of::<T>()))
        }
    }
}

276
/// Split the vector `v` by applying each element against the predicate `f`.
277
fn split<T: copy>(v: &[T], f: fn(T) -> bool) -> ~[~[T]] {
278
    let ln = len(v);
279
    if (ln == 0u) { ret ~[] }
280

281
    let mut start = 0u;
282
    let mut result = ~[];
283
    while start < ln {
284
        alt position_between(v, start, ln, f) {
285 286 287 288 289 290 291 292 293 294 295
          none { break }
          some(i) {
            push(result, slice(v, start, i));
            start = i + 1u;
          }
        }
    }
    push(result, slice(v, start, ln));
    result
}

296 297 298 299
/**
 * Split the vector `v` by applying each element against the predicate `f` up
 * to `n` times.
 */
300
fn splitn<T: copy>(v: &[T], n: uint, f: fn(T) -> bool) -> ~[~[T]] {
301
    let ln = len(v);
302
    if (ln == 0u) { ret ~[] }
303

304 305
    let mut start = 0u;
    let mut count = n;
306
    let mut result = ~[];
307
    while start < ln && count > 0u {
308
        alt position_between(v, start, ln, f) {
309 310 311 312 313 314 315 316 317 318 319 320 321
          none { break }
          some(i) {
            push(result, slice(v, start, i));
            // Make sure to skip the separator.
            start = i + 1u;
            count -= 1u;
          }
        }
    }
    push(result, slice(v, start, ln));
    result
}

322 323 324 325
/**
 * Reverse split the vector `v` by applying each element against the predicate
 * `f`.
 */
326
fn rsplit<T: copy>(v: &[T], f: fn(T) -> bool) -> ~[~[T]] {
327
    let ln = len(v);
328
    if (ln == 0u) { ret ~[] }
329

330
    let mut end = ln;
331
    let mut result = ~[];
332
    while end > 0u {
333
        alt rposition_between(v, 0u, end, f) {
334 335 336 337 338 339 340 341 342 343 344
          none { break }
          some(i) {
            push(result, slice(v, i + 1u, end));
            end = i;
          }
        }
    }
    push(result, slice(v, 0u, end));
    reversed(result)
}

345 346 347 348
/**
 * Reverse split the vector `v` by applying each element against the predicate
 * `f` up to `n times.
 */
349
fn rsplitn<T: copy>(v: &[T], n: uint, f: fn(T) -> bool) -> ~[~[T]] {
350
    let ln = len(v);
351
    if (ln == 0u) { ret ~[] }
352

353 354
    let mut end = ln;
    let mut count = n;
355
    let mut result = ~[];
356
    while end > 0u && count > 0u {
357
        alt rposition_between(v, 0u, end, f) {
358 359 360 361 362 363 364 365 366 367 368 369
          none { break }
          some(i) {
            push(result, slice(v, i + 1u, end));
            // Make sure to skip the separator.
            end = i;
            count -= 1u;
          }
        }
    }
    push(result, slice(v, 0u, end));
    reversed(result)
}
370 371 372

// Mutators

373
/// Removes the first element from a vector and return it
374
fn shift<T>(&v: ~[T]) -> T {
375 376 377
    let ln = len::<T>(v);
    assert (ln > 0u);

378
    let mut vv = ~[];
379 380 381
    v <-> vv;

    unsafe {
382 383 384
        let mut rr;
        {
            let vv = unsafe::to_ptr(vv);
E
Eric Holk 已提交
385
            rr <- *vv;
386

B
Brian Anderson 已提交
387
            for uint::range(1u, ln) |i| {
388 389 390
                let r <- *ptr::offset(vv, i);
                push(v, r);
            }
391
        }
392
        unsafe::set_len(vv, 0u);
393

394
        rr
395
    }
B
Brian Anderson 已提交
396 397
}

398
/// Prepend an element to the vector
399 400
fn unshift<T>(&v: ~[T], +x: T) {
    let mut vv = ~[x];
E
Eric Holk 已提交
401 402 403 404 405 406
    v <-> vv;
    while len(vv) > 0 {
        push(v, shift(vv));
    }
}

407
/// Remove the last element from a vector and return it
408
fn pop<T>(&v: ~[const T]) -> T {
409
    let ln = len(v);
M
Marijn Haverbeke 已提交
410 411
    assert ln > 0u;
    let valptr = ptr::mut_addr_of(v[ln - 1u]);
412 413 414 415 416
    unsafe {
        let val <- *valptr;
        unsafe::set_len(v, ln - 1u);
        val
    }
417 418
}

419
/// Append an element to a vector
420
#[inline(always)]
421
fn push<T>(&v: ~[const T], +initval: T) {
422
    unsafe {
E
Eric Holk 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
        let repr: **unsafe::vec_repr = ::unsafe::reinterpret_cast(addr_of(v));
        let fill = (**repr).fill;
        if (**repr).alloc > fill {
            let sz = sys::size_of::<T>();
            (**repr).fill += sz;
            let p = ptr::addr_of((**repr).data);
            let p = ptr::offset(p, fill) as *mut T;
            rusti::move_val_init(*p, initval);
        }
        else {
            push_slow(v, initval);
        }
    }
}

438
fn push_slow<T>(&v: ~[const T], +initval: T) {
E
Eric Holk 已提交
439 440
    unsafe {
        let ln = v.len();
441
        reserve_at_least(v, ln + 1u);
E
Eric Holk 已提交
442 443 444 445 446 447 448
        let repr: **unsafe::vec_repr = ::unsafe::reinterpret_cast(addr_of(v));
        let fill = (**repr).fill;
        let sz = sys::size_of::<T>();
        (**repr).fill += sz;
        let p = ptr::addr_of((**repr).data);
        let p = ptr::offset(p, fill) as *mut T;
        rusti::move_val_init(*p, initval);
449
    }
E
Erick Tryzelaar 已提交
450 451
}

452 453
// Unchecked vector indexing
#[inline(always)]
454
unsafe fn ref<T: copy>(v: &[const T], i: uint) -> T {
B
Brian Anderson 已提交
455
    unpack_slice(v, |p, _len| *ptr::offset(p, i))
456 457
}

458
#[inline(always)]
459
fn push_all<T: copy>(&v: ~[const T], rhs: &[const T]) {
460
    reserve(v, v.len() + rhs.len());
461

B
Brian Anderson 已提交
462
    for uint::range(0u, rhs.len()) |i| {
463
        push(v, unsafe { ref(rhs, i) })
464 465
    }
}
466

467
#[inline(always)]
468
fn push_all_move<T>(&v: ~[const T], -rhs: ~[const T]) {
469 470
    reserve(v, v.len() + rhs.len());
    unsafe {
B
Brian Anderson 已提交
471 472
        do unpack_slice(rhs) |p, len| {
            for uint::range(0, len) |i| {
473 474 475 476 477 478 479 480
                let x <- *ptr::offset(p, i);
                push(v, x);
            }
        }
        unsafe::set_len(rhs, 0);
    }
}

481
// Appending
482
#[inline(always)]
483
pure fn append<T: copy>(+lhs: ~[T], rhs: &[const T]) -> ~[T] {
484
    let mut v <- lhs;
485 486
    unchecked {
        push_all(v, rhs);
487 488 489 490
    }
    ret v;
}

E
Eric Holk 已提交
491
#[inline(always)]
492
pure fn append_one<T>(+lhs: ~[T], +x: T) -> ~[T] {
E
Eric Holk 已提交
493 494 495 496 497
    let mut v <- lhs;
    unchecked { push(v, x); }
    v
}

498
#[inline(always)]
499 500
pure fn append_mut<T: copy>(lhs: &[mut T], rhs: &[const T]) -> ~[mut T] {
    let mut v = ~[mut];
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    let mut i = 0u;
    while i < lhs.len() {
        unsafe { // This is impure, but it appears pure to the caller.
            push(v, lhs[i]);
        }
        i += 1u;
    }
    i = 0u;
    while i < rhs.len() {
        unsafe { // This is impure, but it appears pure to the caller.
            push(v, rhs[i]);
        }
        i += 1u;
    }
    ret v;
}
517

518 519 520 521 522 523 524 525 526
/**
 * Expands a vector in place, initializing the new elements to a given value
 *
 * # Arguments
 *
 * * v - The vector to grow
 * * n - The number of elements to add
 * * initval - The value for the new elements
 */
527
fn grow<T: copy>(&v: ~[const T], n: uint, initval: T) {
528
    reserve_at_least(v, len(v) + n);
529
    let mut i: uint = 0u;
530 531

    while i < n { push(v, initval); i += 1u; }
532 533
}

534 535 536 537 538 539 540 541 542 543 544 545 546
/**
 * Expands a vector in place, initializing the new elements to the result of
 * a function
 *
 * Function `init_op` is called `n` times with the values [0..`n`)
 *
 * # Arguments
 *
 * * v - The vector to grow
 * * n - The number of elements to add
 * * init_op - A function to call to retreive each appended element's
 *             value
 */
547
fn grow_fn<T>(&v: ~[const T], n: uint, op: init_op<T>) {
548
    reserve_at_least(v, len(v) + n);
549
    let mut i: uint = 0u;
550
    while i < n { push(v, op(i)); i += 1u; }
551 552
}

553 554 555 556 557 558 559 560
/**
 * Sets the value of a vector element at a given index, growing the vector as
 * needed
 *
 * Sets the element at position `index` to `val`. If `index` is past the end
 * of the vector, expands the vector by replicating `initval` to fill the
 * intervening space.
 */
E
Eric Holk 已提交
561
#[inline(always)]
562
fn grow_set<T: copy>(&v: ~[mut T], index: uint, initval: T, val: T) {
563
    if index >= len(v) { grow(v, index - len(v) + 1u, initval); }
564 565 566 567 568 569
    v[index] = val;
}


// Functional utilities

570
/// Apply a function to each element of a vector and return the results
571 572
pure fn map<T, U>(v: &[T], f: fn(T) -> U) -> ~[U] {
    let mut result = ~[];
573
    unchecked{reserve(result, len(v));}
B
Brian Anderson 已提交
574
    for each(v) |elem| { unsafe { push(result, f(elem)); } }
575 576 577
    ret result;
}

578
/// Apply a function to each element of a vector and return the results
579 580
pure fn mapi<T, U>(v: &[T], f: fn(uint, T) -> U) -> ~[U] {
    let mut result = ~[];
581
    unchecked{reserve(result, len(v));}
B
Brian Anderson 已提交
582
    for eachi(v) |i, elem| { unsafe { push(result, f(i, elem)); } }
583 584 585
    ret result;
}

586 587 588 589
/**
 * Apply a function to each element of a vector and return a concatenation
 * of each result vector
 */
590 591
pure fn flat_map<T, U>(v: &[T], f: fn(T) -> ~[U]) -> ~[U] {
    let mut result = ~[];
B
Brian Anderson 已提交
592
    for each(v) |elem| { unchecked{ push_all_move(result, f(elem)); } }
593 594 595
    ret result;
}

596
/// Apply a function to each pair of elements and return the results
597 598
pure fn map2<T: copy, U: copy, V>(v0: &[T], v1: &[U],
                                  f: fn(T, U) -> V) -> ~[V] {
599 600
    let v0_len = len(v0);
    if v0_len != len(v1) { fail; }
601
    let mut u: ~[V] = ~[];
602
    let mut i = 0u;
603 604 605 606
    while i < v0_len {
        unsafe { push(u, f(copy v0[i], copy v1[i])) };
        i += 1u;
    }
607 608 609
    ret u;
}

610 611 612 613 614 615
/**
 * Apply a function to each element of a vector and return the results
 *
 * If function `f` returns `none` then that element is excluded from
 * the resulting vector.
 */
616 617 618
pure fn filter_map<T, U: copy>(v: &[T], f: fn(T) -> option<U>)
    -> ~[U] {
    let mut result = ~[];
B
Brian Anderson 已提交
619
    for each(v) |elem| {
620
        alt f(elem) {
621
          none {/* no-op */ }
622
          some(result_elem) { unsafe { push(result, result_elem); } }
623 624 625 626 627
        }
    }
    ret result;
}

628 629 630 631 632 633 634
/**
 * Construct a new vector from the elements of a vector for which some
 * predicate holds.
 *
 * Apply function `f` to each element of `v` and return a vector containing
 * only those elements for which `f` returned true.
 */
635 636
pure fn filter<T: copy>(v: &[T], f: fn(T) -> bool) -> ~[T] {
    let mut result = ~[];
B
Brian Anderson 已提交
637
    for each(v) |elem| {
638
        if f(elem) { unsafe { push(result, elem); } }
639 640 641 642
    }
    ret result;
}

643 644 645 646 647
/**
 * Concatenate a vector of vectors.
 *
 * Flattens a vector of vectors of T into a single vector of T.
 */
648 649
pure fn concat<T: copy>(v: &[[T]/~]) -> ~[T] {
    let mut r = ~[];
B
Brian Anderson 已提交
650
    for each(v) |inner| { unsafe { push_all(r, inner); } }
651
    ret r;
652 653
}

654
/// Concatenate a vector of vectors, placing a given separator between each
655 656
pure fn connect<T: copy>(v: &[[T]/~], sep: T) -> ~[T] {
    let mut r: ~[T] = ~[];
657
    let mut first = true;
B
Brian Anderson 已提交
658
    for each(v) |inner| {
659
        if first { first = false; } else { unsafe { push(r, sep); } }
660
        unchecked { push_all(r, inner) };
661
    }
662
    ret r;
663 664
}

665
/// Reduce a vector from left to right
666
pure fn foldl<T: copy, U>(z: T, v: &[U], p: fn(T, U) -> T) -> T {
667
    let mut accum = z;
B
Brian Anderson 已提交
668
    do iter(v) |elt| {
669 670 671 672 673
        accum = p(accum, elt);
    }
    ret accum;
}

674
/// Reduce a vector from right to left
675
pure fn foldr<T, U: copy>(v: &[T], z: U, p: fn(T, U) -> U) -> U {
676
    let mut accum = z;
B
Brian Anderson 已提交
677
    do riter(v) |elt| {
678 679 680 681 682
        accum = p(elt, accum);
    }
    ret accum;
}

683 684 685 686 687
/**
 * Return true if a predicate matches any elements
 *
 * If the vector contains no elements then false is returned.
 */
688
pure fn any<T>(v: &[T], f: fn(T) -> bool) -> bool {
B
Brian Anderson 已提交
689
    for each(v) |elem| { if f(elem) { ret true; } }
690 691 692
    ret false;
}

693 694 695 696 697
/**
 * Return true if a predicate matches any elements in both vectors.
 *
 * If the vectors contains no elements then false is returned.
 */
698
pure fn any2<T, U>(v0: &[T], v1: &[U],
699
                   f: fn(T, U) -> bool) -> bool {
700 701
    let v0_len = len(v0);
    let v1_len = len(v1);
702
    let mut i = 0u;
703 704 705 706 707 708 709
    while i < v0_len && i < v1_len {
        if f(v0[i], v1[i]) { ret true; };
        i += 1u;
    }
    ret false;
}

710 711 712 713 714
/**
 * Return true if a predicate matches all elements
 *
 * If the vector contains no elements then true is returned.
 */
715
pure fn all<T>(v: &[T], f: fn(T) -> bool) -> bool {
B
Brian Anderson 已提交
716
    for each(v) |elem| { if !f(elem) { ret false; } }
717 718 719
    ret true;
}

720 721 722 723 724
/**
 * Return true if a predicate matches all elements
 *
 * If the vector contains no elements then true is returned.
 */
725
pure fn alli<T>(v: &[T], f: fn(uint, T) -> bool) -> bool {
B
Brian Anderson 已提交
726
    for eachi(v) |i, elem| { if !f(i, elem) { ret false; } }
727 728 729
    ret true;
}

730 731 732 733 734
/**
 * Return true if a predicate matches all elements in both vectors.
 *
 * If the vectors are not the same size then false is returned.
 */
735
pure fn all2<T, U>(v0: &[T], v1: &[U],
736
                   f: fn(T, U) -> bool) -> bool {
737 738
    let v0_len = len(v0);
    if v0_len != len(v1) { ret false; }
739
    let mut i = 0u;
740 741 742 743
    while i < v0_len { if !f(v0[i], v1[i]) { ret false; }; i += 1u; }
    ret true;
}

744
/// Return true if a vector contains an element with the given value
745
pure fn contains<T>(v: &[T], x: T) -> bool {
B
Brian Anderson 已提交
746
    for each(v) |elt| { if x == elt { ret true; } }
747 748 749
    ret false;
}

750
/// Returns the number of elements that are equal to a given value
751
pure fn count<T>(v: &[T], x: T) -> uint {
752
    let mut cnt = 0u;
B
Brian Anderson 已提交
753
    for each(v) |elt| { if x == elt { cnt += 1u; } }
754 755 756
    ret cnt;
}

757 758 759 760 761 762 763
/**
 * Search for the first element that matches a given predicate
 *
 * Apply function `f` to each element of `v`, starting from the first.
 * When function `f` returns true then an option containing the element
 * is returned. If `f` matches no elements then none is returned.
 */
764
pure fn find<T: copy>(v: &[T], f: fn(T) -> bool) -> option<T> {
765
    find_between(v, 0u, len(v), f)
766 767
}

768 769 770 771 772 773 774
/**
 * Search for the first element that matches a given predicate within a range
 *
 * Apply function `f` to each element of `v` within the range
 * [`start`, `end`). When function `f` returns true then an option containing
 * the element is returned. If `f` matches no elements then none is returned.
 */
775
pure fn find_between<T: copy>(v: &[T], start: uint, end: uint,
776
                      f: fn(T) -> bool) -> option<T> {
B
Brian Anderson 已提交
777
    option::map(position_between(v, start, end, f), |i| v[i])
778 779
}

780 781 782 783 784 785 786
/**
 * Search for the last element that matches a given predicate
 *
 * Apply function `f` to each element of `v` in reverse order. When function
 * `f` returns true then an option containing the element is returned. If `f`
 * matches no elements then none is returned.
 */
787
pure fn rfind<T: copy>(v: &[T], f: fn(T) -> bool) -> option<T> {
788
    rfind_between(v, 0u, len(v), f)
789 790
}

791 792 793 794 795 796 797
/**
 * Search for the last element that matches a given predicate within a range
 *
 * Apply function `f` to each element of `v` in reverse order within the range
 * [`start`, `end`). When function `f` returns true then an option containing
 * the element is returned. If `f` matches no elements then none is returned.
 */
798
pure fn rfind_between<T: copy>(v: &[T], start: uint, end: uint,
799
                               f: fn(T) -> bool) -> option<T> {
B
Brian Anderson 已提交
800
    option::map(rposition_between(v, start, end, f), |i| v[i])
801 802
}

803
/// Find the first index containing a matching value
804
pure fn position_elem<T>(v: &[T], x: T) -> option<uint> {
B
Brian Anderson 已提交
805
    position(v, |y| x == y)
806 807
}

808 809 810 811 812 813 814
/**
 * Find the first index matching some predicate
 *
 * Apply function `f` to each element of `v`.  When function `f` returns true
 * then an option containing the index is returned. If `f` matches no elements
 * then none is returned.
 */
815
pure fn position<T>(v: &[T], f: fn(T) -> bool) -> option<uint> {
816
    position_between(v, 0u, len(v), f)
817 818
}

819 820 821 822 823 824 825
/**
 * Find the first index matching some predicate within a range
 *
 * Apply function `f` to each element of `v` between the range
 * [`start`, `end`). When function `f` returns true then an option containing
 * the index is returned. If `f` matches no elements then none is returned.
 */
826
pure fn position_between<T>(v: &[T], start: uint, end: uint,
827
                            f: fn(T) -> bool) -> option<uint> {
828 829
    assert start <= end;
    assert end <= len(v);
830
    let mut i = start;
831
    while i < end { if f(v[i]) { ret some::<uint>(i); } i += 1u; }
832 833 834
    ret none;
}

835
/// Find the last index containing a matching value
836
pure fn rposition_elem<T>(v: &[T], x: T) -> option<uint> {
B
Brian Anderson 已提交
837
    rposition(v, |y| x == y)
838 839
}

840 841 842 843 844 845 846
/**
 * Find the last index matching some predicate
 *
 * Apply function `f` to each element of `v` in reverse order.  When function
 * `f` returns true then an option containing the index is returned. If `f`
 * matches no elements then none is returned.
 */
847
pure fn rposition<T>(v: &[T], f: fn(T) -> bool) -> option<uint> {
848
    rposition_between(v, 0u, len(v), f)
849 850
}

851 852 853 854 855 856 857 858
/**
 * Find the last index matching some predicate within a range
 *
 * Apply function `f` to each element of `v` in reverse order between the
 * range [`start`, `end`). When function `f` returns true then an option
 * containing the index is returned. If `f` matches no elements then none is
 * returned.
 */
859
pure fn rposition_between<T>(v: &[T], start: uint, end: uint,
860
                             f: fn(T) -> bool) -> option<uint> {
861 862
    assert start <= end;
    assert end <= len(v);
863
    let mut i = end;
864 865 866 867
    while i > start {
        if f(v[i - 1u]) { ret some::<uint>(i - 1u); }
        i -= 1u;
    }
868 869 870 871 872 873 874
    ret none;
}

// FIXME: if issue #586 gets implemented, could have a postcondition
// saying the two result lists have the same length -- or, could
// return a nominal record with a constraint saying that, instead of
// returning a tuple (contingent on issue #869)
875 876 877 878 879 880 881 882
/**
 * Convert a vector of pairs into a pair of vectors
 *
 * Returns a tuple containing two vectors where the i-th element of the first
 * vector contains the first element of the i-th tuple of the input vector,
 * and the i-th element of the second vector contains the second element
 * of the i-th tuple of the input vector.
 */
883 884
pure fn unzip<T: copy, U: copy>(v: &[(T, U)]) -> (~[T], ~[U]) {
    let mut as = ~[], bs = ~[];
B
Brian Anderson 已提交
885
    for each(v) |p| {
886 887 888 889 890 891
        let (a, b) = p;
        unchecked {
            vec::push(as, a);
            vec::push(bs, b);
        }
    }
892 893 894
    ret (as, bs);
}

895 896 897 898 899 900
/**
 * Convert two vectors to a vector of pairs
 *
 * Returns a vector of tuples, where the i-th tuple contains contains the
 * i-th elements from each of the input vectors.
 */
901 902
pure fn zip<T: copy, U: copy>(v: &[const T], u: &[const U]) -> ~[(T, U)] {
    let mut zipped = ~[];
903 904
    let sz = len(v);
    let mut i = 0u;
905
    assert sz == len(u);
906
    while i < sz unchecked { vec::push(zipped, (v[i], u[i])); i += 1u; }
907 908 909
    ret zipped;
}

910 911 912 913 914 915 916 917 918
/**
 * Swaps two elements in a vector
 *
 * # Arguments
 *
 * * v  The input vector
 * * a - The index of the first element
 * * b - The index of the second element
 */
919
fn swap<T>(&&v: ~[mut T], a: uint, b: uint) {
920 921 922
    v[a] <-> v[b];
}

923
/// Reverse the order of elements in a vector, in place
924
fn reverse<T>(v: ~[mut T]) {
925
    let mut i: uint = 0u;
926 927 928 929 930
    let ln = len::<T>(v);
    while i < ln / 2u { v[i] <-> v[ln - i - 1u]; i += 1u; }
}


931
/// Returns a vector with the order of elements reversed
932 933
pure fn reversed<T: copy>(v: &[const T]) -> ~[T] {
    let mut rs: ~[T] = ~[];
934
    let mut i = len::<T>(v);
935
    if i == 0u { ret rs; } else { i -= 1u; }
936 937 938 939
    unchecked {
        while i != 0u { vec::push(rs, v[i]); i -= 1u; }
        vec::push(rs, v[0]);
    }
940 941 942
    ret rs;
}

943 944 945 946 947 948
/**
 * Iterates over a slice
 *
 * Iterates over slice `v` and, for each element, calls function `f` with the
 * element's value.
 */
949
#[inline(always)]
950
pure fn iter<T>(v: &[T], f: fn(T)) {
951 952 953 954 955 956
    iter_between(v, 0u, vec::len(v), f)
}

/*
Function: iter_between

957
Iterates over a slice
958

959
Iterates over slice `v` and, for each element, calls function `f` with the
960 961 962 963
element's value.

*/
#[inline(always)]
964
pure fn iter_between<T>(v: &[T], start: uint, end: uint, f: fn(T)) {
B
Brian Anderson 已提交
965
    do unpack_slice(v) |base_ptr, len| {
966 967 968 969 970 971 972 973 974 975
        assert start <= end;
        assert end <= len;
        unsafe {
            let mut n = end;
            let mut p = ptr::offset(base_ptr, start);
            while n > start {
                f(*p);
                p = ptr::offset(p, 1u);
                n -= 1u;
            }
976 977
        }
    }
978 979
}

980 981 982 983 984
/**
 * Iterates over a vector, with option to break
 *
 * Return true to continue, false to break.
 */
985
#[inline(always)]
986
pure fn each<T>(v: &[const T], f: fn(T) -> bool) {
B
Brian Anderson 已提交
987
    do vec::unpack_slice(v) |p, n| {
988 989 990
        let mut n = n;
        let mut p = p;
        while n > 0u {
991 992 993 994
            unsafe {
                if !f(*p) { break; }
                p = ptr::offset(p, 1u);
            }
995 996
            n -= 1u;
        }
997 998 999
    }
}

1000 1001 1002 1003 1004
/**
 * Iterates over a vector's elements and indices
 *
 * Return true to continue, false to break.
 */
1005
#[inline(always)]
1006
pure fn eachi<T>(v: &[const T], f: fn(uint, T) -> bool) {
B
Brian Anderson 已提交
1007
    do vec::unpack_slice(v) |p, n| {
1008 1009 1010
        let mut i = 0u;
        let mut p = p;
        while i < n {
1011 1012 1013 1014
            unsafe {
                if !f(i, *p) { break; }
                p = ptr::offset(p, 1u);
            }
1015 1016
            i += 1u;
        }
1017 1018 1019
    }
}

1020 1021 1022 1023 1024 1025 1026
/**
 * Iterates over two vectors simultaneously
 *
 * # Failure
 *
 * Both vectors must have the same length
 */
1027
#[inline]
1028
fn iter2<U, T>(v1: &[U], v2: &[T], f: fn(U, T)) {
1029
    assert len(v1) == len(v2);
B
Brian Anderson 已提交
1030
    for uint::range(0u, len(v1)) |i| {
1031 1032
        f(v1[i], v2[i])
    }
1033 1034
}

1035 1036 1037 1038 1039 1040
/**
 * Iterates over a vector's elements and indexes
 *
 * Iterates over vector `v` and, for each element, calls function `f` with the
 * element's value and index.
 */
1041
#[inline(always)]
1042
pure fn iteri<T>(v: &[T], f: fn(uint, T)) {
1043 1044
    let mut i = 0u;
    let l = len(v);
1045 1046 1047
    while i < l { f(i, v[i]); i += 1u; }
}

1048 1049 1050 1051 1052 1053
/**
 * Iterates over a vector in reverse
 *
 * Iterates over vector `v` and, for each element, calls function `f` with the
 * element's value.
 */
1054
pure fn riter<T>(v: &[T], f: fn(T)) {
B
Brian Anderson 已提交
1055
    riteri(v, |_i, v| f(v))
1056 1057
}

1058 1059 1060 1061 1062 1063
/**
 * Iterates over a vector's elements and indexes in reverse
 *
 * Iterates over vector `v` and, for each element, calls function `f` with the
 * element's value and index.
 */
1064
pure fn riteri<T>(v: &[T], f: fn(uint, T)) {
1065
    let mut i = len(v);
1066 1067 1068 1069 1070 1071
    while 0u < i {
        i -= 1u;
        f(i, v[i]);
    };
}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
/**
 * Iterate over all permutations of vector `v`.
 *
 * Permutations are produced in lexicographic order with respect to the order
 * of elements in `v` (so if `v` is sorted then the permutations are
 * lexicographically sorted).
 *
 * The total number of permutations produced is `len(v)!`.  If `v` contains
 * repeated elements, then some permutations are repeated.
 */
1082
pure fn permute<T: copy>(v: &[T], put: fn(~[T])) {
1083 1084
    let ln = len(v);
    if ln == 0u {
1085
        put(~[]);
1086 1087 1088 1089 1090 1091 1092
    } else {
        let mut i = 0u;
        while i < ln {
            let elt = v[i];
            let mut rest = slice(v, 0u, i);
            unchecked {
                push_all(rest, view(v, i+1u, ln));
B
Brian Anderson 已提交
1093
                permute(rest, |permutation| {
1094
                    put(append(~[elt], permutation))
1095
                })
1096 1097 1098
            }
            i += 1u;
        }
1099 1100 1101
    }
}

1102 1103
pure fn windowed<TT: copy>(nn: uint, xx: &[TT]) -> ~[~[TT]] {
    let mut ww = ~[];
1104
    assert 1u <= nn;
B
Brian Anderson 已提交
1105
    vec::iteri (xx, |ii, _x| {
1106
        let len = vec::len(xx);
1107 1108
        if ii+nn <= len unchecked {
            vec::push(ww, vec::slice(xx, ii, ii+nn));
1109 1110 1111
        }
    });
    ret ww;
1112 1113
}

1114 1115 1116 1117 1118 1119
/**
 * Work with the buffer of a vector.
 *
 * Allows for unsafe manipulation of vector contents, which is useful for
 * foreign interop.
 */
1120
fn as_buf<E,T>(v: &[E], f: fn(*E) -> T) -> T {
B
Brian Anderson 已提交
1121
    unpack_slice(v, |buf, _len| f(buf))
1122 1123
}

1124
fn as_mut_buf<E,T>(v: &[mut E], f: fn(*mut E) -> T) -> T {
B
Brian Anderson 已提交
1125
    unpack_mut_slice(v, |buf, _len| f(buf))
1126 1127
}

1128
/// Work with the buffer and length of a slice.
1129
#[inline(always)]
1130
pure fn unpack_slice<T,U>(s: &[const T],
1131 1132 1133 1134 1135 1136
                          f: fn(*T, uint) -> U) -> U {
    unsafe {
        let v : *(*T,uint) = ::unsafe::reinterpret_cast(ptr::addr_of(s));
        let (buf,len) = *v;
        f(buf, len / sys::size_of::<T>())
    }
1137 1138
}

1139
/// Work with the buffer and length of a slice.
1140
#[inline(always)]
1141
pure fn unpack_const_slice<T,U>(s: &[const T],
1142 1143 1144 1145 1146 1147 1148
                                f: fn(*const T, uint) -> U) -> U {
    unsafe {
        let v : *(*const T,uint) =
            ::unsafe::reinterpret_cast(ptr::addr_of(s));
        let (buf,len) = *v;
        f(buf, len / sys::size_of::<T>())
    }
1149 1150
}

1151
/// Work with the buffer and length of a slice.
1152
#[inline(always)]
1153
pure fn unpack_mut_slice<T,U>(s: &[mut T],
1154 1155 1156 1157 1158 1159 1160
                              f: fn(*mut T, uint) -> U) -> U {
    unsafe {
        let v : *(*const T,uint) =
            ::unsafe::reinterpret_cast(ptr::addr_of(s));
        let (buf,len) = *v;
        f(buf, len / sys::size_of::<T>())
    }
1161 1162
}

1163
impl extensions<T: copy> for ~[T] {
1164
    #[inline(always)]
1165
    pure fn +(rhs: &[T]) -> ~[T] {
1166 1167 1168 1169
        append(self, rhs)
    }
}

1170
impl extensions<T: copy> for ~[mut T] {
1171
    #[inline(always)]
1172
    pure fn +(rhs: &[mut T]) -> ~[mut T] {
1173 1174 1175 1176
        append_mut(self, rhs)
    }
}

1177
/// Extension methods for vectors
1178
impl extensions/&<T> for &[const T] {
1179
    /// Returns true if a vector contains no elements
1180
    #[inline]
1181
    pure fn is_empty() -> bool { is_empty(self) }
1182
    /// Returns true if a vector contains some elements
1183
    #[inline]
1184
    pure fn is_not_empty() -> bool { is_not_empty(self) }
1185
    /// Returns the length of a vector
1186 1187 1188 1189
    #[inline]
    pure fn len() -> uint { len(self) }
}

1190
/// Extension methods for vectors
1191
impl extensions/&<T: copy> for &[const T] {
1192
    /// Returns the first element of a vector
1193
    #[inline]
1194
    pure fn head() -> T { head(self) }
1195
    /// Returns all but the last elemnt of a vector
1196
    #[inline]
1197
    pure fn init() -> ~[T] { init(self) }
1198
    /// Returns the last element of a `v`, failing if the vector is empty.
1199
    #[inline]
1200
    pure fn last() -> T { last(self) }
1201
    /// Returns a copy of the elements from [`start`..`end`) from `v`.
1202
    #[inline]
1203
    pure fn slice(start: uint, end: uint) -> ~[T] { slice(self, start, end) }
1204
    /// Returns all but the first element of a vector
1205
    #[inline]
1206
    pure fn tail() -> ~[T] { tail(self) }
1207 1208
}

1209
/// Extension methods for vectors
1210
impl extensions/&<T> for &[T] {
1211
    /// Reduce a vector from right to left
1212
    #[inline]
1213
    pure fn foldr<U: copy>(z: U, p: fn(T, U) -> U) -> U { foldr(self, z, p) }
1214 1215 1216 1217 1218 1219
    /**
     * Iterates over a vector
     *
     * Iterates over vector `v` and, for each element, calls function `f` with
     * the element's value.
     */
1220
    #[inline]
1221
    pure fn iter(f: fn(T)) { iter(self, f) }
1222 1223 1224 1225 1226 1227
    /**
     * Iterates over a vector's elements and indexes
     *
     * Iterates over vector `v` and, for each element, calls function `f` with
     * the element's value and index.
     */
1228
    #[inline]
1229
    pure fn iteri(f: fn(uint, T)) { iteri(self, f) }
1230 1231 1232 1233 1234 1235 1236
    /**
     * Find the first index matching some predicate
     *
     * Apply function `f` to each element of `v`.  When function `f` returns
     * true then an option containing the index is returned. If `f` matches no
     * elements then none is returned.
     */
1237
    #[inline]
1238
    pure fn position(f: fn(T) -> bool) -> option<uint> { position(self, f) }
1239
    /// Find the first index containing a matching value
1240
    #[inline]
1241
    pure fn position_elem(x: T) -> option<uint> { position_elem(self, x) }
1242 1243 1244 1245 1246 1247
    /**
     * Iterates over a vector in reverse
     *
     * Iterates over vector `v` and, for each element, calls function `f` with
     * the element's value.
     */
1248
    #[inline]
1249
    pure fn riter(f: fn(T)) { riter(self, f) }
1250 1251 1252 1253 1254 1255
    /**
     * Iterates over a vector's elements and indexes in reverse
     *
     * Iterates over vector `v` and, for each element, calls function `f` with
     * the element's value and index.
     */
1256
    #[inline]
1257
    pure fn riteri(f: fn(uint, T)) { riteri(self, f) }
1258 1259 1260 1261 1262 1263 1264
    /**
     * Find the last index matching some predicate
     *
     * Apply function `f` to each element of `v` in reverse order.  When
     * function `f` returns true then an option containing the index is
     * returned. If `f` matches no elements then none is returned.
     */
1265
    #[inline]
1266
    pure fn rposition(f: fn(T) -> bool) -> option<uint> { rposition(self, f) }
1267
    /// Find the last index containing a matching value
1268
    #[inline]
1269
    pure fn rposition_elem(x: T) -> option<uint> { rposition_elem(self, x) }
1270
    /// Apply a function to each element of a vector and return the results
1271
    #[inline]
1272
    pure fn map<U>(f: fn(T) -> U) -> ~[U] { map(self, f) }
1273 1274 1275 1276
    /**
     * Apply a function to the index and value of each element in the vector
     * and return the results
     */
1277
    pure fn mapi<U>(f: fn(uint, T) -> U) -> ~[U] {
1278
        mapi(self, f)
N
Niko Matsakis 已提交
1279
    }
1280 1281 1282 1283 1284
    /**
     * Returns true if the function returns true for all elements.
     *
     *     If the vector is empty, true is returned.
     */
1285
    pure fn alli(f: fn(uint, T) -> bool) -> bool {
1286 1287
        alli(self, f)
    }
1288 1289 1290 1291
    /**
     * Apply a function to each element of a vector and return a concatenation
     * of each result vector
     */
1292
    #[inline]
1293
    pure fn flat_map<U>(f: fn(T) -> ~[U]) -> ~[U] { flat_map(self, f) }
1294 1295 1296 1297 1298 1299
    /**
     * Apply a function to each element of a vector and return the results
     *
     * If function `f` returns `none` then that element is excluded from
     * the resulting vector.
     */
1300
    #[inline]
1301
    pure fn filter_map<U: copy>(f: fn(T) -> option<U>) -> ~[U] {
1302 1303
        filter_map(self, f)
    }
1304
}
1305

1306
/// Extension methods for vectors
1307
impl extensions/&<T: copy> for &[T] {
1308 1309 1310 1311 1312 1313 1314
    /**
     * Construct a new vector from the elements of a vector for which some
     * predicate holds.
     *
     * Apply function `f` to each element of `v` and return a vector
     * containing only those elements for which `f` returned true.
     */
1315
    #[inline]
1316
    pure fn filter(f: fn(T) -> bool) -> ~[T] { filter(self, f) }
1317 1318 1319 1320 1321 1322 1323
    /**
     * Search for the first element that matches a given predicate
     *
     * Apply function `f` to each element of `v`, starting from the first.
     * When function `f` returns true then an option containing the element
     * is returned. If `f` matches no elements then none is returned.
     */
1324
    #[inline]
1325
    pure fn find(f: fn(T) -> bool) -> option<T> { find(self, f) }
1326 1327 1328 1329 1330 1331 1332
    /**
     * Search for the last element that matches a given predicate
     *
     * Apply function `f` to each element of `v` in reverse order. When
     * function `f` returns true then an option containing the element is
     * returned. If `f` matches no elements then none is returned.
     */
1333
    #[inline]
1334
    pure fn rfind(f: fn(T) -> bool) -> option<T> { rfind(self, f) }
1335 1336
}

1337
/// Unsafe operations
1338
mod unsafe {
T
Tim Chevalier 已提交
1339
    // FIXME: This should have crate visibility (#1893 blocks that)
1340
    /// The internal representation of a vector
1341 1342 1343 1344 1345 1346
    type vec_repr = {
        box_header: (uint, uint, uint, uint),
        mut fill: uint,
        mut alloc: uint,
        data: u8
    };
1347

1348 1349 1350 1351 1352 1353 1354 1355
    /**
     * Constructs a vector from an unsafe pointer to a buffer
     *
     * # Arguments
     *
     * * ptr - An unsafe pointer to a buffer of `T`
     * * elts - The number of elements in the buffer
     */
1356
    #[inline(always)]
1357
    unsafe fn from_buf<T>(ptr: *T, elts: uint) -> ~[T] {
1358 1359 1360
        ret ::unsafe::reinterpret_cast(
            rustrt::vec_from_buf_shared(sys::get_type_desc::<T>(),
                                        ptr as *(),
1361
                                        elts as size_t));
1362 1363
    }

1364 1365 1366 1367 1368 1369 1370
    /**
     * Sets the length of a vector
     *
     * This will explicitly set the size of the vector, without actually
     * modifing its buffers, so it is up to the caller to ensure that
     * the vector is actually the specified size.
     */
1371
    #[inline(always)]
1372
    unsafe fn set_len<T>(&&v: ~[const T], new_len: uint) {
1373 1374 1375 1376
        let repr: **vec_repr = ::unsafe::reinterpret_cast(addr_of(v));
        (**repr).fill = new_len * sys::size_of::<T>();
    }

1377 1378 1379 1380 1381 1382 1383 1384 1385
    /**
     * Returns an unsafe pointer to the vector's buffer
     *
     * The caller must ensure that the vector outlives the pointer this
     * function returns, or else it will end up pointing to garbage.
     *
     * Modifying the vector may cause its buffer to be reallocated, which
     * would also make any pointers to it invalid.
     */
1386
    #[inline(always)]
1387
    unsafe fn to_ptr<T>(v: ~[const T]) -> *T {
1388 1389 1390
        let repr: **vec_repr = ::unsafe::reinterpret_cast(addr_of(v));
        ret ::unsafe::reinterpret_cast(addr_of((**repr).data));
    }
1391 1392


1393 1394 1395 1396
    /**
     * Form a slice from a pointer and length (as a number of units,
     * not bytes).
     */
1397
    #[inline(always)]
1398
    unsafe fn form_slice<T,U>(p: *T, len: uint, f: fn(&& &[T]) -> U) -> U {
1399
        let pair = (p, len * sys::size_of::<T>());
1400
        let v : *(&blk.[T]) =
1401
            ::unsafe::reinterpret_cast(ptr::addr_of(pair));
1402 1403
        f(*v)
    }
1404 1405
}

1406
/// Operations on `[u8]`
1407 1408 1409 1410 1411
mod u8 {
    export cmp;
    export lt, le, eq, ne, ge, gt;
    export hash;

1412
    /// Bytewise string comparison
1413
    pure fn cmp(&&a: ~[u8], &&b: ~[u8]) -> int {
1414 1415
        let a_len = len(a);
        let b_len = len(b);
1416
        let n = uint::min(a_len, b_len) as libc::size_t;
1417 1418 1419 1420
        let r = unsafe {
            libc::memcmp(unsafe::to_ptr(a) as *libc::c_void,
                         unsafe::to_ptr(b) as *libc::c_void, n) as int
        };
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

        if r != 0 { r } else {
            if a_len == b_len {
                0
            } else if a_len < b_len {
                -1
            } else {
                1
            }
        }
    }

1433
    /// Bytewise less than or equal
1434
    pure fn lt(&&a: ~[u8], &&b: ~[u8]) -> bool { cmp(a, b) < 0 }
1435

1436
    /// Bytewise less than or equal
1437
    pure fn le(&&a: ~[u8], &&b: ~[u8]) -> bool { cmp(a, b) <= 0 }
1438

1439
    /// Bytewise equality
1440
    pure fn eq(&&a: ~[u8], &&b: ~[u8]) -> bool { unsafe { cmp(a, b) == 0 } }
1441

1442
    /// Bytewise inequality
1443
    pure fn ne(&&a: ~[u8], &&b: ~[u8]) -> bool { unsafe { cmp(a, b) != 0 } }
1444

1445
    /// Bytewise greater than or equal
1446
    pure fn ge(&&a: ~[u8], &&b: ~[u8]) -> bool { cmp(a, b) >= 0 }
1447

1448
    /// Bytewise greater than
1449
    pure fn gt(&&a: ~[u8], &&b: ~[u8]) -> bool { cmp(a, b) > 0 }
1450

1451
    /// String hash function
1452
    fn hash(&&s: ~[u8]) -> uint {
T
Tim Chevalier 已提交
1453 1454 1455
        /* Seems to have been tragically copy/pasted from str.rs,
           or vice versa. But I couldn't figure out how to abstract
           it out. -- tjc */
1456

1457
        let mut u: uint = 5381u;
B
Brian Anderson 已提交
1458
        vec::iter(s, |c| {u *= 33u; u += c as uint;});
1459 1460 1461 1462
        ret u;
    }
}

1463 1464 1465 1466 1467
// ___________________________________________________________________________
// ITERATION TRAIT METHODS
//
// This cannot be used with iter-trait.rs because of the region pointer
// required in the slice.
1468
impl extensions/&<A> of iter::base_iter<A> for &[const A] {
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
    fn each(blk: fn(A) -> bool) { each(self, blk) }
    fn size_hint() -> option<uint> { some(len(self)) }
    fn eachi(blk: fn(uint, A) -> bool) { iter::eachi(self, blk) }
    fn all(blk: fn(A) -> bool) -> bool { iter::all(self, blk) }
    fn any(blk: fn(A) -> bool) -> bool { iter::any(self, blk) }
    fn foldl<B>(+b0: B, blk: fn(B, A) -> B) -> B {
        iter::foldl(self, b0, blk)
    }
    fn contains(x: A) -> bool { iter::contains(self, x) }
    fn count(x: A) -> uint { iter::count(self, x) }
}
1480 1481
impl extensions/&<A:copy> for &[const A] {
    fn filter_to_vec(pred: fn(A) -> bool) -> ~[A] {
1482 1483
        iter::filter_to_vec(self, pred)
    }
1484 1485
    fn map_to_vec<B>(op: fn(A) -> B) -> ~[B] { iter::map_to_vec(self, op) }
    fn to_vec() -> ~[A] { iter::to_vec(self) }
1486

T
Tim Chevalier 已提交
1487
    // FIXME--bug in resolve prevents this from working (#2611)
1488
    // fn flat_map_to_vec<B:copy,IB:base_iter<B>>(op: fn(A) -> IB) -> ~[B] {
1489 1490 1491 1492 1493 1494 1495 1496
    //     iter::flat_map_to_vec(self, op)
    // }

    fn min() -> A { iter::min(self) }
    fn max() -> A { iter::max(self) }
}
// ___________________________________________________________________________

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
#[cfg(test)]
mod tests {

    fn square(n: uint) -> uint { ret n * n; }

    fn square_ref(&&n: uint) -> uint { ret n * n; }

    pure fn is_three(&&n: uint) -> bool { ret n == 3u; }

    pure fn is_odd(&&n: uint) -> bool { ret n % 2u == 1u; }

    pure fn is_equal(&&x: uint, &&y:uint) -> bool { ret x == y; }

1510
    fn square_if_odd(&&n: uint) -> option<uint> {
1511 1512 1513 1514 1515 1516
        ret if n % 2u == 1u { some(n * n) } else { none };
    }

    fn add(&&x: uint, &&y: uint) -> uint { ret x + y; }

    #[test]
1517 1518 1519
    fn test_unsafe_ptrs() {
        unsafe {
            // Test on-stack copy-from-buf.
1520
            let a = ~[1, 2, 3];
1521 1522 1523 1524 1525 1526 1527 1528
            let mut ptr = unsafe::to_ptr(a);
            let b = unsafe::from_buf(ptr, 3u);
            assert (len(b) == 3u);
            assert (b[0] == 1);
            assert (b[1] == 2);
            assert (b[2] == 3);

            // Test on-heap copy-from-buf.
1529
            let c = ~[1, 2, 3, 4, 5];
1530 1531 1532 1533 1534 1535 1536 1537 1538
            ptr = unsafe::to_ptr(c);
            let d = unsafe::from_buf(ptr, 5u);
            assert (len(d) == 5u);
            assert (d[0] == 1);
            assert (d[1] == 2);
            assert (d[2] == 3);
            assert (d[3] == 4);
            assert (d[4] == 5);
        }
1539 1540 1541
    }

    #[test]
1542 1543
    fn test_from_fn() {
        // Test on-stack from_fn.
1544
        let mut v = from_fn(3u, square);
1545 1546 1547 1548 1549
        assert (len(v) == 3u);
        assert (v[0] == 0u);
        assert (v[1] == 1u);
        assert (v[2] == 4u);

1550 1551
        // Test on-heap from_fn.
        v = from_fn(5u, square);
1552 1553 1554 1555 1556 1557 1558 1559 1560
        assert (len(v) == 5u);
        assert (v[0] == 0u);
        assert (v[1] == 1u);
        assert (v[2] == 4u);
        assert (v[3] == 9u);
        assert (v[4] == 16u);
    }

    #[test]
1561 1562
    fn test_from_elem() {
        // Test on-stack from_elem.
1563
        let mut v = from_elem(2u, 10u);
1564 1565 1566 1567
        assert (len(v) == 2u);
        assert (v[0] == 10u);
        assert (v[1] == 10u);

1568 1569
        // Test on-heap from_elem.
        v = from_elem(6u, 20u);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
        assert (v[0] == 20u);
        assert (v[1] == 20u);
        assert (v[2] == 20u);
        assert (v[3] == 20u);
        assert (v[4] == 20u);
        assert (v[5] == 20u);
    }

    #[test]
    fn test_is_empty() {
1580 1581
        assert (is_empty::<int>(~[]));
        assert (!is_empty(~[0]));
1582 1583 1584 1585
    }

    #[test]
    fn test_is_not_empty() {
1586 1587
        assert (is_not_empty(~[0]));
        assert (!is_not_empty::<int>(~[]));
1588 1589 1590 1591
    }

    #[test]
    fn test_head() {
1592
        let a = ~[11, 12];
1593 1594 1595 1596 1597
        assert (head(a) == 11);
    }

    #[test]
    fn test_tail() {
1598 1599
        let mut a = ~[11];
        assert (tail(a) == ~[]);
1600

1601 1602
        a = ~[11, 12];
        assert (tail(a) == ~[12]);
1603 1604 1605 1606
    }

    #[test]
    fn test_last() {
1607
        let mut n = last_opt(~[]);
1608
        assert (n == none);
1609
        n = last_opt(~[1, 2, 3]);
1610
        assert (n == some(3));
1611
        n = last_opt(~[1, 2, 3, 4, 5]);
1612 1613 1614 1615 1616 1617
        assert (n == some(5));
    }

    #[test]
    fn test_slice() {
        // Test on-stack -> on-stack slice.
1618
        let mut v = slice(~[1, 2, 3], 1u, 3u);
1619 1620 1621 1622 1623
        assert (len(v) == 2u);
        assert (v[0] == 2);
        assert (v[1] == 3);

        // Test on-heap -> on-stack slice.
1624
        v = slice(~[1, 2, 3, 4, 5], 0u, 3u);
1625 1626 1627 1628 1629 1630
        assert (len(v) == 3u);
        assert (v[0] == 1);
        assert (v[1] == 2);
        assert (v[2] == 3);

        // Test on-heap -> on-heap slice.
1631
        v = slice(~[1, 2, 3, 4, 5, 6], 1u, 6u);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
        assert (len(v) == 5u);
        assert (v[0] == 2);
        assert (v[1] == 3);
        assert (v[2] == 4);
        assert (v[3] == 5);
        assert (v[4] == 6);
    }

    #[test]
    fn test_pop() {
        // Test on-stack pop.
1643
        let mut v = ~[1, 2, 3];
1644
        let mut e = pop(v);
1645 1646 1647 1648 1649 1650
        assert (len(v) == 2u);
        assert (v[0] == 1);
        assert (v[1] == 2);
        assert (e == 3);

        // Test on-heap pop.
1651
        v = ~[1, 2, 3, 4, 5];
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
        e = pop(v);
        assert (len(v) == 4u);
        assert (v[0] == 1);
        assert (v[1] == 2);
        assert (v[2] == 3);
        assert (v[3] == 4);
        assert (e == 5);
    }

    #[test]
    fn test_push() {
        // Test on-stack push().
1664
        let mut v = ~[];
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
        push(v, 1);
        assert (len(v) == 1u);
        assert (v[0] == 1);

        // Test on-heap push().
        push(v, 2);
        assert (len(v) == 2u);
        assert (v[0] == 1);
        assert (v[1] == 2);
    }

    #[test]
    fn test_grow() {
        // Test on-stack grow().
1679
        let mut v = ~[];
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
        grow(v, 2u, 1);
        assert (len(v) == 2u);
        assert (v[0] == 1);
        assert (v[1] == 1);

        // Test on-heap grow().
        grow(v, 3u, 2);
        assert (len(v) == 5u);
        assert (v[0] == 1);
        assert (v[1] == 1);
        assert (v[2] == 2);
        assert (v[3] == 2);
        assert (v[4] == 2);
    }

    #[test]
    fn test_grow_fn() {
1697
        let mut v = ~[];
1698 1699 1700 1701 1702 1703 1704 1705 1706
        grow_fn(v, 3u, square);
        assert (len(v) == 3u);
        assert (v[0] == 0u);
        assert (v[1] == 1u);
        assert (v[2] == 4u);
    }

    #[test]
    fn test_grow_set() {
1707
        let mut v = ~[mut 1, 2, 3];
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
        grow_set(v, 4u, 4, 5);
        assert (len(v) == 5u);
        assert (v[0] == 1);
        assert (v[1] == 2);
        assert (v[2] == 3);
        assert (v[3] == 4);
        assert (v[4] == 5);
    }

    #[test]
    fn test_map() {
        // Test on-stack map.
1720
        let mut v = ~[1u, 2u, 3u];
1721
        let mut w = map(v, square_ref);
1722 1723 1724 1725 1726 1727
        assert (len(w) == 3u);
        assert (w[0] == 1u);
        assert (w[1] == 4u);
        assert (w[2] == 9u);

        // Test on-heap map.
1728
        v = ~[1u, 2u, 3u, 4u, 5u];
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
        w = map(v, square_ref);
        assert (len(w) == 5u);
        assert (w[0] == 1u);
        assert (w[1] == 4u);
        assert (w[2] == 9u);
        assert (w[3] == 16u);
        assert (w[4] == 25u);
    }

    #[test]
    fn test_map2() {
        fn times(&&x: int, &&y: int) -> int { ret x * y; }
        let f = times;
1742 1743
        let v0 = ~[1, 2, 3, 4, 5];
        let v1 = ~[5, 4, 3, 2, 1];
1744
        let u = map2::<int, int, int>(v0, v1, f);
1745
        let mut i = 0;
1746 1747 1748 1749 1750 1751
        while i < 5 { assert (v0[i] * v1[i] == u[i]); i += 1; }
    }

    #[test]
    fn test_filter_map() {
        // Test on-stack filter-map.
1752
        let mut v = ~[1u, 2u, 3u];
1753
        let mut w = filter_map(v, square_if_odd);
1754 1755 1756 1757 1758
        assert (len(w) == 2u);
        assert (w[0] == 1u);
        assert (w[1] == 9u);

        // Test on-heap filter-map.
1759
        v = ~[1u, 2u, 3u, 4u, 5u];
1760 1761 1762 1763 1764 1765
        w = filter_map(v, square_if_odd);
        assert (len(w) == 3u);
        assert (w[0] == 1u);
        assert (w[1] == 9u);
        assert (w[2] == 25u);

1766
        fn halve(&&i: int) -> option<int> {
1767 1768 1769 1770 1771
            if i % 2 == 0 {
                ret option::some::<int>(i / 2);
            } else { ret option::none::<int>; }
        }
        fn halve_for_sure(&&i: int) -> int { ret i / 2; }
1772 1773 1774 1775 1776
        let all_even: ~[int] = ~[0, 2, 8, 6];
        let all_odd1: ~[int] = ~[1, 7, 3];
        let all_odd2: ~[int] = ~[];
        let mix: ~[int] = ~[9, 2, 6, 7, 1, 0, 0, 3];
        let mix_dest: ~[int] = ~[1, 3, 0, 0];
1777
        assert (filter_map(all_even, halve) == map(all_even, halve_for_sure));
1778 1779
        assert (filter_map(all_odd1, halve) == ~[]);
        assert (filter_map(all_odd2, halve) == ~[]);
1780 1781 1782 1783 1784
        assert (filter_map(mix, halve) == mix_dest);
    }

    #[test]
    fn test_filter() {
1785 1786
        assert filter(~[1u, 2u, 3u], is_odd) == ~[1u, 3u];
        assert filter(~[1u, 2u, 4u, 8u, 16u], is_three) == ~[];
1787 1788 1789 1790 1791
    }

    #[test]
    fn test_foldl() {
        // Test on-stack fold.
1792
        let mut v = ~[1u, 2u, 3u];
1793
        let mut sum = foldl(0u, v, add);
1794 1795 1796
        assert (sum == 6u);

        // Test on-heap fold.
1797
        v = ~[1u, 2u, 3u, 4u, 5u];
1798 1799 1800 1801 1802 1803 1804 1805 1806
        sum = foldl(0u, v, add);
        assert (sum == 15u);
    }

    #[test]
    fn test_foldl2() {
        fn sub(&&a: int, &&b: int) -> int {
            a - b
        }
1807
        let mut v = ~[1, 2, 3, 4];
1808 1809 1810 1811 1812 1813 1814 1815 1816
        let sum = foldl(0, v, sub);
        assert sum == -10;
    }

    #[test]
    fn test_foldr() {
        fn sub(&&a: int, &&b: int) -> int {
            a - b
        }
1817
        let mut v = ~[1, 2, 3, 4];
1818 1819 1820 1821 1822 1823
        let sum = foldr(v, 0, sub);
        assert sum == -2;
    }

    #[test]
    fn test_iter_empty() {
1824
        let mut i = 0;
B
Brian Anderson 已提交
1825
        iter::<int>(~[], |_v| i += 1);
1826 1827 1828 1829 1830
        assert i == 0;
    }

    #[test]
    fn test_iter_nonempty() {
1831
        let mut i = 0;
B
Brian Anderson 已提交
1832
        iter(~[1, 2, 3], |v| i += v);
1833 1834 1835 1836 1837
        assert i == 6;
    }

    #[test]
    fn test_iteri() {
1838
        let mut i = 0;
B
Brian Anderson 已提交
1839
        iteri(~[1, 2, 3], |j, v| {
1840 1841 1842 1843 1844 1845 1846 1847 1848
            if i == 0 { assert v == 1; }
            assert j + 1u == v as uint;
            i += v;
        });
        assert i == 6;
    }

    #[test]
    fn test_riter_empty() {
1849
        let mut i = 0;
B
Brian Anderson 已提交
1850
        riter::<int>(~[], |_v| i += 1);
1851 1852 1853 1854 1855
        assert i == 0;
    }

    #[test]
    fn test_riter_nonempty() {
1856
        let mut i = 0;
B
Brian Anderson 已提交
1857
        riter(~[1, 2, 3], |v| {
1858 1859 1860 1861 1862 1863 1864 1865
            if i == 0 { assert v == 3; }
            i += v
        });
        assert i == 6;
    }

    #[test]
    fn test_riteri() {
1866
        let mut i = 0;
B
Brian Anderson 已提交
1867
        riteri(~[0, 1, 2], |j, v| {
1868 1869 1870 1871 1872 1873 1874 1875 1876
            if i == 0 { assert v == 2; }
            assert j == v as uint;
            i += v;
        });
        assert i == 3;
    }

    #[test]
    fn test_permute() {
1877
        let mut results: ~[~[int]];
1878

1879
        results = ~[];
B
Brian Anderson 已提交
1880
        permute(~[], |v| vec::push(results, v));
1881
        assert results == ~[~[]];
1882

1883
        results = ~[];
B
Brian Anderson 已提交
1884
        permute(~[7], |v| results += ~[v]);
1885
        assert results == ~[~[7]];
1886

1887
        results = ~[];
B
Brian Anderson 已提交
1888
        permute(~[1,1], |v| results += ~[v]);
1889
        assert results == ~[~[1,1],~[1,1]];
1890

1891
        results = ~[];
B
Brian Anderson 已提交
1892
        permute(~[5,2,0], |v| results += ~[v]);
1893
        assert results ==
1894
            ~[~[5,2,0],~[5,0,2],~[2,5,0],~[2,0,5],~[0,5,2],~[0,2,5]];
1895 1896 1897 1898
    }

    #[test]
    fn test_any_and_all() {
1899 1900 1901 1902
        assert (any(~[1u, 2u, 3u], is_three));
        assert (!any(~[0u, 1u, 2u], is_three));
        assert (any(~[1u, 2u, 3u, 4u, 5u], is_three));
        assert (!any(~[1u, 2u, 4u, 5u, 6u], is_three));
1903

1904 1905 1906 1907
        assert (all(~[3u, 3u, 3u], is_three));
        assert (!all(~[3u, 3u, 2u], is_three));
        assert (all(~[3u, 3u, 3u, 3u, 3u], is_three));
        assert (!all(~[3u, 3u, 0u, 1u, 2u], is_three));
1908 1909 1910 1911 1912
    }

    #[test]
    fn test_any2_and_all2() {

1913 1914 1915 1916
        assert (any2(~[2u, 4u, 6u], ~[2u, 4u, 6u], is_equal));
        assert (any2(~[1u, 2u, 3u], ~[4u, 5u, 3u], is_equal));
        assert (!any2(~[1u, 2u, 3u], ~[4u, 5u, 6u], is_equal));
        assert (any2(~[2u, 4u, 6u], ~[2u, 4u], is_equal));
1917

1918 1919 1920 1921
        assert (all2(~[2u, 4u, 6u], ~[2u, 4u, 6u], is_equal));
        assert (!all2(~[1u, 2u, 3u], ~[4u, 5u, 3u], is_equal));
        assert (!all2(~[1u, 2u, 3u], ~[4u, 5u, 6u], is_equal));
        assert (!all2(~[2u, 4u, 6u], ~[2u, 4u], is_equal));
1922 1923 1924 1925
    }

    #[test]
    fn test_zip_unzip() {
1926 1927
        let v1 = ~[1, 2, 3];
        let v2 = ~[4, 5, 6];
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

        let z1 = zip(v1, v2);

        assert ((1, 4) == z1[0]);
        assert ((2, 5) == z1[1]);
        assert ((3, 6) == z1[2]);

        let (left, right) = unzip(z1);

        assert ((1, 4) == (left[0], right[0]));
        assert ((2, 5) == (left[1], right[1]));
        assert ((3, 6) == (left[2], right[2]));
    }

    #[test]
1943
    fn test_position_elem() {
1944
        assert position_elem(~[], 1) == none;
1945

1946
        let v1 = ~[1, 2, 3, 3, 2, 5];
1947 1948 1949 1950
        assert position_elem(v1, 1) == some(0u);
        assert position_elem(v1, 2) == some(1u);
        assert position_elem(v1, 5) == some(5u);
        assert position_elem(v1, 4) == none;
1951 1952 1953
    }

    #[test]
1954
    fn test_position() {
1955 1956
        fn less_than_three(&&i: int) -> bool { ret i < 3; }
        fn is_eighteen(&&i: int) -> bool { ret i == 18; }
1957

1958
        assert position(~[], less_than_three) == none;
1959

1960
        let v1 = ~[5, 4, 3, 2, 1];
1961 1962
        assert position(v1, less_than_three) == some(3u);
        assert position(v1, is_eighteen) == none;
1963 1964 1965
    }

    #[test]
1966
    fn test_position_between() {
1967
        assert position_between(~[], 0u, 0u, f) == none;
1968 1969

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
1970
        let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
1971

1972 1973 1974 1975 1976
        assert position_between(v, 0u, 0u, f) == none;
        assert position_between(v, 0u, 1u, f) == none;
        assert position_between(v, 0u, 2u, f) == some(1u);
        assert position_between(v, 0u, 3u, f) == some(1u);
        assert position_between(v, 0u, 4u, f) == some(1u);
1977

1978 1979 1980 1981
        assert position_between(v, 1u, 1u, f) == none;
        assert position_between(v, 1u, 2u, f) == some(1u);
        assert position_between(v, 1u, 3u, f) == some(1u);
        assert position_between(v, 1u, 4u, f) == some(1u);
1982

1983 1984 1985
        assert position_between(v, 2u, 2u, f) == none;
        assert position_between(v, 2u, 3u, f) == none;
        assert position_between(v, 2u, 4u, f) == some(3u);
1986

1987 1988
        assert position_between(v, 3u, 3u, f) == none;
        assert position_between(v, 3u, 4u, f) == some(3u);
1989

1990
        assert position_between(v, 4u, 4u, f) == none;
1991 1992
    }

1993 1994
    #[test]
    fn test_find() {
1995
        assert find(~[], f) == none;
1996 1997 1998

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
        fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' }
1999
        let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
2000 2001 2002 2003 2004 2005

        assert find(v, f) == some((1, 'b'));
        assert find(v, g) == none;
    }

    #[test]
2006
    fn test_find_between() {
2007
        assert find_between(~[], 0u, 0u, f) == none;
2008 2009

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
2010
        let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
2011

2012 2013 2014 2015 2016
        assert find_between(v, 0u, 0u, f) == none;
        assert find_between(v, 0u, 1u, f) == none;
        assert find_between(v, 0u, 2u, f) == some((1, 'b'));
        assert find_between(v, 0u, 3u, f) == some((1, 'b'));
        assert find_between(v, 0u, 4u, f) == some((1, 'b'));
2017

2018 2019 2020 2021
        assert find_between(v, 1u, 1u, f) == none;
        assert find_between(v, 1u, 2u, f) == some((1, 'b'));
        assert find_between(v, 1u, 3u, f) == some((1, 'b'));
        assert find_between(v, 1u, 4u, f) == some((1, 'b'));
2022

2023 2024 2025
        assert find_between(v, 2u, 2u, f) == none;
        assert find_between(v, 2u, 3u, f) == none;
        assert find_between(v, 2u, 4u, f) == some((3, 'b'));
2026

2027 2028
        assert find_between(v, 3u, 3u, f) == none;
        assert find_between(v, 3u, 4u, f) == some((3, 'b'));
2029

2030
        assert find_between(v, 4u, 4u, f) == none;
2031 2032
    }

2033 2034
    #[test]
    fn test_rposition() {
2035
        assert find(~[], f) == none;
2036 2037 2038

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
        fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' }
2039
        let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
2040 2041 2042 2043 2044 2045

        assert position(v, f) == some(1u);
        assert position(v, g) == none;
    }

    #[test]
2046
    fn test_rposition_between() {
2047
        assert rposition_between(~[], 0u, 0u, f) == none;
2048 2049

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
2050
        let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
2051

2052 2053 2054 2055 2056
        assert rposition_between(v, 0u, 0u, f) == none;
        assert rposition_between(v, 0u, 1u, f) == none;
        assert rposition_between(v, 0u, 2u, f) == some(1u);
        assert rposition_between(v, 0u, 3u, f) == some(1u);
        assert rposition_between(v, 0u, 4u, f) == some(3u);
2057

2058 2059 2060 2061
        assert rposition_between(v, 1u, 1u, f) == none;
        assert rposition_between(v, 1u, 2u, f) == some(1u);
        assert rposition_between(v, 1u, 3u, f) == some(1u);
        assert rposition_between(v, 1u, 4u, f) == some(3u);
2062

2063 2064 2065
        assert rposition_between(v, 2u, 2u, f) == none;
        assert rposition_between(v, 2u, 3u, f) == none;
        assert rposition_between(v, 2u, 4u, f) == some(3u);
2066

2067 2068
        assert rposition_between(v, 3u, 3u, f) == none;
        assert rposition_between(v, 3u, 4u, f) == some(3u);
2069

2070
        assert rposition_between(v, 4u, 4u, f) == none;
2071
    }
2072 2073 2074

    #[test]
    fn test_rfind() {
2075
        assert rfind(~[], f) == none;
2076 2077 2078

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
        fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' }
2079
        let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
2080 2081 2082 2083 2084 2085

        assert rfind(v, f) == some((3, 'b'));
        assert rfind(v, g) == none;
    }

    #[test]
2086
    fn test_rfind_between() {
2087
        assert rfind_between(~[], 0u, 0u, f) == none;
2088 2089

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
2090
        let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
2091

2092 2093 2094 2095 2096
        assert rfind_between(v, 0u, 0u, f) == none;
        assert rfind_between(v, 0u, 1u, f) == none;
        assert rfind_between(v, 0u, 2u, f) == some((1, 'b'));
        assert rfind_between(v, 0u, 3u, f) == some((1, 'b'));
        assert rfind_between(v, 0u, 4u, f) == some((3, 'b'));
2097

2098 2099 2100 2101
        assert rfind_between(v, 1u, 1u, f) == none;
        assert rfind_between(v, 1u, 2u, f) == some((1, 'b'));
        assert rfind_between(v, 1u, 3u, f) == some((1, 'b'));
        assert rfind_between(v, 1u, 4u, f) == some((3, 'b'));
2102

2103 2104 2105
        assert rfind_between(v, 2u, 2u, f) == none;
        assert rfind_between(v, 2u, 3u, f) == none;
        assert rfind_between(v, 2u, 4u, f) == some((3, 'b'));
2106

2107 2108
        assert rfind_between(v, 3u, 3u, f) == none;
        assert rfind_between(v, 3u, 4u, f) == some((3, 'b'));
2109

2110
        assert rfind_between(v, 4u, 4u, f) == none;
2111 2112 2113 2114
    }

    #[test]
    fn reverse_and_reversed() {
2115
        let v: ~[mut int] = ~[mut 10, 20];
2116 2117 2118 2119 2120
        assert (v[0] == 10);
        assert (v[1] == 20);
        reverse(v);
        assert (v[0] == 20);
        assert (v[1] == 10);
2121
        let v2 = reversed::<int>(~[10, 20]);
2122 2123 2124 2125 2126 2127
        assert (v2[0] == 20);
        assert (v2[1] == 10);
        v[0] = 30;
        assert (v2[0] == 20);
        // Make sure they work with 0-length vectors too.

2128 2129 2130
        let v4 = reversed::<int>(~[]);
        assert (v4 == ~[]);
        let v3: ~[mut int] = ~[mut];
2131 2132 2133 2134 2135
        reverse::<int>(v3);
    }

    #[test]
    fn reversed_mut() {
2136
        let v2 = reversed::<int>(~[mut 10, 20]);
2137 2138 2139 2140 2141 2142
        assert (v2[0] == 20);
        assert (v2[1] == 10);
    }

    #[test]
    fn test_init() {
2143 2144
        let v = init(~[1, 2, 3]);
        assert v == ~[1, 2];
2145 2146
    }

2147 2148 2149 2150
    #[test]
    fn test_split() {
        fn f(&&x: int) -> bool { x == 3 }

2151 2152 2153 2154 2155
        assert split(~[], f) == ~[];
        assert split(~[1, 2], f) == ~[~[1, 2]];
        assert split(~[3, 1, 2], f) == ~[~[], ~[1, 2]];
        assert split(~[1, 2, 3], f) == ~[~[1, 2], ~[]];
        assert split(~[1, 2, 3, 4, 3, 5], f) == ~[~[1, 2], ~[4], ~[5]];
2156 2157 2158 2159 2160 2161
    }

    #[test]
    fn test_splitn() {
        fn f(&&x: int) -> bool { x == 3 }

2162 2163 2164 2165 2166 2167
        assert splitn(~[], 1u, f) == ~[];
        assert splitn(~[1, 2], 1u, f) == ~[~[1, 2]];
        assert splitn(~[3, 1, 2], 1u, f) == ~[~[], ~[1, 2]];
        assert splitn(~[1, 2, 3], 1u, f) == ~[~[1, 2], ~[]];
        assert splitn(~[1, 2, 3, 4, 3, 5], 1u, f) ==
                      ~[~[1, 2], ~[4, 3, 5]];
2168 2169 2170 2171 2172 2173
    }

    #[test]
    fn test_rsplit() {
        fn f(&&x: int) -> bool { x == 3 }

2174 2175 2176 2177
        assert rsplit(~[], f) == ~[];
        assert rsplit(~[1, 2], f) == ~[~[1, 2]];
        assert rsplit(~[1, 2, 3], f) == ~[~[1, 2], ~[]];
        assert rsplit(~[1, 2, 3, 4, 3, 5], f) == ~[~[1, 2], ~[4], ~[5]];
2178 2179 2180 2181 2182 2183
    }

    #[test]
    fn test_rsplitn() {
        fn f(&&x: int) -> bool { x == 3 }

2184 2185 2186 2187 2188
        assert rsplitn(~[], 1u, f) == ~[];
        assert rsplitn(~[1, 2], 1u, f) == ~[~[1, 2]];
        assert rsplitn(~[1, 2, 3], 1u, f) == ~[~[1, 2], ~[]];
        assert rsplitn(~[1, 2, 3, 4, 3, 5], 1u, f) ==
                       ~[~[1, 2, 3, 4], ~[5]];
2189 2190
    }

2191
    #[test]
B
Brian Anderson 已提交
2192
    #[should_fail]
2193
    #[ignore(cfg(windows))]
2194
    fn test_init_empty() {
2195
        init::<int>(~[]);
2196 2197 2198 2199
    }

    #[test]
    fn test_concat() {
2200
        assert concat(~[~[1], ~[2,3]]) == ~[1, 2, 3];
2201 2202
    }

2203 2204
    #[test]
    fn test_connect() {
2205 2206 2207
        assert connect(~[], 0) == ~[];
        assert connect(~[~[1], ~[2, 3]], 0) == ~[1, 0, 2, 3];
        assert connect(~[~[1], ~[2], ~[3]], 0) == ~[1, 0, 2, 0, 3];
2208 2209
    }

2210 2211
    #[test]
    fn test_windowed () {
2212 2213
        assert ~[~[1u,2u,3u],~[2u,3u,4u],~[3u,4u,5u],~[4u,5u,6u]]
            == windowed (3u, ~[1u,2u,3u,4u,5u,6u]);
2214

2215 2216
        assert ~[~[1u,2u,3u,4u],~[2u,3u,4u,5u],~[3u,4u,5u,6u]]
            == windowed (4u, ~[1u,2u,3u,4u,5u,6u]);
2217

2218
        assert ~[] == windowed (7u, ~[1u,2u,3u,4u,5u,6u]);
2219 2220 2221 2222
    }

    #[test]
    #[should_fail]
2223
    #[ignore(cfg(windows))]
2224
    fn test_windowed_() {
2225
        let _x = windowed (0u, ~[1u,2u,3u,4u,5u,6u]);
2226
    }
2227 2228

    #[test]
2229 2230
    fn to_mut_no_copy() {
        unsafe {
2231
            let x = ~[1, 2, 3];
2232 2233 2234 2235 2236
            let addr = unsafe::to_ptr(x);
            let x_mut = to_mut(x);
            let addr_mut = unsafe::to_ptr(x_mut);
            assert addr == addr_mut;
        }
2237 2238 2239
    }

    #[test]
2240 2241
    fn from_mut_no_copy() {
        unsafe {
2242
            let x = ~[mut 1, 2, 3];
2243 2244 2245 2246 2247
            let addr = unsafe::to_ptr(x);
            let x_imm = from_mut(x);
            let addr_imm = unsafe::to_ptr(x_imm);
            assert addr == addr_imm;
        }
2248
    }
B
Brian Anderson 已提交
2249

E
Eric Holk 已提交
2250 2251
    #[test]
    fn test_unshift() {
2252
        let mut x = ~[1, 2, 3];
E
Eric Holk 已提交
2253
        unshift(x, 0);
2254
        assert x == ~[0, 1, 2, 3];
E
Eric Holk 已提交
2255 2256
    }

B
Brian Anderson 已提交
2257 2258
    #[test]
    fn test_capacity() {
2259
        let mut v = ~[0u64];
B
Brian Anderson 已提交
2260 2261
        reserve(v, 10u);
        assert capacity(v) == 10u;
2262
        let mut v = ~[0u32];
B
Brian Anderson 已提交
2263 2264 2265
        reserve(v, 10u);
        assert capacity(v) == 10u;
    }
2266 2267 2268

    #[test]
    fn test_view() {
2269
        let v = ~[1, 2, 3, 4, 5];
2270 2271 2272 2273 2274
        let v = view(v, 1u, 3u);
        assert(len(v) == 2u);
        assert(v[0] == 2);
        assert(v[1] == 3);
    }
2275 2276
}

2277 2278 2279 2280 2281 2282 2283
// Local Variables:
// mode: rust;
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: