gup.c 65.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/pgtable.h>
23
#include <asm/tlbflush.h>
24

25 26
#include "internal.h"

27 28 29 30 31
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

32
/**
33 34
 * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
35
 * @npages: number of pages in the @pages array.
36
 * @make_dirty: whether to mark the pages dirty
37 38 39 40 41
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
42 43 44
 * compound page) dirty, if @make_dirty is true, and if the page was previously
 * listed as clean. In any case, releases all pages using put_user_page(),
 * possibly via put_user_pages(), for the non-dirty case.
45 46 47
 *
 * Please see the put_user_page() documentation for details.
 *
48 49 50 51
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
 * set_page_dirty_lock(), put_user_page().
52 53
 *
 */
54 55
void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
			       bool make_dirty)
56
{
57
	unsigned long index;
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */

	if (!make_dirty) {
		put_user_pages(pages, npages);
		return;
	}

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
		if (!PageDirty(page))
			set_page_dirty_lock(page);
		put_user_page(page);
	}
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
}
EXPORT_SYMBOL(put_user_pages_dirty_lock);

/**
 * put_user_pages() - release an array of gup-pinned pages.
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * For each page in the @pages array, release the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 */
void put_user_pages(struct page **pages, unsigned long npages)
{
	unsigned long index;

	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
		put_user_page(pages[index]);
}
EXPORT_SYMBOL(put_user_pages);

122
#ifdef CONFIG_MMU
123 124
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
125
{
126 127 128 129 130 131 132 133 134 135 136 137
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return NULL;
}
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

163 164 165 166 167 168
/*
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
169
	return pte_write(pte) ||
170 171 172
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}

173
static struct page *follow_page_pte(struct vm_area_struct *vma,
174 175
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
176 177 178 179 180
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
181

182
retry:
183
	if (unlikely(pmd_bad(*pmd)))
184
		return no_page_table(vma, flags);
185 186 187 188 189 190 191 192 193 194 195 196

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
197
		if (pte_none(pte))
198 199 200 201 202 203
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
204
		goto retry;
205
	}
206
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
207
		goto no_page;
208
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
209 210 211
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
212 213

	page = vm_normal_page(vma, address, pte);
214 215 216 217 218
	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
		/*
		 * Only return device mapping pages in the FOLL_GET case since
		 * they are only valid while holding the pgmap reference.
		 */
219 220
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
221 222 223 224
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			int ret;

			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
240 241
	}

242 243 244 245 246 247 248 249 250 251 252 253 254
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		int ret;
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

255 256 257 258 259 260
	if (flags & FOLL_GET) {
		if (unlikely(!try_get_page(page))) {
			page = ERR_PTR(-ENOMEM);
			goto out;
		}
	}
261 262 263 264 265 266 267 268 269 270 271
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
272
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
273 274 275 276
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
298
out:
299 300 301 302 303
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
304 305 306 307
		return NULL;
	return no_page_table(vma, flags);
}

308 309
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
310 311
				    unsigned int flags,
				    struct follow_page_context *ctx)
312
{
313
	pmd_t *pmd, pmdval;
314 315 316 317
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

318
	pmd = pmd_offset(pudp, address);
319 320 321 322 323 324
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
325
		return no_page_table(vma, flags);
326
	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
327 328 329 330
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
331
	}
332
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
333
		page = follow_huge_pd(vma, address,
334
				      __hugepd(pmd_val(pmdval)), flags,
335 336 337 338 339
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
340
retry:
341
	if (!pmd_present(pmdval)) {
342 343 344
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
345 346
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
347
			pmd_migration_entry_wait(mm, pmd);
348 349 350 351 352 353 354
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
		 * mmap_sem is held in read mode
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
355 356
		goto retry;
	}
357
	if (pmd_devmap(pmdval)) {
358
		ptl = pmd_lock(mm, pmd);
359
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
360 361 362 363
		spin_unlock(ptl);
		if (page)
			return page;
	}
364
	if (likely(!pmd_trans_huge(pmdval)))
365
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
366

367
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
368 369
		return no_page_table(vma, flags);

370
retry_locked:
371
	ptl = pmd_lock(mm, pmd);
372 373 374 375
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
376 377 378 379 380 381 382
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
383 384
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
385
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
386 387 388 389 390 391 392
	}
	if (flags & FOLL_SPLIT) {
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
393
			split_huge_pmd(vma, pmd, address);
394 395
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
396
		} else {
397 398 399 400
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
401
			spin_unlock(ptl);
402 403 404 405
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
406 407
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
408 409 410
		}

		return ret ? ERR_PTR(ret) :
411
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
412
	}
413 414
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
415
	ctx->page_mask = HPAGE_PMD_NR - 1;
416
	return page;
417 418
}

419 420
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
421 422
				    unsigned int flags,
				    struct follow_page_context *ctx)
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
438 439 440 441 442 443 444 445
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
446 447
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
448
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
449 450 451 452 453 454 455
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

456
	return follow_pmd_mask(vma, address, pud, flags, ctx);
457 458 459 460
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
461 462
				    unsigned int flags,
				    struct follow_page_context *ctx)
463 464
{
	p4d_t *p4d;
465
	struct page *page;
466 467 468 469 470 471 472 473

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

474 475 476 477 478 479 480 481
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
482
	return follow_pud_mask(vma, address, p4d, flags, ctx);
483 484 485 486 487 488 489
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
490 491
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
492 493 494
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
495 496 497 498 499 500
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
501 502 503
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
504
static struct page *follow_page_mask(struct vm_area_struct *vma,
505
			      unsigned long address, unsigned int flags,
506
			      struct follow_page_context *ctx)
507 508 509 510 511
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

512
	ctx->page_mask = 0;
513 514 515 516 517 518 519 520 521 522 523 524 525

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
		BUG_ON(flags & FOLL_GET);
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

526 527 528 529 530 531
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
532 533 534 535 536 537 538 539
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
540

541 542 543 544 545 546 547 548 549 550 551 552 553
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
554 555
}

556 557 558 559 560
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
561
	p4d_t *p4d;
562 563 564 565 566 567 568 569 570 571 572 573
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
574 575
	if (pgd_none(*pgd))
		return -EFAULT;
576
	p4d = p4d_offset(pgd, address);
577 578
	if (p4d_none(*p4d))
		return -EFAULT;
579
	pud = pud_offset(p4d, address);
580 581
	if (pud_none(*pud))
		return -EFAULT;
582
	pmd = pmd_offset(pud, address);
583
	if (!pmd_present(*pmd))
584 585 586 587 588 589 590 591 592 593 594 595 596 597
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
598 599 600 601
	if (unlikely(!try_get_page(*page))) {
		ret = -ENOMEM;
		goto unmap;
	}
602 603 604 605 606 607 608
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

609 610 611 612 613
/*
 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 */
614 615 616 617
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
		unsigned long address, unsigned int *flags, int *nonblocking)
{
	unsigned int fault_flags = 0;
618
	vm_fault_t ret;
619

E
Eric B Munson 已提交
620 621 622
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
623 624
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
625 626
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
627 628 629 630
	if (nonblocking)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
631 632 633 634
	if (*flags & FOLL_TRIED) {
		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
		fault_flags |= FAULT_FLAG_TRIED;
	}
635

636
	ret = handle_mm_fault(vma, address, fault_flags);
637
	if (ret & VM_FAULT_ERROR) {
638 639 640 641
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
642 643 644 645 646 647 648 649 650 651 652
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
653
		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
654 655 656 657 658 659 660 661 662 663 664 665 666 667
			*nonblocking = 0;
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
668
		*flags |= FOLL_COW;
669 670 671
	return 0;
}

672 673 674
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
675 676
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
677 678 679 680

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

681 682 683
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

684
	if (write) {
685 686 687 688 689 690 691 692 693 694 695 696
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
697
			if (!is_cow_mapping(vm_flags))
698 699 700 701 702 703 704 705 706 707 708 709
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
710 711 712 713 714
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
715
		return -EFAULT;
716 717 718
	return 0;
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
739
 * Must be called with mmap_sem held.  It may be released.  See below.
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
762 763 764 765 766 767 768 769
 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 * this case.
 *
 * A caller using such a combination of @nonblocking and @gup_flags
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
770 771 772 773 774
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
L
Lorenzo Stoakes 已提交
775
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
776 777 778 779
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *nonblocking)
{
780
	long ret = 0, i = 0;
781
	struct vm_area_struct *vma = NULL;
782
	struct follow_page_context ctx = { NULL };
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	if (!nr_pages)
		return 0;

	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
798 799 800 801 802 803 804 805 806 807 808 809
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
810
					goto out;
811
				ctx.page_mask = 0;
812 813
				goto next_page;
			}
814

815 816 817 818
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
819 820 821
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
822
						gup_flags, nonblocking);
823
				continue;
824
			}
825 826 827 828 829 830
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
831
		if (fatal_signal_pending(current)) {
832 833 834
			ret = -ERESTARTSYS;
			goto out;
		}
835
		cond_resched();
836 837

		page = follow_page_mask(vma, start, foll_flags, &ctx);
838 839 840 841 842 843
		if (!page) {
			ret = faultin_page(tsk, vma, start, &foll_flags,
					nonblocking);
			switch (ret) {
			case 0:
				goto retry;
844 845 846
			case -EBUSY:
				ret = 0;
				/* FALLTHRU */
847 848 849
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
850
				goto out;
851 852
			case -ENOENT:
				goto next_page;
853
			}
854
			BUG();
855 856 857 858 859 860 861
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
862 863
			ret = PTR_ERR(page);
			goto out;
864
		}
865 866 867 868
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
869
			ctx.page_mask = 0;
870 871
		}
next_page:
872 873
		if (vmas) {
			vmas[i] = vma;
874
			ctx.page_mask = 0;
875
		}
876
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
877 878 879 880 881
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
882
	} while (nr_pages);
883 884 885 886
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
887 888
}

889 890
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
891
{
892 893
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
894
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
895 896 897 898

	if (!(vm_flags & vma->vm_flags))
		return false;

899 900
	/*
	 * The architecture might have a hardware protection
901
	 * mechanism other than read/write that can deny access.
902 903 904
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
905
	 */
906
	if (!arch_vma_access_permitted(vma, write, false, foreign))
907 908
		return false;

909 910 911
	return true;
}

912 913 914 915 916 917 918
/*
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
919 920
 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
 *		does not allow retry
921 922 923 924 925 926 927 928 929 930 931
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
932
 * get_user_pages() only guarantees to update these in the struct page.
933 934 935 936 937 938
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
939 940
 * This function will not return with an unlocked mmap_sem. So it has not the
 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
941 942
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
943 944
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
945 946
{
	struct vm_area_struct *vma;
947
	vm_fault_t ret, major = 0;
948 949 950

	if (unlocked)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
951

952
retry:
953 954 955 956
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

957
	if (!vma_permits_fault(vma, fault_flags))
958 959
		return -EFAULT;

960
	ret = handle_mm_fault(vma, address, fault_flags);
961
	major |= ret & VM_FAULT_MAJOR;
962
	if (ret & VM_FAULT_ERROR) {
963 964 965 966
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
967 968
		BUG();
	}
969 970 971 972 973 974 975 976 977 978 979

	if (ret & VM_FAULT_RETRY) {
		down_read(&mm->mmap_sem);
		if (!(fault_flags & FAULT_FLAG_TRIED)) {
			*unlocked = true;
			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			fault_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}

980
	if (tsk) {
981
		if (major)
982 983 984 985 986 987
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}
988
EXPORT_SYMBOL_GPL(fixup_user_fault);
989

990 991 992 993 994 995
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
						struct mm_struct *mm,
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
996
						int *locked,
997
						unsigned int flags)
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

	if (pages)
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1034 1035 1036 1037
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1038 1039 1040 1041
			if (!pages_done)
				pages_done = ret;
			break;
		}
1042 1043 1044 1045 1046 1047
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		start += ret << PAGE_SHIFT;

		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
		 * without FAULT_FLAG_ALLOW_RETRY but with
		 * FAULT_FLAG_TRIED.
		 */
		*locked = 1;
		lock_dropped = true;
		down_read(&mm->mmap_sem);
		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
				       pages, NULL, NULL);
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1070 1071
		if (likely(pages))
			pages++;
1072 1073
		start += PAGE_SIZE;
	}
1074
	if (lock_dropped && *locked) {
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
		up_read(&mm->mmap_sem);
		*locked = 0;
	}
	return pages_done;
}

1085
/*
1086
 * get_user_pages_remote() - pin user pages in memory
1087 1088 1089 1090 1091
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
1092
 * @gup_flags:	flags modifying lookup behaviour
1093 1094 1095 1096 1097
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
1098 1099 1100
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
 * get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
1124 1125 1126
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
1127 1128 1129 1130 1131 1132 1133 1134
 *
 * get_user_pages is typically used for fewer-copy IO operations, to get a
 * handle on the memory by some means other than accesses via the user virtual
 * addresses. The pages may be submitted for DMA to devices or accessed via
 * their kernel linear mapping (via the kmap APIs). Care should be taken to
 * use the correct cache flushing APIs.
 *
 * See also get_user_pages_fast, for performance critical applications.
1135 1136 1137 1138 1139
 *
 * get_user_pages should be phased out in favor of
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
 * should use get_user_pages because it cannot pass
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1140
 */
1141 1142
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, unsigned long nr_pages,
1143
		unsigned int gup_flags, struct page **pages,
1144
		struct vm_area_struct **vmas, int *locked)
1145
{
1146 1147 1148 1149 1150 1151 1152 1153 1154
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

1155
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1156
				       locked,
1157
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1158 1159 1160
}
EXPORT_SYMBOL(get_user_pages_remote);

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
 * @nonblocking:
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
 * return 0 on success, negative error code on error.
 *
 * vma->vm_mm->mmap_sem must be held.
 *
 * If @nonblocking is NULL, it may be held for read or write and will
 * be unperturbed.
 *
 * If @nonblocking is non-NULL, it must held for read only and may be
 * released.  If it's released, *@nonblocking will be set to 0.
 */
long populate_vma_page_range(struct vm_area_struct *vma,
		unsigned long start, unsigned long end, int *nonblocking)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);

	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
				NULL, NULL, nonblocking);
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
 * mmap_sem must not be held.
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
			down_read(&mm->mmap_sem);
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;	/* 0 or negative error code */
}

/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
 * Called without mmap_sem, but after all other threads have been killed.
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
	struct vm_area_struct *vma;
	struct page *page;

	if (__get_user_pages(current, current->mm, addr, 1,
			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
			     NULL) < 1)
		return NULL;
	flush_cache_page(vma, addr, page_to_pfn(page));
	return page;
}
#endif /* CONFIG_ELF_CORE */
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
#else /* CONFIG_MMU */
static long __get_user_pages_locked(struct task_struct *tsk,
		struct mm_struct *mm, unsigned long start,
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
	int i;

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
			pages[i] = virt_to_page(start);
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
{
	long i;
	struct vm_area_struct *vma_prev = NULL;

	for (i = 0; i < nr_pages; i++) {
		struct vm_area_struct *vma = vmas[i];

		if (vma == vma_prev)
			continue;

		vma_prev = vma;

		if (vma_is_fsdax(vma))
			return true;
	}
	return false;
}

#ifdef CONFIG_CMA
static struct page *new_non_cma_page(struct page *page, unsigned long private)
{
	/*
	 * We want to make sure we allocate the new page from the same node
	 * as the source page.
	 */
	int nid = page_to_nid(page);
	/*
	 * Trying to allocate a page for migration. Ignore allocation
	 * failure warnings. We don't force __GFP_THISNODE here because
	 * this node here is the node where we have CMA reservation and
	 * in some case these nodes will have really less non movable
	 * allocation memory.
	 */
	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;

	if (PageHighMem(page))
		gfp_mask |= __GFP_HIGHMEM;

#ifdef CONFIG_HUGETLB_PAGE
	if (PageHuge(page)) {
		struct hstate *h = page_hstate(page);
		/*
		 * We don't want to dequeue from the pool because pool pages will
		 * mostly be from the CMA region.
		 */
		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
	}
#endif
	if (PageTransHuge(page)) {
		struct page *thp;
		/*
		 * ignore allocation failure warnings
		 */
		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;

		/*
		 * Remove the movable mask so that we don't allocate from
		 * CMA area again.
		 */
		thp_gfpmask &= ~__GFP_MOVABLE;
		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
		if (!thp)
			return NULL;
		prep_transhuge_page(thp);
		return thp;
	}

	return __alloc_pages_node(nid, gfp_mask, 0);
}

1425 1426 1427 1428
static long check_and_migrate_cma_pages(struct task_struct *tsk,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long nr_pages,
1429
					struct page **pages,
1430 1431
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1432
{
1433 1434
	unsigned long i;
	unsigned long step;
1435 1436 1437 1438 1439
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);

check_again:
1440 1441 1442 1443 1444 1445 1446 1447
	for (i = 0; i < nr_pages;) {

		struct page *head = compound_head(pages[i]);

		/*
		 * gup may start from a tail page. Advance step by the left
		 * part.
		 */
1448
		step = compound_nr(head) - (pages[i] - head);
1449 1450 1451 1452 1453
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
1454 1455
		if (is_migrate_cma_page(head)) {
			if (PageHuge(head))
1456
				isolate_huge_page(head, &cma_page_list);
1457
			else {
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
							    page_is_file_cache(head),
							    hpage_nr_pages(head));
				}
			}
		}
1472 1473

		i += step;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
		for (i = 0; i < nr_pages; i++)
			put_page(pages[i]);

		if (migrate_pages(&cma_page_list, new_non_cma_page,
				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
1495 1496 1497
		 * We did migrate all the pages, Try to get the page references
		 * again migrating any new CMA pages which we failed to isolate
		 * earlier.
1498
		 */
1499 1500 1501 1502
		nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
						   pages, vmas, NULL,
						   gup_flags);

1503 1504 1505 1506 1507 1508 1509 1510 1511
		if ((nr_pages > 0) && migrate_allow) {
			drain_allow = true;
			goto check_again;
		}
	}

	return nr_pages;
}
#else
1512 1513 1514 1515 1516 1517 1518
static long check_and_migrate_cma_pages(struct task_struct *tsk,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long nr_pages,
					struct page **pages,
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1519 1520 1521
{
	return nr_pages;
}
1522
#endif /* CONFIG_CMA */
1523

1524
/*
1525 1526
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1527
 */
1528 1529 1530 1531 1532 1533 1534
static long __gup_longterm_locked(struct task_struct *tsk,
				  struct mm_struct *mm,
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1535
{
1536 1537
	struct vm_area_struct **vmas_tmp = vmas;
	unsigned long flags = 0;
1538 1539
	long rc, i;

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	if (gup_flags & FOLL_LONGTERM) {
		if (!pages)
			return -EINVAL;

		if (!vmas_tmp) {
			vmas_tmp = kcalloc(nr_pages,
					   sizeof(struct vm_area_struct *),
					   GFP_KERNEL);
			if (!vmas_tmp)
				return -ENOMEM;
		}
		flags = memalloc_nocma_save();
1552 1553
	}

1554 1555
	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
				     vmas_tmp, NULL, gup_flags);
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	if (gup_flags & FOLL_LONGTERM) {
		memalloc_nocma_restore(flags);
		if (rc < 0)
			goto out;

		if (check_dax_vmas(vmas_tmp, rc)) {
			for (i = 0; i < rc; i++)
				put_page(pages[i]);
			rc = -EOPNOTSUPP;
			goto out;
		}

		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
						 vmas_tmp, gup_flags);
1571
	}
1572 1573

out:
1574 1575
	if (vmas_tmp != vmas)
		kfree(vmas_tmp);
1576 1577
	return rc;
}
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
						  struct mm_struct *mm,
						  unsigned long start,
						  unsigned long nr_pages,
						  struct page **pages,
						  struct vm_area_struct **vmas,
						  unsigned int flags)
{
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
				       NULL, flags);
}
#endif /* CONFIG_FS_DAX || CONFIG_CMA */

/*
 * This is the same as get_user_pages_remote(), just with a
 * less-flexible calling convention where we assume that the task
 * and mm being operated on are the current task's and don't allow
 * passing of a locked parameter.  We also obviously don't pass
 * FOLL_REMOTE in here.
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
	return __gup_longterm_locked(current, current->mm, start, nr_pages,
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
1607

1608 1609 1610 1611
/*
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
1612
 *
1613
 * get_user_pages_locked() is suitable to replace the form:
1614
 *
1615 1616 1617 1618
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
1619
 *
1620
 *  to:
1621
 *
1622 1623 1624 1625 1626 1627
 *      int locked = 1;
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 *      if (locked)
 *          up_read(&mm->mmap_sem);
1628
 */
1629 1630 1631
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
1632 1633
{
	/*
1634 1635 1636 1637
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
1638
	 */
1639 1640
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1641

1642 1643 1644
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
1645
}
1646
EXPORT_SYMBOL(get_user_pages_locked);
1647 1648

/*
1649
 * get_user_pages_unlocked() is suitable to replace the form:
1650
 *
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
 *      down_read(&mm->mmap_sem);
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  with:
 *
 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1662
 */
1663 1664
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
1665 1666
{
	struct mm_struct *mm = current->mm;
1667 1668
	int locked = 1;
	long ret;
1669

1670 1671 1672 1673 1674 1675 1676 1677
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1678

1679 1680 1681
	down_read(&mm->mmap_sem);
	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
				      &locked, gup_flags | FOLL_TOUCH);
1682 1683
	if (locked)
		up_read(&mm->mmap_sem);
1684
	return ret;
1685
}
1686
EXPORT_SYMBOL(get_user_pages_unlocked);
1687 1688

/*
1689
 * Fast GUP
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
1710 1711
 *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
1712 1713 1714 1715 1716 1717 1718 1719 1720
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
1721
#ifdef CONFIG_HAVE_FAST_GUP
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
/*
 * WARNING: only to be used in the get_user_pages_fast() implementation.
 *
 * With get_user_pages_fast(), we walk down the pagetables without taking any
 * locks.  For this we would like to load the pointers atomically, but sometimes
 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
 * we do have is the guarantee that a PTE will only either go from not present
 * to present, or present to not present or both -- it will not switch to a
 * completely different present page without a TLB flush in between; something
 * that we are blocking by holding interrupts off.
 *
 * Setting ptes from not present to present goes:
 *
 *   ptep->pte_high = h;
 *   smp_wmb();
 *   ptep->pte_low = l;
 *
 * And present to not present goes:
 *
 *   ptep->pte_low = 0;
 *   smp_wmb();
 *   ptep->pte_high = 0;
 *
 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 * We load pte_high *after* loading pte_low, which ensures we don't see an older
 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 * picked up a changed pte high. We might have gotten rubbish values from
 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 * operates on present ptes we're safe.
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	pte_t pte;
1757

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	do {
		pte.pte_low = ptep->pte_low;
		smp_rmb();
		pte.pte_high = ptep->pte_high;
		smp_rmb();
	} while (unlikely(pte.pte_low != ptep->pte_low));

	return pte;
}
#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1768
/*
1769
 * We require that the PTE can be read atomically.
1770 1771 1772 1773 1774
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	return READ_ONCE(*ptep);
}
1775
#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1776

1777 1778
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
					    struct page **pages)
1779 1780 1781 1782 1783 1784 1785 1786 1787
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
		put_page(page);
	}
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
/*
 * Return the compund head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);
	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

1802
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1803
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1804
			 unsigned int flags, struct page **pages, int *nr)
1805
{
1806 1807
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
1808 1809 1810 1811
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
1812
		pte_t pte = gup_get_pte(ptep);
1813
		struct page *head, *page;
1814 1815 1816

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
1817
		 * path using the pte_protnone check.
1818
		 */
1819 1820 1821
		if (pte_protnone(pte))
			goto pte_unmap;

1822
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1823 1824
			goto pte_unmap;

1825
		if (pte_devmap(pte)) {
1826 1827 1828
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

1829 1830 1831 1832 1833 1834
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
				undo_dev_pagemap(nr, nr_start, pages);
				goto pte_unmap;
			}
		} else if (pte_special(pte))
1835 1836 1837 1838 1839
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

1840 1841
		head = try_get_compound_head(page, 1);
		if (!head)
1842 1843 1844
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1845
			put_page(head);
1846 1847 1848
			goto pte_unmap;
		}

1849
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1850 1851

		SetPageReferenced(page);
1852 1853 1854 1855 1856 1857 1858 1859
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
1860 1861
	if (pgmap)
		put_dev_pagemap(pgmap);
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
 * __get_user_pages_fast implementation that can pin pages. Thus it's still
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1877
			 unsigned int flags, struct page **pages, int *nr)
1878 1879 1880
{
	return 0;
}
1881
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1882

R
Robin Murphy 已提交
1883
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
		unsigned long end, struct page **pages, int *nr)
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
			undo_dev_pagemap(nr, nr_start, pages);
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
		get_page(page);
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
1904 1905 1906

	if (pgmap)
		put_dev_pagemap(pgmap);
1907 1908 1909
	return 1;
}

1910
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1911 1912 1913
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;
1914 1915 1916 1917 1918
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
		return 0;
1919

1920 1921 1922 1923 1924
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		undo_dev_pagemap(nr, nr_start, pages);
		return 0;
	}
	return 1;
1925 1926
}

1927
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1928 1929 1930
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;
1931 1932 1933 1934 1935
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
		return 0;
1936

1937 1938 1939 1940 1941
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		undo_dev_pagemap(nr, nr_start, pages);
		return 0;
	}
	return 1;
1942 1943
}
#else
1944
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1945 1946 1947 1948 1949 1950
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}

1951
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1952 1953 1954 1955 1956 1957 1958
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}
#endif

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
		       unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long pte_end;
	struct page *head, *page;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

	pte = READ_ONCE(*ptep);

	if (!pte_access_permitted(pte, write))
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);

	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1999 2000
	head = try_get_compound_head(head, refs);
	if (!head) {
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
		*nr -= refs;
		return 0;
	}

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
		/* Could be optimized better */
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

2013
	SetPageReferenced(head);
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
		unsigned int pdshift, unsigned long end, int write,
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
		unsigned pdshift, unsigned long end, int write,
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2043
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2044
		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2045
{
2046
	struct page *head, *page;
2047 2048
	int refs;

2049
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2050 2051
		return 0;

2052 2053 2054
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2055
		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2056
	}
2057

2058
	refs = 0;
2059
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2060 2061 2062 2063 2064 2065 2066
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

2067 2068
	head = try_get_compound_head(pmd_page(orig), refs);
	if (!head) {
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		*nr -= refs;
		return 0;
	}

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

2080
	SetPageReferenced(head);
2081 2082 2083 2084
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2085
		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2086
{
2087
	struct page *head, *page;
2088 2089
	int refs;

2090
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2091 2092
		return 0;

2093 2094 2095
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2096
		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2097
	}
2098

2099
	refs = 0;
2100
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2101 2102 2103 2104 2105 2106 2107
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

2108 2109
	head = try_get_compound_head(pud_page(orig), refs);
	if (!head) {
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
		*nr -= refs;
		return 0;
	}

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

2121
	SetPageReferenced(head);
2122 2123 2124
	return 1;
}

2125
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2126
			unsigned long end, unsigned int flags,
2127 2128 2129
			struct page **pages, int *nr)
{
	int refs;
2130
	struct page *head, *page;
2131

2132
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2133 2134
		return 0;

2135
	BUILD_BUG_ON(pgd_devmap(orig));
2136
	refs = 0;
2137
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2138 2139 2140 2141 2142 2143 2144
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

2145 2146
	head = try_get_compound_head(pgd_page(orig), refs);
	if (!head) {
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		*nr -= refs;
		return 0;
	}

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

2158
	SetPageReferenced(head);
2159 2160 2161
	return 1;
}

2162
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2163
		unsigned int flags, struct page **pages, int *nr)
2164 2165 2166 2167 2168 2169
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
2170
		pmd_t pmd = READ_ONCE(*pmdp);
2171 2172

		next = pmd_addr_end(addr, end);
2173
		if (!pmd_present(pmd))
2174 2175
			return 0;

Y
Yu Zhao 已提交
2176 2177
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2178 2179 2180 2181 2182
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2183
			if (pmd_protnone(pmd))
2184 2185
				return 0;

2186
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2187 2188 2189
				pages, nr))
				return 0;

2190 2191 2192 2193 2194 2195
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2196
					 PMD_SHIFT, next, flags, pages, nr))
2197
				return 0;
2198
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2199
			return 0;
2200 2201 2202 2203 2204
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2205
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2206
			 unsigned int flags, struct page **pages, int *nr)
2207 2208 2209 2210
{
	unsigned long next;
	pud_t *pudp;

2211
	pudp = pud_offset(&p4d, addr);
2212
	do {
2213
		pud_t pud = READ_ONCE(*pudp);
2214 2215 2216 2217

		next = pud_addr_end(addr, end);
		if (pud_none(pud))
			return 0;
2218
		if (unlikely(pud_huge(pud))) {
2219
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2220 2221 2222 2223
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2224
					 PUD_SHIFT, next, flags, pages, nr))
2225
				return 0;
2226
		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2227 2228 2229 2230 2231 2232
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2233
static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2234
			 unsigned int flags, struct page **pages, int *nr)
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
{
	unsigned long next;
	p4d_t *p4dp;

	p4dp = p4d_offset(&pgd, addr);
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2249
					 P4D_SHIFT, next, flags, pages, nr))
2250
				return 0;
2251
		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2252 2253 2254 2255 2256 2257
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2258
static void gup_pgd_range(unsigned long addr, unsigned long end,
2259
		unsigned int flags, struct page **pages, int *nr)
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2272
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2273 2274 2275 2276
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2277
					 PGDIR_SHIFT, next, flags, pages, nr))
2278
				return;
2279
		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2280 2281 2282
			return;
	} while (pgdp++, addr = next, addr != end);
}
2283 2284 2285 2286 2287 2288
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2289 2290 2291 2292 2293 2294

#ifndef gup_fast_permitted
/*
 * Check if it's allowed to use __get_user_pages_fast() for the range, or
 * we need to fall back to the slow version:
 */
2295
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2296
{
2297
	return true;
2298 2299 2300
}
#endif

2301 2302
/*
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2303 2304 2305
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
2306 2307 2308
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
2309 2310 2311 2312
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages)
{
2313
	unsigned long len, end;
2314
	unsigned long flags;
2315 2316
	int nr = 0;

2317
	start = untagged_addr(start) & PAGE_MASK;
2318 2319 2320
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2321 2322
	if (end <= start)
		return 0;
2323
	if (unlikely(!access_ok((void __user *)start, len)))
2324 2325 2326 2327 2328 2329 2330
		return 0;

	/*
	 * Disable interrupts.  We use the nested form as we can already have
	 * interrupts disabled by get_futex_key.
	 *
	 * With interrupts disabled, we block page table pages from being
2331 2332
	 * freed from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
2333 2334 2335 2336 2337
	 *
	 * We do not adopt an rcu_read_lock(.) here as we also want to
	 * block IPIs that come from THPs splitting.
	 */

2338 2339
	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
	    gup_fast_permitted(start, end)) {
2340
		local_irq_save(flags);
2341
		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2342 2343
		local_irq_restore(flags);
	}
2344 2345 2346

	return nr;
}
2347
EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2348

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
		down_read(&current->mm->mmap_sem);
		ret = __gup_longterm_locked(current, current->mm,
					    start, nr_pages,
					    pages, NULL, gup_flags);
		up_read(&current->mm->mmap_sem);
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2372 2373 2374 2375
/**
 * get_user_pages_fast() - pin user pages in memory
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
2376
 * @gup_flags:	flags modifying pin behaviour
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long.
 *
 * Attempt to pin user pages in memory without taking mm->mmap_sem.
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno.
 */
2388 2389
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
2390
{
2391
	unsigned long addr, len, end;
2392
	int nr = 0, ret = 0;
2393

2394 2395 2396
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
		return -EINVAL;

2397
	start = untagged_addr(start) & PAGE_MASK;
2398 2399 2400 2401
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2402
	if (end <= start)
2403
		return 0;
2404
	if (unlikely(!access_ok((void __user *)start, len)))
2405
		return -EFAULT;
2406

2407 2408
	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
	    gup_fast_permitted(start, end)) {
2409
		local_irq_disable();
2410
		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2411
		local_irq_enable();
2412 2413
		ret = nr;
	}
2414 2415 2416 2417 2418 2419

	if (nr < nr_pages) {
		/* Try to get the remaining pages with get_user_pages */
		start += nr << PAGE_SHIFT;
		pages += nr;

2420 2421
		ret = __gup_longterm_unlocked(start, nr_pages - nr,
					      gup_flags, pages);
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

		/* Have to be a bit careful with return values */
		if (nr > 0) {
			if (ret < 0)
				ret = nr;
			else
				ret += nr;
		}
	}

	return ret;
}
2434
EXPORT_SYMBOL_GPL(get_user_pages_fast);