s3c-hsotg.c 92.6 KB
Newer Older
1 2
/**
 * linux/drivers/usb/gadget/s3c-hsotg.c
3 4 5
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
6 7 8 9 10 11 12 13 14 15 16
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
17
 */
18 19 20 21 22 23 24 25 26 27 28

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
29
#include <linux/slab.h>
30
#include <linux/clk.h>
31
#include <linux/regulator/consumer.h>
32 33 34

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
35
#include <linux/platform_data/s3c-hsotg.h>
36 37 38

#include <mach/map.h>

39
#include "s3c-hsotg.h"
40 41 42

#define DMA_ADDR_INVALID (~((dma_addr_t)0))

43 44 45 46 47
static const char * const s3c_hsotg_supply_names[] = {
	"vusb_d",		/* digital USB supply, 1.2V */
	"vusb_a",		/* analog USB supply, 1.1V */
};

48 49
/*
 * EP0_MPS_LIMIT
50 51
 *
 * Unfortunately there seems to be a limit of the amount of data that can
L
Lucas De Marchi 已提交
52 53
 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 * packets (which practically means 1 packet and 63 bytes of data) when the
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 * MPS is set to 64.
 *
 * This means if we are wanting to move >127 bytes of data, we need to
 * split the transactions up, but just doing one packet at a time does
 * not work (this may be an implicit DATA0 PID on first packet of the
 * transaction) and doing 2 packets is outside the controller's limits.
 *
 * If we try to lower the MPS size for EP0, then no transfers work properly
 * for EP0, and the system will fail basic enumeration. As no cause for this
 * has currently been found, we cannot support any large IN transfers for
 * EP0.
 */
#define EP0_MPS_LIMIT	64

struct s3c_hsotg;
struct s3c_hsotg_req;

/**
 * struct s3c_hsotg_ep - driver endpoint definition.
 * @ep: The gadget layer representation of the endpoint.
 * @name: The driver generated name for the endpoint.
 * @queue: Queue of requests for this endpoint.
 * @parent: Reference back to the parent device structure.
 * @req: The current request that the endpoint is processing. This is
 *       used to indicate an request has been loaded onto the endpoint
 *       and has yet to be completed (maybe due to data move, or simply
 *	 awaiting an ack from the core all the data has been completed).
 * @debugfs: File entry for debugfs file for this endpoint.
 * @lock: State lock to protect contents of endpoint.
 * @dir_in: Set to true if this endpoint is of the IN direction, which
 *	    means that it is sending data to the Host.
 * @index: The index for the endpoint registers.
 * @name: The name array passed to the USB core.
 * @halted: Set if the endpoint has been halted.
 * @periodic: Set if this is a periodic ep, such as Interrupt
 * @sent_zlp: Set if we've sent a zero-length packet.
 * @total_data: The total number of data bytes done.
 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 * @last_load: The offset of data for the last start of request.
 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 *
 * This is the driver's state for each registered enpoint, allowing it
 * to keep track of transactions that need doing. Each endpoint has a
 * lock to protect the state, to try and avoid using an overall lock
 * for the host controller as much as possible.
 *
 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 * and keep track of the amount of data in the periodic FIFO for each
 * of these as we don't have a status register that tells us how much
104 105 106
 * is in each of them. (note, this may actually be useless information
 * as in shared-fifo mode periodic in acts like a single-frame packet
 * buffer than a fifo)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
 */
struct s3c_hsotg_ep {
	struct usb_ep		ep;
	struct list_head	queue;
	struct s3c_hsotg	*parent;
	struct s3c_hsotg_req	*req;
	struct dentry		*debugfs;


	unsigned long		total_data;
	unsigned int		size_loaded;
	unsigned int		last_load;
	unsigned int		fifo_load;
	unsigned short		fifo_size;

	unsigned char		dir_in;
	unsigned char		index;

	unsigned int		halted:1;
	unsigned int		periodic:1;
	unsigned int		sent_zlp:1;

	char			name[10];
};

/**
 * struct s3c_hsotg - driver state.
 * @dev: The parent device supplied to the probe function
 * @driver: USB gadget driver
 * @plat: The platform specific configuration data.
 * @regs: The memory area mapped for accessing registers.
 * @irq: The IRQ number we are using
139
 * @supplies: Definition of USB power supplies
140
 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
141
 * @num_of_eps: Number of available EPs (excluding EP0)
142 143 144 145 146 147 148
 * @debug_root: root directrory for debugfs.
 * @debug_file: main status file for debugfs.
 * @debug_fifo: FIFO status file for debugfs.
 * @ep0_reply: Request used for ep0 reply.
 * @ep0_buff: Buffer for EP0 reply data, if needed.
 * @ctrl_buff: Buffer for EP0 control requests.
 * @ctrl_req: Request for EP0 control packets.
149
 * @setup: NAK management for EP0 SETUP
150
 * @last_rst: Time of last reset
151 152 153 154 155 156 157
 * @eps: The endpoints being supplied to the gadget framework
 */
struct s3c_hsotg {
	struct device		 *dev;
	struct usb_gadget_driver *driver;
	struct s3c_hsotg_plat	 *plat;

158 159
	spinlock_t              lock;

160 161
	void __iomem		*regs;
	int			irq;
162
	struct clk		*clk;
163

164 165
	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];

166
	unsigned int		dedicated_fifos:1;
167
	unsigned char           num_of_eps;
168

169 170 171 172 173 174 175 176 177 178
	struct dentry		*debug_root;
	struct dentry		*debug_file;
	struct dentry		*debug_fifo;

	struct usb_request	*ep0_reply;
	struct usb_request	*ctrl_req;
	u8			ep0_buff[8];
	u8			ctrl_buff[8];

	struct usb_gadget	gadget;
179
	unsigned int		setup;
180
	unsigned long           last_rst;
181
	struct s3c_hsotg_ep	*eps;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
};

/**
 * struct s3c_hsotg_req - data transfer request
 * @req: The USB gadget request
 * @queue: The list of requests for the endpoint this is queued for.
 * @in_progress: Has already had size/packets written to core
 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
 */
struct s3c_hsotg_req {
	struct usb_request	req;
	struct list_head	queue;
	unsigned char		in_progress;
	unsigned char		mapped;
};

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsotg, gadget);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
258
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
259 260 261 262 263 264
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
265
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
266 267 268 269 270 271 272 273 274 275
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
276
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
277 278 279 280 281
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
282
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
307
	daint = readl(hsotg->regs + DAINTMSK);
308 309 310 311
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
312
	writel(daint, hsotg->regs + DAINTMSK);
313 314 315 316 317 318 319 320 321
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
322 323 324
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
325
	int timeout;
326 327
	u32 val;

328
	/* set FIFO sizes to 2048/1024 */
329

330 331 332 333
	writel(2048, hsotg->regs + GRXFSIZ);
	writel(GNPTXFSIZ_NPTxFStAddr(2048) |
	       GNPTXFSIZ_NPTxFDep(1024),
	       hsotg->regs + GNPTXFSIZ);
334

335 336
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
337 338
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
339 340
	 * known values.
	 */
341 342 343 344 345

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;
	size = 768;

346 347 348 349
	/*
	 * currently we allocate TX FIFOs for all possible endpoints,
	 * and assume that they are all the same size.
	 */
350

351
	for (ep = 1; ep <= 15; ep++) {
352
		val = addr;
353
		val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
354 355
		addr += size;

356
		writel(val, hsotg->regs + DPTXFSIZn(ep));
357
	}
358

359 360 361 362
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
363

364 365
	writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
	       GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
366 367 368 369

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
370
		val = readl(hsotg->regs + GRSTCTL);
371

372
		if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
373 374 375 376 377 378 379 380 381 382 383 384
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
385 386 387 388 389 390 391 392
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
393 394
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	req->req.dma = DMA_ADDR_INVALID;
	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
428
 */
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;
	enum dma_data_direction dir;

	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

	if (hs_req->mapped) {
		/* we mapped this, so unmap and remove the dma */

		dma_unmap_single(hsotg->dev, req->dma, req->length, dir);

		req->dma = DMA_ADDR_INVALID;
		hs_req->mapped = 0;
	} else {
450
		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	}
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
469
 */
470 471 472 473 474
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
475
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
476 477 478 479 480 481 482 483 484 485 486 487
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

488
	if (periodic && !hsotg->dedicated_fifos) {
489
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
490 491 492
		int size_left;
		int size_done;

493 494 495 496
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
497

498
		size_left = DxEPTSIZ_XferSize_GET(epsize);
499

500 501
		/*
		 * if shared fifo, we cannot write anything until the
502 503 504
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
505
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
506 507 508
			return -ENOSPC;
		}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
526
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
527 528
			return -ENOSPC;
		}
529
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
530
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
531 532 533

		can_write &= 0xffff;
		can_write *= 4;
534
	} else {
535
		if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
536 537 538 539
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

540
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
541 542 543
			return -ENOSPC;
		}

544
		can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
545
		can_write *= 4;	/* fifo size is in 32bit quantities. */
546 547 548 549 550
	}

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
		 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);

551 552
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
553 554 555 556 557 558
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
	if (can_write > 512)
		can_write = 512;

559 560
	/*
	 * limit the write to one max-packet size worth of data, but allow
561
	 * the transfer to return that it did not run out of fifo space
562 563
	 * doing it.
	 */
564 565 566 567
	if (to_write > hs_ep->ep.maxpacket) {
		to_write = hs_ep->ep.maxpacket;

		s3c_hsotg_en_gsint(hsotg,
568 569
				   periodic ? GINTSTS_PTxFEmp :
				   GINTSTS_NPTxFEmp);
570 571
	}

572 573 574 575 576 577
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
		pkt_round = to_write % hs_ep->ep.maxpacket;

578 579
		/*
		 * Round the write down to an
580 581 582 583 584 585 586 587 588
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

589 590 591 592
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
593 594

		s3c_hsotg_en_gsint(hsotg,
595 596
				   periodic ? GINTSTS_PTxFEmp :
				   GINTSTS_NPTxFEmp);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

614
	writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
633 634
		maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
		maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
635
	} else {
636
		maxsize = 64+64;
637
		if (hs_ep->dir_in)
638
			maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
639
		else
640 641 642 643 644 645 646
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

647 648 649 650
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

697 698
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
699 700 701 702 703

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

704 705 706
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

707
	if (ctrl & DxEPCTL_Stall) {
708 709 710 711
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

712
	length = ureq->length - ureq->actual;
713 714
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	if (0)
		dev_dbg(hsotg->dev,
			"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
			ureq->buf, length, ureq->dma,
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

	if (dir_in && index != 0)
741
		epsize = DxEPTSIZ_MC(1);
742 743 744 745
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
746 747 748 749
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
750 751 752 753 754

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

755 756
	epsize |= DxEPTSIZ_PktCnt(packets);
	epsize |= DxEPTSIZ_XferSize(length);
757 758 759 760 761 762 763 764 765 766

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

767
	if (using_dma(hsotg) && !continuing) {
768 769
		unsigned int dma_reg;

770 771 772 773
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
774

775
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
776 777 778 779 780 781
		writel(ureq->dma, hsotg->regs + dma_reg);

		dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
			__func__, ureq->dma, dma_reg);
	}

782 783
	ctrl |= DxEPCTL_EPEna;	/* ensure ep enabled */
	ctrl |= DxEPCTL_USBActEp;
784 785 786 787 788 789 790

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
791
		ctrl |= DxEPCTL_CNAK;	/* clear NAK set by core */
792

793 794 795 796

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

797 798
	/*
	 * set these, it seems that DMA support increments past the end
799
	 * of the packet buffer so we need to calculate the length from
800 801
	 * this information.
	 */
802 803 804 805 806 807 808 809 810 811
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

812 813 814 815
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
816
	if (dir_in)
817 818
		writel(DIEPMSK_INTknTXFEmpMsk,
		       hsotg->regs + DIEPINT(index));
819

820 821 822 823
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
824 825

	/* check ep is enabled */
826
	if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
		dev_warn(hsotg->dev,
			 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
			 index, readl(hsotg->regs + epctrl_reg));

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
846
 */
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	enum dma_data_direction dir;
	struct s3c_hsotg_req *hs_req = our_req(req);

	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

	if (req->dma == DMA_ADDR_INVALID) {
		dma_addr_t dma;

		dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);

		if (unlikely(dma_mapping_error(hsotg->dev, dma)))
			goto dma_error;

		if (dma & 3) {
			dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
				__func__);

			dma_unmap_single(hsotg->dev, dma, req->length, dir);
			return -EINVAL;
		}

		hs_req->mapped = 1;
		req->dma = dma;
	} else {
879
		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
		hs_req->mapped = 0;
	}

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long irqflags;
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

905 906
	spin_lock_irqsave(&hs->lock, irqflags);

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

925
	spin_unlock_irqrestore(&hs->lock, irqflags);
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

	return 0;
}

static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
964
 */
965 966 967 968 969 970 971 972 973 974
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

975
	if (idx > hsotg->num_of_eps)
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

1101 1102 1103 1104 1105 1106 1107 1108
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
					 struct usb_ctrlrequest *ctrl)
{
1109
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1110 1111
	struct s3c_hsotg_req *hs_req;
	bool restart;
1112 1113
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
1114
	int ret;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
			s3c_hsotg_ep_sethalt(&ep->ep, set);
1130 1131 1132 1133 1134 1135 1136

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

			if (!set) {
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
					hs_req->req.complete(&ep->ep,
							     &hs_req->req);
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1193 1194 1195 1196
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1197 1198 1199 1200

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1201 1202 1203 1204
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1205 1206 1207 1208 1209 1210
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1211 1212 1213 1214
			dcfg = readl(hsotg->regs + DCFG);
			dcfg &= ~DCFG_DevAddr_MASK;
			dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
			writel(dcfg, hsotg->regs + DCFG);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1240 1241
	/*
	 * the request is either unhandlable, or is not formatted correctly
1242 1243 1244 1245 1246 1247 1248 1249
	 * so respond with a STALL for the status stage to indicate failure.
	 */

	if (ret < 0) {
		u32 reg;
		u32 ctrl;

		dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1250
		reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1251

1252
		/*
1253
		 * DxEPCTL_Stall will be cleared by EP once it has
1254 1255
		 * taken effect, so no need to clear later.
		 */
1256 1257

		ctrl = readl(hsotg->regs + reg);
1258 1259
		ctrl |= DxEPCTL_Stall;
		ctrl |= DxEPCTL_CNAK;
1260 1261 1262
		writel(ctrl, hsotg->regs + reg);

		dev_dbg(hsotg->dev,
L
Lucas De Marchi 已提交
1263
			"written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1264 1265
			ctrl, reg, readl(hsotg->regs + reg));

1266 1267 1268 1269
		/*
		 * don't believe we need to anything more to get the EP
		 * to reply with a STALL packet
		 */
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	}
}

static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1330 1331 1332 1333
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1349
 */
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1365 1366 1367 1368
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1379 1380 1381 1382
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1383 1384

	if (hs_req->req.complete) {
1385
		spin_unlock(&hsotg->lock);
1386
		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1387
		spin_lock(&hsotg->lock);
1388 1389
	}

1390 1391
	/*
	 * Look to see if there is anything else to do. Note, the completion
1392
	 * of the previous request may have caused a new request to be started
1393 1394
	 * so be careful when doing this.
	 */
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * See s3c_hsotg_complete_request(), but called with the endpoint's
 * lock held.
1414
 */
1415 1416 1417 1418 1419 1420 1421
static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
					    struct s3c_hsotg_ep *hs_ep,
					    struct s3c_hsotg_req *hs_req,
					    int result)
{
	unsigned long flags;

1422
	spin_lock_irqsave(&hsotg->lock, flags);
1423
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1424
	spin_unlock_irqrestore(&hsotg->lock, flags);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1441
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1442 1443 1444 1445
	int to_read;
	int max_req;
	int read_ptr;

1446 1447
	spin_lock(&hsotg->lock);

1448
	if (!hs_req) {
1449
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
		int ptr;

		dev_warn(hsotg->dev,
			 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

1460
		spin_unlock(&hsotg->lock);
1461 1462 1463 1464 1465 1466 1467
		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1468 1469 1470
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1471
	if (to_read > max_req) {
1472 1473
		/*
		 * more data appeared than we where willing
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1485 1486 1487 1488
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1489 1490
	readsl(fifo, hs_req->req.buf + read_ptr, to_read);

1491
	spin_unlock(&hsotg->lock);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1503
 * currently believed that we do not need to wait for any space in
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
 * the TxFIFO.
 */
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1528 1529
	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
	       DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
1530

1531 1532 1533 1534 1535
	ctrl = readl(hsotg->regs + DIEPCTL0);
	ctrl |= DxEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
	ctrl |= DxEPCTL_USBActEp;
	writel(ctrl, hsotg->regs + DIEPCTL0);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1547
 */
1548 1549 1550
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
				     int epnum, bool was_setup)
{
1551
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1552 1553 1554
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1555
	unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1566 1567
		/*
		 * Calculate the size of the transfer by checking how much
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1581 1582 1583 1584
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1585 1586 1587 1588 1589 1590
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1591 1592
	}

1593 1594 1595 1596
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1597 1598 1599 1600
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1601 1602 1603
	}

	if (epnum == 0) {
1604 1605 1606 1607
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

	s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1620
 */
1621 1622 1623 1624
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
	u32 dsts;

1625 1626 1627
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1640
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1641 1642 1643 1644 1645 1646 1647
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1648
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1649
{
1650
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1651 1652 1653 1654
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1655 1656
	epnum = grxstsr & GRXSTS_EPNum_MASK;
	status = grxstsr & GRXSTS_PktSts_MASK;
1657

1658 1659
	size = grxstsr & GRXSTS_ByteCnt_MASK;
	size >>= GRXSTS_ByteCnt_SHIFT;
1660 1661 1662 1663 1664

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1665
#define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1666

1667 1668
	switch (status >> GRXSTS_PktSts_SHIFT) {
	case __status(GRXSTS_PktSts_GlobalOutNAK):
1669 1670 1671
		dev_dbg(hsotg->dev, "GlobalOutNAK\n");
		break;

1672
	case __status(GRXSTS_PktSts_OutDone):
1673 1674 1675 1676 1677 1678 1679
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1680
	case __status(GRXSTS_PktSts_SetupDone):
1681 1682 1683
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1684
			readl(hsotg->regs + DOEPCTL(0)));
1685 1686 1687 1688

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1689
	case __status(GRXSTS_PktSts_OutRX):
1690 1691 1692
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1693
	case __status(GRXSTS_PktSts_SetupRX):
1694 1695 1696
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1697
			readl(hsotg->regs + DOEPCTL(0)));
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1714
 */
1715 1716 1717 1718
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1719
		return D0EPCTL_MPS_64;
1720
	case 32:
1721
		return D0EPCTL_MPS_32;
1722
	case 16:
1723
		return D0EPCTL_MPS_16;
1724
	case 8:
1725
		return D0EPCTL_MPS_8;
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
	} else {
1756
		if (mps >= DxEPCTL_MPS_LIMIT+1)
1757 1758 1759 1760 1761 1762 1763
			goto bad_mps;

		mpsval = mps;
	}

	hs_ep->ep.maxpacket = mps;

1764 1765 1766 1767
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1768

1769 1770
	reg = readl(regs + DIEPCTL(ep));
	reg &= ~DxEPCTL_MPS_MASK;
1771
	reg |= mpsval;
1772
	writel(reg, regs + DIEPCTL(ep));
1773

1774
	if (ep) {
1775 1776
		reg = readl(regs + DOEPCTL(ep));
		reg &= ~DxEPCTL_MPS_MASK;
1777
		reg |= mpsval;
1778
		writel(reg, regs + DOEPCTL(ep));
1779
	}
1780 1781 1782 1783 1784 1785 1786

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
	int timeout;
	int val;

1797 1798
	writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
		hsotg->regs + GRSTCTL);
1799 1800 1801 1802 1803

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1804
		val = readl(hsotg->regs + GRSTCTL);
1805

1806
		if ((val & (GRSTCTL_TxFFlsh)) == 0)
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}
}
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

	if (!hs_ep->dir_in || !hs_req)
		return 0;

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1856
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1857 1858 1859 1860 1861 1862 1863
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1864 1865 1866 1867 1868 1869 1870
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
		s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
		return;
	}

1871 1872
	/*
	 * Calculate the size of the transfer by checking how much is left
1873 1874 1875 1876 1877 1878 1879 1880
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1881
	size_left = DxEPTSIZ_XferSize_GET(epsize);
1882 1883 1884 1885 1886 1887 1888 1889 1890

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1910

1911 1912
		return;
	}
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
		s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1928
 */
1929 1930 1931 1932
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1933 1934 1935
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1936 1937 1938 1939
	u32 ints;

	ints = readl(hsotg->regs + epint_reg);

1940 1941 1942
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1943 1944 1945
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1946
	if (ints & DxEPINT_XferCompl) {
1947 1948 1949 1950 1951
		dev_dbg(hsotg->dev,
			"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1952 1953 1954 1955
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1956 1957 1958
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1959
			if (idx == 0 && !hs_ep->req)
1960 1961
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1962 1963 1964 1965
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1966 1967 1968 1969 1970

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1971
	if (ints & DxEPINT_EPDisbld) {
1972 1973
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1974 1975 1976 1977 1978
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

			s3c_hsotg_txfifo_flush(hsotg, idx);

1979 1980 1981
			if ((epctl & DxEPCTL_Stall) &&
				(epctl & DxEPCTL_EPType_Bulk)) {
				int dctl = readl(hsotg->regs + DCTL);
1982

1983 1984
				dctl |= DCTL_CGNPInNAK;
				writel(dctl, hsotg->regs + DCTL);
1985 1986 1987 1988
			}
		}
	}

1989
	if (ints & DxEPINT_AHBErr)
1990 1991
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1992
	if (ints & DxEPINT_Setup) {  /* Setup or Timeout */
1993 1994 1995
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1996 1997
			/*
			 * this is the notification we've received a
1998 1999
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2000 2001
			 * the setup here.
			 */
2002 2003 2004 2005 2006 2007 2008 2009

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

2010
	if (ints & DxEPINT_Back2BackSetup)
2011 2012 2013
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

	if (dir_in) {
2014
		/* not sure if this is important, but we'll clear it anyway */
2015
		if (ints & DIEPMSK_INTknTXFEmpMsk) {
2016 2017 2018 2019 2020
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2021
		if (ints & DIEPMSK_INTknEPMisMsk) {
2022 2023 2024
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2025 2026 2027

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2028
		    ints & DIEPMSK_TxFIFOEmpty) {
2029 2030
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2031 2032
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
2033
		}
2034 2035 2036 2037 2038 2039 2040 2041 2042
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2043
 */
2044 2045
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
2046
	u32 dsts = readl(hsotg->regs + DSTS);
2047 2048
	int ep0_mps = 0, ep_mps;

2049 2050
	/*
	 * This should signal the finish of the enumeration phase
2051
	 * of the USB handshaking, so we should now know what rate
2052 2053
	 * we connected at.
	 */
2054 2055 2056

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2057 2058
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2059
	 * it seems IN transfers must be a even number of packets we do
2060 2061
	 * not advertise a 64byte MPS on EP0.
	 */
2062 2063

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2064 2065 2066
	switch (dsts & DSTS_EnumSpd_MASK) {
	case DSTS_EnumSpd_FS:
	case DSTS_EnumSpd_FS48:
2067 2068 2069 2070 2071
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 64;
		break;

2072
	case DSTS_EnumSpd_HS:
2073 2074 2075 2076 2077
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 512;
		break;

2078
	case DSTS_EnumSpd_LS:
2079
		hsotg->gadget.speed = USB_SPEED_LOW;
2080 2081
		/*
		 * note, we don't actually support LS in this driver at the
2082 2083 2084 2085 2086
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2087 2088
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2089

2090 2091 2092 2093
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2094 2095 2096 2097

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2098
		for (i = 1; i < hsotg->num_of_eps; i++)
2099 2100 2101 2102 2103 2104 2105 2106
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2107 2108
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
static void kill_all_requests(struct s3c_hsotg *hsotg,
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;
	unsigned long flags;

2128
	spin_lock_irqsave(&hsotg->lock, flags);
2129 2130

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2131 2132 2133 2134
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
2135 2136 2137 2138 2139 2140 2141 2142

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}

2143
	spin_unlock_irqrestore(&hsotg->lock, flags);
2144 2145 2146 2147 2148 2149 2150 2151
}

#define call_gadget(_hs, _entry) \
	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
	    (_hs)->driver && (_hs)->driver->_entry)	\
		(_hs)->driver->_entry(&(_hs)->gadget);

/**
2152
 * s3c_hsotg_disconnect - disconnect service
2153 2154
 * @hsotg: The device state.
 *
2155 2156 2157
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2158
 */
2159
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2160 2161 2162
{
	unsigned ep;

2163
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2181
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2198 2199 2200
#define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
			GINTSTS_PTxFEmp |  \
			GINTSTS_RxFLvl)
2201

2202 2203 2204 2205 2206
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2207
 */
2208 2209 2210 2211 2212 2213 2214 2215
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2216
	writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
2217 2218 2219

	timeout = 1000;
	do {
2220 2221
		grstctl = readl(hsotg->regs + GRSTCTL);
	} while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
2222

2223
	if (grstctl & GRSTCTL_CSftRst) {
2224 2225 2226 2227 2228 2229 2230
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

	timeout = 1000;

	while (1) {
2231
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2232 2233 2234 2235 2236 2237 2238 2239

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2240
		if (!(grstctl & GRSTCTL_AHBIdle))
2241 2242 2243 2244 2245 2246 2247 2248 2249
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2250 2251 2252 2253 2254 2255
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2266 2267
	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2268 2269 2270

	s3c_hsotg_init_fifo(hsotg);

2271
	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2272

2273
	writel(1 << 18 | DCFG_DevSpd_HS,  hsotg->regs + DCFG);
2274 2275

	/* Clear any pending OTG interrupts */
2276
	writel(0xffffffff, hsotg->regs + GOTGINT);
2277 2278

	/* Clear any pending interrupts */
2279
	writel(0xffffffff, hsotg->regs + GINTSTS);
2280

2281 2282 2283 2284 2285 2286
	writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
	       GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
	       GINTSTS_ConIDStsChng | GINTSTS_USBRst |
	       GINTSTS_EnumDone | GINTSTS_OTGInt |
	       GINTSTS_USBSusp | GINTSTS_WkUpInt,
	       hsotg->regs + GINTMSK);
2287 2288

	if (using_dma(hsotg))
2289 2290 2291
		writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
		       GAHBCFG_HBstLen_Incr4,
		       hsotg->regs + GAHBCFG);
2292
	else
2293
		writel(GAHBCFG_GlblIntrEn, hsotg->regs + GAHBCFG);
2294 2295 2296 2297 2298 2299 2300

	/*
	 * Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
	 * up being flooded with interrupts if the host is polling the
	 * endpoint to try and read data.
	 */

2301 2302 2303 2304 2305
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty : 0) |
	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
	       DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
	       DIEPMSK_INTknEPMisMsk,
	       hsotg->regs + DIEPMSK);
2306 2307 2308 2309 2310

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2311 2312 2313 2314 2315
	writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
				    DIEPMSK_TimeOUTMsk) : 0) |
	       DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
	       DOEPMSK_SetupMsk,
	       hsotg->regs + DOEPMSK);
2316

2317
	writel(0, hsotg->regs + DAINTMSK);
2318 2319

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2320 2321
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2322 2323

	/* enable in and out endpoint interrupts */
2324
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
2325 2326 2327 2328 2329 2330 2331

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2332
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
2333 2334 2335 2336 2337

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2338
	__orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2339
	udelay(10);  /* see openiboot */
2340
	__bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2341

2342
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2343 2344

	/*
2345
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2346 2347 2348 2349
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2350 2351
	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
	       DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2352 2353

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2354 2355 2356
	       DxEPCTL_CNAK | DxEPCTL_EPEna |
	       DxEPCTL_USBActEp,
	       hsotg->regs + DOEPCTL0);
2357 2358 2359

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2360
	       DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
2361 2362 2363 2364

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2365 2366
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2367 2368

	/* clear global NAKs */
2369 2370
	writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
	       hsotg->regs + DCTL);
2371 2372 2373 2374 2375

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

	/* remove the soft-disconnect and let's go */
2376
	__bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
2377 2378
}

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
	struct s3c_hsotg *hsotg = pw;
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

irq_retry:
2392 2393
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2394 2395 2396 2397 2398 2399

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2400 2401
	if (gintsts & GINTSTS_OTGInt) {
		u32 otgint = readl(hsotg->regs + GOTGINT);
2402 2403 2404

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

2405
		writel(otgint, hsotg->regs + GOTGINT);
2406 2407
	}

2408
	if (gintsts & GINTSTS_SessReqInt) {
2409
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2410
		writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
2411 2412
	}

2413 2414
	if (gintsts & GINTSTS_EnumDone) {
		writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
2415 2416

		s3c_hsotg_irq_enumdone(hsotg);
2417 2418
	}

2419
	if (gintsts & GINTSTS_ConIDStsChng) {
2420
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2421 2422
			readl(hsotg->regs + DSTS),
			readl(hsotg->regs + GOTGCTL));
2423

2424
		writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
2425 2426
	}

2427 2428 2429 2430
	if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
		u32 daint = readl(hsotg->regs + DAINT);
		u32 daint_out = daint >> DAINT_OutEP_SHIFT;
		u32 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
		int ep;

		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2446
	if (gintsts & GINTSTS_USBRst) {
2447

2448
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2449

2450 2451
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2452
			readl(hsotg->regs + GNPTXSTS));
2453

2454
		writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
2455

2456
		if (usb_status & GOTGCTL_BSESVLD) {
2457 2458
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2459

2460 2461
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2462

2463 2464 2465 2466
				s3c_hsotg_core_init(hsotg);
				hsotg->last_rst = jiffies;
			}
		}
2467 2468 2469 2470
	}

	/* check both FIFOs */

2471
	if (gintsts & GINTSTS_NPTxFEmp) {
2472 2473
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2474 2475
		/*
		 * Disable the interrupt to stop it happening again
2476
		 * unless one of these endpoint routines decides that
2477 2478
		 * it needs re-enabling
		 */
2479

2480
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
2481 2482 2483
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2484
	if (gintsts & GINTSTS_PTxFEmp) {
2485 2486
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2487
		/* See note in GINTSTS_NPTxFEmp */
2488

2489
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
2490 2491 2492
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2493
	if (gintsts & GINTSTS_RxFLvl) {
2494 2495
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2496
		 * we need to retry s3c_hsotg_handle_rx if this is still
2497 2498
		 * set.
		 */
2499 2500 2501 2502

		s3c_hsotg_handle_rx(hsotg);
	}

2503
	if (gintsts & GINTSTS_ModeMis) {
2504
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2505
		writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
2506 2507
	}

2508 2509 2510
	if (gintsts & GINTSTS_USBSusp) {
		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
		writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
2511 2512

		call_gadget(hsotg, suspend);
2513
		s3c_hsotg_disconnect(hsotg);
2514 2515
	}

2516 2517 2518
	if (gintsts & GINTSTS_WkUpInt) {
		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
		writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
2519 2520 2521 2522

		call_gadget(hsotg, resume);
	}

2523 2524 2525
	if (gintsts & GINTSTS_ErlySusp) {
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
		writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
2526 2527

		s3c_hsotg_disconnect(hsotg);
2528 2529
	}

2530 2531
	/*
	 * these next two seem to crop-up occasionally causing the core
2532
	 * to shutdown the USB transfer, so try clearing them and logging
2533 2534
	 * the occurrence.
	 */
2535

2536
	if (gintsts & GINTSTS_GOUTNakEff) {
2537 2538
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2539
		writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
2540 2541

		s3c_hsotg_dump(hsotg);
2542 2543
	}

2544
	if (gintsts & GINTSTS_GINNakEff) {
2545 2546
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2547
		writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
2548 2549

		s3c_hsotg_dump(hsotg);
2550 2551
	}

2552 2553 2554 2555
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2569
 */
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2581
	int ret = 0;
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2597
	mps = usb_endpoint_maxp(desc);
2598 2599 2600

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2601
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2602 2603 2604 2605 2606
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2607
	spin_lock_irqsave(&hsotg->lock, flags);
2608

2609 2610
	epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
	epctrl |= DxEPCTL_MPS(mps);
2611

2612 2613 2614 2615
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2616
	epctrl |= DxEPCTL_USBActEp;
2617

2618 2619
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2620 2621 2622 2623 2624
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2625
	epctrl |= DxEPCTL_SNAK;
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635

	/* update the endpoint state */
	hs_ep->ep.maxpacket = mps;

	/* default, set to non-periodic */
	hs_ep->periodic = 0;

	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
		dev_err(hsotg->dev, "no current ISOC support\n");
2636 2637
		ret = -EINVAL;
		goto out;
2638 2639

	case USB_ENDPOINT_XFER_BULK:
2640
		epctrl |= DxEPCTL_EPType_Bulk;
2641 2642 2643 2644
		break;

	case USB_ENDPOINT_XFER_INT:
		if (dir_in) {
2645 2646
			/*
			 * Allocate our TxFNum by simply using the index
2647 2648
			 * of the endpoint for the moment. We could do
			 * something better if the host indicates how
2649 2650
			 * many FIFOs we are expecting to use.
			 */
2651 2652

			hs_ep->periodic = 1;
2653
			epctrl |= DxEPCTL_TxFNum(index);
2654 2655
		}

2656
		epctrl |= DxEPCTL_EPType_Intterupt;
2657 2658 2659
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2660
		epctrl |= DxEPCTL_EPType_Control;
2661 2662 2663
		break;
	}

2664 2665
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2666 2667 2668
	 * a unique tx-fifo even if it is non-periodic.
	 */
	if (dir_in && hsotg->dedicated_fifos)
2669
		epctrl |= DxEPCTL_TxFNum(index);
2670

2671 2672
	/* for non control endpoints, set PID to D0 */
	if (index)
2673
		epctrl |= DxEPCTL_SetD0PID;
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2685
out:
2686
	spin_unlock_irqrestore(&hsotg->lock, flags);
2687
	return ret;
2688 2689
}

2690 2691 2692 2693
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2711
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2712 2713 2714 2715

	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);

2716
	spin_lock_irqsave(&hsotg->lock, flags);
2717 2718

	ctrl = readl(hsotg->regs + epctrl_reg);
2719 2720 2721
	ctrl &= ~DxEPCTL_EPEna;
	ctrl &= ~DxEPCTL_USBActEp;
	ctrl |= DxEPCTL_SNAK;
2722 2723 2724 2725 2726 2727 2728

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2729
	spin_unlock_irqrestore(&hsotg->lock, flags);
2730 2731 2732 2733 2734 2735 2736
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2737
 */
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2750 2751 2752 2753 2754
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2755 2756 2757 2758 2759 2760 2761 2762 2763
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags;

	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);

2764
	spin_lock_irqsave(&hs->lock, flags);
2765 2766

	if (!on_list(hs_ep, hs_req)) {
2767
		spin_unlock_irqrestore(&hs->lock, flags);
2768 2769 2770 2771
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2772
	spin_unlock_irqrestore(&hs->lock, flags);
2773 2774 2775 2776

	return 0;
}

2777 2778 2779 2780 2781
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2782 2783 2784 2785 2786 2787 2788 2789
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	int index = hs_ep->index;
	unsigned long irqflags;
	u32 epreg;
	u32 epctl;
2790
	u32 xfertype;
2791 2792 2793

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2794
	spin_lock_irqsave(&hs->lock, irqflags);
2795 2796 2797

	/* write both IN and OUT control registers */

2798
	epreg = DIEPCTL(index);
2799 2800
	epctl = readl(hs->regs + epreg);

2801
	if (value) {
2802 2803 2804
		epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
		if (epctl & DxEPCTL_EPEna)
			epctl |= DxEPCTL_EPDis;
2805
	} else {
2806 2807 2808 2809 2810
		epctl &= ~DxEPCTL_Stall;
		xfertype = epctl & DxEPCTL_EPType_MASK;
		if (xfertype == DxEPCTL_EPType_Bulk ||
			xfertype == DxEPCTL_EPType_Intterupt)
				epctl |= DxEPCTL_SetD0PID;
2811
	}
2812 2813 2814

	writel(epctl, hs->regs + epreg);

2815
	epreg = DOEPCTL(index);
2816 2817 2818
	epctl = readl(hs->regs + epreg);

	if (value)
2819
		epctl |= DxEPCTL_Stall;
2820
	else {
2821 2822 2823 2824 2825
		epctl &= ~DxEPCTL_Stall;
		xfertype = epctl & DxEPCTL_EPType_MASK;
		if (xfertype == DxEPCTL_EPType_Bulk ||
			xfertype == DxEPCTL_EPType_Intterupt)
				epctl |= DxEPCTL_SetD0PID;
2826
	}
2827 2828 2829

	writel(epctl, hs->regs + epreg);

2830
	spin_unlock_irqrestore(&hs->lock, irqflags);
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

	return 0;
}

static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
	.queue		= s3c_hsotg_ep_queue,
	.dequeue	= s3c_hsotg_ep_dequeue,
	.set_halt	= s3c_hsotg_ep_sethalt,
L
Lucas De Marchi 已提交
2843
	/* note, don't believe we have any call for the fifo routines */
2844 2845
};

2846 2847
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2848
 * @hsotg: The driver state
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
	if (hsotg->plat->phy_init)
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2864
 * @hsotg: The driver state
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	if (hsotg->plat->phy_exit)
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
}

2877 2878 2879 2880
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2881 2882 2883 2884
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
	/* unmask subset of endpoint interrupts */

2885 2886 2887
	writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
	       hsotg->regs + DIEPMSK);
2888

2889 2890 2891
	writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
	       DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
	       hsotg->regs + DOEPMSK);
2892

2893
	writel(0, hsotg->regs + DAINTMSK);
2894 2895

	/* Be in disconnected state until gadget is registered */
2896
	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2897 2898 2899

	if (0) {
		/* post global nak until we're ready */
2900 2901
		writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
		       hsotg->regs + DCTL);
2902 2903 2904 2905 2906
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2907 2908
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2909 2910 2911 2912

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2913 2914
	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
	       hsotg->regs + GUSBCFG);
2915

2916 2917
	writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
	       hsotg->regs + GAHBCFG);
2918 2919
}

2920 2921 2922 2923 2924 2925 2926 2927
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2928 2929
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2930
{
2931
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	int ret;

	if (!hsotg) {
		printk(KERN_ERR "%s: called with no device\n", __func__);
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2944
	if (driver->max_speed < USB_SPEED_FULL)
2945 2946
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2947
	if (!driver->setup) {
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
	hsotg->gadget.dev.driver = &driver->driver;
	hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2960 2961
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2962
	if (ret) {
2963
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2964 2965 2966
		goto err;
	}

2967
	s3c_hsotg_phy_enable(hsotg);
2968

2969
	s3c_hsotg_core_init(hsotg);
2970
	hsotg->last_rst = jiffies;
2971 2972 2973 2974 2975 2976 2977 2978 2979
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
	return 0;

err:
	hsotg->driver = NULL;
	hsotg->gadget.dev.driver = NULL;
	return ret;
}

2980 2981 2982 2983 2984 2985 2986
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2987 2988
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
			  struct usb_gadget_driver *driver)
2989
{
2990
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2991 2992 2993 2994 2995 2996 2997 2998 2999
	int ep;

	if (!hsotg)
		return -ENODEV;

	if (!driver || driver != hsotg->driver || !driver->unbind)
		return -EINVAL;

	/* all endpoints should be shutdown */
3000
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
3001 3002
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

3003 3004
	s3c_hsotg_phy_disable(hsotg);
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3005 3006 3007

	hsotg->driver = NULL;
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3008
	hsotg->gadget.dev.driver = NULL;
3009 3010 3011 3012 3013 3014 3015

	dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
		 driver->driver.name);

	return 0;
}

3016 3017 3018 3019 3020 3021
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3022 3023 3024 3025 3026 3027 3028
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
	.get_frame	= s3c_hsotg_gadget_getframe,
3029 3030
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	u32 ptxfifo;
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
	hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3075 3076
	/*
	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3077 3078 3079 3080
	 * an OUT endpoint, we may as well do this if in future the
	 * code is changed to make each endpoint's direction changeable.
	 */

3081 3082
	ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
	hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
3083

3084 3085
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3086 3087 3088 3089
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3090 3091 3092
		u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3093 3094 3095
	}
}

3096 3097 3098 3099 3100 3101 3102
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3103
{
3104 3105
	u32 cfg2, cfg4;
	/* check hardware configuration */
3106

3107 3108
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3109

3110
	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3111 3112 3113 3114 3115 3116

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

	dev_info(hsotg->dev, "%s fifos\n",
		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3117 3118
}

3119 3120 3121 3122
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3123 3124
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
M
Mark Brown 已提交
3125
#ifdef DEBUG
3126 3127 3128 3129 3130 3131
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3132 3133
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3134 3135

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3136
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3137 3138

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3139
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3140 3141 3142 3143

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3144
		val = readl(regs + DPTXFSIZn(idx));
3145
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3146 3147
			 val >> DPTXFSIZn_DPTxFSize_SHIFT,
			 val & DPTXFSIZn_DPTxFStAddr_MASK);
3148 3149 3150 3151 3152
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3153 3154 3155
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3156

3157
		val = readl(regs + DOEPCTL(idx));
3158 3159
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3160 3161 3162
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3163 3164 3165 3166

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3167
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3168
#endif
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3187 3188 3189
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3190 3191

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3192
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3193 3194

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3195 3196
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3197 3198

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3199 3200
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3201 3202

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3203 3204
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3205 3206 3207 3208 3209 3210

	seq_printf(seq, "\nEndpoint status:\n");

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3211 3212
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3213 3214 3215 3216

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3217 3218
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

		seq_printf(seq, "\n");
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3249
 */
3250 3251 3252 3253 3254 3255 3256 3257
static int fifo_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	seq_printf(seq, "Non-periodic FIFOs:\n");
3258
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3259

3260
	val = readl(regs + GNPTXFSIZ);
3261
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3262 3263
		   val >> GNPTXFSIZ_NPTxFDep_SHIFT,
		   val & GNPTXFSIZ_NPTxFStAddr_MASK);
3264 3265 3266 3267

	seq_printf(seq, "\nPeriodic TXFIFOs:\n");

	for (idx = 1; idx <= 15; idx++) {
3268
		val = readl(regs + DPTXFSIZn(idx));
3269 3270

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3271 3272
			   val >> DPTXFSIZn_DPTxFSize_SHIFT,
			   val & DPTXFSIZn_DPTxFStAddr_MASK);
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3304
 */
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
	struct s3c_hsotg *hsotg = ep->parent;
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3321 3322
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3323 3324

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3325 3326
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3327 3328

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3329 3330
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3331 3332

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3333 3334
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3335 3336 3337 3338 3339 3340 3341 3342

	seq_printf(seq, "\n");
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3343
	spin_lock_irqsave(&hsotg->lock, flags);
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
			seq_printf(seq, "not showing more requests...\n");
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3358
	spin_unlock_irqrestore(&hsotg->lock, flags);
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3384
 */
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3413
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3430
 */
3431 3432 3433 3434
static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
{
	unsigned epidx;

3435
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3436 3437 3438 3439 3440 3441 3442 3443 3444
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
/**
 * s3c_hsotg_release - release callback for hsotg device
 * @dev: Device to for which release is called
 */
static void s3c_hsotg_release(struct device *dev)
{
	struct s3c_hsotg *hsotg = dev_get_drvdata(dev);

	kfree(hsotg);
}

3456 3457 3458 3459
/**
 * s3c_hsotg_probe - probe function for hsotg driver
 * @pdev: The platform information for the driver
 */
3460

3461 3462 3463 3464
static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
{
	struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
	struct device *dev = &pdev->dev;
3465
	struct s3c_hsotg_ep *eps;
3466 3467 3468 3469
	struct s3c_hsotg *hsotg;
	struct resource *res;
	int epnum;
	int ret;
3470
	int i;
3471

3472 3473 3474 3475 3476
	plat = pdev->dev.platform_data;
	if (!plat) {
		dev_err(&pdev->dev, "no platform data defined\n");
		return -EINVAL;
	}
3477

3478
	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3479 3480 3481 3482 3483 3484 3485 3486
	if (!hsotg) {
		dev_err(dev, "cannot get memory\n");
		return -ENOMEM;
	}

	hsotg->dev = dev;
	hsotg->plat = plat;

3487 3488 3489
	hsotg->clk = clk_get(&pdev->dev, "otg");
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3490
		return PTR_ERR(hsotg->clk);
3491 3492
	}

3493 3494 3495 3496
	platform_set_drvdata(pdev, hsotg);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

3497
	hsotg->regs = devm_request_and_ioremap(&pdev->dev, res);
3498 3499 3500
	if (!hsotg->regs) {
		dev_err(dev, "cannot map registers\n");
		ret = -ENXIO;
3501
		goto err_clk;
3502 3503 3504 3505 3506
	}

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "cannot find IRQ\n");
3507
		goto err_clk;
3508 3509
	}

3510 3511
	spin_lock_init(&hsotg->lock);

3512 3513
	hsotg->irq = ret;

3514 3515
	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
				dev_name(dev), hsotg);
3516 3517
	if (ret < 0) {
		dev_err(dev, "cannot claim IRQ\n");
3518
		goto err_clk;
3519 3520 3521 3522 3523 3524 3525 3526
	}

	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);

	device_initialize(&hsotg->gadget.dev);

	dev_set_name(&hsotg->gadget.dev, "gadget");

3527
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3528 3529 3530 3531 3532
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	hsotg->gadget.dev.parent = dev;
	hsotg->gadget.dev.dma_mask = dev->dma_mask;
3533
	hsotg->gadget.dev.release = s3c_hsotg_release;
3534 3535 3536

	/* reset the system */

3537
	clk_prepare_enable(hsotg->clk);
3538

3539 3540 3541 3542 3543 3544 3545 3546 3547
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

	ret = regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3548
		goto err_clk;
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
		goto err_supplies;
	}

3559 3560
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3561 3562 3563

	s3c_hsotg_corereset(hsotg);
	s3c_hsotg_init(hsotg);
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	s3c_hsotg_hw_cfg(hsotg);

	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
		dev_err(dev, "cannot get memory\n");
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
		goto err_ep_mem;
	}
3595 3596

	/* initialise the endpoints now the core has been initialised */
3597
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3598 3599
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	/* disable power and clock */

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
		goto err_ep_mem;
	}

	s3c_hsotg_phy_disable(hsotg);

	ret = device_add(&hsotg->gadget.dev);
	if (ret) {
		put_device(&hsotg->gadget.dev);
		goto err_ep_mem;
	}

3617 3618
	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
	if (ret)
3619
		goto err_ep_mem;
3620

3621 3622 3623 3624 3625 3626
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3627
err_ep_mem:
3628
	kfree(eps);
3629
err_supplies:
3630
	s3c_hsotg_phy_disable(hsotg);
3631
	regulator_bulk_free(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3632

3633
err_clk:
3634
	clk_disable_unprepare(hsotg->clk);
3635
	clk_put(hsotg->clk);
3636

3637 3638 3639
	return ret;
}

3640 3641 3642 3643
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3644 3645 3646 3647
static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);

3648 3649
	usb_del_gadget_udc(&hsotg->gadget);

3650 3651
	s3c_hsotg_delete_debug(hsotg);

3652 3653 3654 3655
	if (hsotg->driver) {
		/* should have been done already by driver model core */
		usb_gadget_unregister_driver(hsotg->driver);
	}
3656

3657
	s3c_hsotg_phy_disable(hsotg);
3658 3659
	regulator_bulk_free(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);

3660
	clk_disable_unprepare(hsotg->clk);
3661 3662
	clk_put(hsotg->clk);

3663
	device_unregister(&hsotg->gadget.dev);
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
	return 0;
}

#if 1
#define s3c_hsotg_suspend NULL
#define s3c_hsotg_resume NULL
#endif

static struct platform_driver s3c_hsotg_driver = {
	.driver		= {
		.name	= "s3c-hsotg",
		.owner	= THIS_MODULE,
	},
	.probe		= s3c_hsotg_probe,
	.remove		= __devexit_p(s3c_hsotg_remove),
	.suspend	= s3c_hsotg_suspend,
	.resume		= s3c_hsotg_resume,
};

3683
module_platform_driver(s3c_hsotg_driver);
3684 3685 3686 3687 3688

MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");