vec.rs 45.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
Module: vec
*/

import option::{some, none};
import uint::next_power_of_two;
import ptr::addr_of;

#[abi = "rust-intrinsic"]
native mod rusti {
11
    fn vec_len<T>(&&v: [const T]) -> ctypes::size_t;
12 13 14 15 16 17
}

#[abi = "cdecl"]
native mod rustrt {
    fn vec_reserve_shared<T>(t: *sys::type_desc,
                             &v: [const T],
18
                             n: ctypes::size_t);
19 20
    fn vec_from_buf_shared<T>(t: *sys::type_desc,
                              ptr: *T,
21
                              count: ctypes::size_t) -> [T];
22 23 24 25 26 27 28
}

/*
Type: init_op

A function used to initialize the elements of a vector.
*/
N
Niko Matsakis 已提交
29
type init_op<T> = fn(uint) -> T;
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


/*
Predicate: is_empty

Returns true if a vector contains no elements.
*/
pure fn is_empty<T>(v: [const T]) -> bool {
    // FIXME: This would be easier if we could just call len
    for t: T in v { ret false; }
    ret true;
}

/*
Predicate: is_not_empty

Returns true if a vector contains some elements.
*/
pure fn is_not_empty<T>(v: [const T]) -> bool { ret !is_empty(v); }

/*
Predicate: same_length

Returns true if two vectors have the same length
*/
55
pure fn same_length<T, U>(xs: [const T], ys: [const U]) -> bool {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    vec::len(xs) == vec::len(ys)
}

/*
Function: reserve

Reserves capacity for `n` elements in the given vector.

If the capacity for `v` is already equal to or greater than the requested
capacity, then no action is taken.

Parameters:

v - A vector
n - The number of elements to reserve space for
*/
fn reserve<T>(&v: [const T], n: uint) {
    rustrt::vec_reserve_shared(sys::get_type_desc::<T>(), v, n);
}

/*
Function: len

Returns the length of a vector
*/
81
#[inline(always)]
82 83 84 85 86 87 88 89 90 91
pure fn len<T>(v: [const T]) -> uint { unchecked { rusti::vec_len(v) } }

/*
Function: init_fn

Creates and initializes an immutable vector.

Creates an immutable vector of size `n_elts` and initializes the elements
to the value returned by the function `op`.
*/
92
fn init_fn<T>(n_elts: uint, op: init_op<T>) -> [T] {
93
    let mut v = [];
94
    reserve(v, n_elts);
95
    let mut i: uint = 0u;
96 97 98 99 100 101 102 103 104 105 106 107
    while i < n_elts { v += [op(i)]; i += 1u; }
    ret v;
}

/*
Function: init_elt

Creates and initializes an immutable vector.

Creates an immutable vector of size `n_elts` and initializes the elements
to the value `t`.
*/
108
fn init_elt<T: copy>(n_elts: uint, t: T) -> [T] {
109
    let mut v = [];
110
    reserve(v, n_elts);
111
    let mut i: uint = 0u;
112 113 114 115 116 117 118
    while i < n_elts { v += [t]; i += 1u; }
    ret v;
}

// FIXME: Possible typestate postcondition:
// len(result) == len(v) (needs issue #586)
/*
119

120 121 122

Produces a mutable vector from an immutable vector.
*/
M
Marijn Haverbeke 已提交
123 124 125 126
fn to_mut<T>(+v: [T]) -> [mutable T] unsafe {
    let r = ::unsafe::reinterpret_cast(v);
    ::unsafe::leak(v);
    r
127 128 129 130 131 132 133
}

/*
Function: from_mut

Produces an immutable vector from a mutable vector.
*/
M
Marijn Haverbeke 已提交
134 135 136 137
fn from_mut<T>(+v: [mutable T]) -> [T] unsafe {
    let r = ::unsafe::reinterpret_cast(v);
    ::unsafe::leak(v);
    r
138 139 140 141 142 143 144 145 146 147 148 149
}

// Accessors

/*
Function: head

Returns the first element of a vector

Predicates:
<is_not_empty> (v)
*/
150
pure fn head<T: copy>(v: [const T]) -> T { v[0] }
151 152 153 154 155 156

/*
Function: tail

Returns all but the first element of a vector
*/
157
fn tail<T: copy>(v: [const T]) -> [T] {
158 159 160
    ret slice(v, 1u, len(v));
}

161 162 163 164 165 166 167 168 169 170
/*
Function tail_n

Returns all but the first N elements of a vector
*/

fn tail_n<T: copy>(v: [const T], n: uint) -> [T] {
    slice(v, n, len(v))
}

171 172 173 174 175 176 177 178 179 180 181
// FIXME: This name is sort of confusing next to init_fn, etc
// but this is the name haskell uses for this function,
// along with head/tail/last.
/*
Function: init

Returns all but the last elemnt of a vector

Preconditions:
`v` is not empty
*/
182
fn init<T: copy>(v: [const T]) -> [T] {
183 184 185 186 187 188 189 190 191 192 193 194 195 196
    assert len(v) != 0u;
    slice(v, 0u, len(v) - 1u)
}

/*
Function: last

Returns the last element of a vector

Returns:

An option containing the last element of `v` if `v` is not empty, or
none if `v` is empty.
*/
197
pure fn last<T: copy>(v: [const T]) -> option<T> {
198 199 200 201 202
    if len(v) == 0u { ret none; }
    ret some(v[len(v) - 1u]);
}

/*
T
Tim Chevalier 已提交
203
Function: last_unsafe
204

T
Tim Chevalier 已提交
205
Returns the last element of a `v`, failing if the vector is empty.
206 207

*/
T
Tim Chevalier 已提交
208 209 210 211
pure fn last_unsafe<T: copy>(v: [const T]) -> T {
    if len(v) == 0u { fail "last_unsafe: empty vector" }
    v[len(v) - 1u]
}
212 213 214 215 216 217

/*
Function: slice

Returns a copy of the elements from [`start`..`end`) from `v`.
*/
218
fn slice<T: copy>(v: [const T], start: uint, end: uint) -> [T] {
219 220
    assert (start <= end);
    assert (end <= len(v));
221
    let mut result = [];
222
    reserve(result, end - start);
223
    let mut i = start;
224 225 226 227
    while i < end { result += [v[i]]; i += 1u; }
    ret result;
}

228 229 230 231 232
/*
Function: split

Split the vector `v` by applying each element against the predicate `f`.
*/
233
fn split<T: copy>(v: [const T], f: fn(T) -> bool) -> [[T]] {
234 235 236
    let ln = len(v);
    if (ln == 0u) { ret [] }

237 238
    let mut start = 0u;
    let mut result = [];
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    while start < ln {
        alt position_from(v, start, ln, f) {
          none { break }
          some(i) {
            push(result, slice(v, start, i));
            start = i + 1u;
          }
        }
    }
    push(result, slice(v, start, ln));
    result
}

/*
Function: splitn

Split the vector `v` by applying each element against the predicate `f` up
to `n` times.
*/
258
fn splitn<T: copy>(v: [const T], n: uint, f: fn(T) -> bool) -> [[T]] {
259 260 261
    let ln = len(v);
    if (ln == 0u) { ret [] }

262 263 264
    let mut start = 0u;
    let mut count = n;
    let mut result = [];
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    while start < ln && count > 0u {
        alt position_from(v, start, ln, f) {
          none { break }
          some(i) {
            push(result, slice(v, start, i));
            // Make sure to skip the separator.
            start = i + 1u;
            count -= 1u;
          }
        }
    }
    push(result, slice(v, start, ln));
    result
}

/*
Function: rsplit

Reverse split the vector `v` by applying each element against the predicate
`f`.
*/
286
fn rsplit<T: copy>(v: [const T], f: fn(T) -> bool) -> [[T]] {
287 288 289
    let ln = len(v);
    if (ln == 0u) { ret [] }

290 291
    let mut end = ln;
    let mut result = [];
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    while end > 0u {
        alt rposition_from(v, 0u, end, f) {
          none { break }
          some(i) {
            push(result, slice(v, i + 1u, end));
            end = i;
          }
        }
    }
    push(result, slice(v, 0u, end));
    reversed(result)
}

/*
Function: rsplitn

Reverse split the vector `v` by applying each element against the predicate
`f` up to `n times.
*/
311
fn rsplitn<T: copy>(v: [const T], n: uint, f: fn(T) -> bool) -> [[T]] {
312 313 314
    let ln = len(v);
    if (ln == 0u) { ret [] }

315 316 317
    let mut end = ln;
    let mut count = n;
    let mut result = [];
318 319 320 321 322 323 324 325 326 327 328 329 330 331
    while end > 0u && count > 0u {
        alt rposition_from(v, 0u, end, f) {
          none { break }
          some(i) {
            push(result, slice(v, i + 1u, end));
            // Make sure to skip the separator.
            end = i;
            count -= 1u;
          }
        }
    }
    push(result, slice(v, 0u, end));
    reversed(result)
}
332 333 334 335 336 337 338 339

// Mutators

/*
Function: shift

Removes the first element from a vector and return it
*/
340
fn shift<T: copy>(&v: [const T]) -> T {
341 342 343 344 345 346 347 348 349 350 351 352
    let ln = len::<T>(v);
    assert (ln > 0u);
    let e = v[0];
    v = slice::<T>(v, 1u, ln);
    ret e;
}

/*
Function: pop

Remove the last element from a vector and return it
*/
M
Marijn Haverbeke 已提交
353
fn pop<T>(&v: [const T]) -> T unsafe {
354
    let ln = len(v);
M
Marijn Haverbeke 已提交
355 356
    assert ln > 0u;
    let valptr = ptr::mut_addr_of(v[ln - 1u]);
357
    let val <- *valptr;
M
Marijn Haverbeke 已提交
358
    unsafe::set_len(v, ln - 1u);
359
    val
360 361
}

E
Erick Tryzelaar 已提交
362 363 364
/*
Function: push

B
Brian Anderson 已提交
365
Append an element to a vector
E
Erick Tryzelaar 已提交
366
*/
367
fn push<T: copy>(&v: [const T], initval: T) {
B
Brian Anderson 已提交
368
    v += [initval];
E
Erick Tryzelaar 已提交
369 370
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
// TODO: More.


// Appending

/*
Function: grow

Expands a vector in place, initializing the new elements to a given value

Parameters:

v - The vector to grow
n - The number of elements to add
initval - The value for the new elements
*/
387
fn grow<T: copy>(&v: [const T], n: uint, initval: T) {
388
    reserve(v, next_power_of_two(len(v) + n));
389
    let mut i: uint = 0u;
390 391 392 393 394 395 396 397 398
    while i < n { v += [initval]; i += 1u; }
}

/*
Function: grow_fn

Expands a vector in place, initializing the new elements to the result of a
function

399
Function `init_op` is called `n` times with the values [0..`n`)
400 401 402 403 404

Parameters:

v - The vector to grow
n - The number of elements to add
405
init_op - A function to call to retreive each appended element's value
406
*/
407
fn grow_fn<T>(&v: [const T], n: uint, op: init_op<T>) {
408
    reserve(v, next_power_of_two(len(v) + n));
409
    let mut i: uint = 0u;
410 411 412 413 414 415 416 417 418 419 420 421 422
    while i < n { v += [op(i)]; i += 1u; }
}

/*
Function: grow_set

Sets the value of a vector element at a given index, growing the vector as
needed

Sets the element at position `index` to `val`. If `index` is past the end
of the vector, expands the vector by replicating `initval` to fill the
intervening space.
*/
423
fn grow_set<T: copy>(&v: [mutable T], index: uint, initval: T, val: T) {
424
    if index >= len(v) { grow(v, index - len(v) + 1u, initval); }
425 426 427 428 429 430 431 432 433 434 435
    v[index] = val;
}


// Functional utilities

/*
Function: map

Apply a function to each element of a vector and return the results
*/
N
Niko Matsakis 已提交
436
fn map<T, U>(v: [T], f: fn(T) -> U) -> [U] {
437
    let mut result = [];
438 439 440 441 442 443 444 445 446 447
    reserve(result, len(v));
    for elem: T in v { result += [f(elem)]; }
    ret result;
}

/*
Function: map2

Apply a function to each pair of elements and return the results
*/
448 449
fn map2<T: copy, U: copy, V>(v0: [const T], v1: [const U],
                             f: fn(T, U) -> V) -> [V] {
450 451
    let v0_len = len(v0);
    if v0_len != len(v1) { fail; }
452 453
    let mut u: [V] = [];
    let mut i = 0u;
454 455 456 457 458 459 460 461 462 463 464 465
    while i < v0_len { u += [f(copy v0[i], copy v1[i])]; i += 1u; }
    ret u;
}

/*
Function: filter_map

Apply a function to each element of a vector and return the results

If function `f` returns `none` then that element is excluded from
the resulting vector.
*/
466
fn filter_map<T: copy, U: copy>(v: [const T], f: fn(T) -> option<U>)
467
    -> [U] {
468
    let mut result = [];
469 470
    for elem: T in v {
        alt f(copy elem) {
471
          none {/* no-op */ }
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
          some(result_elem) { result += [result_elem]; }
        }
    }
    ret result;
}

/*
Function: filter

Construct a new vector from the elements of a vector for which some predicate
holds.

Apply function `f` to each element of `v` and return a vector containing
only those elements for which `f` returned true.
*/
N
Niko Matsakis 已提交
487
fn filter<T: copy>(v: [T], f: fn(T) -> bool) -> [T] {
488
    let mut result = [];
489 490 491 492 493 494 495 496 497 498 499 500
    for elem: T in v {
        if f(elem) { result += [elem]; }
    }
    ret result;
}

/*
Function: concat

Concatenate a vector of vectors. Flattens a vector of vectors of T into
a single vector of T.
*/
501
fn concat<T: copy>(v: [const [const T]]) -> [T] {
502
    let mut new: [T] = [];
503 504 505 506
    for inner: [T] in v { new += inner; }
    ret new;
}

507 508 509 510 511 512
/*
Function: connect

Concatenate a vector of vectors, placing a given separator between each
*/
fn connect<T: copy>(v: [const [const T]], sep: T) -> [T] {
513 514
    let mut new: [T] = [];
    let mut first = true;
515 516 517 518 519 520 521
    for inner: [T] in v {
        if first { first = false; } else { push(new, sep); }
        new += inner;
    }
    ret new;
}

522 523 524 525 526
/*
Function: foldl

Reduce a vector from left to right
*/
N
Niko Matsakis 已提交
527
fn foldl<T: copy, U>(z: T, v: [const U], p: fn(T, U) -> T) -> T {
528
    let mut accum = z;
529 530 531 532 533 534 535 536 537 538 539
    iter(v) { |elt|
        accum = p(accum, elt);
    }
    ret accum;
}

/*
Function: foldr

Reduce a vector from right to left
*/
N
Niko Matsakis 已提交
540
fn foldr<T, U: copy>(v: [const T], z: U, p: fn(T, U) -> U) -> U {
541
    let mut accum = z;
542 543 544 545 546 547 548 549 550 551 552 553 554
    riter(v) { |elt|
        accum = p(elt, accum);
    }
    ret accum;
}

/*
Function: any

Return true if a predicate matches any elements

If the vector contains no elements then false is returned.
*/
N
Niko Matsakis 已提交
555
fn any<T>(v: [T], f: fn(T) -> bool) -> bool {
556 557 558 559
    for elem: T in v { if f(elem) { ret true; } }
    ret false;
}

560 561 562 563 564 565 566
/*
Function: any2

Return true if a predicate matches any elements in both vectors.

If the vectors contains no elements then false is returned.
*/
567
fn any2<T, U>(v0: [const T], v1: [U], f: fn(T, U) -> bool) -> bool {
568 569
    let v0_len = len(v0);
    let v1_len = len(v1);
570
    let mut i = 0u;
571 572 573 574 575 576 577
    while i < v0_len && i < v1_len {
        if f(v0[i], v1[i]) { ret true; };
        i += 1u;
    }
    ret false;
}

578 579 580 581 582 583 584
/*
Function: all

Return true if a predicate matches all elements

If the vector contains no elements then true is returned.
*/
N
Niko Matsakis 已提交
585
fn all<T>(v: [T], f: fn(T) -> bool) -> bool {
586 587 588 589
    for elem: T in v { if !f(elem) { ret false; } }
    ret true;
}

590 591 592 593 594 595 596
/*
Function: all2

Return true if a predicate matches all elements in both vectors.

If the vectors are not the same size then false is returned.
*/
597
fn all2<T, U>(v0: [const T], v1: [const U], f: fn(T, U) -> bool) -> bool {
598 599
    let v0_len = len(v0);
    if v0_len != len(v1) { ret false; }
600
    let mut i = 0u;
601 602 603 604
    while i < v0_len { if !f(v0[i], v1[i]) { ret false; }; i += 1u; }
    ret true;
}

605
/*
606
Function: contains
607 608 609

Return true if a vector contains an element with the given value
*/
610
fn contains<T>(v: [const T], x: T) -> bool {
611 612 613 614 615 616 617 618 619
    for elt: T in v { if x == elt { ret true; } }
    ret false;
}

/*
Function: count

Returns the number of elements that are equal to a given value
*/
620
fn count<T>(v: [const T], x: T) -> uint {
621
    let mut cnt = 0u;
622 623 624 625 626 627 628
    for elt: T in v { if x == elt { cnt += 1u; } }
    ret cnt;
}

/*
Function: find

629
Search for the first element that matches a given predicate
630 631 632 633 634

Apply function `f` to each element of `v`, starting from the first.
When function `f` returns true then an option containing the element
is returned. If `f` matches no elements then none is returned.
*/
635
fn find<T: copy>(v: [const T], f: fn(T) -> bool) -> option<T> {
636
    find_from(v, 0u, len(v), f)
637 638 639
}

/*
640 641 642 643 644 645 646 647
Function: find_from

Search for the first element that matches a given predicate within a range

Apply function `f` to each element of `v` within the range [`start`, `end`).
When function `f` returns true then an option containing the element
is returned. If `f` matches no elements then none is returned.
*/
648 649
fn find_from<T: copy>(v: [const T], start: uint, end: uint,
                      f: fn(T) -> bool) -> option<T> {
650 651 652 653 654 655 656 657 658 659 660 661
    option::map(position_from(v, start, end, f)) { |i| v[i] }
}

/*
Function: rfind

Search for the last element that matches a given predicate

Apply function `f` to each element of `v` in reverse order. When function `f`
returns true then an option containing the element is returned. If `f`
matches no elements then none is returned.
*/
662
fn rfind<T: copy>(v: [const T], f: fn(T) -> bool) -> option<T> {
663 664 665 666 667 668 669 670 671 672 673 674
    rfind_from(v, 0u, len(v), f)
}

/*
Function: rfind_from

Search for the last element that matches a given predicate within a range

Apply function `f` to each element of `v` in reverse order within the range
[`start`, `end`). When function `f` returns true then an option containing
the element is returned. If `f` matches no elements then none is returned.
*/
675 676
fn rfind_from<T: copy>(v: [const T], start: uint, end: uint,
                       f: fn(T) -> bool) -> option<T> {
677
    option::map(rposition_from(v, start, end, f)) { |i| v[i] }
678 679 680
}

/*
681
Function: position_elt
682 683 684 685 686 687 688 689

Find the first index containing a matching value

Returns:

option::some(uint) - The first index containing a matching value
option::none - No elements matched
*/
690
fn position_elt<T>(v: [const T], x: T) -> option<uint> {
691
    position(v) { |y| x == y }
692 693 694
}

/*
695
Function: position
696

697 698 699 700 701
Find the first index matching some predicate

Apply function `f` to each element of `v`.  When function `f` returns true
then an option containing the index is returned. If `f` matches no elements
then none is returned.
702
*/
703
fn position<T>(v: [const T], f: fn(T) -> bool) -> option<uint> {
704 705 706 707 708 709 710 711 712 713 714 715
    position_from(v, 0u, len(v), f)
}

/*
Function: position_from

Find the first index matching some predicate within a range

Apply function `f` to each element of `v` between the range [`start`, `end`).
When function `f` returns true then an option containing the index is
returned. If `f` matches no elements then none is returned.
*/
716 717
fn position_from<T>(v: [const T], start: uint, end: uint,
                    f: fn(T) -> bool) -> option<uint> {
718 719
    assert start <= end;
    assert end <= len(v);
720
    let mut i = start;
721
    while i < end { if f(v[i]) { ret some::<uint>(i); } i += 1u; }
722 723 724 725
    ret none;
}

/*
726 727 728 729 730 731 732 733 734
Function: rposition_elt

Find the last index containing a matching value

Returns:

option::some(uint) - The last index containing a matching value
option::none - No elements matched
*/
735
fn rposition_elt<T>(v: [const T], x: T) -> option<uint> {
736 737 738 739 740 741 742
    rposition(v) { |y| x == y }
}

/*
Function: rposition

Find the last index matching some predicate
743

744 745 746
Apply function `f` to each element of `v` in reverse order.  When function
`f` returns true then an option containing the index is returned. If `f`
matches no elements then none is returned.
747
*/
748
fn rposition<T>(v: [const T], f: fn(T) -> bool) -> option<uint> {
749 750 751 752 753 754 755 756 757 758 759 760
    rposition_from(v, 0u, len(v), f)
}

/*
Function: rposition_from

Find the last index matching some predicate within a range

Apply function `f` to each element of `v` in reverse order between the range
[`start`, `end`). When function `f` returns true then an option containing
the index is returned. If `f` matches no elements then none is returned.
*/
761 762
fn rposition_from<T>(v: [const T], start: uint, end: uint,
                     f: fn(T) -> bool) -> option<uint> {
763 764
    assert start <= end;
    assert end <= len(v);
765
    let mut i = end;
766 767 768 769
    while i > start {
        if f(v[i - 1u]) { ret some::<uint>(i - 1u); }
        i -= 1u;
    }
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    ret none;
}

// FIXME: if issue #586 gets implemented, could have a postcondition
// saying the two result lists have the same length -- or, could
// return a nominal record with a constraint saying that, instead of
// returning a tuple (contingent on issue #869)
/*
Function: unzip

Convert a vector of pairs into a pair of vectors

Returns a tuple containing two vectors where the i-th element of the first
vector contains the first element of the i-th tuple of the input vector,
and the i-th element of the second vector contains the second element
of the i-th tuple of the input vector.
*/
787
fn unzip<T: copy, U: copy>(v: [const (T, U)]) -> ([T], [U]) {
788
    let mut as = [], bs = [];
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    for (a, b) in v { as += [a]; bs += [b]; }
    ret (as, bs);
}

/*
Function: zip

Convert two vectors to a vector of pairs

Returns a vector of tuples, where the i-th tuple contains contains the
i-th elements from each of the input vectors.

Preconditions:

<same_length> (v, u)
*/
805
fn zip<T: copy, U: copy>(v: [const T], u: [const U]) -> [(T, U)] {
806 807 808
    let mut zipped = [];
    let sz = len(v);
    let mut i = 0u;
809
    assert sz == len(u);
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
    while i < sz { zipped += [(v[i], u[i])]; i += 1u; }
    ret zipped;
}

/*
Function: swap

Swaps two elements in a vector

Parameters:
v - The input vector
a - The index of the first element
b - The index of the second element
*/
fn swap<T>(v: [mutable T], a: uint, b: uint) {
    v[a] <-> v[b];
}

/*
Function: reverse

Reverse the order of elements in a vector, in place
*/
fn reverse<T>(v: [mutable T]) {
834
    let mut i: uint = 0u;
835 836 837 838 839 840 841 842 843 844
    let ln = len::<T>(v);
    while i < ln / 2u { v[i] <-> v[ln - i - 1u]; i += 1u; }
}


/*
Function: reversed

Returns a vector with the order of elements reversed
*/
845
fn reversed<T: copy>(v: [const T]) -> [T] {
846 847
    let mut rs: [T] = [];
    let mut i = len::<T>(v);
848 849 850 851 852 853 854 855 856 857 858 859
    if i == 0u { ret rs; } else { i -= 1u; }
    while i != 0u { rs += [v[i]]; i -= 1u; }
    rs += [v[0]];
    ret rs;
}

// FIXME: Seems like this should take char params. Maybe belongs in char
/*
Function: enum_chars

Returns a vector containing a range of chars
*/
860 861
fn enum_chars(start: u8, end: u8) -> [char] {
    assert start < end;
862 863
    let mut i = start;
    let mut r = [];
864 865 866 867 868 869 870 871 872 873
    while i <= end { r += [i as char]; i += 1u as u8; }
    ret r;
}

// FIXME: Probably belongs in uint. Compare to uint::range
/*
Function: enum_uints

Returns a vector containing a range of uints
*/
874 875
fn enum_uints(start: uint, end: uint) -> [uint] {
    assert start < end;
876 877
    let mut i = start;
    let mut r = [];
878 879 880 881 882 883 884 885 886 887 888 889 890
    while i <= end { r += [i]; i += 1u; }
    ret r;
}

/*
Function: iter

Iterates over a vector

Iterates over vector `v` and, for each element, calls function `f` with the
element's value.

*/
891
#[inline(always)]
N
Niko Matsakis 已提交
892
fn iter<T>(v: [const T], f: fn(T)) {
893 894 895 896 897 898 899 900 901
    unsafe {
        let mut n = vec::len(v);
        let mut p = unsafe::to_ptr(v);
        while n > 0u {
            f(*p);
            p = ptr::offset(p, 1u);
            n -= 1u;
        }
    }
902 903
}

904 905 906 907 908 909
/*
Function: iter2

Iterates over two vectors in parallel

*/
910
#[inline]
911
fn iter2<U, T>(v: [ U], v2: [const T], f: fn(U, T)) {
912
    let mut i = 0;
913 914 915
    for elt in v { f(elt, v2[i]); i += 1; }
}

916
/*
917
Function: iteri
918 919 920 921 922 923

Iterates over a vector's elements and indexes

Iterates over vector `v` and, for each element, calls function `f` with the
element's value and index.
*/
924
#[inline(always)]
N
Niko Matsakis 已提交
925
fn iteri<T>(v: [const T], f: fn(uint, T)) {
926 927
    let mut i = 0u;
    let l = len(v);
928 929 930 931 932 933 934 935 936 937 938 939
    while i < l { f(i, v[i]); i += 1u; }
}

/*
Function: riter

Iterates over a vector in reverse

Iterates over vector `v` and, for each element, calls function `f` with the
element's value.

*/
N
Niko Matsakis 已提交
940
fn riter<T>(v: [const T], f: fn(T)) {
941
    riteri(v) { |_i, v| f(v) }
942 943 944
}

/*
945
Function: riteri
946 947 948 949 950 951

Iterates over a vector's elements and indexes in reverse

Iterates over vector `v` and, for each element, calls function `f` with the
element's value and index.
*/
N
Niko Matsakis 已提交
952
fn riteri<T>(v: [const T], f: fn(uint, T)) {
953
    let mut i = len(v);
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
    while 0u < i {
        i -= 1u;
        f(i, v[i]);
    };
}

/*
Function: permute

Iterate over all permutations of vector `v`.  Permutations are produced in
lexicographic order with respect to the order of elements in `v` (so if `v`
is sorted then the permutations are lexicographically sorted).

The total number of permutations produced is `len(v)!`.  If `v` contains
repeated elements, then some permutations are repeated.
*/
970
fn permute<T: copy>(v: [T], put: fn([T])) {
971 972 973 974
  let ln = len(v);
  if ln == 0u {
    put([]);
  } else {
975
    let mut i = 0u;
976 977 978 979 980 981 982 983 984
    while i < ln {
      let elt = v[i];
      let rest = slice(v, 0u, i) + slice(v, i+1u, ln);
      permute(rest) {|permutation| put([elt] + permutation)}
      i += 1u;
    }
  }
}

985
fn windowed <TT: copy> (nn: uint, xx: [const TT]) -> [[TT]] {
986
   let mut ww = [];
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

   assert 1u <= nn;

   vec::iteri (xx, {|ii, _x|
      let len = vec::len(xx);

      if ii+nn <= len {
         let w = vec::slice ( xx, ii, ii+nn );
         vec::push (ww, w);
      }
   });

   ret ww;
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/*
Function: as_buf

Work with the buffer of a vector. Allows for unsafe manipulation
of vector contents, which is useful for native interop.

*/
fn as_buf<E,T>(v: [const E], f: fn(*E) -> T) -> T unsafe {
    let buf = unsafe::to_ptr(v); f(buf)
}

1013 1014 1015 1016
fn as_mut_buf<E,T>(v: [mutable E], f: fn(*mutable E) -> T) -> T unsafe {
    let buf = unsafe::to_ptr(v) as *mutable E; f(buf)
}

1017
impl vec_len<T> for [T] {
1018
    #[inline(always)]
1019 1020
    fn len() -> uint { len(self) }
}
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
Module: unsafe
*/
mod unsafe {
    type vec_repr = {mutable fill: uint, mutable alloc: uint, data: u8};

    /*
    Function: from_buf

    Constructs a vector from an unsafe pointer to a buffer

    Parameters:

    ptr - An unsafe pointer to a buffer of `T`
    elts - The number of elements in the buffer
    */
1038
    #[inline(always)]
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    unsafe fn from_buf<T>(ptr: *T, elts: uint) -> [T] {
        ret rustrt::vec_from_buf_shared(sys::get_type_desc::<T>(),
                                        ptr, elts);
    }

    /*
    Function: set_len

    Sets the length of a vector

    This well explicitly set the size of the vector, without actually
    modifing its buffers, so it is up to the caller to ensure that
    the vector is actually the specified size.
    */
1053
    #[inline(always)]
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
    unsafe fn set_len<T>(&v: [const T], new_len: uint) {
        let repr: **vec_repr = ::unsafe::reinterpret_cast(addr_of(v));
        (**repr).fill = new_len * sys::size_of::<T>();
    }

    /*
    Function: to_ptr

    Returns an unsafe pointer to the vector's buffer

    The caller must ensure that the vector outlives the pointer this
    function returns, or else it will end up pointing to garbage.

    Modifying the vector may cause its buffer to be reallocated, which
    would also make any pointers to it invalid.
    */
1070
    #[inline(always)]
1071 1072 1073 1074 1075 1076
    unsafe fn to_ptr<T>(v: [const T]) -> *T {
        let repr: **vec_repr = ::unsafe::reinterpret_cast(addr_of(v));
        ret ::unsafe::reinterpret_cast(addr_of((**repr).data));
    }
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/*
Module: u8
*/
mod u8 {
    export cmp;
    export lt, le, eq, ne, ge, gt;
    export hash;

    /*
    Function cmp

    Bytewise string comparison
    */
    pure fn cmp(&&a: [u8], &&b: [u8]) -> int unsafe {
        let a_len = len(a);
        let b_len = len(b);
        let n = math::min(a_len, b_len) as ctypes::size_t;
1094 1095
        let r = libc::memcmp(unsafe::to_ptr(a) as *libc::c_void,
                             unsafe::to_ptr(b) as *libc::c_void, n) as int;
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

        if r != 0 { r } else {
            if a_len == b_len {
                0
            } else if a_len < b_len {
                -1
            } else {
                1
            }
        }
    }

    /*
    Function: lt

    Bytewise less than or equal
    */
    pure fn lt(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) < 0 }

    /*
    Function: le

    Bytewise less than or equal
    */
    pure fn le(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) <= 0 }

    /*
    Function: eq

    Bytewise equality
    */
    pure fn eq(&&a: [u8], &&b: [u8]) -> bool unsafe { cmp(a, b) == 0 }

    /*
    Function: ne

    Bytewise inequality
    */
    pure fn ne(&&a: [u8], &&b: [u8]) -> bool unsafe { cmp(a, b) != 0 }

    /*
    Function: ge

    Bytewise greater than or equal
    */
    pure fn ge(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) >= 0 }

    /*
    Function: gt

    Bytewise greater than
    */
    pure fn gt(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) > 0 }

    /*
    Function: hash

    String hash function
    */
    fn hash(&&s: [u8]) -> uint {
        // djb hash.
        // FIXME: replace with murmur.

1159
        let mut u: uint = 5381u;
1160 1161 1162 1163 1164
        vec::iter(s, { |c| u *= 33u; u += c as uint; });
        ret u;
    }
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
#[cfg(test)]
mod tests {

    fn square(n: uint) -> uint { ret n * n; }

    fn square_ref(&&n: uint) -> uint { ret n * n; }

    pure fn is_three(&&n: uint) -> bool { ret n == 3u; }

    pure fn is_odd(&&n: uint) -> bool { ret n % 2u == 1u; }

    pure fn is_equal(&&x: uint, &&y:uint) -> bool { ret x == y; }

1178
    fn square_if_odd(&&n: uint) -> option<uint> {
1179 1180 1181 1182 1183 1184 1185 1186 1187
        ret if n % 2u == 1u { some(n * n) } else { none };
    }

    fn add(&&x: uint, &&y: uint) -> uint { ret x + y; }

    #[test]
    fn test_unsafe_ptrs() unsafe {
        // Test on-stack copy-from-buf.
        let a = [1, 2, 3];
1188
        let ptr = unsafe::to_ptr(a);
1189 1190 1191 1192 1193 1194 1195 1196
        let b = unsafe::from_buf(ptr, 3u);
        assert (len(b) == 3u);
        assert (b[0] == 1);
        assert (b[1] == 2);
        assert (b[2] == 3);

        // Test on-heap copy-from-buf.
        let c = [1, 2, 3, 4, 5];
1197
        ptr = unsafe::to_ptr(c);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
        let d = unsafe::from_buf(ptr, 5u);
        assert (len(d) == 5u);
        assert (d[0] == 1);
        assert (d[1] == 2);
        assert (d[2] == 3);
        assert (d[3] == 4);
        assert (d[4] == 5);
    }

    #[test]
    fn test_init_fn() {
        // Test on-stack init_fn.
1210
        let v = init_fn(3u, square);
1211 1212 1213 1214 1215 1216
        assert (len(v) == 3u);
        assert (v[0] == 0u);
        assert (v[1] == 1u);
        assert (v[2] == 4u);

        // Test on-heap init_fn.
1217
        v = init_fn(5u, square);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
        assert (len(v) == 5u);
        assert (v[0] == 0u);
        assert (v[1] == 1u);
        assert (v[2] == 4u);
        assert (v[3] == 9u);
        assert (v[4] == 16u);
    }

    #[test]
    fn test_init_elt() {
        // Test on-stack init_elt.
1229
        let v = init_elt(2u, 10u);
1230 1231 1232 1233 1234
        assert (len(v) == 2u);
        assert (v[0] == 10u);
        assert (v[1] == 10u);

        // Test on-heap init_elt.
1235
        v = init_elt(6u, 20u);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
        assert (v[0] == 20u);
        assert (v[1] == 20u);
        assert (v[2] == 20u);
        assert (v[3] == 20u);
        assert (v[4] == 20u);
        assert (v[5] == 20u);
    }

    #[test]
    fn test_is_empty() {
        assert (is_empty::<int>([]));
        assert (!is_empty([0]));
    }

    #[test]
    fn test_is_not_empty() {
        assert (is_not_empty([0]));
        assert (!is_not_empty::<int>([]));
    }

    #[test]
    fn test_head() {
        let a = [11, 12];
        assert (head(a) == 11);
    }

    #[test]
    fn test_tail() {
        let a = [11];
        assert (tail(a) == []);

        a = [11, 12];
        assert (tail(a) == [12]);
    }

    #[test]
    fn test_last() {
        let n = last([]);
        assert (n == none);
        n = last([1, 2, 3]);
        assert (n == some(3));
        n = last([1, 2, 3, 4, 5]);
        assert (n == some(5));
    }

    #[test]
    fn test_slice() {
        // Test on-stack -> on-stack slice.
        let v = slice([1, 2, 3], 1u, 3u);
        assert (len(v) == 2u);
        assert (v[0] == 2);
        assert (v[1] == 3);

        // Test on-heap -> on-stack slice.
        v = slice([1, 2, 3, 4, 5], 0u, 3u);
        assert (len(v) == 3u);
        assert (v[0] == 1);
        assert (v[1] == 2);
        assert (v[2] == 3);

        // Test on-heap -> on-heap slice.
        v = slice([1, 2, 3, 4, 5, 6], 1u, 6u);
        assert (len(v) == 5u);
        assert (v[0] == 2);
        assert (v[1] == 3);
        assert (v[2] == 4);
        assert (v[3] == 5);
        assert (v[4] == 6);
    }

    #[test]
    fn test_pop() {
        // Test on-stack pop.
        let v = [1, 2, 3];
        let e = pop(v);
        assert (len(v) == 2u);
        assert (v[0] == 1);
        assert (v[1] == 2);
        assert (e == 3);

        // Test on-heap pop.
        v = [1, 2, 3, 4, 5];
        e = pop(v);
        assert (len(v) == 4u);
        assert (v[0] == 1);
        assert (v[1] == 2);
        assert (v[2] == 3);
        assert (v[3] == 4);
        assert (e == 5);
    }

    #[test]
    fn test_push() {
        // Test on-stack push().
        let v = [];
        push(v, 1);
        assert (len(v) == 1u);
        assert (v[0] == 1);

        // Test on-heap push().
        push(v, 2);
        assert (len(v) == 2u);
        assert (v[0] == 1);
        assert (v[1] == 2);
    }

    #[test]
    fn test_grow() {
        // Test on-stack grow().
        let v = [];
        grow(v, 2u, 1);
        assert (len(v) == 2u);
        assert (v[0] == 1);
        assert (v[1] == 1);

        // Test on-heap grow().
        grow(v, 3u, 2);
        assert (len(v) == 5u);
        assert (v[0] == 1);
        assert (v[1] == 1);
        assert (v[2] == 2);
        assert (v[3] == 2);
        assert (v[4] == 2);
    }

    #[test]
    fn test_grow_fn() {
        let v = [];
        grow_fn(v, 3u, square);
        assert (len(v) == 3u);
        assert (v[0] == 0u);
        assert (v[1] == 1u);
        assert (v[2] == 4u);
    }

    #[test]
    fn test_grow_set() {
        let v = [mutable 1, 2, 3];
        grow_set(v, 4u, 4, 5);
        assert (len(v) == 5u);
        assert (v[0] == 1);
        assert (v[1] == 2);
        assert (v[2] == 3);
        assert (v[3] == 4);
        assert (v[4] == 5);
    }

    #[test]
    fn test_map() {
        // Test on-stack map.
        let v = [1u, 2u, 3u];
        let w = map(v, square_ref);
        assert (len(w) == 3u);
        assert (w[0] == 1u);
        assert (w[1] == 4u);
        assert (w[2] == 9u);

        // Test on-heap map.
        v = [1u, 2u, 3u, 4u, 5u];
        w = map(v, square_ref);
        assert (len(w) == 5u);
        assert (w[0] == 1u);
        assert (w[1] == 4u);
        assert (w[2] == 9u);
        assert (w[3] == 16u);
        assert (w[4] == 25u);
    }

    #[test]
    fn test_map2() {
        fn times(&&x: int, &&y: int) -> int { ret x * y; }
        let f = times;
        let v0 = [1, 2, 3, 4, 5];
        let v1 = [5, 4, 3, 2, 1];
        let u = map2::<int, int, int>(v0, v1, f);
        let i = 0;
        while i < 5 { assert (v0[i] * v1[i] == u[i]); i += 1; }
    }

    #[test]
    fn test_filter_map() {
        // Test on-stack filter-map.
        let v = [1u, 2u, 3u];
        let w = filter_map(v, square_if_odd);
        assert (len(w) == 2u);
        assert (w[0] == 1u);
        assert (w[1] == 9u);

        // Test on-heap filter-map.
        v = [1u, 2u, 3u, 4u, 5u];
        w = filter_map(v, square_if_odd);
        assert (len(w) == 3u);
        assert (w[0] == 1u);
        assert (w[1] == 9u);
        assert (w[2] == 25u);

1432
        fn halve(&&i: int) -> option<int> {
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
            if i % 2 == 0 {
                ret option::some::<int>(i / 2);
            } else { ret option::none::<int>; }
        }
        fn halve_for_sure(&&i: int) -> int { ret i / 2; }
        let all_even: [int] = [0, 2, 8, 6];
        let all_odd1: [int] = [1, 7, 3];
        let all_odd2: [int] = [];
        let mix: [int] = [9, 2, 6, 7, 1, 0, 0, 3];
        let mix_dest: [int] = [1, 3, 0, 0];
        assert (filter_map(all_even, halve) == map(all_even, halve_for_sure));
        assert (filter_map(all_odd1, halve) == []);
        assert (filter_map(all_odd2, halve) == []);
        assert (filter_map(mix, halve) == mix_dest);
    }

    #[test]
    fn test_filter() {
        assert filter([1u, 2u, 3u], is_odd) == [1u, 3u];
        assert filter([1u, 2u, 4u, 8u, 16u], is_three) == [];
    }

    #[test]
    fn test_foldl() {
        // Test on-stack fold.
        let v = [1u, 2u, 3u];
        let sum = foldl(0u, v, add);
        assert (sum == 6u);

        // Test on-heap fold.
        v = [1u, 2u, 3u, 4u, 5u];
        sum = foldl(0u, v, add);
        assert (sum == 15u);
    }

    #[test]
    fn test_foldl2() {
        fn sub(&&a: int, &&b: int) -> int {
            a - b
        }
        let v = [1, 2, 3, 4];
        let sum = foldl(0, v, sub);
        assert sum == -10;
    }

    #[test]
    fn test_foldr() {
        fn sub(&&a: int, &&b: int) -> int {
            a - b
        }
        let v = [1, 2, 3, 4];
        let sum = foldr(v, 0, sub);
        assert sum == -2;
    }

    #[test]
    fn test_iter_empty() {
        let i = 0;
        iter::<int>([], { |_v| i += 1 });
        assert i == 0;
    }

    #[test]
    fn test_iter_nonempty() {
        let i = 0;
        iter([1, 2, 3], { |v| i += v });
        assert i == 6;
    }

    #[test]
    fn test_iteri() {
        let i = 0;
        iteri([1, 2, 3], { |j, v|
            if i == 0 { assert v == 1; }
            assert j + 1u == v as uint;
            i += v;
        });
        assert i == 6;
    }

    #[test]
    fn test_riter_empty() {
        let i = 0;
        riter::<int>([], { |_v| i += 1 });
        assert i == 0;
    }

    #[test]
    fn test_riter_nonempty() {
        let i = 0;
        riter([1, 2, 3], { |v|
            if i == 0 { assert v == 3; }
            i += v
        });
        assert i == 6;
    }

    #[test]
    fn test_riteri() {
        let i = 0;
        riteri([0, 1, 2], { |j, v|
            if i == 0 { assert v == 2; }
            assert j == v as uint;
            i += v;
        });
        assert i == 3;
    }

    #[test]
    fn test_permute() {
        let results: [[int]];

        results = [];
        permute([]) {|v| results += [v]; }
        assert results == [[]];

        results = [];
        permute([7]) {|v| results += [v]; }
        assert results == [[7]];

        results = [];
        permute([1,1]) {|v| results += [v]; }
        assert results == [[1,1],[1,1]];

        results = [];
        permute([5,2,0]) {|v| results += [v]; }
        assert results == [[5,2,0],[5,0,2],[2,5,0],[2,0,5],[0,5,2],[0,2,5]];
    }

    #[test]
    fn test_any_and_all() {
        assert (any([1u, 2u, 3u], is_three));
        assert (!any([0u, 1u, 2u], is_three));
        assert (any([1u, 2u, 3u, 4u, 5u], is_three));
        assert (!any([1u, 2u, 4u, 5u, 6u], is_three));

        assert (all([3u, 3u, 3u], is_three));
        assert (!all([3u, 3u, 2u], is_three));
        assert (all([3u, 3u, 3u, 3u, 3u], is_three));
        assert (!all([3u, 3u, 0u, 1u, 2u], is_three));
    }

    #[test]
    fn test_any2_and_all2() {

        assert (any2([2u, 4u, 6u], [2u, 4u, 6u], is_equal));
        assert (any2([1u, 2u, 3u], [4u, 5u, 3u], is_equal));
        assert (!any2([1u, 2u, 3u], [4u, 5u, 6u], is_equal));
        assert (any2([2u, 4u, 6u], [2u, 4u], is_equal));

        assert (all2([2u, 4u, 6u], [2u, 4u, 6u], is_equal));
        assert (!all2([1u, 2u, 3u], [4u, 5u, 3u], is_equal));
        assert (!all2([1u, 2u, 3u], [4u, 5u, 6u], is_equal));
        assert (!all2([2u, 4u, 6u], [2u, 4u], is_equal));
    }

    #[test]
    fn test_zip_unzip() {
        let v1 = [1, 2, 3];
        let v2 = [4, 5, 6];

        let z1 = zip(v1, v2);

        assert ((1, 4) == z1[0]);
        assert ((2, 5) == z1[1]);
        assert ((3, 6) == z1[2]);

        let (left, right) = unzip(z1);

        assert ((1, 4) == (left[0], right[0]));
        assert ((2, 5) == (left[1], right[1]));
        assert ((3, 6) == (left[2], right[2]));
    }

    #[test]
1608 1609 1610 1611 1612 1613 1614 1615
    fn test_position_elt() {
        assert position_elt([], 1) == none;

        let v1 = [1, 2, 3, 3, 2, 5];
        assert position_elt(v1, 1) == some(0u);
        assert position_elt(v1, 2) == some(1u);
        assert position_elt(v1, 5) == some(5u);
        assert position_elt(v1, 4) == none;
1616 1617 1618
    }

    #[test]
1619
    fn test_position() {
1620 1621
        fn less_than_three(&&i: int) -> bool { ret i < 3; }
        fn is_eighteen(&&i: int) -> bool { ret i == 18; }
1622 1623 1624 1625 1626 1627

        assert position([], less_than_three) == none;

        let v1 = [5, 4, 3, 2, 1];
        assert position(v1, less_than_three) == some(3u);
        assert position(v1, is_eighteen) == none;
1628 1629 1630
    }

    #[test]
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
    fn test_position_from() {
        assert position_from([], 0u, 0u, f) == none;

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
        let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];

        assert position_from(v, 0u, 0u, f) == none;
        assert position_from(v, 0u, 1u, f) == none;
        assert position_from(v, 0u, 2u, f) == some(1u);
        assert position_from(v, 0u, 3u, f) == some(1u);
        assert position_from(v, 0u, 4u, f) == some(1u);

        assert position_from(v, 1u, 1u, f) == none;
        assert position_from(v, 1u, 2u, f) == some(1u);
        assert position_from(v, 1u, 3u, f) == some(1u);
        assert position_from(v, 1u, 4u, f) == some(1u);

        assert position_from(v, 2u, 2u, f) == none;
        assert position_from(v, 2u, 3u, f) == none;
        assert position_from(v, 2u, 4u, f) == some(3u);

        assert position_from(v, 3u, 3u, f) == none;
        assert position_from(v, 3u, 4u, f) == some(3u);

        assert position_from(v, 4u, 4u, f) == none;
    }

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
    #[test]
    fn test_find() {
        assert find([], f) == none;

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
        fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' }
        let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];

        assert find(v, f) == some((1, 'b'));
        assert find(v, g) == none;
    }

    #[test]
    fn test_find_from() {
        assert find_from([], 0u, 0u, f) == none;

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
        let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];

        assert find_from(v, 0u, 0u, f) == none;
        assert find_from(v, 0u, 1u, f) == none;
        assert find_from(v, 0u, 2u, f) == some((1, 'b'));
        assert find_from(v, 0u, 3u, f) == some((1, 'b'));
        assert find_from(v, 0u, 4u, f) == some((1, 'b'));

        assert find_from(v, 1u, 1u, f) == none;
        assert find_from(v, 1u, 2u, f) == some((1, 'b'));
        assert find_from(v, 1u, 3u, f) == some((1, 'b'));
        assert find_from(v, 1u, 4u, f) == some((1, 'b'));

        assert find_from(v, 2u, 2u, f) == none;
        assert find_from(v, 2u, 3u, f) == none;
        assert find_from(v, 2u, 4u, f) == some((3, 'b'));

        assert find_from(v, 3u, 3u, f) == none;
        assert find_from(v, 3u, 4u, f) == some((3, 'b'));

        assert find_from(v, 4u, 4u, f) == none;
    }

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
    #[test]
    fn test_rposition() {
        assert find([], f) == none;

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
        fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' }
        let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];

        assert position(v, f) == some(1u);
        assert position(v, g) == none;
    }

    #[test]
    fn test_rposition_from() {
        assert rposition_from([], 0u, 0u, f) == none;

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
        let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];

        assert rposition_from(v, 0u, 0u, f) == none;
        assert rposition_from(v, 0u, 1u, f) == none;
        assert rposition_from(v, 0u, 2u, f) == some(1u);
        assert rposition_from(v, 0u, 3u, f) == some(1u);
        assert rposition_from(v, 0u, 4u, f) == some(3u);

        assert rposition_from(v, 1u, 1u, f) == none;
        assert rposition_from(v, 1u, 2u, f) == some(1u);
        assert rposition_from(v, 1u, 3u, f) == some(1u);
        assert rposition_from(v, 1u, 4u, f) == some(3u);

        assert rposition_from(v, 2u, 2u, f) == none;
        assert rposition_from(v, 2u, 3u, f) == none;
        assert rposition_from(v, 2u, 4u, f) == some(3u);

        assert rposition_from(v, 3u, 3u, f) == none;
        assert rposition_from(v, 3u, 4u, f) == some(3u);

        assert rposition_from(v, 4u, 4u, f) == none;
    }
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

    #[test]
    fn test_rfind() {
        assert rfind([], f) == none;

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
        fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' }
        let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];

        assert rfind(v, f) == some((3, 'b'));
        assert rfind(v, g) == none;
    }

    #[test]
    fn test_rfind_from() {
        assert rfind_from([], 0u, 0u, f) == none;

        fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
        let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];

        assert rfind_from(v, 0u, 0u, f) == none;
        assert rfind_from(v, 0u, 1u, f) == none;
        assert rfind_from(v, 0u, 2u, f) == some((1, 'b'));
        assert rfind_from(v, 0u, 3u, f) == some((1, 'b'));
        assert rfind_from(v, 0u, 4u, f) == some((3, 'b'));

        assert rfind_from(v, 1u, 1u, f) == none;
        assert rfind_from(v, 1u, 2u, f) == some((1, 'b'));
        assert rfind_from(v, 1u, 3u, f) == some((1, 'b'));
        assert rfind_from(v, 1u, 4u, f) == some((3, 'b'));

        assert rfind_from(v, 2u, 2u, f) == none;
        assert rfind_from(v, 2u, 3u, f) == none;
        assert rfind_from(v, 2u, 4u, f) == some((3, 'b'));

        assert rfind_from(v, 3u, 3u, f) == none;
        assert rfind_from(v, 3u, 4u, f) == some((3, 'b'));

        assert rfind_from(v, 4u, 4u, f) == none;
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
    }

    #[test]
    fn reverse_and_reversed() {
        let v: [mutable int] = [mutable 10, 20];
        assert (v[0] == 10);
        assert (v[1] == 20);
        reverse(v);
        assert (v[0] == 20);
        assert (v[1] == 10);
        let v2 = reversed::<int>([10, 20]);
        assert (v2[0] == 20);
        assert (v2[1] == 10);
        v[0] = 30;
        assert (v2[0] == 20);
        // Make sure they work with 0-length vectors too.

        let v4 = reversed::<int>([]);
        assert (v4 == []);
        let v3: [mutable int] = [mutable];
        reverse::<int>(v3);
    }

    #[test]
    fn reversed_mut() {
        let v2 = reversed::<int>([mutable 10, 20]);
        assert (v2[0] == 20);
        assert (v2[1] == 10);
    }

    #[test]
    fn test_init() {
        let v = init([1, 2, 3]);
        assert v == [1, 2];
    }

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
    #[test]
    fn test_split() {
        fn f(&&x: int) -> bool { x == 3 }

        assert split([], f) == [];
        assert split([1, 2], f) == [[1, 2]];
        assert split([3, 1, 2], f) == [[], [1, 2]];
        assert split([1, 2, 3], f) == [[1, 2], []];
        assert split([1, 2, 3, 4, 3, 5], f) == [[1, 2], [4], [5]];
    }

    #[test]
    fn test_splitn() {
        fn f(&&x: int) -> bool { x == 3 }

        assert splitn([], 1u, f) == [];
        assert splitn([1, 2], 1u, f) == [[1, 2]];
        assert splitn([3, 1, 2], 1u, f) == [[], [1, 2]];
        assert splitn([1, 2, 3], 1u, f) == [[1, 2], []];
        assert splitn([1, 2, 3, 4, 3, 5], 1u, f) == [[1, 2], [4, 3, 5]];
    }

    #[test]
    fn test_rsplit() {
        fn f(&&x: int) -> bool { x == 3 }

        assert rsplit([], f) == [];
        assert rsplit([1, 2], f) == [[1, 2]];
        assert rsplit([1, 2, 3], f) == [[1, 2], []];
        assert rsplit([1, 2, 3, 4, 3, 5], f) == [[1, 2], [4], [5]];
    }

    #[test]
    fn test_rsplitn() {
        fn f(&&x: int) -> bool { x == 3 }

        assert rsplitn([], 1u, f) == [];
        assert rsplitn([1, 2], 1u, f) == [[1, 2]];
        assert rsplitn([1, 2, 3], 1u, f) == [[1, 2], []];
        assert rsplitn([1, 2, 3, 4, 3, 5], 1u, f) == [[1, 2, 3, 4], [5]];
    }

1854
    #[test]
B
Brian Anderson 已提交
1855
    #[should_fail]
1856 1857
    #[ignore(cfg(target_os = "win32"))]
    fn test_init_empty() {
B
Brian Anderson 已提交
1858
        init::<int>([]);
1859 1860 1861 1862 1863 1864 1865
    }

    #[test]
    fn test_concat() {
        assert concat([[1], [2,3]]) == [1, 2, 3];
    }

1866 1867 1868 1869 1870 1871 1872
    #[test]
    fn test_connect() {
        assert connect([], 0) == [];
        assert connect([[1], [2, 3]], 0) == [1, 0, 2, 3];
        assert connect([[1], [2], [3]], 0) == [1, 0, 2, 0, 3];
    }

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
    #[test]
    fn test_windowed () {
        assert [[1u,2u,3u],[2u,3u,4u],[3u,4u,5u],[4u,5u,6u]]
              == windowed (3u, [1u,2u,3u,4u,5u,6u]);

        assert [[1u,2u,3u,4u],[2u,3u,4u,5u],[3u,4u,5u,6u]]
              == windowed (4u, [1u,2u,3u,4u,5u,6u]);

        assert [] == windowed (7u, [1u,2u,3u,4u,5u,6u]);
    }

    #[test]
    #[should_fail]
1886
    #[ignore(cfg(target_os = "win32"))]
1887 1888 1889
    fn test_windowed_() {
        let _x = windowed (0u, [1u,2u,3u,4u,5u,6u]);
    }
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

    #[test]
    fn to_mut_no_copy() unsafe {
        let x = [1, 2, 3];
        let addr = unsafe::to_ptr(x);
        let x_mut = to_mut(x);
        let addr_mut = unsafe::to_ptr(x_mut);
        assert addr == addr_mut;
    }

    #[test]
    fn from_mut_no_copy() unsafe {
        let x = [mut 1, 2, 3];
        let addr = unsafe::to_ptr(x);
        let x_imm = from_mut(x);
        let addr_imm = unsafe::to_ptr(x_imm);
        assert addr == addr_imm;
    }
1908 1909
}

1910 1911 1912 1913 1914 1915 1916
// Local Variables:
// mode: rust;
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: