bcmgenet.c 97.8 KB
Newer Older
1 2 3
/*
 * Broadcom GENET (Gigabit Ethernet) controller driver
 *
4
 * Copyright (c) 2014-2017 Broadcom
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt)				"bcmgenet: " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/if_ether.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/pm.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <net/arp.h>

#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/phy.h>
45
#include <linux/platform_data/bcmgenet.h>
46 47 48 49 50 51 52 53 54 55 56

#include <asm/unaligned.h>

#include "bcmgenet.h"

/* Maximum number of hardware queues, downsized if needed */
#define GENET_MAX_MQ_CNT	4

/* Default highest priority queue for multi queue support */
#define GENET_Q0_PRIORITY	0

57 58
#define GENET_Q16_RX_BD_CNT	\
	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 60
#define GENET_Q16_TX_BD_CNT	\
	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

#define RX_BUF_LENGTH		2048
#define SKB_ALIGNMENT		32

/* Tx/Rx DMA register offset, skip 256 descriptors */
#define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
#define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))

#define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
				TOTAL_DESC * DMA_DESC_SIZE)

#define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
				TOTAL_DESC * DMA_DESC_SIZE)

static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76
					     void __iomem *d, u32 value)
77 78 79 80 81
{
	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
}

static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82
					    void __iomem *d)
83 84 85 86 87 88 89 90 91 92 93 94
{
	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
}

static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
				    void __iomem *d,
				    dma_addr_t addr)
{
	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);

	/* Register writes to GISB bus can take couple hundred nanoseconds
	 * and are done for each packet, save these expensive writes unless
B
Brian Norris 已提交
95
	 * the platform is explicitly configured for 64-bits/LPAE.
96 97 98 99 100 101 102 103 104
	 */
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (priv->hw_params->flags & GENET_HAS_40BITS)
		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
#endif
}

/* Combined address + length/status setter */
static inline void dmadesc_set(struct bcmgenet_priv *priv,
105
			       void __iomem *d, dma_addr_t addr, u32 val)
106 107
{
	dmadesc_set_addr(priv, d, addr);
108
	dmadesc_set_length_status(priv, d, val);
109 110 111 112 113 114 115 116 117 118 119
}

static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
					  void __iomem *d)
{
	dma_addr_t addr;

	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);

	/* Register writes to GISB bus can take couple hundred nanoseconds
	 * and are done for each packet, save these expensive writes unless
B
Brian Norris 已提交
120
	 * the platform is explicitly configured for 64-bits/LPAE.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	 */
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (priv->hw_params->flags & GENET_HAS_40BITS)
		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
#endif
	return addr;
}

#define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"

#define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
				NETIF_MSG_LINK)

static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
	else
		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
}

static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
	else
		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
}

/* These macros are defined to deal with register map change
 * between GENET1.1 and GENET2. Only those currently being used
 * by driver are defined.
 */
static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
	else
		return __raw_readl(priv->base +
				priv->hw_params->tbuf_offset + TBUF_CTRL);
}

static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
	else
		__raw_writel(val, priv->base +
				priv->hw_params->tbuf_offset + TBUF_CTRL);
}

static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
	else
		return __raw_readl(priv->base +
				priv->hw_params->tbuf_offset + TBUF_BP_MC);
}

static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
	else
		__raw_writel(val, priv->base +
				priv->hw_params->tbuf_offset + TBUF_BP_MC);
}

/* RX/TX DMA register accessors */
enum dma_reg {
	DMA_RING_CFG = 0,
	DMA_CTRL,
	DMA_STATUS,
	DMA_SCB_BURST_SIZE,
	DMA_ARB_CTRL,
197 198 199
	DMA_PRIORITY_0,
	DMA_PRIORITY_1,
	DMA_PRIORITY_2,
200 201 202 203 204 205 206 207
	DMA_INDEX2RING_0,
	DMA_INDEX2RING_1,
	DMA_INDEX2RING_2,
	DMA_INDEX2RING_3,
	DMA_INDEX2RING_4,
	DMA_INDEX2RING_5,
	DMA_INDEX2RING_6,
	DMA_INDEX2RING_7,
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	DMA_RING0_TIMEOUT,
	DMA_RING1_TIMEOUT,
	DMA_RING2_TIMEOUT,
	DMA_RING3_TIMEOUT,
	DMA_RING4_TIMEOUT,
	DMA_RING5_TIMEOUT,
	DMA_RING6_TIMEOUT,
	DMA_RING7_TIMEOUT,
	DMA_RING8_TIMEOUT,
	DMA_RING9_TIMEOUT,
	DMA_RING10_TIMEOUT,
	DMA_RING11_TIMEOUT,
	DMA_RING12_TIMEOUT,
	DMA_RING13_TIMEOUT,
	DMA_RING14_TIMEOUT,
	DMA_RING15_TIMEOUT,
	DMA_RING16_TIMEOUT,
225 226 227 228 229 230 231 232
};

static const u8 bcmgenet_dma_regs_v3plus[] = {
	[DMA_RING_CFG]		= 0x00,
	[DMA_CTRL]		= 0x04,
	[DMA_STATUS]		= 0x08,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x2C,
233 234 235
	[DMA_PRIORITY_0]	= 0x30,
	[DMA_PRIORITY_1]	= 0x34,
	[DMA_PRIORITY_2]	= 0x38,
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
253 254 255 256 257 258 259 260
	[DMA_INDEX2RING_0]	= 0x70,
	[DMA_INDEX2RING_1]	= 0x74,
	[DMA_INDEX2RING_2]	= 0x78,
	[DMA_INDEX2RING_3]	= 0x7C,
	[DMA_INDEX2RING_4]	= 0x80,
	[DMA_INDEX2RING_5]	= 0x84,
	[DMA_INDEX2RING_6]	= 0x88,
	[DMA_INDEX2RING_7]	= 0x8C,
261 262 263 264 265 266 267 268
};

static const u8 bcmgenet_dma_regs_v2[] = {
	[DMA_RING_CFG]		= 0x00,
	[DMA_CTRL]		= 0x04,
	[DMA_STATUS]		= 0x08,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x30,
269 270 271
	[DMA_PRIORITY_0]	= 0x34,
	[DMA_PRIORITY_1]	= 0x38,
	[DMA_PRIORITY_2]	= 0x3C,
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
289 290 291 292 293 294 295
};

static const u8 bcmgenet_dma_regs_v1[] = {
	[DMA_CTRL]		= 0x00,
	[DMA_STATUS]		= 0x04,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x30,
296 297 298
	[DMA_PRIORITY_0]	= 0x34,
	[DMA_PRIORITY_1]	= 0x38,
	[DMA_PRIORITY_2]	= 0x3C,
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
316 317 318 319 320 321 322 323 324 325 326
};

/* Set at runtime once bcmgenet version is known */
static const u8 *bcmgenet_dma_regs;

static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
{
	return netdev_priv(dev_get_drvdata(dev));
}

static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327
				      enum dma_reg r)
328 329 330 331 332 333 334 335 336 337 338 339 340
{
	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
					u32 val, enum dma_reg r)
{
	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341
				      enum dma_reg r)
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
{
	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
					u32 val, enum dma_reg r)
{
	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

/* RDMA/TDMA ring registers and accessors
 * we merge the common fields and just prefix with T/D the registers
 * having different meaning depending on the direction
 */
enum dma_ring_reg {
	TDMA_READ_PTR = 0,
	RDMA_WRITE_PTR = TDMA_READ_PTR,
	TDMA_READ_PTR_HI,
	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
	TDMA_CONS_INDEX,
	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
	TDMA_PROD_INDEX,
	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
	DMA_RING_BUF_SIZE,
	DMA_START_ADDR,
	DMA_START_ADDR_HI,
	DMA_END_ADDR,
	DMA_END_ADDR_HI,
	DMA_MBUF_DONE_THRESH,
	TDMA_FLOW_PERIOD,
	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
	TDMA_WRITE_PTR,
	RDMA_READ_PTR = TDMA_WRITE_PTR,
	TDMA_WRITE_PTR_HI,
	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
};

/* GENET v4 supports 40-bits pointer addressing
 * for obvious reasons the LO and HI word parts
 * are contiguous, but this offsets the other
 * registers.
 */
static const u8 genet_dma_ring_regs_v4[] = {
	[TDMA_READ_PTR]			= 0x00,
	[TDMA_READ_PTR_HI]		= 0x04,
	[TDMA_CONS_INDEX]		= 0x08,
	[TDMA_PROD_INDEX]		= 0x0C,
	[DMA_RING_BUF_SIZE]		= 0x10,
	[DMA_START_ADDR]		= 0x14,
	[DMA_START_ADDR_HI]		= 0x18,
	[DMA_END_ADDR]			= 0x1C,
	[DMA_END_ADDR_HI]		= 0x20,
	[DMA_MBUF_DONE_THRESH]		= 0x24,
	[TDMA_FLOW_PERIOD]		= 0x28,
	[TDMA_WRITE_PTR]		= 0x2C,
	[TDMA_WRITE_PTR_HI]		= 0x30,
};

static const u8 genet_dma_ring_regs_v123[] = {
	[TDMA_READ_PTR]			= 0x00,
	[TDMA_CONS_INDEX]		= 0x04,
	[TDMA_PROD_INDEX]		= 0x08,
	[DMA_RING_BUF_SIZE]		= 0x0C,
	[DMA_START_ADDR]		= 0x10,
	[DMA_END_ADDR]			= 0x14,
	[DMA_MBUF_DONE_THRESH]		= 0x18,
	[TDMA_FLOW_PERIOD]		= 0x1C,
	[TDMA_WRITE_PTR]		= 0x20,
};

/* Set at runtime once GENET version is known */
static const u8 *genet_dma_ring_regs;

static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 419
					   unsigned int ring,
					   enum dma_ring_reg r)
420 421 422 423 424 425 426
{
	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 428
					     unsigned int ring, u32 val,
					     enum dma_ring_reg r)
429 430 431 432 433 434 435
{
	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 437
					   unsigned int ring,
					   enum dma_ring_reg r)
438 439 440 441 442 443 444
{
	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 446
					     unsigned int ring, u32 val,
					     enum dma_ring_reg r)
447 448 449 450 451 452
{
	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
static int bcmgenet_begin(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Turn on the clock */
	return clk_prepare_enable(priv->clk);
}

static void bcmgenet_complete(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Turn off the clock */
	clk_disable_unprepare(priv->clk);
}

469 470
static int bcmgenet_get_link_ksettings(struct net_device *dev,
				       struct ethtool_link_ksettings *cmd)
471
{
472 473
	struct bcmgenet_priv *priv = netdev_priv(dev);

474 475 476
	if (!netif_running(dev))
		return -EINVAL;

477
	if (!priv->phydev)
478 479
		return -ENODEV;

480 481 482
	phy_ethtool_ksettings_get(priv->phydev, cmd);

	return 0;
483 484
}

485 486
static int bcmgenet_set_link_ksettings(struct net_device *dev,
				       const struct ethtool_link_ksettings *cmd)
487
{
488 489
	struct bcmgenet_priv *priv = netdev_priv(dev);

490 491 492
	if (!netif_running(dev))
		return -EINVAL;

493
	if (!priv->phydev)
494 495
		return -ENODEV;

496
	return phy_ethtool_ksettings_set(priv->phydev, cmd);
497 498
}

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
static int bcmgenet_set_rx_csum(struct net_device *dev,
				netdev_features_t wanted)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 rbuf_chk_ctrl;
	bool rx_csum_en;

	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);

	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);

	/* enable rx checksumming */
	if (rx_csum_en)
		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
	else
		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
	priv->desc_rxchk_en = rx_csum_en;
516 517 518 519 520 521 522 523 524

	/* If UniMAC forwards CRC, we need to skip over it to get
	 * a valid CHK bit to be set in the per-packet status word
	*/
	if (rx_csum_en && priv->crc_fwd_en)
		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
	else
		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);

	return 0;
}

static int bcmgenet_set_tx_csum(struct net_device *dev,
				netdev_features_t wanted)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	bool desc_64b_en;
	u32 tbuf_ctrl, rbuf_ctrl;

	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);

	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));

	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
	if (desc_64b_en) {
		tbuf_ctrl |= RBUF_64B_EN;
		rbuf_ctrl |= RBUF_64B_EN;
	} else {
		tbuf_ctrl &= ~RBUF_64B_EN;
		rbuf_ctrl &= ~RBUF_64B_EN;
	}
	priv->desc_64b_en = desc_64b_en;

	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);

	return 0;
}

static int bcmgenet_set_features(struct net_device *dev,
559
				 netdev_features_t features)
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
{
	netdev_features_t changed = features ^ dev->features;
	netdev_features_t wanted = dev->wanted_features;
	int ret = 0;

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
		ret = bcmgenet_set_tx_csum(dev, wanted);
	if (changed & (NETIF_F_RXCSUM))
		ret = bcmgenet_set_rx_csum(dev, wanted);

	return ret;
}

static u32 bcmgenet_get_msglevel(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	return priv->msg_enable;
}

static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	priv->msg_enable = level;
}

587 588 589 590 591 592 593 594
static int bcmgenet_get_coalesce(struct net_device *dev,
				 struct ethtool_coalesce *ec)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	ec->tx_max_coalesced_frames =
		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
					 DMA_MBUF_DONE_THRESH);
595 596 597 598 599
	ec->rx_max_coalesced_frames =
		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
					 DMA_MBUF_DONE_THRESH);
	ec->rx_coalesce_usecs =
		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
600 601 602 603 604 605 606 607 608

	return 0;
}

static int bcmgenet_set_coalesce(struct net_device *dev,
				 struct ethtool_coalesce *ec)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned int i;
609
	u32 reg;
610

611 612 613 614
	/* Base system clock is 125Mhz, DMA timeout is this reference clock
	 * divided by 1024, which yields roughly 8.192us, our maximum value
	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
	 */
615
	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
616 617 618 619 620 621
	    ec->tx_max_coalesced_frames == 0 ||
	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
		return -EINVAL;

	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
622 623 624 625
		return -EINVAL;

	/* GENET TDMA hardware does not support a configurable timeout, but will
	 * always generate an interrupt either after MBDONE packets have been
626
	 * transmitted, or when the ring is empty.
627 628
	 */
	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
629
	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
630 631 632 633 634 635 636 637 638 639 640 641 642
		return -EOPNOTSUPP;

	/* Program all TX queues with the same values, as there is no
	 * ethtool knob to do coalescing on a per-queue basis
	 */
	for (i = 0; i < priv->hw_params->tx_queues; i++)
		bcmgenet_tdma_ring_writel(priv, i,
					  ec->tx_max_coalesced_frames,
					  DMA_MBUF_DONE_THRESH);
	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
				  ec->tx_max_coalesced_frames,
				  DMA_MBUF_DONE_THRESH);

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	for (i = 0; i < priv->hw_params->rx_queues; i++) {
		bcmgenet_rdma_ring_writel(priv, i,
					  ec->rx_max_coalesced_frames,
					  DMA_MBUF_DONE_THRESH);

		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
		reg &= ~DMA_TIMEOUT_MASK;
		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
	}

	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
				  ec->rx_max_coalesced_frames,
				  DMA_MBUF_DONE_THRESH);

	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
	reg &= ~DMA_TIMEOUT_MASK;
	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);

663 664 665
	return 0;
}

666 667 668 669 670 671 672
/* standard ethtool support functions. */
enum bcmgenet_stat_type {
	BCMGENET_STAT_NETDEV = -1,
	BCMGENET_STAT_MIB_RX,
	BCMGENET_STAT_MIB_TX,
	BCMGENET_STAT_RUNT,
	BCMGENET_STAT_MISC,
673
	BCMGENET_STAT_SOFT,
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
};

struct bcmgenet_stats {
	char stat_string[ETH_GSTRING_LEN];
	int stat_sizeof;
	int stat_offset;
	enum bcmgenet_stat_type type;
	/* reg offset from UMAC base for misc counters */
	u16 reg_offset;
};

#define STAT_NETDEV(m) { \
	.stat_string = __stringify(m), \
	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
	.stat_offset = offsetof(struct net_device_stats, m), \
	.type = BCMGENET_STAT_NETDEV, \
}

#define STAT_GENET_MIB(str, m, _type) { \
	.stat_string = str, \
	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
	.stat_offset = offsetof(struct bcmgenet_priv, m), \
	.type = _type, \
}

#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
702
#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
703 704 705 706 707 708 709 710 711

#define STAT_GENET_MISC(str, m, offset) { \
	.stat_string = str, \
	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
	.stat_offset = offsetof(struct bcmgenet_priv, m), \
	.type = BCMGENET_STAT_MISC, \
	.reg_offset = offset, \
}

712 713 714 715 716 717 718 719 720 721 722 723 724
#define STAT_GENET_Q(num) \
	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
			tx_rings[num].packets), \
	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
			tx_rings[num].bytes), \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
			rx_rings[num].bytes),	 \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
			rx_rings[num].packets), \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
			rx_rings[num].errors), \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
			rx_rings[num].dropped)
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

/* There is a 0xC gap between the end of RX and beginning of TX stats and then
 * between the end of TX stats and the beginning of the RX RUNT
 */
#define BCMGENET_STAT_OFFSET	0xc

/* Hardware counters must be kept in sync because the order/offset
 * is important here (order in structure declaration = order in hardware)
 */
static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
	/* general stats */
	STAT_NETDEV(rx_packets),
	STAT_NETDEV(tx_packets),
	STAT_NETDEV(rx_bytes),
	STAT_NETDEV(tx_bytes),
	STAT_NETDEV(rx_errors),
	STAT_NETDEV(tx_errors),
	STAT_NETDEV(rx_dropped),
	STAT_NETDEV(tx_dropped),
	STAT_NETDEV(multicast),
	/* UniMAC RSV counters */
	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
	/* UniMAC TSV counters */
	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
	/* UniMAC RUNT counters */
	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
	/* Misc UniMAC counters */
	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
812 813 814
			UMAC_RBUF_OVFL_CNT_V1),
	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
			UMAC_RBUF_ERR_CNT_V1),
815
	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
816 817 818
	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
819 820 821 822 823 824
	/* Per TX queues */
	STAT_GENET_Q(0),
	STAT_GENET_Q(1),
	STAT_GENET_Q(2),
	STAT_GENET_Q(3),
	STAT_GENET_Q(16),
825 826 827 828 829
};

#define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)

static void bcmgenet_get_drvinfo(struct net_device *dev,
830
				 struct ethtool_drvinfo *info)
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
{
	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
	strlcpy(info->version, "v2.0", sizeof(info->version));
}

static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
{
	switch (string_set) {
	case ETH_SS_STATS:
		return BCMGENET_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
}

846 847
static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
				 u8 *data)
848 849 850 851 852 853 854
{
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
			memcpy(data + i * ETH_GSTRING_LEN,
855 856
			       bcmgenet_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
857 858 859 860 861
		}
		break;
	}
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
{
	u16 new_offset;
	u32 val;

	switch (offset) {
	case UMAC_RBUF_OVFL_CNT_V1:
		if (GENET_IS_V2(priv))
			new_offset = RBUF_OVFL_CNT_V2;
		else
			new_offset = RBUF_OVFL_CNT_V3PLUS;

		val = bcmgenet_rbuf_readl(priv,	new_offset);
		/* clear if overflowed */
		if (val == ~0)
			bcmgenet_rbuf_writel(priv, 0, new_offset);
		break;
	case UMAC_RBUF_ERR_CNT_V1:
		if (GENET_IS_V2(priv))
			new_offset = RBUF_ERR_CNT_V2;
		else
			new_offset = RBUF_ERR_CNT_V3PLUS;

		val = bcmgenet_rbuf_readl(priv,	new_offset);
		/* clear if overflowed */
		if (val == ~0)
			bcmgenet_rbuf_writel(priv, 0, new_offset);
		break;
	default:
		val = bcmgenet_umac_readl(priv, offset);
		/* clear if overflowed */
		if (val == ~0)
			bcmgenet_umac_writel(priv, 0, offset);
		break;
	}

	return val;
}

901 902 903 904 905 906 907 908 909 910 911 912 913
static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
{
	int i, j = 0;

	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
		const struct bcmgenet_stats *s;
		u8 offset = 0;
		u32 val = 0;
		char *p;

		s = &bcmgenet_gstrings_stats[i];
		switch (s->type) {
		case BCMGENET_STAT_NETDEV:
914
		case BCMGENET_STAT_SOFT:
915 916
			continue;
		case BCMGENET_STAT_RUNT:
917 918 919 920 921 922
			offset += BCMGENET_STAT_OFFSET;
			/* fall through */
		case BCMGENET_STAT_MIB_TX:
			offset += BCMGENET_STAT_OFFSET;
			/* fall through */
		case BCMGENET_STAT_MIB_RX:
923 924
			val = bcmgenet_umac_readl(priv,
						  UMAC_MIB_START + j + offset);
925
			offset = 0;	/* Reset Offset */
926 927
			break;
		case BCMGENET_STAT_MISC:
928 929 930 931 932 933 934 935 936 937
			if (GENET_IS_V1(priv)) {
				val = bcmgenet_umac_readl(priv, s->reg_offset);
				/* clear if overflowed */
				if (val == ~0)
					bcmgenet_umac_writel(priv, 0,
							     s->reg_offset);
			} else {
				val = bcmgenet_update_stat_misc(priv,
								s->reg_offset);
			}
938 939 940 941 942 943 944 945 946 947
			break;
		}

		j += s->stat_sizeof;
		p = (char *)priv + s->stat_offset;
		*(u32 *)p = val;
	}
}

static void bcmgenet_get_ethtool_stats(struct net_device *dev,
948 949
				       struct ethtool_stats *stats,
				       u64 *data)
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int i;

	if (netif_running(dev))
		bcmgenet_update_mib_counters(priv);

	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
		const struct bcmgenet_stats *s;
		char *p;

		s = &bcmgenet_gstrings_stats[i];
		if (s->type == BCMGENET_STAT_NETDEV)
			p = (char *)&dev->stats;
		else
			p = (char *)priv;
		p += s->stat_offset;
967 968 969 970 971
		if (sizeof(unsigned long) != sizeof(u32) &&
		    s->stat_sizeof == sizeof(unsigned long))
			data[i] = *(unsigned long *)p;
		else
			data[i] = *(u32 *)p;
972 973 974
	}
}

F
Florian Fainelli 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
	u32 reg;

	if (enable && !priv->clk_eee_enabled) {
		clk_prepare_enable(priv->clk_eee);
		priv->clk_eee_enabled = true;
	}

	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
	if (enable)
		reg |= EEE_EN;
	else
		reg &= ~EEE_EN;
	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);

	/* Enable EEE and switch to a 27Mhz clock automatically */
	reg = __raw_readl(priv->base + off);
	if (enable)
		reg |= TBUF_EEE_EN | TBUF_PM_EN;
	else
		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
	__raw_writel(reg, priv->base + off);

	/* Do the same for thing for RBUF */
	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
	if (enable)
		reg |= RBUF_EEE_EN | RBUF_PM_EN;
	else
		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);

	if (!enable && priv->clk_eee_enabled) {
		clk_disable_unprepare(priv->clk_eee);
		priv->clk_eee_enabled = false;
	}

	priv->eee.eee_enabled = enable;
	priv->eee.eee_active = enable;
}

static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct ethtool_eee *p = &priv->eee;

	if (GENET_IS_V1(priv))
		return -EOPNOTSUPP;

	e->eee_enabled = p->eee_enabled;
	e->eee_active = p->eee_active;
	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);

1030
	return phy_ethtool_get_eee(priv->phydev, e);
F
Florian Fainelli 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
}

static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct ethtool_eee *p = &priv->eee;
	int ret = 0;

	if (GENET_IS_V1(priv))
		return -EOPNOTSUPP;

	p->eee_enabled = e->eee_enabled;

	if (!p->eee_enabled) {
		bcmgenet_eee_enable_set(dev, false);
	} else {
1047
		ret = phy_init_eee(priv->phydev, 0);
F
Florian Fainelli 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056
		if (ret) {
			netif_err(priv, hw, dev, "EEE initialization failed\n");
			return ret;
		}

		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
		bcmgenet_eee_enable_set(dev, true);
	}

1057
	return phy_ethtool_set_eee(priv->phydev, e);
F
Florian Fainelli 已提交
1058 1059
}

1060
/* standard ethtool support functions. */
1061
static const struct ethtool_ops bcmgenet_ethtool_ops = {
1062 1063
	.begin			= bcmgenet_begin,
	.complete		= bcmgenet_complete,
1064 1065 1066 1067 1068 1069 1070
	.get_strings		= bcmgenet_get_strings,
	.get_sset_count		= bcmgenet_get_sset_count,
	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
	.get_drvinfo		= bcmgenet_get_drvinfo,
	.get_link		= ethtool_op_get_link,
	.get_msglevel		= bcmgenet_get_msglevel,
	.set_msglevel		= bcmgenet_set_msglevel,
1071 1072
	.get_wol		= bcmgenet_get_wol,
	.set_wol		= bcmgenet_set_wol,
F
Florian Fainelli 已提交
1073 1074
	.get_eee		= bcmgenet_get_eee,
	.set_eee		= bcmgenet_set_eee,
1075
	.nway_reset		= phy_ethtool_nway_reset,
1076 1077
	.get_coalesce		= bcmgenet_get_coalesce,
	.set_coalesce		= bcmgenet_set_coalesce,
1078 1079
	.get_link_ksettings	= bcmgenet_get_link_ksettings,
	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1080 1081 1082
};

/* Power down the unimac, based on mode. */
1083
static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1084 1085
				enum bcmgenet_power_mode mode)
{
1086
	int ret = 0;
1087 1088 1089 1090
	u32 reg;

	switch (mode) {
	case GENET_POWER_CABLE_SENSE:
1091
		phy_detach(priv->phydev);
1092 1093
		break;

1094
	case GENET_POWER_WOL_MAGIC:
1095
		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1096 1097
		break;

1098 1099 1100 1101
	case GENET_POWER_PASSIVE:
		/* Power down LED */
		if (priv->hw_params->flags & GENET_HAS_EXT) {
			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
			if (GENET_IS_V5(priv))
				reg |= EXT_PWR_DOWN_PHY_EN |
				       EXT_PWR_DOWN_PHY_RD |
				       EXT_PWR_DOWN_PHY_SD |
				       EXT_PWR_DOWN_PHY_RX |
				       EXT_PWR_DOWN_PHY_TX |
				       EXT_IDDQ_GLBL_PWR;
			else
				reg |= EXT_PWR_DOWN_PHY;

			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1113
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1114 1115

			bcmgenet_phy_power_set(priv->dev, false);
1116 1117 1118 1119 1120
		}
		break;
	default:
		break;
	}
1121 1122

	return 0;
1123 1124 1125
}

static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1126
			      enum bcmgenet_power_mode mode)
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
{
	u32 reg;

	if (!(priv->hw_params->flags & GENET_HAS_EXT))
		return;

	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);

	switch (mode) {
	case GENET_POWER_PASSIVE:
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
		if (GENET_IS_V5(priv)) {
			reg &= ~(EXT_PWR_DOWN_PHY_EN |
				 EXT_PWR_DOWN_PHY_RD |
				 EXT_PWR_DOWN_PHY_SD |
				 EXT_PWR_DOWN_PHY_RX |
				 EXT_PWR_DOWN_PHY_TX |
				 EXT_IDDQ_GLBL_PWR);
			reg |=   EXT_PHY_RESET;
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
			mdelay(1);

			reg &=  ~EXT_PHY_RESET;
		} else {
			reg &= ~EXT_PWR_DOWN_PHY;
			reg |= EXT_PWR_DN_EN_LD;
		}
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
		bcmgenet_phy_power_set(priv->dev, true);
		bcmgenet_mii_reset(priv->dev);
		break;

1159 1160
	case GENET_POWER_CABLE_SENSE:
		/* enable APD */
1161 1162 1163 1164
		if (!GENET_IS_V5(priv)) {
			reg |= EXT_PWR_DN_EN_LD;
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
		}
1165
		break;
1166 1167 1168
	case GENET_POWER_WOL_MAGIC:
		bcmgenet_wol_power_up_cfg(priv, mode);
		return;
1169 1170 1171 1172 1173 1174 1175 1176
	default:
		break;
	}
}

/* ioctl handle special commands that are not present in ethtool. */
static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
1177
	struct bcmgenet_priv *priv = netdev_priv(dev);
1178 1179 1180 1181

	if (!netif_running(dev))
		return -EINVAL;

1182 1183
	if (!priv->phydev)
		return -ENODEV;
1184

1185
	return phy_mii_ioctl(priv->phydev, rq, cmd);
1186 1187 1188 1189 1190 1191 1192 1193 1194
}

static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
					 struct bcmgenet_tx_ring *ring)
{
	struct enet_cb *tx_cb_ptr;

	tx_cb_ptr = ring->cbs;
	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204
	/* Advancing local write pointer */
	if (ring->write_ptr == ring->end_ptr)
		ring->write_ptr = ring->cb_ptr;
	else
		ring->write_ptr++;

	return tx_cb_ptr;
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
					 struct bcmgenet_tx_ring *ring)
{
	struct enet_cb *tx_cb_ptr;

	tx_cb_ptr = ring->cbs;
	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;

	/* Rewinding local write pointer */
	if (ring->write_ptr == ring->cb_ptr)
		ring->write_ptr = ring->end_ptr;
	else
		ring->write_ptr--;

	return tx_cb_ptr;
}

1222 1223
static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
{
1224
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1225 1226 1227 1228 1229
				 INTRL2_CPU_MASK_SET);
}

static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
{
1230
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
				 INTRL2_CPU_MASK_CLEAR);
}

static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
{
	bcmgenet_intrl2_1_writel(ring->priv,
				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
				 INTRL2_CPU_MASK_SET);
}

static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
{
	bcmgenet_intrl2_1_writel(ring->priv,
				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
				 INTRL2_CPU_MASK_CLEAR);
}

1248
static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1249
{
1250
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1251
				 INTRL2_CPU_MASK_SET);
1252 1253
}

1254
static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1255
{
1256
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1257
				 INTRL2_CPU_MASK_CLEAR);
1258 1259
}

1260
static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1261
{
1262
	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1263
				 INTRL2_CPU_MASK_CLEAR);
1264 1265
}

1266
static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1267
{
1268
	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1269
				 INTRL2_CPU_MASK_SET);
1270 1271
}

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/* Simple helper to free a transmit control block's resources
 * Returns an skb when the last transmit control block associated with the
 * skb is freed.  The skb should be freed by the caller if necessary.
 */
static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
					   struct enet_cb *cb)
{
	struct sk_buff *skb;

	skb = cb->skb;

	if (skb) {
		cb->skb = NULL;
		if (cb == GENET_CB(skb)->first_cb)
			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
					 dma_unmap_len(cb, dma_len),
					 DMA_TO_DEVICE);
		else
			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
				       dma_unmap_len(cb, dma_len),
				       DMA_TO_DEVICE);
		dma_unmap_addr_set(cb, dma_addr, 0);

		if (cb == GENET_CB(skb)->last_cb)
			return skb;

	} else if (dma_unmap_addr(cb, dma_addr)) {
		dma_unmap_page(dev,
			       dma_unmap_addr(cb, dma_addr),
			       dma_unmap_len(cb, dma_len),
			       DMA_TO_DEVICE);
		dma_unmap_addr_set(cb, dma_addr, 0);
	}

	return 0;
}

/* Simple helper to free a receive control block's resources */
static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
					   struct enet_cb *cb)
{
	struct sk_buff *skb;

	skb = cb->skb;
	cb->skb = NULL;

	if (dma_unmap_addr(cb, dma_addr)) {
		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
		dma_unmap_addr_set(cb, dma_addr, 0);
	}

	return skb;
}

1327
/* Unlocked version of the reclaim routine */
1328 1329
static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
					  struct bcmgenet_tx_ring *ring)
1330 1331
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
1332
	unsigned int txbds_processed = 0;
1333
	unsigned int bytes_compl = 0;
1334
	unsigned int pkts_compl = 0;
1335
	unsigned int txbds_ready;
1336 1337
	unsigned int c_index;
	struct sk_buff *skb;
1338

1339 1340 1341 1342 1343 1344 1345 1346
	/* Clear status before servicing to reduce spurious interrupts */
	if (ring->index == DESC_INDEX)
		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
					 INTRL2_CPU_CLEAR);
	else
		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
					 INTRL2_CPU_CLEAR);

B
Brian Norris 已提交
1347
	/* Compute how many buffers are transmitted since last xmit call */
1348 1349 1350
	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
		& DMA_C_INDEX_MASK;
	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1351 1352

	netif_dbg(priv, tx_done, dev,
1353 1354
		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1355 1356

	/* Reclaim transmitted buffers */
1357
	while (txbds_processed < txbds_ready) {
1358 1359 1360
		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
					  &priv->tx_cbs[ring->clean_ptr]);
		if (skb) {
1361
			pkts_compl++;
1362 1363
			bytes_compl += GENET_CB(skb)->bytes_sent;
			dev_kfree_skb_any(skb);
1364 1365
		}

1366 1367 1368 1369 1370
		txbds_processed++;
		if (likely(ring->clean_ptr < ring->end_ptr))
			ring->clean_ptr++;
		else
			ring->clean_ptr = ring->cb_ptr;
1371 1372
	}

1373
	ring->free_bds += txbds_processed;
1374
	ring->c_index = c_index;
1375

1376 1377
	ring->packets += pkts_compl;
	ring->bytes += bytes_compl;
1378

1379 1380
	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
				  pkts_compl, bytes_compl);
1381

1382
	return txbds_processed;
1383 1384
}

1385
static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1386
				struct bcmgenet_tx_ring *ring)
1387
{
1388
	unsigned int released;
1389 1390 1391
	unsigned long flags;

	spin_lock_irqsave(&ring->lock, flags);
1392
	released = __bcmgenet_tx_reclaim(dev, ring);
1393
	spin_unlock_irqrestore(&ring->lock, flags);
1394 1395 1396 1397 1398 1399 1400 1401 1402

	return released;
}

static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
{
	struct bcmgenet_tx_ring *ring =
		container_of(napi, struct bcmgenet_tx_ring, napi);
	unsigned int work_done = 0;
1403 1404
	struct netdev_queue *txq;
	unsigned long flags;
1405

1406 1407 1408 1409 1410 1411 1412
	spin_lock_irqsave(&ring->lock, flags);
	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
		netif_tx_wake_queue(txq);
	}
	spin_unlock_irqrestore(&ring->lock, flags);
1413 1414 1415

	if (work_done == 0) {
		napi_complete(napi);
1416
		ring->int_enable(ring);
1417 1418 1419 1420 1421

		return 0;
	}

	return budget;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
}

static void bcmgenet_tx_reclaim_all(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int i;

	if (netif_is_multiqueue(dev)) {
		for (i = 0; i < priv->hw_params->tx_queues; i++)
			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
	}

	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
}

/* Reallocate the SKB to put enough headroom in front of it and insert
 * the transmit checksum offsets in the descriptors
 */
1440 1441
static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
					    struct sk_buff *skb)
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
{
	struct status_64 *status = NULL;
	struct sk_buff *new_skb;
	u16 offset;
	u8 ip_proto;
	u16 ip_ver;
	u32 tx_csum_info;

	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
		/* If 64 byte status block enabled, must make sure skb has
		 * enough headroom for us to insert 64B status block.
		 */
		new_skb = skb_realloc_headroom(skb, sizeof(*status));
		dev_kfree_skb(skb);
		if (!new_skb) {
			dev->stats.tx_dropped++;
1458
			return NULL;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
		}
		skb = new_skb;
	}

	skb_push(skb, sizeof(*status));
	status = (struct status_64 *)skb->data;

	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
		ip_ver = htons(skb->protocol);
		switch (ip_ver) {
		case ETH_P_IP:
			ip_proto = ip_hdr(skb)->protocol;
			break;
		case ETH_P_IPV6:
			ip_proto = ipv6_hdr(skb)->nexthdr;
			break;
		default:
1476
			return skb;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		}

		offset = skb_checksum_start_offset(skb) - sizeof(*status);
		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
				(offset + skb->csum_offset);

		/* Set the length valid bit for TCP and UDP and just set
		 * the special UDP flag for IPv4, else just set to 0.
		 */
		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
			tx_csum_info |= STATUS_TX_CSUM_LV;
			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1490
		} else {
1491
			tx_csum_info = 0;
1492
		}
1493 1494 1495 1496

		status->tx_csum_info = tx_csum_info;
	}

1497
	return skb;
1498 1499 1500 1501 1502
}

static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
1503
	struct device *kdev = &priv->pdev->dev;
1504
	struct bcmgenet_tx_ring *ring = NULL;
1505
	struct enet_cb *tx_cb_ptr;
1506
	struct netdev_queue *txq;
1507 1508
	unsigned long flags = 0;
	int nr_frags, index;
1509 1510 1511 1512
	dma_addr_t mapping;
	unsigned int size;
	skb_frag_t *frag;
	u32 len_stat;
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	int ret;
	int i;

	index = skb_get_queue_mapping(skb);
	/* Mapping strategy:
	 * queue_mapping = 0, unclassified, packet xmited through ring16
	 * queue_mapping = 1, goes to ring 0. (highest priority queue
	 * queue_mapping = 2, goes to ring 1.
	 * queue_mapping = 3, goes to ring 2.
	 * queue_mapping = 4, goes to ring 3.
	 */
	if (index == 0)
		index = DESC_INDEX;
	else
		index -= 1;

	ring = &priv->tx_rings[index];
1530
	txq = netdev_get_tx_queue(dev, ring->queue);
1531

1532 1533
	nr_frags = skb_shinfo(skb)->nr_frags;

1534
	spin_lock_irqsave(&ring->lock, flags);
1535 1536 1537 1538 1539 1540 1541
	if (ring->free_bds <= (nr_frags + 1)) {
		if (!netif_tx_queue_stopped(txq)) {
			netif_tx_stop_queue(txq);
			netdev_err(dev,
				   "%s: tx ring %d full when queue %d awake\n",
				   __func__, index, ring->queue);
		}
1542 1543 1544 1545
		ret = NETDEV_TX_BUSY;
		goto out;
	}

1546 1547 1548 1549 1550
	if (skb_padto(skb, ETH_ZLEN)) {
		ret = NETDEV_TX_OK;
		goto out;
	}

1551 1552 1553 1554 1555
	/* Retain how many bytes will be sent on the wire, without TSB inserted
	 * by transmit checksum offload
	 */
	GENET_CB(skb)->bytes_sent = skb->len;

1556 1557
	/* set the SKB transmit checksum */
	if (priv->desc_64b_en) {
1558 1559
		skb = bcmgenet_put_tx_csum(dev, skb);
		if (!skb) {
1560 1561 1562 1563 1564
			ret = NETDEV_TX_OK;
			goto out;
		}
	}

1565 1566
	for (i = 0; i <= nr_frags; i++) {
		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1567

1568 1569
		if (unlikely(!tx_cb_ptr))
			BUG();
1570

1571 1572
		if (!i) {
			/* Transmit single SKB or head of fragment list */
1573
			GENET_CB(skb)->first_cb = tx_cb_ptr;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
			size = skb_headlen(skb);
			mapping = dma_map_single(kdev, skb->data, size,
						 DMA_TO_DEVICE);
		} else {
			/* xmit fragment */
			frag = &skb_shinfo(skb)->frags[i - 1];
			size = skb_frag_size(frag);
			mapping = skb_frag_dma_map(kdev, frag, 0, size,
						   DMA_TO_DEVICE);
		}

		ret = dma_mapping_error(kdev, mapping);
1586
		if (ret) {
1587 1588
			priv->mib.tx_dma_failed++;
			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1589
			ret = NETDEV_TX_OK;
1590 1591 1592 1593 1594
			goto out_unmap_frags;
		}
		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
		dma_unmap_len_set(tx_cb_ptr, dma_len, size);

1595 1596
		tx_cb_ptr->skb = skb;

1597 1598 1599 1600 1601 1602 1603
		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);

		if (!i) {
			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
			if (skb->ip_summed == CHECKSUM_PARTIAL)
				len_stat |= DMA_TX_DO_CSUM;
1604
		}
1605 1606 1607 1608
		if (i == nr_frags)
			len_stat |= DMA_EOP;

		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1609 1610
	}

1611
	GENET_CB(skb)->last_cb = tx_cb_ptr;
1612 1613
	skb_tx_timestamp(skb);

1614 1615 1616 1617 1618
	/* Decrement total BD count and advance our write pointer */
	ring->free_bds -= nr_frags + 1;
	ring->prod_index += nr_frags + 1;
	ring->prod_index &= DMA_P_INDEX_MASK;

P
Petri Gynther 已提交
1619 1620
	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);

1621
	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1622
		netif_tx_stop_queue(txq);
1623

1624 1625 1626 1627
	if (!skb->xmit_more || netif_xmit_stopped(txq))
		/* Packets are ready, update producer index */
		bcmgenet_tdma_ring_writel(priv, ring->index,
					  ring->prod_index, TDMA_PROD_INDEX);
1628 1629 1630 1631
out:
	spin_unlock_irqrestore(&ring->lock, flags);

	return ret;
1632 1633 1634 1635 1636 1637 1638 1639

out_unmap_frags:
	/* Back up for failed control block mapping */
	bcmgenet_put_txcb(priv, ring);

	/* Unmap successfully mapped control blocks */
	while (i-- > 0) {
		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1640
		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1641 1642 1643 1644
	}

	dev_kfree_skb(skb);
	goto out;
1645 1646
}

1647 1648
static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
					  struct enet_cb *cb)
1649 1650 1651
{
	struct device *kdev = &priv->pdev->dev;
	struct sk_buff *skb;
1652
	struct sk_buff *rx_skb;
1653 1654
	dma_addr_t mapping;

1655
	/* Allocate a new Rx skb */
1656
	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1657 1658 1659 1660 1661 1662
	if (!skb) {
		priv->mib.alloc_rx_buff_failed++;
		netif_err(priv, rx_err, priv->dev,
			  "%s: Rx skb allocation failed\n", __func__);
		return NULL;
	}
1663

1664 1665 1666 1667
	/* DMA-map the new Rx skb */
	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
				 DMA_FROM_DEVICE);
	if (dma_mapping_error(kdev, mapping)) {
1668
		priv->mib.rx_dma_failed++;
1669
		dev_kfree_skb_any(skb);
1670
		netif_err(priv, rx_err, priv->dev,
1671 1672
			  "%s: Rx skb DMA mapping failed\n", __func__);
		return NULL;
1673 1674
	}

1675
	/* Grab the current Rx skb from the ring and DMA-unmap it */
1676
	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1677 1678 1679

	/* Put the new Rx skb on the ring */
	cb->skb = skb;
1680
	dma_unmap_addr_set(cb, dma_addr, mapping);
1681
	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1682
	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1683

1684 1685
	/* Return the current Rx skb to caller */
	return rx_skb;
1686 1687 1688 1689 1690
}

/* bcmgenet_desc_rx - descriptor based rx process.
 * this could be called from bottom half, or from NAPI polling method.
 */
1691
static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1692 1693
				     unsigned int budget)
{
1694
	struct bcmgenet_priv *priv = ring->priv;
1695 1696 1697 1698 1699
	struct net_device *dev = priv->dev;
	struct enet_cb *cb;
	struct sk_buff *skb;
	u32 dma_length_status;
	unsigned long dma_flag;
1700
	int len;
1701
	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1702
	unsigned int p_index, mask;
1703
	unsigned int discards;
1704 1705
	unsigned int chksum_ok = 0;

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	/* Clear status before servicing to reduce spurious interrupts */
	if (ring->index == DESC_INDEX) {
		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
					 INTRL2_CPU_CLEAR);
	} else {
		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
		bcmgenet_intrl2_1_writel(priv,
					 mask,
					 INTRL2_CPU_CLEAR);
	}

1717
	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1718 1719 1720 1721 1722

	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
		   DMA_P_INDEX_DISCARD_CNT_MASK;
	if (discards > ring->old_discards) {
		discards = discards - ring->old_discards;
1723
		ring->errors += discards;
1724 1725 1726 1727 1728
		ring->old_discards += discards;

		/* Clear HW register when we reach 75% of maximum 0xFFFF */
		if (ring->old_discards >= 0xC000) {
			ring->old_discards = 0;
1729
			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1730 1731 1732 1733
						  RDMA_PROD_INDEX);
		}
	}

1734
	p_index &= DMA_P_INDEX_MASK;
1735
	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1736 1737

	netif_dbg(priv, rx_status, dev,
1738
		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1739 1740

	while ((rxpktprocessed < rxpkttoprocess) &&
1741
	       (rxpktprocessed < budget)) {
1742
		cb = &priv->rx_cbs[ring->read_ptr];
1743
		skb = bcmgenet_rx_refill(priv, cb);
1744 1745

		if (unlikely(!skb)) {
1746
			ring->dropped++;
1747
			goto next;
1748 1749
		}

1750
		if (!priv->desc_64b_en) {
1751
			dma_length_status =
1752
				dmadesc_get_length_status(priv, cb->bd_addr);
1753 1754
		} else {
			struct status_64 *status;
1755

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
			status = (struct status_64 *)skb->data;
			dma_length_status = status->length_status;
		}

		/* DMA flags and length are still valid no matter how
		 * we got the Receive Status Vector (64B RSB or register)
		 */
		dma_flag = dma_length_status & 0xffff;
		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;

		netif_dbg(priv, rx_status, dev,
1767
			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1768 1769
			  __func__, p_index, ring->c_index,
			  ring->read_ptr, dma_length_status);
1770 1771 1772

		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
			netif_err(priv, rx_status, dev,
1773
				  "dropping fragmented packet!\n");
1774
			ring->errors++;
1775 1776
			dev_kfree_skb_any(skb);
			goto next;
1777
		}
1778

1779 1780 1781 1782 1783 1784 1785
		/* report errors */
		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
						DMA_RX_OV |
						DMA_RX_NO |
						DMA_RX_LG |
						DMA_RX_RXER))) {
			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1786
				  (unsigned int)dma_flag);
1787 1788 1789 1790 1791 1792 1793 1794 1795
			if (dma_flag & DMA_RX_CRC_ERROR)
				dev->stats.rx_crc_errors++;
			if (dma_flag & DMA_RX_OV)
				dev->stats.rx_over_errors++;
			if (dma_flag & DMA_RX_NO)
				dev->stats.rx_frame_errors++;
			if (dma_flag & DMA_RX_LG)
				dev->stats.rx_length_errors++;
			dev->stats.rx_errors++;
1796 1797
			dev_kfree_skb_any(skb);
			goto next;
1798 1799 1800
		} /* error packet */

		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1801
			     priv->desc_rxchk_en;
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

		skb_put(skb, len);
		if (priv->desc_64b_en) {
			skb_pull(skb, 64);
			len -= 64;
		}

		if (likely(chksum_ok))
			skb->ip_summed = CHECKSUM_UNNECESSARY;

		/* remove hardware 2bytes added for IP alignment */
		skb_pull(skb, 2);
		len -= 2;

		if (priv->crc_fwd_en) {
			skb_trim(skb, len - ETH_FCS_LEN);
			len -= ETH_FCS_LEN;
		}

		/*Finish setting up the received SKB and send it to the kernel*/
		skb->protocol = eth_type_trans(skb, priv->dev);
1823 1824
		ring->packets++;
		ring->bytes += len;
1825 1826 1827 1828
		if (dma_flag & DMA_RX_MULT)
			dev->stats.multicast++;

		/* Notify kernel */
1829
		napi_gro_receive(&ring->napi, skb);
1830 1831
		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");

1832
next:
1833
		rxpktprocessed++;
1834 1835 1836 1837 1838 1839
		if (likely(ring->read_ptr < ring->end_ptr))
			ring->read_ptr++;
		else
			ring->read_ptr = ring->cb_ptr;

		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1840
		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1841 1842 1843 1844 1845
	}

	return rxpktprocessed;
}

1846 1847 1848
/* Rx NAPI polling method */
static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
{
1849 1850
	struct bcmgenet_rx_ring *ring = container_of(napi,
			struct bcmgenet_rx_ring, napi);
1851 1852
	unsigned int work_done;

1853
	work_done = bcmgenet_desc_rx(ring, budget);
1854 1855

	if (work_done < budget) {
1856
		napi_complete_done(napi, work_done);
1857
		ring->int_enable(ring);
1858 1859 1860 1861 1862
	}

	return work_done;
}

1863
/* Assign skb to RX DMA descriptor. */
1864 1865
static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
				     struct bcmgenet_rx_ring *ring)
1866 1867
{
	struct enet_cb *cb;
1868
	struct sk_buff *skb;
1869 1870
	int i;

1871
	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1872 1873

	/* loop here for each buffer needing assign */
1874 1875
	for (i = 0; i < ring->size; i++) {
		cb = ring->cbs + i;
1876 1877 1878 1879 1880
		skb = bcmgenet_rx_refill(priv, cb);
		if (skb)
			dev_kfree_skb_any(skb);
		if (!cb->skb)
			return -ENOMEM;
1881 1882
	}

1883
	return 0;
1884 1885 1886 1887
}

static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
{
1888
	struct sk_buff *skb;
1889 1890 1891 1892 1893 1894
	struct enet_cb *cb;
	int i;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = &priv->rx_cbs[i];

1895 1896 1897
		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
		if (skb)
			dev_kfree_skb_any(skb);
1898 1899 1900
	}
}

1901
static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
{
	u32 reg;

	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	if (enable)
		reg |= mask;
	else
		reg &= ~mask;
	bcmgenet_umac_writel(priv, reg, UMAC_CMD);

	/* UniMAC stops on a packet boundary, wait for a full-size packet
	 * to be processed
	 */
	if (enable == 0)
		usleep_range(1000, 2000);
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
static int reset_umac(struct bcmgenet_priv *priv)
{
	struct device *kdev = &priv->pdev->dev;
	unsigned int timeout = 0;
	u32 reg;

	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
	bcmgenet_rbuf_ctrl_set(priv, 0);
	udelay(10);

	/* disable MAC while updating its registers */
	bcmgenet_umac_writel(priv, 0, UMAC_CMD);

	/* issue soft reset, wait for it to complete */
	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
	while (timeout++ < 1000) {
		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
		if (!(reg & CMD_SW_RESET))
			return 0;

		udelay(1);
	}

	if (timeout == 1000) {
		dev_err(kdev,
B
Brian Norris 已提交
1944
			"timeout waiting for MAC to come out of reset\n");
1945 1946 1947 1948 1949 1950
		return -ETIMEDOUT;
	}

	return 0;
}

1951 1952 1953 1954 1955 1956 1957 1958 1959
static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
{
	/* Mask all interrupts.*/
	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
{
	u32 int0_enable = 0;

	/* Monitor cable plug/unplugged event for internal PHY, external PHY
	 * and MoCA PHY
	 */
	if (priv->internal_phy) {
		int0_enable |= UMAC_IRQ_LINK_EVENT;
	} else if (priv->ext_phy) {
		int0_enable |= UMAC_IRQ_LINK_EVENT;
	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
			int0_enable |= UMAC_IRQ_LINK_EVENT;
	}
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
}

1978 1979 1980 1981
static int init_umac(struct bcmgenet_priv *priv)
{
	struct device *kdev = &priv->pdev->dev;
	int ret;
P
Petri Gynther 已提交
1982 1983
	u32 reg;
	u32 int0_enable = 0;
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");

	ret = reset_umac(priv);
	if (ret)
		return ret;

	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
	/* clear tx/rx counter */
	bcmgenet_umac_writel(priv,
1994 1995
			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
			     UMAC_MIB_CTRL);
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);

	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);

	/* init rx registers, enable ip header optimization */
	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
	reg |= RBUF_ALIGN_2B;
	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);

	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);

2008
	bcmgenet_intr_disable(priv);
2009

2010 2011
	/* Configure backpressure vectors for MoCA */
	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
		reg = bcmgenet_bp_mc_get(priv);
		reg |= BIT(priv->hw_params->bp_in_en_shift);

		/* bp_mask: back pressure mask */
		if (netif_is_multiqueue(priv->dev))
			reg |= priv->hw_params->bp_in_mask;
		else
			reg &= ~priv->hw_params->bp_in_mask;
		bcmgenet_bp_mc_set(priv, reg);
	}

	/* Enable MDIO interrupts on GENET v3+ */
	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
P
Petri Gynther 已提交
2025
		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2026

P
Petri Gynther 已提交
2027
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2028

2029 2030 2031 2032 2033
	dev_dbg(kdev, "done init umac\n");

	return 0;
}

2034
/* Initialize a Tx ring along with corresponding hardware registers */
2035 2036
static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
				  unsigned int index, unsigned int size,
2037
				  unsigned int start_ptr, unsigned int end_ptr)
2038 2039 2040 2041 2042 2043
{
	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
	u32 words_per_bd = WORDS_PER_BD(priv);
	u32 flow_period_val = 0;

	spin_lock_init(&ring->lock);
2044
	ring->priv = priv;
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	ring->index = index;
	if (index == DESC_INDEX) {
		ring->queue = 0;
		ring->int_enable = bcmgenet_tx_ring16_int_enable;
		ring->int_disable = bcmgenet_tx_ring16_int_disable;
	} else {
		ring->queue = index + 1;
		ring->int_enable = bcmgenet_tx_ring_int_enable;
		ring->int_disable = bcmgenet_tx_ring_int_disable;
	}
2055
	ring->cbs = priv->tx_cbs + start_ptr;
2056
	ring->size = size;
2057
	ring->clean_ptr = start_ptr;
2058 2059
	ring->c_index = 0;
	ring->free_bds = size;
2060 2061
	ring->write_ptr = start_ptr;
	ring->cb_ptr = start_ptr;
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	ring->end_ptr = end_ptr - 1;
	ring->prod_index = 0;

	/* Set flow period for ring != 16 */
	if (index != DESC_INDEX)
		flow_period_val = ENET_MAX_MTU_SIZE << 16;

	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
	/* Disable rate control for now */
	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2074
				  TDMA_FLOW_PERIOD);
2075
	bcmgenet_tdma_ring_writel(priv, index,
2076 2077
				  ((size << DMA_RING_SIZE_SHIFT) |
				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2078 2079

	/* Set start and end address, read and write pointers */
2080
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2081
				  DMA_START_ADDR);
2082
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2083
				  TDMA_READ_PTR);
2084
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2085
				  TDMA_WRITE_PTR);
2086
	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2087
				  DMA_END_ADDR);
2088 2089 2090 2091
}

/* Initialize a RDMA ring */
static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2092 2093
				 unsigned int index, unsigned int size,
				 unsigned int start_ptr, unsigned int end_ptr)
2094
{
2095
	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2096 2097 2098
	u32 words_per_bd = WORDS_PER_BD(priv);
	int ret;

2099
	ring->priv = priv;
2100
	ring->index = index;
2101 2102 2103 2104 2105 2106 2107
	if (index == DESC_INDEX) {
		ring->int_enable = bcmgenet_rx_ring16_int_enable;
		ring->int_disable = bcmgenet_rx_ring16_int_disable;
	} else {
		ring->int_enable = bcmgenet_rx_ring_int_enable;
		ring->int_disable = bcmgenet_rx_ring_int_disable;
	}
2108 2109 2110 2111 2112 2113
	ring->cbs = priv->rx_cbs + start_ptr;
	ring->size = size;
	ring->c_index = 0;
	ring->read_ptr = start_ptr;
	ring->cb_ptr = start_ptr;
	ring->end_ptr = end_ptr - 1;
2114

2115 2116
	ret = bcmgenet_alloc_rx_buffers(priv, ring);
	if (ret)
2117 2118 2119 2120
		return ret;

	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2121
	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2122
	bcmgenet_rdma_ring_writel(priv, index,
2123 2124
				  ((size << DMA_RING_SIZE_SHIFT) |
				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2125
	bcmgenet_rdma_ring_writel(priv, index,
2126 2127 2128
				  (DMA_FC_THRESH_LO <<
				   DMA_XOFF_THRESHOLD_SHIFT) |
				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2129 2130

	/* Set start and end address, read and write pointers */
2131 2132 2133 2134 2135 2136 2137
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  DMA_START_ADDR);
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  RDMA_READ_PTR);
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  RDMA_WRITE_PTR);
	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2138
				  DMA_END_ADDR);
2139 2140 2141 2142

	return ret;
}

2143 2144 2145 2146 2147 2148 2149
static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
E
Eric Dumazet 已提交
2150
		netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2151 2152 2153
	}

	ring = &priv->tx_rings[DESC_INDEX];
E
Eric Dumazet 已提交
2154
	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2155 2156 2157 2158 2159
}

static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
2160 2161
	u32 int0_enable = UMAC_IRQ_TXDMA_DONE;
	u32 int1_enable = 0;
2162 2163 2164 2165 2166
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		napi_enable(&ring->napi);
2167
		int1_enable |= (1 << i);
2168 2169 2170 2171
	}

	ring = &priv->tx_rings[DESC_INDEX];
	napi_enable(&ring->napi);
2172 2173 2174

	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2175 2176 2177 2178 2179
}

static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
2180 2181
	u32 int0_disable = UMAC_IRQ_TXDMA_DONE;
	u32 int1_disable = 0xffff;
2182 2183
	struct bcmgenet_tx_ring *ring;

2184 2185 2186
	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		napi_disable(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	napi_disable(&ring->napi);
}

static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		netif_napi_del(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	netif_napi_del(&ring->napi);
}

2210
/* Initialize Tx queues
2211
 *
2212
 * Queues 0-3 are priority-based, each one has 32 descriptors,
2213 2214
 * with queue 0 being the highest priority queue.
 *
2215
 * Queue 16 is the default Tx queue with
2216
 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2217
 *
2218 2219 2220 2221 2222 2223
 * The transmit control block pool is then partitioned as follows:
 * - Tx queue 0 uses tx_cbs[0..31]
 * - Tx queue 1 uses tx_cbs[32..63]
 * - Tx queue 2 uses tx_cbs[64..95]
 * - Tx queue 3 uses tx_cbs[96..127]
 * - Tx queue 16 uses tx_cbs[128..255]
2224
 */
2225
static void bcmgenet_init_tx_queues(struct net_device *dev)
2226 2227
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
2228 2229
	u32 i, dma_enable;
	u32 dma_ctrl, ring_cfg;
2230
	u32 dma_priority[3] = {0, 0, 0};
2231 2232 2233 2234 2235 2236

	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
	dma_enable = dma_ctrl & DMA_EN;
	dma_ctrl &= ~DMA_EN;
	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);

2237 2238 2239
	dma_ctrl = 0;
	ring_cfg = 0;

2240 2241 2242
	/* Enable strict priority arbiter mode */
	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);

2243
	/* Initialize Tx priority queues */
2244
	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2245 2246 2247
		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
				      i * priv->hw_params->tx_bds_per_q,
				      (i + 1) * priv->hw_params->tx_bds_per_q);
2248 2249
		ring_cfg |= (1 << i);
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2250 2251
		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2252 2253
	}

2254
	/* Initialize Tx default queue 16 */
2255
	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2256
			      priv->hw_params->tx_queues *
2257
			      priv->hw_params->tx_bds_per_q,
2258 2259 2260
			      TOTAL_DESC);
	ring_cfg |= (1 << DESC_INDEX);
	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2261 2262 2263
	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2264 2265

	/* Set Tx queue priorities */
2266 2267 2268 2269
	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);

2270 2271 2272
	/* Initialize Tx NAPI */
	bcmgenet_init_tx_napi(priv);

2273 2274
	/* Enable Tx queues */
	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2275

2276
	/* Enable Tx DMA */
2277
	if (dma_enable)
2278 2279
		dma_ctrl |= DMA_EN;
	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2280 2281
}

2282 2283
static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
{
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2294 2295 2296 2297
}

static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
{
2298
	unsigned int i;
2299 2300
	u32 int0_enable = UMAC_IRQ_RXDMA_DONE;
	u32 int1_enable = 0;
2301 2302 2303 2304 2305
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		napi_enable(&ring->napi);
2306
		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
2307 2308 2309 2310
	}

	ring = &priv->rx_rings[DESC_INDEX];
	napi_enable(&ring->napi);
2311 2312 2313

	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2314 2315 2316 2317
}

static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
{
2318
	unsigned int i;
2319 2320
	u32 int0_disable = UMAC_IRQ_RXDMA_DONE;
	u32 int1_disable = 0xffff << UMAC_IRQ1_RX_INTR_SHIFT;
2321 2322
	struct bcmgenet_rx_ring *ring;

2323 2324 2325
	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);

2326 2327 2328 2329 2330 2331 2332
	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		napi_disable(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	napi_disable(&ring->napi);
2333 2334 2335 2336
}

static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
{
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		netif_napi_del(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	netif_napi_del(&ring->napi);
2347 2348
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
/* Initialize Rx queues
 *
 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
 * used to direct traffic to these queues.
 *
 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
 */
static int bcmgenet_init_rx_queues(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 i;
	u32 dma_enable;
	u32 dma_ctrl;
	u32 ring_cfg;
	int ret;

	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
	dma_enable = dma_ctrl & DMA_EN;
	dma_ctrl &= ~DMA_EN;
	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);

	dma_ctrl = 0;
	ring_cfg = 0;

	/* Initialize Rx priority queues */
	for (i = 0; i < priv->hw_params->rx_queues; i++) {
		ret = bcmgenet_init_rx_ring(priv, i,
					    priv->hw_params->rx_bds_per_q,
					    i * priv->hw_params->rx_bds_per_q,
					    (i + 1) *
					    priv->hw_params->rx_bds_per_q);
		if (ret)
			return ret;

		ring_cfg |= (1 << i);
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	}

	/* Initialize Rx default queue 16 */
	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
				    priv->hw_params->rx_queues *
				    priv->hw_params->rx_bds_per_q,
				    TOTAL_DESC);
	if (ret)
		return ret;

	ring_cfg |= (1 << DESC_INDEX);
	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));

2398 2399 2400
	/* Initialize Rx NAPI */
	bcmgenet_init_rx_napi(priv);

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	/* Enable rings */
	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);

	/* Configure ring as descriptor ring and re-enable DMA if enabled */
	if (dma_enable)
		dma_ctrl |= DMA_EN;
	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);

	return 0;
}

2412 2413 2414 2415 2416
static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
{
	int ret = 0;
	int timeout = 0;
	u32 reg;
2417 2418
	u32 dma_ctrl;
	int i;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

	/* Disable TDMA to stop add more frames in TX DMA */
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~DMA_EN;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

	/* Check TDMA status register to confirm TDMA is disabled */
	while (timeout++ < DMA_TIMEOUT_VAL) {
		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
		if (reg & DMA_DISABLED)
			break;

		udelay(1);
	}

	if (timeout == DMA_TIMEOUT_VAL) {
		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
		ret = -ETIMEDOUT;
	}

	/* Wait 10ms for packet drain in both tx and rx dma */
	usleep_range(10000, 20000);

	/* Disable RDMA */
	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~DMA_EN;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	timeout = 0;
	/* Check RDMA status register to confirm RDMA is disabled */
	while (timeout++ < DMA_TIMEOUT_VAL) {
		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
		if (reg & DMA_DISABLED)
			break;

		udelay(1);
	}

	if (timeout == DMA_TIMEOUT_VAL) {
		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
		ret = -ETIMEDOUT;
	}

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	dma_ctrl = 0;
	for (i = 0; i < priv->hw_params->rx_queues; i++)
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	dma_ctrl = 0;
	for (i = 0; i < priv->hw_params->tx_queues; i++)
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

2476 2477 2478
	return ret;
}

2479
static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2480
{
P
Petri Gynther 已提交
2481
	struct netdev_queue *txq;
2482 2483 2484
	struct sk_buff *skb;
	struct enet_cb *cb;
	int i;
2485

2486 2487 2488
	bcmgenet_fini_rx_napi(priv);
	bcmgenet_fini_tx_napi(priv);

2489
	/* disable DMA */
2490
	bcmgenet_dma_teardown(priv);
2491 2492

	for (i = 0; i < priv->num_tx_bds; i++) {
2493 2494 2495 2496
		cb = priv->tx_cbs + i;
		skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
		if (skb)
			dev_kfree_skb(skb);
2497 2498
	}

P
Petri Gynther 已提交
2499 2500 2501 2502 2503 2504 2505 2506
	for (i = 0; i < priv->hw_params->tx_queues; i++) {
		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
		netdev_tx_reset_queue(txq);
	}

	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
	netdev_tx_reset_queue(txq);

2507 2508 2509 2510 2511 2512 2513 2514 2515
	bcmgenet_free_rx_buffers(priv);
	kfree(priv->rx_cbs);
	kfree(priv->tx_cbs);
}

/* init_edma: Initialize DMA control register */
static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
{
	int ret;
2516 2517
	unsigned int i;
	struct enet_cb *cb;
2518

2519
	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2520

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	/* Initialize common Rx ring structures */
	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
	priv->num_rx_bds = TOTAL_DESC;
	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
			       GFP_KERNEL);
	if (!priv->rx_cbs)
		return -ENOMEM;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = priv->rx_cbs + i;
		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
	}

B
Brian Norris 已提交
2534
	/* Initialize common TX ring structures */
2535 2536
	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
	priv->num_tx_bds = TOTAL_DESC;
2537
	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2538
			       GFP_KERNEL);
2539
	if (!priv->tx_cbs) {
2540
		kfree(priv->rx_cbs);
2541 2542 2543
		return -ENOMEM;
	}

2544 2545 2546 2547 2548
	for (i = 0; i < priv->num_tx_bds; i++) {
		cb = priv->tx_cbs + i;
		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
	}

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	/* Init rDma */
	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);

	/* Initialize Rx queues */
	ret = bcmgenet_init_rx_queues(priv->dev);
	if (ret) {
		netdev_err(priv->dev, "failed to initialize Rx queues\n");
		bcmgenet_free_rx_buffers(priv);
		kfree(priv->rx_cbs);
		kfree(priv->tx_cbs);
		return ret;
	}

	/* Init tDma */
	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);

2565 2566
	/* Initialize Tx queues */
	bcmgenet_init_tx_queues(priv->dev);
2567 2568 2569 2570 2571 2572 2573

	return 0;
}

/* Interrupt bottom half */
static void bcmgenet_irq_task(struct work_struct *work)
{
2574 2575
	unsigned long flags;
	unsigned int status;
2576 2577 2578 2579 2580
	struct bcmgenet_priv *priv = container_of(
			work, struct bcmgenet_priv, bcmgenet_irq_work);

	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);

2581 2582 2583 2584 2585 2586
	spin_lock_irqsave(&priv->lock, flags);
	status = priv->irq0_stat;
	priv->irq0_stat = 0;
	spin_unlock_irqrestore(&priv->lock, flags);

	if (status & UMAC_IRQ_MPD_R) {
2587 2588 2589 2590 2591
		netif_dbg(priv, wol, priv->dev,
			  "magic packet detected, waking up\n");
		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
	}

2592
	/* Link UP/DOWN event */
2593
	if (status & UMAC_IRQ_LINK_EVENT)
2594
		phy_mac_interrupt(priv->phydev,
2595
				  !!(status & UMAC_IRQ_LINK_UP));
2596 2597
}

2598
/* bcmgenet_isr1: handle Rx and Tx priority queues */
2599 2600 2601
static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;
2602 2603
	struct bcmgenet_rx_ring *rx_ring;
	struct bcmgenet_tx_ring *tx_ring;
2604
	unsigned int index, status;
2605

2606 2607
	/* Read irq status */
	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2608
		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2609

B
Brian Norris 已提交
2610
	/* clear interrupts */
2611
	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2612 2613

	netif_dbg(priv, intr, priv->dev,
2614
		  "%s: IRQ=0x%x\n", __func__, status);
2615

2616 2617
	/* Check Rx priority queue interrupts */
	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2618
		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2619 2620 2621 2622 2623 2624
			continue;

		rx_ring = &priv->rx_rings[index];

		if (likely(napi_schedule_prep(&rx_ring->napi))) {
			rx_ring->int_disable(rx_ring);
2625
			__napi_schedule_irqoff(&rx_ring->napi);
2626 2627 2628 2629
		}
	}

	/* Check Tx priority queue interrupts */
2630
	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2631
		if (!(status & BIT(index)))
2632 2633
			continue;

2634
		tx_ring = &priv->tx_rings[index];
2635

2636 2637
		if (likely(napi_schedule_prep(&tx_ring->napi))) {
			tx_ring->int_disable(tx_ring);
2638
			__napi_schedule_irqoff(&tx_ring->napi);
2639 2640
		}
	}
2641

2642 2643 2644
	return IRQ_HANDLED;
}

2645
/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2646 2647 2648
static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;
2649 2650
	struct bcmgenet_rx_ring *rx_ring;
	struct bcmgenet_tx_ring *tx_ring;
2651 2652
	unsigned int status;
	unsigned long flags;
2653

2654 2655
	/* Read irq status */
	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2656
		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2657

B
Brian Norris 已提交
2658
	/* clear interrupts */
2659
	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2660 2661

	netif_dbg(priv, intr, priv->dev,
2662
		  "IRQ=0x%x\n", status);
2663

2664
	if (status & UMAC_IRQ_RXDMA_DONE) {
2665 2666 2667 2668
		rx_ring = &priv->rx_rings[DESC_INDEX];

		if (likely(napi_schedule_prep(&rx_ring->napi))) {
			rx_ring->int_disable(rx_ring);
2669
			__napi_schedule_irqoff(&rx_ring->napi);
2670 2671
		}
	}
2672

2673
	if (status & UMAC_IRQ_TXDMA_DONE) {
2674 2675 2676 2677
		tx_ring = &priv->tx_rings[DESC_INDEX];

		if (likely(napi_schedule_prep(&tx_ring->napi))) {
			tx_ring->int_disable(tx_ring);
2678
			__napi_schedule_irqoff(&tx_ring->napi);
2679
		}
2680
	}
2681

2682 2683
	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
				UMAC_IRQ_PHY_DET_F |
2684
				UMAC_IRQ_LINK_EVENT |
2685
				UMAC_IRQ_HFB_SM |
2686
				UMAC_IRQ_HFB_MM)) {
2687 2688 2689 2690 2691
		/* all other interested interrupts handled in bottom half */
		schedule_work(&priv->bcmgenet_irq_work);
	}

	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2692
		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2693 2694 2695
		wake_up(&priv->wq);
	}

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	/* all other interested interrupts handled in bottom half */
	status &= (UMAC_IRQ_LINK_EVENT |
		   UMAC_IRQ_MPD_R);
	if (status) {
		/* Save irq status for bottom-half processing. */
		spin_lock_irqsave(&priv->lock, flags);
		priv->irq0_stat |= status;
		spin_unlock_irqrestore(&priv->lock, flags);

		schedule_work(&priv->bcmgenet_irq_work);
	}

2708 2709 2710
	return IRQ_HANDLED;
}

2711 2712 2713 2714 2715 2716 2717 2718 2719
static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;

	pm_wakeup_event(&priv->pdev->dev, 0);

	return IRQ_HANDLED;
}

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
#ifdef CONFIG_NET_POLL_CONTROLLER
static void bcmgenet_poll_controller(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Invoke the main RX/TX interrupt handler */
	disable_irq(priv->irq0);
	bcmgenet_isr0(priv->irq0, priv);
	enable_irq(priv->irq0);

	/* And the interrupt handler for RX/TX priority queues */
	disable_irq(priv->irq1);
	bcmgenet_isr1(priv->irq1, priv);
	enable_irq(priv->irq1);
}
#endif

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
{
	u32 reg;

	reg = bcmgenet_rbuf_ctrl_get(priv);
	reg |= BIT(1);
	bcmgenet_rbuf_ctrl_set(priv, reg);
	udelay(10);

	reg &= ~BIT(1);
	bcmgenet_rbuf_ctrl_set(priv, reg);
	udelay(10);
}

static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2752
				 unsigned char *addr)
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
{
	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | addr[3], UMAC_MAC0);
	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
}

/* Returns a reusable dma control register value */
static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
{
	u32 reg;
	u32 dma_ctrl;

	/* disable DMA */
	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
	udelay(10);
	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);

	return dma_ctrl;
}

static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
{
	u32 reg;

	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg |= dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg |= dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
}

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
/* bcmgenet_hfb_clear
 *
 * Clear Hardware Filter Block and disable all filtering.
 */
static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
{
	u32 i;

	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);

	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
		bcmgenet_rdma_writel(priv, 0x0, i);

	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
		bcmgenet_hfb_reg_writel(priv, 0x0,
					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));

	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
			priv->hw_params->hfb_filter_size; i++)
		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
}

static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
		return;

	bcmgenet_hfb_clear(priv);
}

2827 2828 2829 2830 2831
static void bcmgenet_netif_start(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Start the network engine */
2832
	bcmgenet_enable_rx_napi(priv);
2833
	bcmgenet_enable_tx_napi(priv);
2834 2835 2836 2837 2838

	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);

	netif_tx_start_all_queues(dev);

2839 2840 2841
	/* Monitor link interrupts now */
	bcmgenet_link_intr_enable(priv);

2842
	phy_start(priv->phydev);
2843 2844
}

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
static int bcmgenet_open(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long dma_ctrl;
	u32 reg;
	int ret;

	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");

	/* Turn on the clock */
2855
	clk_prepare_enable(priv->clk);
2856

2857 2858 2859
	/* If this is an internal GPHY, power it back on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
2860
	if (priv->internal_phy)
2861 2862
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

2863 2864 2865 2866 2867 2868 2869 2870
	/* take MAC out of reset */
	bcmgenet_umac_reset(priv);

	ret = init_umac(priv);
	if (ret)
		goto err_clk_disable;

	/* disable ethernet MAC while updating its registers */
2871
	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2872

2873 2874 2875 2876
	/* Make sure we reflect the value of CRC_CMD_FWD */
	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);

2877 2878
	bcmgenet_set_hw_addr(priv, dev->dev_addr);

2879
	if (priv->internal_phy) {
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
		reg |= EXT_ENERGY_DET_MASK;
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
	}

	/* Disable RX/TX DMA and flush TX queues */
	dma_ctrl = bcmgenet_dma_disable(priv);

	/* Reinitialize TDMA and RDMA and SW housekeeping */
	ret = bcmgenet_init_dma(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize DMA\n");
2892
		goto err_clk_disable;
2893 2894 2895 2896 2897
	}

	/* Always enable ring 16 - descriptor ring */
	bcmgenet_enable_dma(priv, dma_ctrl);

2898 2899 2900
	/* HFB init */
	bcmgenet_hfb_init(priv);

2901
	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2902
			  dev->name, priv);
2903 2904 2905 2906 2907 2908
	if (ret < 0) {
		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
		goto err_fini_dma;
	}

	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2909
			  dev->name, priv);
2910 2911 2912 2913 2914
	if (ret < 0) {
		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
		goto err_irq0;
	}

2915 2916 2917 2918 2919
	ret = bcmgenet_mii_probe(dev);
	if (ret) {
		netdev_err(dev, "failed to connect to PHY\n");
		goto err_irq1;
	}
2920

2921
	bcmgenet_netif_start(dev);
2922 2923 2924

	return 0;

2925 2926
err_irq1:
	free_irq(priv->irq1, priv);
2927
err_irq0:
2928
	free_irq(priv->irq0, priv);
2929 2930 2931
err_fini_dma:
	bcmgenet_fini_dma(priv);
err_clk_disable:
2932 2933
	if (priv->internal_phy)
		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2934
	clk_disable_unprepare(priv->clk);
2935 2936 2937
	return ret;
}

2938 2939 2940 2941 2942
static void bcmgenet_netif_stop(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	netif_tx_stop_all_queues(dev);
2943
	phy_stop(priv->phydev);
2944
	bcmgenet_intr_disable(priv);
2945
	bcmgenet_disable_rx_napi(priv);
2946
	bcmgenet_disable_tx_napi(priv);
2947 2948 2949 2950 2951

	/* Wait for pending work items to complete. Since interrupts are
	 * disabled no new work will be scheduled.
	 */
	cancel_work_sync(&priv->bcmgenet_irq_work);
2952 2953

	priv->old_link = -1;
2954
	priv->old_speed = -1;
2955
	priv->old_duplex = -1;
2956
	priv->old_pause = -1;
2957 2958
}

2959 2960 2961 2962 2963 2964 2965
static int bcmgenet_close(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int ret;

	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");

2966
	bcmgenet_netif_stop(dev);
2967

2968
	/* Really kill the PHY state machine and disconnect from it */
2969
	phy_disconnect(priv->phydev);
2970

2971
	/* Disable MAC receive */
2972
	umac_enable_set(priv, CMD_RX_EN, false);
2973 2974 2975 2976 2977

	ret = bcmgenet_dma_teardown(priv);
	if (ret)
		return ret;

2978
	/* Disable MAC transmit. TX DMA disabled must be done before this */
2979
	umac_enable_set(priv, CMD_TX_EN, false);
2980 2981 2982 2983 2984 2985 2986 2987

	/* tx reclaim */
	bcmgenet_tx_reclaim_all(dev);
	bcmgenet_fini_dma(priv);

	free_irq(priv->irq0, priv);
	free_irq(priv->irq1, priv);

2988
	if (priv->internal_phy)
2989
		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2990

2991
	clk_disable_unprepare(priv->clk);
2992

2993
	return ret;
2994 2995
}

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
{
	struct bcmgenet_priv *priv = ring->priv;
	u32 p_index, c_index, intsts, intmsk;
	struct netdev_queue *txq;
	unsigned int free_bds;
	unsigned long flags;
	bool txq_stopped;

	if (!netif_msg_tx_err(priv))
		return;

	txq = netdev_get_tx_queue(priv->dev, ring->queue);

	spin_lock_irqsave(&ring->lock, flags);
	if (ring->index == DESC_INDEX) {
		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
	} else {
		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
		intmsk = 1 << ring->index;
	}
	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
	txq_stopped = netif_tx_queue_stopped(txq);
	free_bds = ring->free_bds;
	spin_unlock_irqrestore(&ring->lock, flags);

	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
		  "TX queue status: %s, interrupts: %s\n"
		  "(sw)free_bds: %d (sw)size: %d\n"
		  "(sw)p_index: %d (hw)p_index: %d\n"
		  "(sw)c_index: %d (hw)c_index: %d\n"
		  "(sw)clean_p: %d (sw)write_p: %d\n"
		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
		  ring->index, ring->queue,
		  txq_stopped ? "stopped" : "active",
		  intsts & intmsk ? "enabled" : "disabled",
		  free_bds, ring->size,
		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
		  ring->c_index, c_index & DMA_C_INDEX_MASK,
		  ring->clean_ptr, ring->write_ptr,
		  ring->cb_ptr, ring->end_ptr);
}

3041 3042 3043
static void bcmgenet_timeout(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
3044 3045 3046
	u32 int0_enable = 0;
	u32 int1_enable = 0;
	unsigned int q;
3047 3048 3049

	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	for (q = 0; q < priv->hw_params->tx_queues; q++)
		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);

	bcmgenet_tx_reclaim_all(dev);

	for (q = 0; q < priv->hw_params->tx_queues; q++)
		int1_enable |= (1 << q);

	int0_enable = UMAC_IRQ_TXDMA_DONE;

	/* Re-enable TX interrupts if disabled */
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);

3065
	netif_trans_update(dev);
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080

	dev->stats.tx_errors++;

	netif_tx_wake_all_queues(dev);
}

#define MAX_MC_COUNT	16

static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
					 unsigned char *addr,
					 int *i,
					 int *mc)
{
	u32 reg;

3081 3082 3083 3084 3085
	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
			     UMAC_MDF_ADDR + (*i * 4));
	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
			     addr[4] << 8 | addr[5],
			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
	reg |= (1 << (MAX_MC_COUNT - *mc));
	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
	*i += 2;
	(*mc)++;
}

static void bcmgenet_set_rx_mode(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct netdev_hw_addr *ha;
	int i, mc;
	u32 reg;

	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);

B
Brian Norris 已提交
3102
	/* Promiscuous mode */
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	if (dev->flags & IFF_PROMISC) {
		reg |= CMD_PROMISC;
		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
		return;
	} else {
		reg &= ~CMD_PROMISC;
		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
	}

	/* UniMac doesn't support ALLMULTI */
	if (dev->flags & IFF_ALLMULTI) {
		netdev_warn(dev, "ALLMULTI is not supported\n");
		return;
	}

	/* update MDF filter */
	i = 0;
	mc = 0;
	/* Broadcast */
	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
	/* my own address.*/
	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
	/* Unicast list*/
	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
		return;

	if (!netdev_uc_empty(dev))
		netdev_for_each_uc_addr(ha, dev)
			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
	/* Multicast */
	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
		return;

	netdev_for_each_mc_addr(ha, dev)
		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
}

/* Set the hardware MAC address. */
static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
{
	struct sockaddr *addr = p;

	/* Setting the MAC address at the hardware level is not possible
	 * without disabling the UniMAC RX/TX enable bits.
	 */
	if (netif_running(dev))
		return -EBUSY;

	ether_addr_copy(dev->dev_addr, addr->sa_data);

	return 0;
}

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long tx_bytes = 0, tx_packets = 0;
	unsigned long rx_bytes = 0, rx_packets = 0;
	unsigned long rx_errors = 0, rx_dropped = 0;
	struct bcmgenet_tx_ring *tx_ring;
	struct bcmgenet_rx_ring *rx_ring;
	unsigned int q;

	for (q = 0; q < priv->hw_params->tx_queues; q++) {
		tx_ring = &priv->tx_rings[q];
		tx_bytes += tx_ring->bytes;
		tx_packets += tx_ring->packets;
	}
	tx_ring = &priv->tx_rings[DESC_INDEX];
	tx_bytes += tx_ring->bytes;
	tx_packets += tx_ring->packets;

	for (q = 0; q < priv->hw_params->rx_queues; q++) {
		rx_ring = &priv->rx_rings[q];

		rx_bytes += rx_ring->bytes;
		rx_packets += rx_ring->packets;
		rx_errors += rx_ring->errors;
		rx_dropped += rx_ring->dropped;
	}
	rx_ring = &priv->rx_rings[DESC_INDEX];
	rx_bytes += rx_ring->bytes;
	rx_packets += rx_ring->packets;
	rx_errors += rx_ring->errors;
	rx_dropped += rx_ring->dropped;

	dev->stats.tx_bytes = tx_bytes;
	dev->stats.tx_packets = tx_packets;
	dev->stats.rx_bytes = rx_bytes;
	dev->stats.rx_packets = rx_packets;
	dev->stats.rx_errors = rx_errors;
	dev->stats.rx_missed_errors = rx_errors;
	return &dev->stats;
}

3200 3201 3202 3203 3204 3205 3206 3207 3208
static const struct net_device_ops bcmgenet_netdev_ops = {
	.ndo_open		= bcmgenet_open,
	.ndo_stop		= bcmgenet_close,
	.ndo_start_xmit		= bcmgenet_xmit,
	.ndo_tx_timeout		= bcmgenet_timeout,
	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
	.ndo_do_ioctl		= bcmgenet_ioctl,
	.ndo_set_features	= bcmgenet_set_features,
3209 3210 3211
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= bcmgenet_poll_controller,
#endif
3212
	.ndo_get_stats		= bcmgenet_get_stats,
3213 3214 3215 3216 3217 3218
};

/* Array of GENET hardware parameters/characteristics */
static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
	[GENET_V1] = {
		.tx_queues = 0,
3219
		.tx_bds_per_q = 0,
3220
		.rx_queues = 0,
3221
		.rx_bds_per_q = 0,
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
		.bp_in_en_shift = 16,
		.bp_in_mask = 0xffff,
		.hfb_filter_cnt = 16,
		.qtag_mask = 0x1F,
		.hfb_offset = 0x1000,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x3000,
		.words_per_bd = 2,
	},
	[GENET_V2] = {
		.tx_queues = 4,
3233
		.tx_bds_per_q = 32,
3234
		.rx_queues = 0,
3235
		.rx_bds_per_q = 0,
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
		.bp_in_en_shift = 16,
		.bp_in_mask = 0xffff,
		.hfb_filter_cnt = 16,
		.qtag_mask = 0x1F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x1000,
		.hfb_reg_offset = 0x2000,
		.rdma_offset = 0x3000,
		.tdma_offset = 0x4000,
		.words_per_bd = 2,
		.flags = GENET_HAS_EXT,
	},
	[GENET_V3] = {
		.tx_queues = 4,
3250
		.tx_bds_per_q = 32,
3251
		.rx_queues = 0,
3252
		.rx_bds_per_q = 0,
3253 3254 3255
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
3256
		.hfb_filter_size = 128,
3257 3258 3259 3260 3261 3262 3263
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x10000,
		.tdma_offset = 0x11000,
		.words_per_bd = 2,
3264 3265
		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
			 GENET_HAS_MOCA_LINK_DET,
3266 3267 3268
	},
	[GENET_V4] = {
		.tx_queues = 4,
3269
		.tx_bds_per_q = 32,
3270
		.rx_queues = 0,
3271
		.rx_bds_per_q = 0,
3272 3273 3274
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
3275
		.hfb_filter_size = 128,
3276 3277 3278 3279 3280 3281 3282
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x4000,
		.words_per_bd = 3,
3283 3284
		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3285
	},
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	[GENET_V5] = {
		.tx_queues = 4,
		.tx_bds_per_q = 32,
		.rx_queues = 0,
		.rx_bds_per_q = 0,
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
		.hfb_filter_size = 128,
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x4000,
		.words_per_bd = 3,
		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
	},
3305 3306 3307 3308 3309 3310 3311 3312
};

/* Infer hardware parameters from the detected GENET version */
static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
{
	struct bcmgenet_hw_params *params;
	u32 reg;
	u8 major;
3313
	u16 gphy_rev;
3314

3315
	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
		genet_dma_ring_regs = genet_dma_ring_regs_v4;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
	} else if (GENET_IS_V3(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
	} else if (GENET_IS_V2(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
	} else if (GENET_IS_V1(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
	}

	/* enum genet_version starts at 1 */
	priv->hw_params = &bcmgenet_hw_params[priv->version];
	params = priv->hw_params;

	/* Read GENET HW version */
	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
	major = (reg >> 24 & 0x0f);
3340 3341 3342
	if (major == 6)
		major = 5;
	else if (major == 5)
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
		major = 4;
	else if (major == 0)
		major = 1;
	if (major != priv->version) {
		dev_err(&priv->pdev->dev,
			"GENET version mismatch, got: %d, configured for: %d\n",
			major, priv->version);
	}

	/* Print the GENET core version */
	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3354
		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3355

3356 3357 3358 3359
	/* Store the integrated PHY revision for the MDIO probing function
	 * to pass this information to the PHY driver. The PHY driver expects
	 * to find the PHY major revision in bits 15:8 while the GENET register
	 * stores that information in bits 7:0, account for that.
3360 3361 3362 3363 3364 3365 3366
	 *
	 * On newer chips, starting with PHY revision G0, a new scheme is
	 * deployed similar to the Starfighter 2 switch with GPHY major
	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
	 * is reserved as well as special value 0x01ff, we have a small
	 * heuristic to check for the new GPHY revision and re-arrange things
	 * so the GPHY driver is happy.
3367
	 */
3368 3369
	gphy_rev = reg & 0xffff;

3370 3371 3372 3373 3374 3375 3376 3377
	if (GENET_IS_V5(priv)) {
		/* The EPHY revision should come from the MDIO registers of
		 * the PHY not from GENET.
		 */
		if (gphy_rev != 0) {
			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
				gphy_rev);
		}
3378
	/* This is reserved so should require special treatment */
3379
	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3380 3381
		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
		return;
3382
	/* This is the good old scheme, just GPHY major, no minor nor patch */
3383
	} else if ((gphy_rev & 0xf0) != 0) {
3384 3385
		priv->gphy_rev = gphy_rev << 8;
	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3386
	} else if ((gphy_rev & 0xff00) != 0) {
3387 3388
		priv->gphy_rev = gphy_rev;
	}
3389

3390 3391 3392 3393 3394 3395
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (!(params->flags & GENET_HAS_40BITS))
		pr_warn("GENET does not support 40-bits PA\n");
#endif

	pr_debug("Configuration for version: %d\n"
3396
		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3397 3398 3399 3400 3401 3402
		"BP << en: %2d, BP msk: 0x%05x\n"
		"HFB count: %2d, QTAQ msk: 0x%05x\n"
		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
		"RDMA: 0x%05x, TDMA: 0x%05x\n"
		"Words/BD: %d\n",
		priv->version,
3403
		params->tx_queues, params->tx_bds_per_q,
3404
		params->rx_queues, params->rx_bds_per_q,
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
		params->bp_in_en_shift, params->bp_in_mask,
		params->hfb_filter_cnt, params->qtag_mask,
		params->tbuf_offset, params->hfb_offset,
		params->hfb_reg_offset,
		params->rdma_offset, params->tdma_offset,
		params->words_per_bd);
}

static const struct of_device_id bcmgenet_match[] = {
	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3418
	{ .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3419 3420
	{ },
};
3421
MODULE_DEVICE_TABLE(of, bcmgenet_match);
3422 3423 3424

static int bcmgenet_probe(struct platform_device *pdev)
{
3425
	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3426
	struct device_node *dn = pdev->dev.of_node;
3427
	const struct of_device_id *of_id = NULL;
3428 3429 3430 3431 3432
	struct bcmgenet_priv *priv;
	struct net_device *dev;
	const void *macaddr;
	struct resource *r;
	int err = -EIO;
3433
	const char *phy_mode_str;
3434

3435 3436 3437
	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
				 GENET_MAX_MQ_CNT + 1);
3438 3439 3440 3441 3442
	if (!dev) {
		dev_err(&pdev->dev, "can't allocate net device\n");
		return -ENOMEM;
	}

3443 3444 3445 3446 3447
	if (dn) {
		of_id = of_match_node(bcmgenet_match, dn);
		if (!of_id)
			return -EINVAL;
	}
3448 3449 3450 3451

	priv = netdev_priv(dev);
	priv->irq0 = platform_get_irq(pdev, 0);
	priv->irq1 = platform_get_irq(pdev, 1);
3452
	priv->wol_irq = platform_get_irq(pdev, 2);
3453 3454 3455 3456 3457 3458
	if (!priv->irq0 || !priv->irq1) {
		dev_err(&pdev->dev, "can't find IRQs\n");
		err = -EINVAL;
		goto err;
	}

3459 3460 3461 3462 3463 3464 3465 3466 3467
	if (dn) {
		macaddr = of_get_mac_address(dn);
		if (!macaddr) {
			dev_err(&pdev->dev, "can't find MAC address\n");
			err = -EINVAL;
			goto err;
		}
	} else {
		macaddr = pd->mac_address;
3468 3469 3470
	}

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3471 3472 3473
	priv->base = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(priv->base)) {
		err = PTR_ERR(priv->base);
3474 3475 3476
		goto err;
	}

3477 3478
	spin_lock_init(&priv->lock);

3479 3480 3481 3482
	SET_NETDEV_DEV(dev, &pdev->dev);
	dev_set_drvdata(&pdev->dev, dev);
	ether_addr_copy(dev->dev_addr, macaddr);
	dev->watchdog_timeo = 2 * HZ;
3483
	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3484 3485 3486 3487 3488 3489 3490 3491
	dev->netdev_ops = &bcmgenet_netdev_ops;

	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);

	/* Set hardware features */
	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;

3492 3493 3494 3495 3496 3497 3498
	/* Request the WOL interrupt and advertise suspend if available */
	priv->wol_irq_disabled = true;
	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
			       dev->name, priv);
	if (!err)
		device_set_wakeup_capable(&pdev->dev, 1);

3499 3500 3501 3502 3503 3504 3505 3506 3507
	/* Set the needed headroom to account for any possible
	 * features enabling/disabling at runtime
	 */
	dev->needed_headroom += 64;

	netdev_boot_setup_check(dev);

	priv->dev = dev;
	priv->pdev = pdev;
3508 3509 3510 3511
	if (of_id)
		priv->version = (enum bcmgenet_version)of_id->data;
	else
		priv->version = pd->genet_version;
3512

3513
	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3514
	if (IS_ERR(priv->clk)) {
3515
		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3516 3517
		priv->clk = NULL;
	}
3518

3519
	clk_prepare_enable(priv->clk);
3520

3521 3522 3523 3524 3525 3526 3527 3528 3529
	bcmgenet_set_hw_params(priv);

	/* Mii wait queue */
	init_waitqueue_head(&priv->wq);
	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
	priv->rx_buf_len = RX_BUF_LENGTH;
	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);

	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3530
	if (IS_ERR(priv->clk_wol)) {
3531
		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3532 3533
		priv->clk_wol = NULL;
	}
3534

F
Florian Fainelli 已提交
3535 3536 3537 3538 3539 3540
	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
	if (IS_ERR(priv->clk_eee)) {
		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
		priv->clk_eee = NULL;
	}

3541 3542 3543 3544 3545 3546 3547
	/* If this is an internal GPHY, power it on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
	    !strcasecmp(phy_mode_str, "internal"))
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
	err = reset_umac(priv);
	if (err)
		goto err_clk_disable;

	err = bcmgenet_mii_init(dev);
	if (err)
		goto err_clk_disable;

	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
	 * just the ring 16 descriptor based TX
	 */
	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);

3562 3563 3564
	/* libphy will determine the link state */
	netif_carrier_off(dev);

3565
	/* Turn off the main clock, WOL clock is handled separately */
3566
	clk_disable_unprepare(priv->clk);
3567

3568 3569 3570 3571
	err = register_netdev(dev);
	if (err)
		goto err;

3572 3573 3574
	return err;

err_clk_disable:
3575
	clk_disable_unprepare(priv->clk);
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
err:
	free_netdev(dev);
	return err;
}

static int bcmgenet_remove(struct platform_device *pdev)
{
	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);

	dev_set_drvdata(&pdev->dev, NULL);
	unregister_netdev(priv->dev);
	bcmgenet_mii_exit(priv->dev);
	free_netdev(priv->dev);

	return 0;
}

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
#ifdef CONFIG_PM_SLEEP
static int bcmgenet_suspend(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int ret;

	if (!netif_running(dev))
		return 0;

	bcmgenet_netif_stop(dev);

3605 3606
	if (!device_may_wakeup(d))
		phy_suspend(priv->phydev);
3607

3608 3609 3610 3611 3612 3613 3614 3615 3616
	netif_device_detach(dev);

	/* Disable MAC receive */
	umac_enable_set(priv, CMD_RX_EN, false);

	ret = bcmgenet_dma_teardown(priv);
	if (ret)
		return ret;

3617
	/* Disable MAC transmit. TX DMA disabled must be done before this */
3618 3619 3620 3621 3622 3623
	umac_enable_set(priv, CMD_TX_EN, false);

	/* tx reclaim */
	bcmgenet_tx_reclaim_all(dev);
	bcmgenet_fini_dma(priv);

3624 3625
	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
	if (device_may_wakeup(d) && priv->wolopts) {
3626
		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3627
		clk_prepare_enable(priv->clk_wol);
3628
	} else if (priv->internal_phy) {
3629
		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3630 3631
	}

3632 3633 3634
	/* Turn off the clocks */
	clk_disable_unprepare(priv->clk);

3635
	return ret;
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
}

static int bcmgenet_resume(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long dma_ctrl;
	int ret;
	u32 reg;

	if (!netif_running(dev))
		return 0;

	/* Turn on the clock */
	ret = clk_prepare_enable(priv->clk);
	if (ret)
		return ret;

3654 3655 3656
	/* If this is an internal GPHY, power it back on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
3657
	if (priv->internal_phy)
3658 3659
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

3660 3661 3662 3663 3664 3665
	bcmgenet_umac_reset(priv);

	ret = init_umac(priv);
	if (ret)
		goto out_clk_disable;

3666 3667 3668 3669
	/* From WOL-enabled suspend, switch to regular clock */
	if (priv->wolopts)
		clk_disable_unprepare(priv->clk_wol);

3670
	phy_init_hw(priv->phydev);
3671
	/* Speed settings must be restored */
3672
	bcmgenet_mii_config(priv->dev);
3673

3674 3675 3676 3677 3678
	/* disable ethernet MAC while updating its registers */
	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);

	bcmgenet_set_hw_addr(priv, dev->dev_addr);

3679
	if (priv->internal_phy) {
3680 3681 3682 3683 3684
		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
		reg |= EXT_ENERGY_DET_MASK;
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
	}

3685 3686 3687
	if (priv->wolopts)
		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
	/* Disable RX/TX DMA and flush TX queues */
	dma_ctrl = bcmgenet_dma_disable(priv);

	/* Reinitialize TDMA and RDMA and SW housekeeping */
	ret = bcmgenet_init_dma(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize DMA\n");
		goto out_clk_disable;
	}

	/* Always enable ring 16 - descriptor ring */
	bcmgenet_enable_dma(priv, dma_ctrl);

	netif_device_attach(dev);

3703 3704
	if (!device_may_wakeup(d))
		phy_resume(priv->phydev);
3705

F
Florian Fainelli 已提交
3706 3707 3708
	if (priv->eee.eee_enabled)
		bcmgenet_eee_enable_set(dev, true);

3709 3710 3711 3712 3713
	bcmgenet_netif_start(dev);

	return 0;

out_clk_disable:
3714 3715
	if (priv->internal_phy)
		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3716 3717 3718 3719 3720 3721 3722
	clk_disable_unprepare(priv->clk);
	return ret;
}
#endif /* CONFIG_PM_SLEEP */

static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);

3723 3724 3725 3726 3727 3728
static struct platform_driver bcmgenet_driver = {
	.probe	= bcmgenet_probe,
	.remove	= bcmgenet_remove,
	.driver	= {
		.name	= "bcmgenet",
		.of_match_table = bcmgenet_match,
3729
		.pm	= &bcmgenet_pm_ops,
3730 3731 3732 3733 3734 3735 3736 3737
	},
};
module_platform_driver(bcmgenet_driver);

MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
MODULE_ALIAS("platform:bcmgenet");
MODULE_LICENSE("GPL");