s3c-hsotg.c 91.9 KB
Newer Older
1 2
/**
 * linux/drivers/usb/gadget/s3c-hsotg.c
3 4 5
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
6 7 8 9 10 11 12 13 14 15 16
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
17
 */
18 19 20 21 22 23 24 25 26 27 28

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
29
#include <linux/slab.h>
30
#include <linux/clk.h>
31
#include <linux/regulator/consumer.h>
32 33 34

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
35
#include <linux/usb/phy.h>
36
#include <linux/platform_data/s3c-hsotg.h>
37 38 39

#include <mach/map.h>

40
#include "s3c-hsotg.h"
41

42 43 44 45 46
static const char * const s3c_hsotg_supply_names[] = {
	"vusb_d",		/* digital USB supply, 1.2V */
	"vusb_a",		/* analog USB supply, 1.1V */
};

47 48
/*
 * EP0_MPS_LIMIT
49 50
 *
 * Unfortunately there seems to be a limit of the amount of data that can
L
Lucas De Marchi 已提交
51 52
 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 * packets (which practically means 1 packet and 63 bytes of data) when the
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
 * MPS is set to 64.
 *
 * This means if we are wanting to move >127 bytes of data, we need to
 * split the transactions up, but just doing one packet at a time does
 * not work (this may be an implicit DATA0 PID on first packet of the
 * transaction) and doing 2 packets is outside the controller's limits.
 *
 * If we try to lower the MPS size for EP0, then no transfers work properly
 * for EP0, and the system will fail basic enumeration. As no cause for this
 * has currently been found, we cannot support any large IN transfers for
 * EP0.
 */
#define EP0_MPS_LIMIT	64

struct s3c_hsotg;
struct s3c_hsotg_req;

/**
 * struct s3c_hsotg_ep - driver endpoint definition.
 * @ep: The gadget layer representation of the endpoint.
 * @name: The driver generated name for the endpoint.
 * @queue: Queue of requests for this endpoint.
 * @parent: Reference back to the parent device structure.
 * @req: The current request that the endpoint is processing. This is
 *       used to indicate an request has been loaded onto the endpoint
 *       and has yet to be completed (maybe due to data move, or simply
 *	 awaiting an ack from the core all the data has been completed).
 * @debugfs: File entry for debugfs file for this endpoint.
 * @lock: State lock to protect contents of endpoint.
 * @dir_in: Set to true if this endpoint is of the IN direction, which
 *	    means that it is sending data to the Host.
 * @index: The index for the endpoint registers.
 * @name: The name array passed to the USB core.
 * @halted: Set if the endpoint has been halted.
 * @periodic: Set if this is a periodic ep, such as Interrupt
 * @sent_zlp: Set if we've sent a zero-length packet.
 * @total_data: The total number of data bytes done.
 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 * @last_load: The offset of data for the last start of request.
 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 *
 * This is the driver's state for each registered enpoint, allowing it
 * to keep track of transactions that need doing. Each endpoint has a
 * lock to protect the state, to try and avoid using an overall lock
 * for the host controller as much as possible.
 *
 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 * and keep track of the amount of data in the periodic FIFO for each
 * of these as we don't have a status register that tells us how much
103 104 105
 * is in each of them. (note, this may actually be useless information
 * as in shared-fifo mode periodic in acts like a single-frame packet
 * buffer than a fifo)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
 */
struct s3c_hsotg_ep {
	struct usb_ep		ep;
	struct list_head	queue;
	struct s3c_hsotg	*parent;
	struct s3c_hsotg_req	*req;
	struct dentry		*debugfs;


	unsigned long		total_data;
	unsigned int		size_loaded;
	unsigned int		last_load;
	unsigned int		fifo_load;
	unsigned short		fifo_size;

	unsigned char		dir_in;
	unsigned char		index;

	unsigned int		halted:1;
	unsigned int		periodic:1;
	unsigned int		sent_zlp:1;

	char			name[10];
};

/**
 * struct s3c_hsotg - driver state.
 * @dev: The parent device supplied to the probe function
 * @driver: USB gadget driver
135 136 137
 * @phy: The otg phy transceiver structure for phy control.
 * @plat: The platform specific configuration data. This can be removed once
 * all SoCs support usb transceiver.
138 139
 * @regs: The memory area mapped for accessing registers.
 * @irq: The IRQ number we are using
140
 * @supplies: Definition of USB power supplies
141
 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
142
 * @num_of_eps: Number of available EPs (excluding EP0)
143 144 145 146 147 148 149
 * @debug_root: root directrory for debugfs.
 * @debug_file: main status file for debugfs.
 * @debug_fifo: FIFO status file for debugfs.
 * @ep0_reply: Request used for ep0 reply.
 * @ep0_buff: Buffer for EP0 reply data, if needed.
 * @ctrl_buff: Buffer for EP0 control requests.
 * @ctrl_req: Request for EP0 control packets.
150
 * @setup: NAK management for EP0 SETUP
151
 * @last_rst: Time of last reset
152 153 154 155 156
 * @eps: The endpoints being supplied to the gadget framework
 */
struct s3c_hsotg {
	struct device		 *dev;
	struct usb_gadget_driver *driver;
157
	struct usb_phy		*phy;
158 159
	struct s3c_hsotg_plat	 *plat;

160 161
	spinlock_t              lock;

162 163
	void __iomem		*regs;
	int			irq;
164
	struct clk		*clk;
165

166 167
	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];

168
	unsigned int		dedicated_fifos:1;
169
	unsigned char           num_of_eps;
170

171 172 173 174 175 176 177 178 179 180
	struct dentry		*debug_root;
	struct dentry		*debug_file;
	struct dentry		*debug_fifo;

	struct usb_request	*ep0_reply;
	struct usb_request	*ctrl_req;
	u8			ep0_buff[8];
	u8			ctrl_buff[8];

	struct usb_gadget	gadget;
181
	unsigned int		setup;
182
	unsigned long           last_rst;
183
	struct s3c_hsotg_ep	*eps;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
};

/**
 * struct s3c_hsotg_req - data transfer request
 * @req: The USB gadget request
 * @queue: The list of requests for the endpoint this is queued for.
 * @in_progress: Has already had size/packets written to core
 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
 */
struct s3c_hsotg_req {
	struct usb_request	req;
	struct list_head	queue;
	unsigned char		in_progress;
	unsigned char		mapped;
};

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsotg, gadget);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
260
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
261 262 263 264 265 266
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
267
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
268 269 270 271 272 273 274 275 276 277
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
278
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
279 280 281 282 283
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
284
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
309
	daint = readl(hsotg->regs + DAINTMSK);
310 311 312 313
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
314
	writel(daint, hsotg->regs + DAINTMSK);
315 316 317 318 319 320 321 322 323
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
324 325 326
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
327
	int timeout;
328 329
	u32 val;

330
	/* set FIFO sizes to 2048/1024 */
331

332 333 334 335
	writel(2048, hsotg->regs + GRXFSIZ);
	writel(GNPTXFSIZ_NPTxFStAddr(2048) |
	       GNPTXFSIZ_NPTxFDep(1024),
	       hsotg->regs + GNPTXFSIZ);
336

337 338
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
339 340
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
341 342
	 * known values.
	 */
343 344 345 346 347

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;
	size = 768;

348 349 350 351
	/*
	 * currently we allocate TX FIFOs for all possible endpoints,
	 * and assume that they are all the same size.
	 */
352

353
	for (ep = 1; ep <= 15; ep++) {
354
		val = addr;
355
		val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
356 357
		addr += size;

358
		writel(val, hsotg->regs + DPTXFSIZn(ep));
359
	}
360

361 362 363 364
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
365

366 367
	writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
	       GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
368 369 370 371

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
372
		val = readl(hsotg->regs + GRSTCTL);
373

374
		if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
375 376 377 378 379 380 381 382 383 384 385 386
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
387 388 389 390 391 392 393 394
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
395 396
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
429
 */
430 431 432 433 434 435 436 437 438 439
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

440
	usb_gadget_unmap_request(&hsotg->gadget, hs_req, hs_ep->dir_in);
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
458
 */
459 460 461 462 463
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
464
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
465 466 467 468 469 470 471 472 473 474 475 476
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

477
	if (periodic && !hsotg->dedicated_fifos) {
478
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
479 480 481
		int size_left;
		int size_done;

482 483 484 485
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
486

487
		size_left = DxEPTSIZ_XferSize_GET(epsize);
488

489 490
		/*
		 * if shared fifo, we cannot write anything until the
491 492 493
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
494
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
495 496 497
			return -ENOSPC;
		}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
515
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
516 517
			return -ENOSPC;
		}
518
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
519
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
520 521 522

		can_write &= 0xffff;
		can_write *= 4;
523
	} else {
524
		if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
525 526 527 528
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

529
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
530 531 532
			return -ENOSPC;
		}

533
		can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
534
		can_write *= 4;	/* fifo size is in 32bit quantities. */
535 536 537 538 539
	}

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
		 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);

540 541
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
542 543 544 545 546 547
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
	if (can_write > 512)
		can_write = 512;

548 549
	/*
	 * limit the write to one max-packet size worth of data, but allow
550
	 * the transfer to return that it did not run out of fifo space
551 552
	 * doing it.
	 */
553 554 555 556
	if (to_write > hs_ep->ep.maxpacket) {
		to_write = hs_ep->ep.maxpacket;

		s3c_hsotg_en_gsint(hsotg,
557 558
				   periodic ? GINTSTS_PTxFEmp :
				   GINTSTS_NPTxFEmp);
559 560
	}

561 562 563 564 565 566
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
		pkt_round = to_write % hs_ep->ep.maxpacket;

567 568
		/*
		 * Round the write down to an
569 570 571 572 573 574 575 576 577
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

578 579 580 581
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
582 583

		s3c_hsotg_en_gsint(hsotg,
584 585
				   periodic ? GINTSTS_PTxFEmp :
				   GINTSTS_NPTxFEmp);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

603
	writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
622 623
		maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
		maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
624
	} else {
625
		maxsize = 64+64;
626
		if (hs_ep->dir_in)
627
			maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
628
		else
629 630 631 632 633 634 635
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

636 637 638 639
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

686 687
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
688 689 690 691 692

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

693 694 695
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

696
	if (ctrl & DxEPCTL_Stall) {
697 698 699 700
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

701
	length = ureq->length - ureq->actual;
702 703
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	if (0)
		dev_dbg(hsotg->dev,
			"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
			ureq->buf, length, ureq->dma,
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

	if (dir_in && index != 0)
730
		epsize = DxEPTSIZ_MC(1);
731 732 733 734
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
735 736 737 738
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
739 740 741 742 743

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

744 745
	epsize |= DxEPTSIZ_PktCnt(packets);
	epsize |= DxEPTSIZ_XferSize(length);
746 747 748 749 750 751 752 753 754 755

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

756
	if (using_dma(hsotg) && !continuing) {
757 758
		unsigned int dma_reg;

759 760 761 762
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
763

764
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
765 766 767 768 769 770
		writel(ureq->dma, hsotg->regs + dma_reg);

		dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
			__func__, ureq->dma, dma_reg);
	}

771 772
	ctrl |= DxEPCTL_EPEna;	/* ensure ep enabled */
	ctrl |= DxEPCTL_USBActEp;
773 774 775 776 777 778 779

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
780
		ctrl |= DxEPCTL_CNAK;	/* clear NAK set by core */
781

782 783 784 785

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

786 787
	/*
	 * set these, it seems that DMA support increments past the end
788
	 * of the packet buffer so we need to calculate the length from
789 790
	 * this information.
	 */
791 792 793 794 795 796 797 798 799 800
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

801 802 803 804
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
805
	if (dir_in)
806 807
		writel(DIEPMSK_INTknTXFEmpMsk,
		       hsotg->regs + DIEPINT(index));
808

809 810 811 812
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
813 814

	/* check ep is enabled */
815
	if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		dev_warn(hsotg->dev,
			 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
			 index, readl(hsotg->regs + epctrl_reg));

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
835
 */
836 837 838 839 840
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
841
	int ret;
842 843 844 845 846

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

847 848 849
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
942
 */
943 944 945 946 947 948 949 950 951 952
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

953
	if (idx > hsotg->num_of_eps)
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

1079 1080 1081 1082 1083 1084 1085 1086
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
					 struct usb_ctrlrequest *ctrl)
{
1087
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1088 1089
	struct s3c_hsotg_req *hs_req;
	bool restart;
1090 1091
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
1092
	int ret;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
			s3c_hsotg_ep_sethalt(&ep->ep, set);
1108 1109 1110 1111 1112 1113 1114

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

			if (!set) {
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
					hs_req->req.complete(&ep->ep,
							     &hs_req->req);
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1171 1172 1173 1174
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1175 1176 1177 1178

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1179 1180 1181 1182
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1183 1184 1185 1186 1187 1188
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1189 1190 1191 1192
			dcfg = readl(hsotg->regs + DCFG);
			dcfg &= ~DCFG_DevAddr_MASK;
			dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
			writel(dcfg, hsotg->regs + DCFG);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1218 1219
	/*
	 * the request is either unhandlable, or is not formatted correctly
1220 1221 1222 1223 1224 1225 1226 1227
	 * so respond with a STALL for the status stage to indicate failure.
	 */

	if (ret < 0) {
		u32 reg;
		u32 ctrl;

		dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1228
		reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1229

1230
		/*
1231
		 * DxEPCTL_Stall will be cleared by EP once it has
1232 1233
		 * taken effect, so no need to clear later.
		 */
1234 1235

		ctrl = readl(hsotg->regs + reg);
1236 1237
		ctrl |= DxEPCTL_Stall;
		ctrl |= DxEPCTL_CNAK;
1238 1239 1240
		writel(ctrl, hsotg->regs + reg);

		dev_dbg(hsotg->dev,
L
Lucas De Marchi 已提交
1241
			"written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1242 1243
			ctrl, reg, readl(hsotg->regs + reg));

1244 1245 1246 1247
		/*
		 * don't believe we need to anything more to get the EP
		 * to reply with a STALL packet
		 */
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	}
}

static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1308 1309 1310 1311
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1327
 */
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1343 1344 1345 1346
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1357 1358 1359 1360
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1361 1362

	if (hs_req->req.complete) {
1363
		spin_unlock(&hsotg->lock);
1364
		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1365
		spin_lock(&hsotg->lock);
1366 1367
	}

1368 1369
	/*
	 * Look to see if there is anything else to do. Note, the completion
1370
	 * of the previous request may have caused a new request to be started
1371 1372
	 * so be careful when doing this.
	 */
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1397
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1398 1399 1400 1401
	int to_read;
	int max_req;
	int read_ptr;

1402

1403
	if (!hs_req) {
1404
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
		int ptr;

		dev_warn(hsotg->dev,
			 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1422 1423 1424
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1425
	if (to_read > max_req) {
1426 1427
		/*
		 * more data appeared than we where willing
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1439 1440 1441 1442
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	readsl(fifo, hs_req->req.buf + read_ptr, to_read);
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1455
 * currently believed that we do not need to wait for any space in
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
 * the TxFIFO.
 */
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1480 1481
	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
	       DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
1482

1483 1484 1485 1486 1487
	ctrl = readl(hsotg->regs + DIEPCTL0);
	ctrl |= DxEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
	ctrl |= DxEPCTL_USBActEp;
	writel(ctrl, hsotg->regs + DIEPCTL0);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1499
 */
1500 1501 1502
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
				     int epnum, bool was_setup)
{
1503
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1504 1505 1506
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1507
	unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1518 1519
		/*
		 * Calculate the size of the transfer by checking how much
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1533 1534 1535 1536
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1537 1538 1539 1540 1541 1542
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1543 1544
	}

1545 1546 1547 1548
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1549 1550 1551 1552
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1553 1554 1555
	}

	if (epnum == 0) {
1556 1557 1558 1559
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1560 1561 1562 1563
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1564
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1565 1566 1567 1568 1569 1570 1571
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1572
 */
1573 1574 1575 1576
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
	u32 dsts;

1577 1578 1579
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1592
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1593 1594 1595 1596 1597 1598 1599
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1600
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1601
{
1602
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1603 1604 1605 1606
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1607 1608
	epnum = grxstsr & GRXSTS_EPNum_MASK;
	status = grxstsr & GRXSTS_PktSts_MASK;
1609

1610 1611
	size = grxstsr & GRXSTS_ByteCnt_MASK;
	size >>= GRXSTS_ByteCnt_SHIFT;
1612 1613 1614 1615 1616

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1617
#define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1618

1619 1620
	switch (status >> GRXSTS_PktSts_SHIFT) {
	case __status(GRXSTS_PktSts_GlobalOutNAK):
1621 1622 1623
		dev_dbg(hsotg->dev, "GlobalOutNAK\n");
		break;

1624
	case __status(GRXSTS_PktSts_OutDone):
1625 1626 1627 1628 1629 1630 1631
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1632
	case __status(GRXSTS_PktSts_SetupDone):
1633 1634 1635
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1636
			readl(hsotg->regs + DOEPCTL(0)));
1637 1638 1639 1640

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1641
	case __status(GRXSTS_PktSts_OutRX):
1642 1643 1644
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1645
	case __status(GRXSTS_PktSts_SetupRX):
1646 1647 1648
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1649
			readl(hsotg->regs + DOEPCTL(0)));
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1666
 */
1667 1668 1669 1670
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1671
		return D0EPCTL_MPS_64;
1672
	case 32:
1673
		return D0EPCTL_MPS_32;
1674
	case 16:
1675
		return D0EPCTL_MPS_16;
1676
	case 8:
1677
		return D0EPCTL_MPS_8;
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
	} else {
1708
		if (mps >= DxEPCTL_MPS_LIMIT+1)
1709 1710 1711 1712 1713 1714 1715
			goto bad_mps;

		mpsval = mps;
	}

	hs_ep->ep.maxpacket = mps;

1716 1717 1718 1719
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1720

1721 1722
	reg = readl(regs + DIEPCTL(ep));
	reg &= ~DxEPCTL_MPS_MASK;
1723
	reg |= mpsval;
1724
	writel(reg, regs + DIEPCTL(ep));
1725

1726
	if (ep) {
1727 1728
		reg = readl(regs + DOEPCTL(ep));
		reg &= ~DxEPCTL_MPS_MASK;
1729
		reg |= mpsval;
1730
		writel(reg, regs + DOEPCTL(ep));
1731
	}
1732 1733 1734 1735 1736 1737 1738

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
	int timeout;
	int val;

1749 1750
	writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
		hsotg->regs + GRSTCTL);
1751 1752 1753 1754 1755

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1756
		val = readl(hsotg->regs + GRSTCTL);
1757

1758
		if ((val & (GRSTCTL_TxFFlsh)) == 0)
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}
}
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

	if (!hs_ep->dir_in || !hs_req)
		return 0;

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1808
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1809 1810 1811 1812 1813 1814 1815
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1816 1817 1818
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1819
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1820 1821 1822
		return;
	}

1823 1824
	/*
	 * Calculate the size of the transfer by checking how much is left
1825 1826 1827 1828 1829 1830 1831 1832
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1833
	size_left = DxEPTSIZ_XferSize_GET(epsize);
1834 1835 1836 1837 1838 1839 1840 1841 1842

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1862

1863 1864
		return;
	}
1865 1866 1867 1868 1869

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1870
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1871 1872 1873 1874 1875 1876 1877 1878 1879
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1880
 */
1881 1882 1883 1884
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1885 1886 1887
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1888 1889 1890 1891
	u32 ints;

	ints = readl(hsotg->regs + epint_reg);

1892 1893 1894
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1895 1896 1897
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1898
	if (ints & DxEPINT_XferCompl) {
1899 1900 1901 1902 1903
		dev_dbg(hsotg->dev,
			"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1904 1905 1906 1907
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1908 1909 1910
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1911
			if (idx == 0 && !hs_ep->req)
1912 1913
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1914 1915 1916 1917
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1918 1919 1920 1921 1922

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1923
	if (ints & DxEPINT_EPDisbld) {
1924 1925
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1926 1927 1928 1929 1930
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

			s3c_hsotg_txfifo_flush(hsotg, idx);

1931 1932 1933
			if ((epctl & DxEPCTL_Stall) &&
				(epctl & DxEPCTL_EPType_Bulk)) {
				int dctl = readl(hsotg->regs + DCTL);
1934

1935 1936
				dctl |= DCTL_CGNPInNAK;
				writel(dctl, hsotg->regs + DCTL);
1937 1938 1939 1940
			}
		}
	}

1941
	if (ints & DxEPINT_AHBErr)
1942 1943
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1944
	if (ints & DxEPINT_Setup) {  /* Setup or Timeout */
1945 1946 1947
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1948 1949
			/*
			 * this is the notification we've received a
1950 1951
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1952 1953
			 * the setup here.
			 */
1954 1955 1956 1957 1958 1959 1960 1961

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1962
	if (ints & DxEPINT_Back2BackSetup)
1963 1964 1965
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

	if (dir_in) {
1966
		/* not sure if this is important, but we'll clear it anyway */
1967
		if (ints & DIEPMSK_INTknTXFEmpMsk) {
1968 1969 1970 1971 1972
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1973
		if (ints & DIEPMSK_INTknEPMisMsk) {
1974 1975 1976
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1977 1978 1979

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1980
		    ints & DIEPMSK_TxFIFOEmpty) {
1981 1982
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1983 1984
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1985
		}
1986 1987 1988 1989 1990 1991 1992 1993 1994
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1995
 */
1996 1997
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
1998
	u32 dsts = readl(hsotg->regs + DSTS);
1999 2000
	int ep0_mps = 0, ep_mps;

2001 2002
	/*
	 * This should signal the finish of the enumeration phase
2003
	 * of the USB handshaking, so we should now know what rate
2004 2005
	 * we connected at.
	 */
2006 2007 2008

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2009 2010
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2011
	 * it seems IN transfers must be a even number of packets we do
2012 2013
	 * not advertise a 64byte MPS on EP0.
	 */
2014 2015

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2016 2017 2018
	switch (dsts & DSTS_EnumSpd_MASK) {
	case DSTS_EnumSpd_FS:
	case DSTS_EnumSpd_FS48:
2019 2020 2021 2022 2023
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 64;
		break;

2024
	case DSTS_EnumSpd_HS:
2025 2026 2027 2028 2029
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 512;
		break;

2030
	case DSTS_EnumSpd_LS:
2031
		hsotg->gadget.speed = USB_SPEED_LOW;
2032 2033
		/*
		 * note, we don't actually support LS in this driver at the
2034 2035 2036 2037 2038
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2039 2040
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2041

2042 2043 2044 2045
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2046 2047 2048 2049

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2050
		for (i = 1; i < hsotg->num_of_eps; i++)
2051 2052 2053 2054 2055 2056 2057 2058
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2059 2060
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
static void kill_all_requests(struct s3c_hsotg *hsotg,
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2080 2081 2082 2083
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
}

#define call_gadget(_hs, _entry) \
	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
2095 2096 2097 2098 2099
	    (_hs)->driver && (_hs)->driver->_entry) { \
		spin_unlock(&_hs->lock); \
		(_hs)->driver->_entry(&(_hs)->gadget); \
		spin_lock(&_hs->lock); \
		}
2100 2101

/**
2102
 * s3c_hsotg_disconnect - disconnect service
2103 2104
 * @hsotg: The device state.
 *
2105 2106 2107
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2108
 */
2109
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2110 2111 2112
{
	unsigned ep;

2113
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2131
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2148 2149 2150
#define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
			GINTSTS_PTxFEmp |  \
			GINTSTS_RxFLvl)
2151

2152 2153 2154 2155 2156
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2157
 */
2158 2159 2160 2161 2162 2163 2164 2165
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2166
	writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
2167

2168
	timeout = 10000;
2169
	do {
2170 2171
		grstctl = readl(hsotg->regs + GRSTCTL);
	} while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
2172

2173
	if (grstctl & GRSTCTL_CSftRst) {
2174 2175 2176 2177
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2178
	timeout = 10000;
2179 2180

	while (1) {
2181
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2182 2183 2184 2185 2186 2187 2188 2189

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2190
		if (!(grstctl & GRSTCTL_AHBIdle))
2191 2192 2193 2194 2195 2196 2197 2198 2199
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2200 2201 2202 2203 2204 2205
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2216 2217
	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2218 2219 2220

	s3c_hsotg_init_fifo(hsotg);

2221
	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2222

2223
	writel(1 << 18 | DCFG_DevSpd_HS,  hsotg->regs + DCFG);
2224 2225

	/* Clear any pending OTG interrupts */
2226
	writel(0xffffffff, hsotg->regs + GOTGINT);
2227 2228

	/* Clear any pending interrupts */
2229
	writel(0xffffffff, hsotg->regs + GINTSTS);
2230

2231 2232 2233 2234 2235 2236
	writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
	       GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
	       GINTSTS_ConIDStsChng | GINTSTS_USBRst |
	       GINTSTS_EnumDone | GINTSTS_OTGInt |
	       GINTSTS_USBSusp | GINTSTS_WkUpInt,
	       hsotg->regs + GINTMSK);
2237 2238

	if (using_dma(hsotg))
2239 2240 2241
		writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
		       GAHBCFG_HBstLen_Incr4,
		       hsotg->regs + GAHBCFG);
2242
	else
2243
		writel(GAHBCFG_GlblIntrEn, hsotg->regs + GAHBCFG);
2244 2245 2246 2247 2248 2249 2250

	/*
	 * Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
	 * up being flooded with interrupts if the host is polling the
	 * endpoint to try and read data.
	 */

2251 2252 2253 2254 2255
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty : 0) |
	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
	       DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
	       DIEPMSK_INTknEPMisMsk,
	       hsotg->regs + DIEPMSK);
2256 2257 2258 2259 2260

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2261 2262 2263 2264 2265
	writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
				    DIEPMSK_TimeOUTMsk) : 0) |
	       DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
	       DOEPMSK_SetupMsk,
	       hsotg->regs + DOEPMSK);
2266

2267
	writel(0, hsotg->regs + DAINTMSK);
2268 2269

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2270 2271
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2272 2273

	/* enable in and out endpoint interrupts */
2274
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
2275 2276 2277 2278 2279 2280 2281

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2282
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
2283 2284 2285 2286 2287

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2288
	__orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2289
	udelay(10);  /* see openiboot */
2290
	__bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2291

2292
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2293 2294

	/*
2295
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2296 2297 2298 2299
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2300 2301
	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
	       DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2302 2303

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2304 2305 2306
	       DxEPCTL_CNAK | DxEPCTL_EPEna |
	       DxEPCTL_USBActEp,
	       hsotg->regs + DOEPCTL0);
2307 2308 2309

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2310
	       DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
2311 2312 2313 2314

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2315 2316
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2317 2318

	/* clear global NAKs */
2319 2320
	writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
	       hsotg->regs + DCTL);
2321 2322 2323 2324 2325

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

	/* remove the soft-disconnect and let's go */
2326
	__bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
2327 2328
}

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
	struct s3c_hsotg *hsotg = pw;
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2341
	spin_lock(&hsotg->lock);
2342
irq_retry:
2343 2344
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2345 2346 2347 2348 2349 2350

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2351 2352
	if (gintsts & GINTSTS_OTGInt) {
		u32 otgint = readl(hsotg->regs + GOTGINT);
2353 2354 2355

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

2356
		writel(otgint, hsotg->regs + GOTGINT);
2357 2358
	}

2359
	if (gintsts & GINTSTS_SessReqInt) {
2360
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2361
		writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
2362 2363
	}

2364 2365
	if (gintsts & GINTSTS_EnumDone) {
		writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
2366 2367

		s3c_hsotg_irq_enumdone(hsotg);
2368 2369
	}

2370
	if (gintsts & GINTSTS_ConIDStsChng) {
2371
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2372 2373
			readl(hsotg->regs + DSTS),
			readl(hsotg->regs + GOTGCTL));
2374

2375
		writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
2376 2377
	}

2378 2379 2380 2381
	if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
		u32 daint = readl(hsotg->regs + DAINT);
		u32 daint_out = daint >> DAINT_OutEP_SHIFT;
		u32 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
		int ep;

		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2397
	if (gintsts & GINTSTS_USBRst) {
2398

2399
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2400

2401 2402
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2403
			readl(hsotg->regs + GNPTXSTS));
2404

2405
		writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
2406

2407
		if (usb_status & GOTGCTL_BSESVLD) {
2408 2409
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2410

2411 2412
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2413

2414 2415 2416 2417
				s3c_hsotg_core_init(hsotg);
				hsotg->last_rst = jiffies;
			}
		}
2418 2419 2420 2421
	}

	/* check both FIFOs */

2422
	if (gintsts & GINTSTS_NPTxFEmp) {
2423 2424
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2425 2426
		/*
		 * Disable the interrupt to stop it happening again
2427
		 * unless one of these endpoint routines decides that
2428 2429
		 * it needs re-enabling
		 */
2430

2431
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
2432 2433 2434
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2435
	if (gintsts & GINTSTS_PTxFEmp) {
2436 2437
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2438
		/* See note in GINTSTS_NPTxFEmp */
2439

2440
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
2441 2442 2443
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2444
	if (gintsts & GINTSTS_RxFLvl) {
2445 2446
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2447
		 * we need to retry s3c_hsotg_handle_rx if this is still
2448 2449
		 * set.
		 */
2450 2451 2452 2453

		s3c_hsotg_handle_rx(hsotg);
	}

2454
	if (gintsts & GINTSTS_ModeMis) {
2455
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2456
		writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
2457 2458
	}

2459 2460 2461
	if (gintsts & GINTSTS_USBSusp) {
		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
		writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
2462 2463

		call_gadget(hsotg, suspend);
2464
		s3c_hsotg_disconnect(hsotg);
2465 2466
	}

2467 2468 2469
	if (gintsts & GINTSTS_WkUpInt) {
		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
		writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
2470 2471 2472 2473

		call_gadget(hsotg, resume);
	}

2474 2475 2476
	if (gintsts & GINTSTS_ErlySusp) {
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
		writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
2477 2478

		s3c_hsotg_disconnect(hsotg);
2479 2480
	}

2481 2482
	/*
	 * these next two seem to crop-up occasionally causing the core
2483
	 * to shutdown the USB transfer, so try clearing them and logging
2484 2485
	 * the occurrence.
	 */
2486

2487
	if (gintsts & GINTSTS_GOUTNakEff) {
2488 2489
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2490
		writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
2491 2492

		s3c_hsotg_dump(hsotg);
2493 2494
	}

2495
	if (gintsts & GINTSTS_GINNakEff) {
2496 2497
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2498
		writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
2499 2500

		s3c_hsotg_dump(hsotg);
2501 2502
	}

2503 2504 2505 2506
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2507 2508 2509 2510

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2511 2512
	spin_unlock(&hsotg->lock);

2513 2514 2515 2516 2517 2518 2519 2520 2521
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2522
 */
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2534
	int ret = 0;
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2550
	mps = usb_endpoint_maxp(desc);
2551 2552 2553

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2554
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2555 2556 2557 2558 2559
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2560
	spin_lock_irqsave(&hsotg->lock, flags);
2561

2562 2563
	epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
	epctrl |= DxEPCTL_MPS(mps);
2564

2565 2566 2567 2568
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2569
	epctrl |= DxEPCTL_USBActEp;
2570

2571 2572
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2573 2574 2575 2576 2577
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2578
	epctrl |= DxEPCTL_SNAK;
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588

	/* update the endpoint state */
	hs_ep->ep.maxpacket = mps;

	/* default, set to non-periodic */
	hs_ep->periodic = 0;

	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
		dev_err(hsotg->dev, "no current ISOC support\n");
2589 2590
		ret = -EINVAL;
		goto out;
2591 2592

	case USB_ENDPOINT_XFER_BULK:
2593
		epctrl |= DxEPCTL_EPType_Bulk;
2594 2595 2596 2597
		break;

	case USB_ENDPOINT_XFER_INT:
		if (dir_in) {
2598 2599
			/*
			 * Allocate our TxFNum by simply using the index
2600 2601
			 * of the endpoint for the moment. We could do
			 * something better if the host indicates how
2602 2603
			 * many FIFOs we are expecting to use.
			 */
2604 2605

			hs_ep->periodic = 1;
2606
			epctrl |= DxEPCTL_TxFNum(index);
2607 2608
		}

2609
		epctrl |= DxEPCTL_EPType_Intterupt;
2610 2611 2612
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2613
		epctrl |= DxEPCTL_EPType_Control;
2614 2615 2616
		break;
	}

2617 2618
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2619 2620 2621
	 * a unique tx-fifo even if it is non-periodic.
	 */
	if (dir_in && hsotg->dedicated_fifos)
2622
		epctrl |= DxEPCTL_TxFNum(index);
2623

2624 2625
	/* for non control endpoints, set PID to D0 */
	if (index)
2626
		epctrl |= DxEPCTL_SetD0PID;
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2638
out:
2639
	spin_unlock_irqrestore(&hsotg->lock, flags);
2640
	return ret;
2641 2642
}

2643 2644 2645 2646
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2664
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2665

2666
	spin_lock_irqsave(&hsotg->lock, flags);
2667 2668 2669 2670 2671
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);


	ctrl = readl(hsotg->regs + epctrl_reg);
2672 2673 2674
	ctrl &= ~DxEPCTL_EPEna;
	ctrl &= ~DxEPCTL_USBActEp;
	ctrl |= DxEPCTL_SNAK;
2675 2676 2677 2678 2679 2680 2681

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2682
	spin_unlock_irqrestore(&hsotg->lock, flags);
2683 2684 2685 2686 2687 2688 2689
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2690
 */
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2703 2704 2705 2706 2707
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2708 2709 2710 2711 2712 2713 2714 2715 2716
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags;

	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);

2717
	spin_lock_irqsave(&hs->lock, flags);
2718 2719

	if (!on_list(hs_ep, hs_req)) {
2720
		spin_unlock_irqrestore(&hs->lock, flags);
2721 2722 2723 2724
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2725
	spin_unlock_irqrestore(&hs->lock, flags);
2726 2727 2728 2729

	return 0;
}

2730 2731 2732 2733 2734
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2735 2736 2737 2738 2739 2740 2741
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2742
	u32 xfertype;
2743 2744 2745 2746 2747

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

	/* write both IN and OUT control registers */

2748
	epreg = DIEPCTL(index);
2749 2750
	epctl = readl(hs->regs + epreg);

2751
	if (value) {
2752 2753 2754
		epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
		if (epctl & DxEPCTL_EPEna)
			epctl |= DxEPCTL_EPDis;
2755
	} else {
2756 2757 2758 2759 2760
		epctl &= ~DxEPCTL_Stall;
		xfertype = epctl & DxEPCTL_EPType_MASK;
		if (xfertype == DxEPCTL_EPType_Bulk ||
			xfertype == DxEPCTL_EPType_Intterupt)
				epctl |= DxEPCTL_SetD0PID;
2761
	}
2762 2763 2764

	writel(epctl, hs->regs + epreg);

2765
	epreg = DOEPCTL(index);
2766 2767 2768
	epctl = readl(hs->regs + epreg);

	if (value)
2769
		epctl |= DxEPCTL_Stall;
2770
	else {
2771 2772 2773 2774 2775
		epctl &= ~DxEPCTL_Stall;
		xfertype = epctl & DxEPCTL_EPType_MASK;
		if (xfertype == DxEPCTL_EPType_Bulk ||
			xfertype == DxEPCTL_EPType_Intterupt)
				epctl |= DxEPCTL_SetD0PID;
2776
	}
2777 2778 2779 2780 2781 2782

	writel(epctl, hs->regs + epreg);

	return 0;
}

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2802 2803 2804 2805 2806
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2807
	.queue		= s3c_hsotg_ep_queue_lock,
2808
	.dequeue	= s3c_hsotg_ep_dequeue,
2809
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2810
	/* note, don't believe we have any call for the fifo routines */
2811 2812
};

2813 2814
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2815
 * @hsotg: The driver state
2816 2817 2818 2819 2820 2821 2822 2823 2824
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2825 2826 2827 2828

	if (hsotg->phy)
		usb_phy_init(hsotg->phy);
	else if (hsotg->plat->phy_init)
2829 2830 2831 2832 2833
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2834
 * @hsotg: The driver state
2835 2836 2837 2838 2839 2840 2841 2842
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2843 2844 2845
	if (hsotg->phy)
		usb_phy_shutdown(hsotg->phy);
	else if (hsotg->plat->phy_exit)
2846 2847 2848
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
}

2849 2850 2851 2852
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2853 2854 2855 2856
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
	/* unmask subset of endpoint interrupts */

2857 2858 2859
	writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
	       hsotg->regs + DIEPMSK);
2860

2861 2862 2863
	writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
	       DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
	       hsotg->regs + DOEPMSK);
2864

2865
	writel(0, hsotg->regs + DAINTMSK);
2866 2867

	/* Be in disconnected state until gadget is registered */
2868
	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2869 2870 2871

	if (0) {
		/* post global nak until we're ready */
2872 2873
		writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
		       hsotg->regs + DCTL);
2874 2875 2876 2877 2878
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2879 2880
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2881 2882 2883 2884

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2885 2886
	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
	       hsotg->regs + GUSBCFG);
2887

2888 2889
	writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
	       hsotg->regs + GAHBCFG);
2890 2891
}

2892 2893 2894 2895 2896 2897 2898 2899
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2900 2901
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2902
{
2903
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	int ret;

	if (!hsotg) {
		printk(KERN_ERR "%s: called with no device\n", __func__);
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2916
	if (driver->max_speed < USB_SPEED_FULL)
2917 2918
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2919
	if (!driver->setup) {
2920 2921 2922 2923 2924 2925 2926 2927
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2928
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2929 2930
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2931 2932
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2933
	if (ret) {
2934
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2935 2936 2937
		goto err;
	}

2938
	hsotg->last_rst = jiffies;
2939 2940 2941 2942 2943 2944 2945 2946
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

2947 2948 2949 2950 2951 2952 2953
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2954 2955
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
			  struct usb_gadget_driver *driver)
2956
{
2957
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2958
	unsigned long flags = 0;
2959 2960 2961 2962 2963 2964 2965 2966 2967
	int ep;

	if (!hsotg)
		return -ENODEV;

	if (!driver || driver != hsotg->driver || !driver->unbind)
		return -EINVAL;

	/* all endpoints should be shutdown */
2968
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2969 2970
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

2971 2972
	spin_lock_irqsave(&hsotg->lock, flags);

2973 2974
	s3c_hsotg_phy_disable(hsotg);
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2975 2976 2977 2978

	hsotg->driver = NULL;
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2979 2980
	spin_unlock_irqrestore(&hsotg->lock, flags);

2981 2982 2983 2984 2985 2986
	dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
		 driver->driver.name);

	return 0;
}

2987 2988 2989 2990 2991 2992
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2993 2994 2995 2996 2997
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags = 0;

	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
		s3c_hsotg_phy_enable(hsotg);
		s3c_hsotg_core_init(hsotg);
	} else {
		s3c_hsotg_disconnect(hsotg);
		s3c_hsotg_phy_disable(hsotg);
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3027
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3028
	.get_frame	= s3c_hsotg_gadget_getframe,
3029 3030
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3031
	.pullup                 = s3c_hsotg_pullup,
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
B
Bill Pemberton 已提交
3044
static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	u32 ptxfifo;
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
	hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3076 3077
	/*
	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3078 3079 3080 3081
	 * an OUT endpoint, we may as well do this if in future the
	 * code is changed to make each endpoint's direction changeable.
	 */

3082 3083
	ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
	hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
3084

3085 3086
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3087 3088 3089 3090
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3091 3092 3093
		u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3094 3095 3096
	}
}

3097 3098 3099 3100 3101 3102 3103
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3104
{
3105 3106
	u32 cfg2, cfg4;
	/* check hardware configuration */
3107

3108 3109
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3110

3111
	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3112 3113 3114 3115 3116 3117

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

	dev_info(hsotg->dev, "%s fifos\n",
		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3118 3119
}

3120 3121 3122 3123
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3124 3125
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
M
Mark Brown 已提交
3126
#ifdef DEBUG
3127 3128 3129 3130 3131 3132
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3133 3134
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3135 3136

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3137
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3138 3139

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3140
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3141 3142 3143 3144

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3145
		val = readl(regs + DPTXFSIZn(idx));
3146
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3147 3148
			 val >> DPTXFSIZn_DPTxFSize_SHIFT,
			 val & DPTXFSIZn_DPTxFStAddr_MASK);
3149 3150 3151 3152 3153
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3154 3155 3156
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3157

3158
		val = readl(regs + DOEPCTL(idx));
3159 3160
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3161 3162 3163
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3164 3165 3166 3167

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3168
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3169
#endif
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3188 3189 3190
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3191 3192

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3193
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3194 3195

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3196 3197
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3198 3199

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3200 3201
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3202 3203

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3204 3205
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3206 3207 3208 3209 3210 3211

	seq_printf(seq, "\nEndpoint status:\n");

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3212 3213
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3214 3215 3216 3217

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3218 3219
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

		seq_printf(seq, "\n");
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3250
 */
3251 3252 3253 3254 3255 3256 3257 3258
static int fifo_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	seq_printf(seq, "Non-periodic FIFOs:\n");
3259
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3260

3261
	val = readl(regs + GNPTXFSIZ);
3262
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3263 3264
		   val >> GNPTXFSIZ_NPTxFDep_SHIFT,
		   val & GNPTXFSIZ_NPTxFStAddr_MASK);
3265 3266 3267 3268

	seq_printf(seq, "\nPeriodic TXFIFOs:\n");

	for (idx = 1; idx <= 15; idx++) {
3269
		val = readl(regs + DPTXFSIZn(idx));
3270 3271

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3272 3273
			   val >> DPTXFSIZn_DPTxFSize_SHIFT,
			   val & DPTXFSIZn_DPTxFStAddr_MASK);
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3305
 */
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
	struct s3c_hsotg *hsotg = ep->parent;
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3322 3323
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3324 3325

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3326 3327
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3328 3329

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3330 3331
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3332 3333

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3334 3335
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3336 3337 3338 3339 3340 3341 3342 3343

	seq_printf(seq, "\n");
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3344
	spin_lock_irqsave(&hsotg->lock, flags);
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
			seq_printf(seq, "not showing more requests...\n");
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3359
	spin_unlock_irqrestore(&hsotg->lock, flags);
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3385
 */
B
Bill Pemberton 已提交
3386
static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3414
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3431
 */
B
Bill Pemberton 已提交
3432
static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3433 3434 3435
{
	unsigned epidx;

3436
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3437 3438 3439 3440 3441 3442 3443 3444 3445
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3446 3447 3448 3449
/**
 * s3c_hsotg_probe - probe function for hsotg driver
 * @pdev: The platform information for the driver
 */
3450

B
Bill Pemberton 已提交
3451
static int s3c_hsotg_probe(struct platform_device *pdev)
3452 3453
{
	struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3454
	struct usb_phy *phy;
3455
	struct device *dev = &pdev->dev;
3456
	struct s3c_hsotg_ep *eps;
3457 3458 3459 3460
	struct s3c_hsotg *hsotg;
	struct resource *res;
	int epnum;
	int ret;
3461
	int i;
3462

3463
	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3464 3465 3466 3467 3468
	if (!hsotg) {
		dev_err(dev, "cannot get memory\n");
		return -ENOMEM;
	}

3469
	phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3470
	if (IS_ERR(phy)) {
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
		/* Fallback for pdata */
		plat = pdev->dev.platform_data;
		if (!plat) {
			dev_err(&pdev->dev, "no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		} else {
			hsotg->plat = plat;
		}
	} else {
		hsotg->phy = phy;
	}

3483 3484
	hsotg->dev = dev;

3485
	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3486 3487
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3488
		return PTR_ERR(hsotg->clk);
3489 3490
	}

3491 3492 3493 3494
	platform_set_drvdata(pdev, hsotg);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

3495 3496 3497
	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(hsotg->regs)) {
		ret = PTR_ERR(hsotg->regs);
3498
		goto err_clk;
3499 3500 3501 3502 3503
	}

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "cannot find IRQ\n");
3504
		goto err_clk;
3505 3506
	}

3507 3508
	spin_lock_init(&hsotg->lock);

3509 3510
	hsotg->irq = ret;

3511 3512
	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
				dev_name(dev), hsotg);
3513 3514
	if (ret < 0) {
		dev_err(dev, "cannot claim IRQ\n");
3515
		goto err_clk;
3516 3517 3518 3519
	}

	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);

3520
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3521 3522 3523 3524 3525
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3526
	clk_prepare_enable(hsotg->clk);
3527

3528 3529 3530 3531 3532
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3533
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3534 3535 3536
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3537
		goto err_clk;
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
		goto err_supplies;
	}

3548 3549
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3550 3551 3552

	s3c_hsotg_corereset(hsotg);
	s3c_hsotg_init(hsotg);
3553 3554 3555 3556 3557 3558
	s3c_hsotg_hw_cfg(hsotg);

	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3559
		ret = -EINVAL;
3560 3561 3562 3563 3564 3565 3566
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
		dev_err(dev, "cannot get memory\n");
3567
		ret = -ENOMEM;
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3584
		ret = -ENOMEM;
3585 3586
		goto err_ep_mem;
	}
3587 3588

	/* initialise the endpoints now the core has been initialised */
3589
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3590 3591
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	/* disable power and clock */

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
		goto err_ep_mem;
	}

	s3c_hsotg_phy_disable(hsotg);

3603 3604
	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
	if (ret)
3605
		goto err_ep_mem;
3606

3607 3608 3609 3610 3611 3612
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3613
err_ep_mem:
3614
	kfree(eps);
3615
err_supplies:
3616
	s3c_hsotg_phy_disable(hsotg);
3617
err_clk:
3618
	clk_disable_unprepare(hsotg->clk);
3619

3620 3621 3622
	return ret;
}

3623 3624 3625 3626
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
B
Bill Pemberton 已提交
3627
static int s3c_hsotg_remove(struct platform_device *pdev)
3628 3629 3630
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);

3631 3632
	usb_del_gadget_udc(&hsotg->gadget);

3633 3634
	s3c_hsotg_delete_debug(hsotg);

3635 3636 3637 3638
	if (hsotg->driver) {
		/* should have been done already by driver model core */
		usb_gadget_unregister_driver(hsotg->driver);
	}
3639

3640
	s3c_hsotg_phy_disable(hsotg);
3641
	clk_disable_unprepare(hsotg->clk);
3642

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
	return 0;
}

#if 1
#define s3c_hsotg_suspend NULL
#define s3c_hsotg_resume NULL
#endif

static struct platform_driver s3c_hsotg_driver = {
	.driver		= {
		.name	= "s3c-hsotg",
		.owner	= THIS_MODULE,
	},
	.probe		= s3c_hsotg_probe,
B
Bill Pemberton 已提交
3657
	.remove		= s3c_hsotg_remove,
3658 3659 3660 3661
	.suspend	= s3c_hsotg_suspend,
	.resume		= s3c_hsotg_resume,
};

3662
module_platform_driver(s3c_hsotg_driver);
3663 3664 3665 3666 3667

MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");