gup.c 60.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/pgtable.h>
23
#include <asm/tlbflush.h>
24

25 26
#include "internal.h"

27 28 29 30 31
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
typedef int (*set_dirty_func_t)(struct page *page);

static void __put_user_pages_dirty(struct page **pages,
				   unsigned long npages,
				   set_dirty_func_t sdf)
{
	unsigned long index;

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);

		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key cases:
		 *
		 * 1) This code sees the page as already dirty, so it skips
		 * the call to sdf(). That could happen because
		 * clear_page_dirty_for_io() called page_mkclean(),
		 * followed by set_page_dirty(). However, now the page is
		 * going to get written back, which meets the original
		 * intention of setting it dirty, so all is well:
		 * clear_page_dirty_for_io() goes on to call
		 * TestClearPageDirty(), and write the page back.
		 *
		 * 2) This code sees the page as clean, so it calls sdf().
		 * The page stays dirty, despite being written back, so it
		 * gets written back again in the next writeback cycle.
		 * This is harmless.
		 */
		if (!PageDirty(page))
			sdf(page);

		put_user_page(page);
	}
}

/**
 * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
 * compound page) dirty, if it was previously listed as clean. Then, release
 * the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 *
 * set_page_dirty(), which does not lock the page, is used here.
 * Therefore, it is the caller's responsibility to ensure that this is
 * safe. If not, then put_user_pages_dirty_lock() should be called instead.
 *
 */
void put_user_pages_dirty(struct page **pages, unsigned long npages)
{
	__put_user_pages_dirty(pages, npages, set_page_dirty);
}
EXPORT_SYMBOL(put_user_pages_dirty);

/**
 * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * For each page in the @pages array, make that page (or its head page, if a
 * compound page) dirty, if it was previously listed as clean. Then, release
 * the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 *
 * This is just like put_user_pages_dirty(), except that it invokes
 * set_page_dirty_lock(), instead of set_page_dirty().
 *
 */
void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
{
	__put_user_pages_dirty(pages, npages, set_page_dirty_lock);
}
EXPORT_SYMBOL(put_user_pages_dirty_lock);

/**
 * put_user_pages() - release an array of gup-pinned pages.
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * For each page in the @pages array, release the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 */
void put_user_pages(struct page **pages, unsigned long npages)
{
	unsigned long index;

	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
		put_user_page(pages[index]);
}
EXPORT_SYMBOL(put_user_pages);

137 138
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
139
{
140 141 142 143 144 145 146 147 148 149 150 151
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return NULL;
}
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

177 178 179 180 181 182
/*
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
183
	return pte_write(pte) ||
184 185 186
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}

187
static struct page *follow_page_pte(struct vm_area_struct *vma,
188 189
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
190 191 192 193 194
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
195

196
retry:
197
	if (unlikely(pmd_bad(*pmd)))
198
		return no_page_table(vma, flags);
199 200 201 202 203 204 205 206 207 208 209 210

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
211
		if (pte_none(pte))
212 213 214 215 216 217
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
218
		goto retry;
219
	}
220
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
221
		goto no_page;
222
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
223 224 225
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
226 227

	page = vm_normal_page(vma, address, pte);
228 229 230 231 232
	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
		/*
		 * Only return device mapping pages in the FOLL_GET case since
		 * they are only valid while holding the pgmap reference.
		 */
233 234
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
235 236 237 238
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			int ret;

			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
254 255
	}

256 257 258 259 260 261 262 263 264 265 266 267 268
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		int ret;
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

269 270 271 272 273 274
	if (flags & FOLL_GET) {
		if (unlikely(!try_get_page(page))) {
			page = ERR_PTR(-ENOMEM);
			goto out;
		}
	}
275 276 277 278 279 280 281 282 283 284 285
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
286
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
287 288 289 290
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
312
out:
313 314 315 316 317
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
318 319 320 321
		return NULL;
	return no_page_table(vma, flags);
}

322 323
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
324 325
				    unsigned int flags,
				    struct follow_page_context *ctx)
326
{
327
	pmd_t *pmd, pmdval;
328 329 330 331
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

332
	pmd = pmd_offset(pudp, address);
333 334 335 336 337 338
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
339
		return no_page_table(vma, flags);
340
	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
341 342 343 344
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
345
	}
346
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
347
		page = follow_huge_pd(vma, address,
348
				      __hugepd(pmd_val(pmdval)), flags,
349 350 351 352 353
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
354
retry:
355
	if (!pmd_present(pmdval)) {
356 357 358
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
359 360
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
361
			pmd_migration_entry_wait(mm, pmd);
362 363 364 365 366 367 368
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
		 * mmap_sem is held in read mode
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
369 370
		goto retry;
	}
371
	if (pmd_devmap(pmdval)) {
372
		ptl = pmd_lock(mm, pmd);
373
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
374 375 376 377
		spin_unlock(ptl);
		if (page)
			return page;
	}
378
	if (likely(!pmd_trans_huge(pmdval)))
379
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
380

381
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
382 383
		return no_page_table(vma, flags);

384
retry_locked:
385
	ptl = pmd_lock(mm, pmd);
386 387 388 389
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
390 391 392 393 394 395 396
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
397 398
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
399
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
400 401 402 403 404 405 406
	}
	if (flags & FOLL_SPLIT) {
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
407
			split_huge_pmd(vma, pmd, address);
408 409
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
410
		} else {
411 412 413 414
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
415
			spin_unlock(ptl);
416 417 418 419
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
420 421
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
422 423 424
		}

		return ret ? ERR_PTR(ret) :
425
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
426
	}
427 428
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
429
	ctx->page_mask = HPAGE_PMD_NR - 1;
430
	return page;
431 432
}

433 434
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
435 436
				    unsigned int flags,
				    struct follow_page_context *ctx)
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
452 453 454 455 456 457 458 459
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
460 461
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
462
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
463 464 465 466 467 468 469
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

470
	return follow_pmd_mask(vma, address, pud, flags, ctx);
471 472 473 474
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
475 476
				    unsigned int flags,
				    struct follow_page_context *ctx)
477 478
{
	p4d_t *p4d;
479
	struct page *page;
480 481 482 483 484 485 486 487

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

488 489 490 491 492 493 494 495
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
496
	return follow_pud_mask(vma, address, p4d, flags, ctx);
497 498 499 500 501 502 503
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
504 505
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
506 507 508
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
509 510 511 512 513 514
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
515 516 517
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
518
static struct page *follow_page_mask(struct vm_area_struct *vma,
519
			      unsigned long address, unsigned int flags,
520
			      struct follow_page_context *ctx)
521 522 523 524 525
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

526
	ctx->page_mask = 0;
527 528 529 530 531 532 533 534 535 536 537 538 539

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
		BUG_ON(flags & FOLL_GET);
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

540 541 542 543 544 545
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
546 547 548 549 550 551 552 553
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
554

555 556 557 558 559 560 561 562 563 564 565 566 567
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
568 569
}

570 571 572 573 574
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
575
	p4d_t *p4d;
576 577 578 579 580 581 582 583 584 585 586 587 588
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
	BUG_ON(pgd_none(*pgd));
589 590 591
	p4d = p4d_offset(pgd, address);
	BUG_ON(p4d_none(*p4d));
	pud = pud_offset(p4d, address);
592 593
	BUG_ON(pud_none(*pud));
	pmd = pmd_offset(pud, address);
594
	if (!pmd_present(*pmd))
595 596 597 598 599 600 601 602 603 604 605 606 607
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
608 609 610 611 612 613 614

		/*
		 * This should never happen (a device public page in the gate
		 * area).
		 */
		if (is_device_public_page(*page))
			goto unmap;
615
	}
616 617 618 619
	if (unlikely(!try_get_page(*page))) {
		ret = -ENOMEM;
		goto unmap;
	}
620 621 622 623 624 625 626
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

627 628 629 630 631
/*
 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 */
632 633 634 635
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
		unsigned long address, unsigned int *flags, int *nonblocking)
{
	unsigned int fault_flags = 0;
636
	vm_fault_t ret;
637

E
Eric B Munson 已提交
638 639 640
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
641 642
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
643 644
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
645 646 647 648
	if (nonblocking)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
649 650 651 652
	if (*flags & FOLL_TRIED) {
		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
		fault_flags |= FAULT_FLAG_TRIED;
	}
653

654
	ret = handle_mm_fault(vma, address, fault_flags);
655
	if (ret & VM_FAULT_ERROR) {
656 657 658 659
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
660 661 662 663 664 665 666 667 668 669 670
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
671
		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
672 673 674 675 676 677 678 679 680 681 682 683 684 685
			*nonblocking = 0;
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
686
		*flags |= FOLL_COW;
687 688 689
	return 0;
}

690 691 692
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
693 694
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
695 696 697 698

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

699 700 701
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

702
	if (write) {
703 704 705 706 707 708 709 710 711 712 713 714
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
715
			if (!is_cow_mapping(vm_flags))
716 717 718 719 720 721 722 723 724 725 726 727
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
728 729 730 731 732
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
733
		return -EFAULT;
734 735 736
	return 0;
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
757
 * Must be called with mmap_sem held.  It may be released.  See below.
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
780 781 782 783 784 785 786 787
 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 * this case.
 *
 * A caller using such a combination of @nonblocking and @gup_flags
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
788 789 790 791 792
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
L
Lorenzo Stoakes 已提交
793
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
794 795 796 797
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *nonblocking)
{
798
	long ret = 0, i = 0;
799
	struct vm_area_struct *vma = NULL;
800
	struct follow_page_context ctx = { NULL };
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

	if (!nr_pages)
		return 0;

	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
816 817 818 819 820 821 822 823 824 825 826 827
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
828
					goto out;
829
				ctx.page_mask = 0;
830 831
				goto next_page;
			}
832

833 834 835 836
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
837 838 839
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
840
						gup_flags, nonblocking);
841
				continue;
842
			}
843 844 845 846 847 848
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
849
		if (fatal_signal_pending(current)) {
850 851 852
			ret = -ERESTARTSYS;
			goto out;
		}
853
		cond_resched();
854 855

		page = follow_page_mask(vma, start, foll_flags, &ctx);
856 857 858 859 860 861
		if (!page) {
			ret = faultin_page(tsk, vma, start, &foll_flags,
					nonblocking);
			switch (ret) {
			case 0:
				goto retry;
862 863 864
			case -EBUSY:
				ret = 0;
				/* FALLTHRU */
865 866 867
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
868
				goto out;
869 870
			case -ENOENT:
				goto next_page;
871
			}
872
			BUG();
873 874 875 876 877 878 879
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
880 881
			ret = PTR_ERR(page);
			goto out;
882
		}
883 884 885 886
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
887
			ctx.page_mask = 0;
888 889
		}
next_page:
890 891
		if (vmas) {
			vmas[i] = vma;
892
			ctx.page_mask = 0;
893
		}
894
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
895 896 897 898 899
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
900
	} while (nr_pages);
901 902 903 904
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
905 906
}

907 908
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
909
{
910 911
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
912
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
913 914 915 916

	if (!(vm_flags & vma->vm_flags))
		return false;

917 918
	/*
	 * The architecture might have a hardware protection
919
	 * mechanism other than read/write that can deny access.
920 921 922
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
923
	 */
924
	if (!arch_vma_access_permitted(vma, write, false, foreign))
925 926
		return false;

927 928 929
	return true;
}

930 931 932 933 934 935 936
/*
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
937 938
 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
 *		does not allow retry
939 940 941 942 943 944 945 946 947 948 949
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
950
 * get_user_pages() only guarantees to update these in the struct page.
951 952 953 954 955 956
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
957 958
 * This function will not return with an unlocked mmap_sem. So it has not the
 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
959 960
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
961 962
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
963 964
{
	struct vm_area_struct *vma;
965
	vm_fault_t ret, major = 0;
966 967 968

	if (unlocked)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
969

970
retry:
971 972 973 974
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

975
	if (!vma_permits_fault(vma, fault_flags))
976 977
		return -EFAULT;

978
	ret = handle_mm_fault(vma, address, fault_flags);
979
	major |= ret & VM_FAULT_MAJOR;
980
	if (ret & VM_FAULT_ERROR) {
981 982 983 984
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
985 986
		BUG();
	}
987 988 989 990 991 992 993 994 995 996 997

	if (ret & VM_FAULT_RETRY) {
		down_read(&mm->mmap_sem);
		if (!(fault_flags & FAULT_FLAG_TRIED)) {
			*unlocked = true;
			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			fault_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}

998
	if (tsk) {
999
		if (major)
1000 1001 1002 1003 1004 1005
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}
1006
EXPORT_SYMBOL_GPL(fixup_user_fault);
1007

1008 1009 1010 1011 1012 1013
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
						struct mm_struct *mm,
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1014
						int *locked,
1015
						unsigned int flags)
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

	if (pages)
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1052 1053 1054 1055
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1056 1057 1058 1059
			if (!pages_done)
				pages_done = ret;
			break;
		}
1060 1061 1062 1063 1064 1065
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		start += ret << PAGE_SHIFT;

		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
		 * without FAULT_FLAG_ALLOW_RETRY but with
		 * FAULT_FLAG_TRIED.
		 */
		*locked = 1;
		lock_dropped = true;
		down_read(&mm->mmap_sem);
		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
				       pages, NULL, NULL);
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1088 1089
		if (likely(pages))
			pages++;
1090 1091
		start += PAGE_SIZE;
	}
1092
	if (lock_dropped && *locked) {
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
		up_read(&mm->mmap_sem);
		*locked = 0;
	}
	return pages_done;
}

/*
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
 * get_user_pages_locked() is suitable to replace the form:
 *
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  to:
 *
 *      int locked = 1;
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 *      if (locked)
 *          up_read(&mm->mmap_sem);
 */
1124
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1125
			   unsigned int gup_flags, struct page **pages,
1126 1127
			   int *locked)
{
1128 1129 1130 1131 1132 1133 1134 1135 1136
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

1137
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1138
				       pages, NULL, locked,
1139
				       gup_flags | FOLL_TOUCH);
1140
}
1141
EXPORT_SYMBOL(get_user_pages_locked);
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

/*
 * get_user_pages_unlocked() is suitable to replace the form:
 *
 *      down_read(&mm->mmap_sem);
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  with:
 *
 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 *
 * It is functionally equivalent to get_user_pages_fast so
1155 1156
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1157
 */
1158
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1159
			     struct page **pages, unsigned int gup_flags)
1160
{
1161 1162 1163 1164
	struct mm_struct *mm = current->mm;
	int locked = 1;
	long ret;

1165 1166 1167 1168 1169 1170 1171 1172 1173
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

1174 1175
	down_read(&mm->mmap_sem);
	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1176
				      &locked, gup_flags | FOLL_TOUCH);
1177 1178 1179
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;
1180
}
1181
EXPORT_SYMBOL(get_user_pages_unlocked);
1182

1183
/*
1184
 * get_user_pages_remote() - pin user pages in memory
1185 1186 1187 1188 1189
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
1190
 * @gup_flags:	flags modifying lookup behaviour
1191 1192 1193 1194 1195
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
1196 1197 1198
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
 * get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
1222 1223 1224
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
1225 1226 1227 1228 1229 1230 1231 1232
 *
 * get_user_pages is typically used for fewer-copy IO operations, to get a
 * handle on the memory by some means other than accesses via the user virtual
 * addresses. The pages may be submitted for DMA to devices or accessed via
 * their kernel linear mapping (via the kmap APIs). Care should be taken to
 * use the correct cache flushing APIs.
 *
 * See also get_user_pages_fast, for performance critical applications.
1233 1234 1235 1236 1237
 *
 * get_user_pages should be phased out in favor of
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
 * should use get_user_pages because it cannot pass
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1238
 */
1239 1240
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, unsigned long nr_pages,
1241
		unsigned int gup_flags, struct page **pages,
1242
		struct vm_area_struct **vmas, int *locked)
1243
{
1244 1245 1246 1247 1248 1249 1250 1251 1252
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

1253
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1254
				       locked,
1255
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1256 1257 1258
}
EXPORT_SYMBOL(get_user_pages_remote);

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
{
	long i;
	struct vm_area_struct *vma_prev = NULL;

	for (i = 0; i < nr_pages; i++) {
		struct vm_area_struct *vma = vmas[i];

		if (vma == vma_prev)
			continue;

		vma_prev = vma;

		if (vma_is_fsdax(vma))
			return true;
	}
	return false;
}

#ifdef CONFIG_CMA
static struct page *new_non_cma_page(struct page *page, unsigned long private)
{
	/*
	 * We want to make sure we allocate the new page from the same node
	 * as the source page.
	 */
	int nid = page_to_nid(page);
	/*
	 * Trying to allocate a page for migration. Ignore allocation
	 * failure warnings. We don't force __GFP_THISNODE here because
	 * this node here is the node where we have CMA reservation and
	 * in some case these nodes will have really less non movable
	 * allocation memory.
	 */
	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;

	if (PageHighMem(page))
		gfp_mask |= __GFP_HIGHMEM;

#ifdef CONFIG_HUGETLB_PAGE
	if (PageHuge(page)) {
		struct hstate *h = page_hstate(page);
		/*
		 * We don't want to dequeue from the pool because pool pages will
		 * mostly be from the CMA region.
		 */
		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
	}
#endif
	if (PageTransHuge(page)) {
		struct page *thp;
		/*
		 * ignore allocation failure warnings
		 */
		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;

		/*
		 * Remove the movable mask so that we don't allocate from
		 * CMA area again.
		 */
		thp_gfpmask &= ~__GFP_MOVABLE;
		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
		if (!thp)
			return NULL;
		prep_transhuge_page(thp);
		return thp;
	}

	return __alloc_pages_node(nid, gfp_mask, 0);
}

1331 1332 1333 1334
static long check_and_migrate_cma_pages(struct task_struct *tsk,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long nr_pages,
1335
					struct page **pages,
1336 1337
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
{
	long i;
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);

check_again:
	for (i = 0; i < nr_pages; i++) {
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
		if (is_migrate_cma_page(pages[i])) {

			struct page *head = compound_head(pages[i]);

			if (PageHuge(head)) {
				isolate_huge_page(head, &cma_page_list);
			} else {
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
							    page_is_file_cache(head),
							    hpage_nr_pages(head));
				}
			}
		}
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
		for (i = 0; i < nr_pages; i++)
			put_page(pages[i]);

		if (migrate_pages(&cma_page_list, new_non_cma_page,
				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
1393 1394 1395
		 * We did migrate all the pages, Try to get the page references
		 * again migrating any new CMA pages which we failed to isolate
		 * earlier.
1396
		 */
1397 1398 1399 1400
		nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
						   pages, vmas, NULL,
						   gup_flags);

1401 1402 1403 1404 1405 1406 1407 1408 1409
		if ((nr_pages > 0) && migrate_allow) {
			drain_allow = true;
			goto check_again;
		}
	}

	return nr_pages;
}
#else
1410 1411 1412 1413 1414 1415 1416
static long check_and_migrate_cma_pages(struct task_struct *tsk,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long nr_pages,
					struct page **pages,
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1417 1418 1419 1420 1421
{
	return nr_pages;
}
#endif

1422
/*
1423 1424
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1425
 */
1426 1427 1428 1429 1430 1431 1432
static long __gup_longterm_locked(struct task_struct *tsk,
				  struct mm_struct *mm,
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1433
{
1434 1435
	struct vm_area_struct **vmas_tmp = vmas;
	unsigned long flags = 0;
1436 1437
	long rc, i;

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	if (gup_flags & FOLL_LONGTERM) {
		if (!pages)
			return -EINVAL;

		if (!vmas_tmp) {
			vmas_tmp = kcalloc(nr_pages,
					   sizeof(struct vm_area_struct *),
					   GFP_KERNEL);
			if (!vmas_tmp)
				return -ENOMEM;
		}
		flags = memalloc_nocma_save();
1450 1451
	}

1452 1453
	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
				     vmas_tmp, NULL, gup_flags);
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	if (gup_flags & FOLL_LONGTERM) {
		memalloc_nocma_restore(flags);
		if (rc < 0)
			goto out;

		if (check_dax_vmas(vmas_tmp, rc)) {
			for (i = 0; i < rc; i++)
				put_page(pages[i]);
			rc = -EOPNOTSUPP;
			goto out;
		}

		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
						 vmas_tmp, gup_flags);
1469
	}
1470 1471

out:
1472 1473
	if (vmas_tmp != vmas)
		kfree(vmas_tmp);
1474 1475
	return rc;
}
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
						  struct mm_struct *mm,
						  unsigned long start,
						  unsigned long nr_pages,
						  struct page **pages,
						  struct vm_area_struct **vmas,
						  unsigned int flags)
{
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
				       NULL, flags);
}
#endif /* CONFIG_FS_DAX || CONFIG_CMA */

/*
 * This is the same as get_user_pages_remote(), just with a
 * less-flexible calling convention where we assume that the task
 * and mm being operated on are the current task's and don't allow
 * passing of a locked parameter.  We also obviously don't pass
 * FOLL_REMOTE in here.
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
	return __gup_longterm_locked(current, current->mm, start, nr_pages,
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
1505

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
 * @nonblocking:
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
 * return 0 on success, negative error code on error.
 *
 * vma->vm_mm->mmap_sem must be held.
 *
 * If @nonblocking is NULL, it may be held for read or write and will
 * be unperturbed.
 *
 * If @nonblocking is non-NULL, it must held for read only and may be
 * released.  If it's released, *@nonblocking will be set to 0.
 */
long populate_vma_page_range(struct vm_area_struct *vma,
		unsigned long start, unsigned long end, int *nonblocking)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);

E
Eric B Munson 已提交
1538 1539 1540
	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
				NULL, NULL, nonblocking);
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
 * mmap_sem must not be held.
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
			down_read(&mm->mmap_sem);
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;	/* 0 or negative error code */
}

1624 1625 1626 1627 1628
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
1629
 * to be freed afterwards by put_page().
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
 * Called without mmap_sem, but after all other threads have been killed.
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
	struct vm_area_struct *vma;
	struct page *page;

	if (__get_user_pages(current, current->mm, addr, 1,
			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
			     NULL) < 1)
		return NULL;
	flush_cache_page(vma, addr, page_to_pfn(page));
	return page;
}
#endif /* CONFIG_ELF_CORE */
1652 1653

/*
1654
 * Generic Fast GUP
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
1675 1676
 *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
1677 1678 1679 1680 1681 1682 1683 1684 1685
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
1686
#ifdef CONFIG_HAVE_GENERIC_GUP
1687

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
#ifndef gup_get_pte
/*
 * We assume that the PTE can be read atomically. If this is not the case for
 * your architecture, please provide the helper.
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	return READ_ONCE(*ptep);
}
#endif

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
		put_page(page);
	}
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/*
 * Return the compund head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);
	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

1723
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1724
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1725
			 unsigned int flags, struct page **pages, int *nr)
1726
{
1727 1728
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
1729 1730 1731 1732
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
1733
		pte_t pte = gup_get_pte(ptep);
1734
		struct page *head, *page;
1735 1736 1737

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
1738
		 * path using the pte_protnone check.
1739
		 */
1740 1741 1742
		if (pte_protnone(pte))
			goto pte_unmap;

1743
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1744 1745
			goto pte_unmap;

1746
		if (pte_devmap(pte)) {
1747 1748 1749
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

1750 1751 1752 1753 1754 1755
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
				undo_dev_pagemap(nr, nr_start, pages);
				goto pte_unmap;
			}
		} else if (pte_special(pte))
1756 1757 1758 1759 1760
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

1761 1762
		head = try_get_compound_head(page, 1);
		if (!head)
1763 1764 1765
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1766
			put_page(head);
1767 1768 1769
			goto pte_unmap;
		}

1770
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1771 1772

		SetPageReferenced(page);
1773 1774 1775 1776 1777 1778 1779 1780
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
1781 1782
	if (pgmap)
		put_dev_pagemap(pgmap);
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
 * __get_user_pages_fast implementation that can pin pages. Thus it's still
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1798
			 unsigned int flags, struct page **pages, int *nr)
1799 1800 1801
{
	return 0;
}
1802
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1803

1804
#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
		unsigned long end, struct page **pages, int *nr)
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
			undo_dev_pagemap(nr, nr_start, pages);
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
		get_page(page);
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
1825 1826 1827

	if (pgmap)
		put_dev_pagemap(pgmap);
1828 1829 1830
	return 1;
}

1831
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1832 1833 1834
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;
1835 1836 1837 1838 1839
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
		return 0;
1840

1841 1842 1843 1844 1845
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		undo_dev_pagemap(nr, nr_start, pages);
		return 0;
	}
	return 1;
1846 1847
}

1848
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1849 1850 1851
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;
1852 1853 1854 1855 1856
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
		return 0;
1857

1858 1859 1860 1861 1862
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		undo_dev_pagemap(nr, nr_start, pages);
		return 0;
	}
	return 1;
1863 1864
}
#else
1865
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1866 1867 1868 1869 1870 1871
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}

1872
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1873 1874 1875 1876 1877 1878 1879
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}
#endif

1880
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1881
		unsigned long end, unsigned int flags, struct page **pages, int *nr)
1882
{
1883
	struct page *head, *page;
1884 1885
	int refs;

1886
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
1887 1888
		return 0;

1889 1890 1891
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
1892
		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1893
	}
1894

1895
	refs = 0;
1896
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1897 1898 1899 1900 1901 1902 1903
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1904 1905
	head = try_get_compound_head(pmd_page(orig), refs);
	if (!head) {
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
		*nr -= refs;
		return 0;
	}

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1917
	SetPageReferenced(head);
1918 1919 1920 1921
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1922
		unsigned long end, unsigned int flags, struct page **pages, int *nr)
1923
{
1924
	struct page *head, *page;
1925 1926
	int refs;

1927
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
1928 1929
		return 0;

1930 1931 1932
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
1933
		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1934
	}
1935

1936
	refs = 0;
1937
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1938 1939 1940 1941 1942 1943 1944
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1945 1946
	head = try_get_compound_head(pud_page(orig), refs);
	if (!head) {
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		*nr -= refs;
		return 0;
	}

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1958
	SetPageReferenced(head);
1959 1960 1961
	return 1;
}

1962
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1963
			unsigned long end, unsigned int flags,
1964 1965 1966
			struct page **pages, int *nr)
{
	int refs;
1967
	struct page *head, *page;
1968

1969
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
1970 1971
		return 0;

1972
	BUILD_BUG_ON(pgd_devmap(orig));
1973
	refs = 0;
1974
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1975 1976 1977 1978 1979 1980 1981
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1982 1983
	head = try_get_compound_head(pgd_page(orig), refs);
	if (!head) {
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
		*nr -= refs;
		return 0;
	}

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1995
	SetPageReferenced(head);
1996 1997 1998
	return 1;
}

1999
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2000
		unsigned int flags, struct page **pages, int *nr)
2001 2002 2003 2004 2005 2006
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
2007
		pmd_t pmd = READ_ONCE(*pmdp);
2008 2009

		next = pmd_addr_end(addr, end);
2010
		if (!pmd_present(pmd))
2011 2012
			return 0;

Y
Yu Zhao 已提交
2013 2014
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2015 2016 2017 2018 2019
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2020
			if (pmd_protnone(pmd))
2021 2022
				return 0;

2023
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2024 2025 2026
				pages, nr))
				return 0;

2027 2028 2029 2030 2031 2032
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2033
					 PMD_SHIFT, next, flags, pages, nr))
2034
				return 0;
2035
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2036
			return 0;
2037 2038 2039 2040 2041
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2042
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2043
			 unsigned int flags, struct page **pages, int *nr)
2044 2045 2046 2047
{
	unsigned long next;
	pud_t *pudp;

2048
	pudp = pud_offset(&p4d, addr);
2049
	do {
2050
		pud_t pud = READ_ONCE(*pudp);
2051 2052 2053 2054

		next = pud_addr_end(addr, end);
		if (pud_none(pud))
			return 0;
2055
		if (unlikely(pud_huge(pud))) {
2056
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2057 2058 2059 2060
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2061
					 PUD_SHIFT, next, flags, pages, nr))
2062
				return 0;
2063
		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2064 2065 2066 2067 2068 2069
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2070
static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2071
			 unsigned int flags, struct page **pages, int *nr)
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
{
	unsigned long next;
	p4d_t *p4dp;

	p4dp = p4d_offset(&pgd, addr);
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2086
					 P4D_SHIFT, next, flags, pages, nr))
2087
				return 0;
2088
		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2089 2090 2091 2092 2093 2094
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2095
static void gup_pgd_range(unsigned long addr, unsigned long end,
2096
		unsigned int flags, struct page **pages, int *nr)
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2109
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2110 2111 2112 2113
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2114
					 PGDIR_SHIFT, next, flags, pages, nr))
2115
				return;
2116
		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2117 2118 2119 2120 2121 2122 2123 2124 2125
			return;
	} while (pgdp++, addr = next, addr != end);
}

#ifndef gup_fast_permitted
/*
 * Check if it's allowed to use __get_user_pages_fast() for the range, or
 * we need to fall back to the slow version:
 */
2126
bool gup_fast_permitted(unsigned long start, int nr_pages)
2127 2128 2129 2130 2131 2132 2133 2134 2135
{
	unsigned long len, end;

	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;
	return end >= start;
}
#endif

2136 2137
/*
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2138 2139 2140
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
2141 2142 2143 2144
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages)
{
2145
	unsigned long len, end;
2146
	unsigned long flags;
2147 2148
	int nr = 0;

2149
	start = untagged_addr(start) & PAGE_MASK;
2150 2151 2152
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2153
	if (unlikely(!access_ok((void __user *)start, len)))
2154 2155 2156 2157 2158 2159 2160
		return 0;

	/*
	 * Disable interrupts.  We use the nested form as we can already have
	 * interrupts disabled by get_futex_key.
	 *
	 * With interrupts disabled, we block page table pages from being
2161 2162
	 * freed from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
2163 2164 2165 2166 2167
	 *
	 * We do not adopt an rcu_read_lock(.) here as we also want to
	 * block IPIs that come from THPs splitting.
	 */

2168
	if (gup_fast_permitted(start, nr_pages)) {
2169
		local_irq_save(flags);
2170
		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2171 2172
		local_irq_restore(flags);
	}
2173 2174 2175 2176

	return nr;
}

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
		down_read(&current->mm->mmap_sem);
		ret = __gup_longterm_locked(current, current->mm,
					    start, nr_pages,
					    pages, NULL, gup_flags);
		up_read(&current->mm->mmap_sem);
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2200 2201 2202 2203
/**
 * get_user_pages_fast() - pin user pages in memory
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
2204
 * @gup_flags:	flags modifying pin behaviour
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long.
 *
 * Attempt to pin user pages in memory without taking mm->mmap_sem.
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno.
 */
2216 2217
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
2218
{
2219
	unsigned long addr, len, end;
2220
	int nr = 0, ret = 0;
2221

2222
	start = untagged_addr(start) & PAGE_MASK;
2223 2224 2225 2226
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2227 2228 2229
	if (nr_pages <= 0)
		return 0;

2230
	if (unlikely(!access_ok((void __user *)start, len)))
2231
		return -EFAULT;
2232

2233
	if (gup_fast_permitted(start, nr_pages)) {
2234
		local_irq_disable();
2235
		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2236
		local_irq_enable();
2237 2238
		ret = nr;
	}
2239 2240 2241 2242 2243 2244

	if (nr < nr_pages) {
		/* Try to get the remaining pages with get_user_pages */
		start += nr << PAGE_SHIFT;
		pages += nr;

2245 2246
		ret = __gup_longterm_unlocked(start, nr_pages - nr,
					      gup_flags, pages);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

		/* Have to be a bit careful with return values */
		if (nr > 0) {
			if (ret < 0)
				ret = nr;
			else
				ret += nr;
		}
	}

	return ret;
}

2260
#endif /* CONFIG_HAVE_GENERIC_GUP */