bcmgenet.c 89.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * Broadcom GENET (Gigabit Ethernet) controller driver
 *
 * Copyright (c) 2014 Broadcom Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt)				"bcmgenet: " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/if_ether.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/pm.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <net/arp.h>

#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/phy.h>
45
#include <linux/platform_data/bcmgenet.h>
46 47 48 49 50 51 52 53 54 55 56

#include <asm/unaligned.h>

#include "bcmgenet.h"

/* Maximum number of hardware queues, downsized if needed */
#define GENET_MAX_MQ_CNT	4

/* Default highest priority queue for multi queue support */
#define GENET_Q0_PRIORITY	0

57 58
#define GENET_Q16_RX_BD_CNT	\
	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 60
#define GENET_Q16_TX_BD_CNT	\
	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

#define RX_BUF_LENGTH		2048
#define SKB_ALIGNMENT		32

/* Tx/Rx DMA register offset, skip 256 descriptors */
#define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
#define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))

#define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
				TOTAL_DESC * DMA_DESC_SIZE)

#define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
				TOTAL_DESC * DMA_DESC_SIZE)

static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76
					     void __iomem *d, u32 value)
77 78 79 80 81
{
	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
}

static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82
					    void __iomem *d)
83 84 85 86 87 88 89 90 91 92 93 94
{
	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
}

static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
				    void __iomem *d,
				    dma_addr_t addr)
{
	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);

	/* Register writes to GISB bus can take couple hundred nanoseconds
	 * and are done for each packet, save these expensive writes unless
B
Brian Norris 已提交
95
	 * the platform is explicitly configured for 64-bits/LPAE.
96 97 98 99 100 101 102 103 104
	 */
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (priv->hw_params->flags & GENET_HAS_40BITS)
		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
#endif
}

/* Combined address + length/status setter */
static inline void dmadesc_set(struct bcmgenet_priv *priv,
105
			       void __iomem *d, dma_addr_t addr, u32 val)
106 107 108 109 110 111 112 113 114 115 116 117 118 119
{
	dmadesc_set_length_status(priv, d, val);
	dmadesc_set_addr(priv, d, addr);
}

static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
					  void __iomem *d)
{
	dma_addr_t addr;

	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);

	/* Register writes to GISB bus can take couple hundred nanoseconds
	 * and are done for each packet, save these expensive writes unless
B
Brian Norris 已提交
120
	 * the platform is explicitly configured for 64-bits/LPAE.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	 */
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (priv->hw_params->flags & GENET_HAS_40BITS)
		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
#endif
	return addr;
}

#define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"

#define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
				NETIF_MSG_LINK)

static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
	else
		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
}

static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
	else
		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
}

/* These macros are defined to deal with register map change
 * between GENET1.1 and GENET2. Only those currently being used
 * by driver are defined.
 */
static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
	else
		return __raw_readl(priv->base +
				priv->hw_params->tbuf_offset + TBUF_CTRL);
}

static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
	else
		__raw_writel(val, priv->base +
				priv->hw_params->tbuf_offset + TBUF_CTRL);
}

static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
	else
		return __raw_readl(priv->base +
				priv->hw_params->tbuf_offset + TBUF_BP_MC);
}

static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
	else
		__raw_writel(val, priv->base +
				priv->hw_params->tbuf_offset + TBUF_BP_MC);
}

/* RX/TX DMA register accessors */
enum dma_reg {
	DMA_RING_CFG = 0,
	DMA_CTRL,
	DMA_STATUS,
	DMA_SCB_BURST_SIZE,
	DMA_ARB_CTRL,
197 198 199
	DMA_PRIORITY_0,
	DMA_PRIORITY_1,
	DMA_PRIORITY_2,
200 201 202 203 204 205 206 207
	DMA_INDEX2RING_0,
	DMA_INDEX2RING_1,
	DMA_INDEX2RING_2,
	DMA_INDEX2RING_3,
	DMA_INDEX2RING_4,
	DMA_INDEX2RING_5,
	DMA_INDEX2RING_6,
	DMA_INDEX2RING_7,
208 209 210 211 212 213 214 215
};

static const u8 bcmgenet_dma_regs_v3plus[] = {
	[DMA_RING_CFG]		= 0x00,
	[DMA_CTRL]		= 0x04,
	[DMA_STATUS]		= 0x08,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x2C,
216 217 218
	[DMA_PRIORITY_0]	= 0x30,
	[DMA_PRIORITY_1]	= 0x34,
	[DMA_PRIORITY_2]	= 0x38,
219 220 221 222 223 224 225 226
	[DMA_INDEX2RING_0]	= 0x70,
	[DMA_INDEX2RING_1]	= 0x74,
	[DMA_INDEX2RING_2]	= 0x78,
	[DMA_INDEX2RING_3]	= 0x7C,
	[DMA_INDEX2RING_4]	= 0x80,
	[DMA_INDEX2RING_5]	= 0x84,
	[DMA_INDEX2RING_6]	= 0x88,
	[DMA_INDEX2RING_7]	= 0x8C,
227 228 229 230 231 232 233 234
};

static const u8 bcmgenet_dma_regs_v2[] = {
	[DMA_RING_CFG]		= 0x00,
	[DMA_CTRL]		= 0x04,
	[DMA_STATUS]		= 0x08,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x30,
235 236 237
	[DMA_PRIORITY_0]	= 0x34,
	[DMA_PRIORITY_1]	= 0x38,
	[DMA_PRIORITY_2]	= 0x3C,
238 239 240 241 242 243 244
};

static const u8 bcmgenet_dma_regs_v1[] = {
	[DMA_CTRL]		= 0x00,
	[DMA_STATUS]		= 0x04,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x30,
245 246 247
	[DMA_PRIORITY_0]	= 0x34,
	[DMA_PRIORITY_1]	= 0x38,
	[DMA_PRIORITY_2]	= 0x3C,
248 249 250 251 252 253 254 255 256 257 258
};

/* Set at runtime once bcmgenet version is known */
static const u8 *bcmgenet_dma_regs;

static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
{
	return netdev_priv(dev_get_drvdata(dev));
}

static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
259
				      enum dma_reg r)
260 261 262 263 264 265 266 267 268 269 270 271 272
{
	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
					u32 val, enum dma_reg r)
{
	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
273
				      enum dma_reg r)
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
{
	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
					u32 val, enum dma_reg r)
{
	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

/* RDMA/TDMA ring registers and accessors
 * we merge the common fields and just prefix with T/D the registers
 * having different meaning depending on the direction
 */
enum dma_ring_reg {
	TDMA_READ_PTR = 0,
	RDMA_WRITE_PTR = TDMA_READ_PTR,
	TDMA_READ_PTR_HI,
	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
	TDMA_CONS_INDEX,
	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
	TDMA_PROD_INDEX,
	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
	DMA_RING_BUF_SIZE,
	DMA_START_ADDR,
	DMA_START_ADDR_HI,
	DMA_END_ADDR,
	DMA_END_ADDR_HI,
	DMA_MBUF_DONE_THRESH,
	TDMA_FLOW_PERIOD,
	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
	TDMA_WRITE_PTR,
	RDMA_READ_PTR = TDMA_WRITE_PTR,
	TDMA_WRITE_PTR_HI,
	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
};

/* GENET v4 supports 40-bits pointer addressing
 * for obvious reasons the LO and HI word parts
 * are contiguous, but this offsets the other
 * registers.
 */
static const u8 genet_dma_ring_regs_v4[] = {
	[TDMA_READ_PTR]			= 0x00,
	[TDMA_READ_PTR_HI]		= 0x04,
	[TDMA_CONS_INDEX]		= 0x08,
	[TDMA_PROD_INDEX]		= 0x0C,
	[DMA_RING_BUF_SIZE]		= 0x10,
	[DMA_START_ADDR]		= 0x14,
	[DMA_START_ADDR_HI]		= 0x18,
	[DMA_END_ADDR]			= 0x1C,
	[DMA_END_ADDR_HI]		= 0x20,
	[DMA_MBUF_DONE_THRESH]		= 0x24,
	[TDMA_FLOW_PERIOD]		= 0x28,
	[TDMA_WRITE_PTR]		= 0x2C,
	[TDMA_WRITE_PTR_HI]		= 0x30,
};

static const u8 genet_dma_ring_regs_v123[] = {
	[TDMA_READ_PTR]			= 0x00,
	[TDMA_CONS_INDEX]		= 0x04,
	[TDMA_PROD_INDEX]		= 0x08,
	[DMA_RING_BUF_SIZE]		= 0x0C,
	[DMA_START_ADDR]		= 0x10,
	[DMA_END_ADDR]			= 0x14,
	[DMA_MBUF_DONE_THRESH]		= 0x18,
	[TDMA_FLOW_PERIOD]		= 0x1C,
	[TDMA_WRITE_PTR]		= 0x20,
};

/* Set at runtime once GENET version is known */
static const u8 *genet_dma_ring_regs;

static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
350 351
					   unsigned int ring,
					   enum dma_ring_reg r)
352 353 354 355 356 357 358
{
	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
359 360
					     unsigned int ring, u32 val,
					     enum dma_ring_reg r)
361 362 363 364 365 366 367
{
	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
368 369
					   unsigned int ring,
					   enum dma_ring_reg r)
370 371 372 373 374 375 376
{
	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
377 378
					     unsigned int ring, u32 val,
					     enum dma_ring_reg r)
379 380 381 382 383 384 385
{
	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static int bcmgenet_get_settings(struct net_device *dev,
386
				 struct ethtool_cmd *cmd)
387 388 389 390 391 392 393 394 395 396 397 398 399
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	if (!netif_running(dev))
		return -EINVAL;

	if (!priv->phydev)
		return -ENODEV;

	return phy_ethtool_gset(priv->phydev, cmd);
}

static int bcmgenet_set_settings(struct net_device *dev,
400
				 struct ethtool_cmd *cmd)
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	if (!netif_running(dev))
		return -EINVAL;

	if (!priv->phydev)
		return -ENODEV;

	return phy_ethtool_sset(priv->phydev, cmd);
}

static int bcmgenet_set_rx_csum(struct net_device *dev,
				netdev_features_t wanted)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 rbuf_chk_ctrl;
	bool rx_csum_en;

	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);

	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);

	/* enable rx checksumming */
	if (rx_csum_en)
		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
	else
		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
	priv->desc_rxchk_en = rx_csum_en;
430 431 432 433 434 435 436 437 438

	/* If UniMAC forwards CRC, we need to skip over it to get
	 * a valid CHK bit to be set in the per-packet status word
	*/
	if (rx_csum_en && priv->crc_fwd_en)
		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
	else
		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);

	return 0;
}

static int bcmgenet_set_tx_csum(struct net_device *dev,
				netdev_features_t wanted)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	bool desc_64b_en;
	u32 tbuf_ctrl, rbuf_ctrl;

	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);

	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));

	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
	if (desc_64b_en) {
		tbuf_ctrl |= RBUF_64B_EN;
		rbuf_ctrl |= RBUF_64B_EN;
	} else {
		tbuf_ctrl &= ~RBUF_64B_EN;
		rbuf_ctrl &= ~RBUF_64B_EN;
	}
	priv->desc_64b_en = desc_64b_en;

	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);

	return 0;
}

static int bcmgenet_set_features(struct net_device *dev,
473
				 netdev_features_t features)
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
{
	netdev_features_t changed = features ^ dev->features;
	netdev_features_t wanted = dev->wanted_features;
	int ret = 0;

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
		ret = bcmgenet_set_tx_csum(dev, wanted);
	if (changed & (NETIF_F_RXCSUM))
		ret = bcmgenet_set_rx_csum(dev, wanted);

	return ret;
}

static u32 bcmgenet_get_msglevel(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	return priv->msg_enable;
}

static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	priv->msg_enable = level;
}

/* standard ethtool support functions. */
enum bcmgenet_stat_type {
	BCMGENET_STAT_NETDEV = -1,
	BCMGENET_STAT_MIB_RX,
	BCMGENET_STAT_MIB_TX,
	BCMGENET_STAT_RUNT,
	BCMGENET_STAT_MISC,
508
	BCMGENET_STAT_SOFT,
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
};

struct bcmgenet_stats {
	char stat_string[ETH_GSTRING_LEN];
	int stat_sizeof;
	int stat_offset;
	enum bcmgenet_stat_type type;
	/* reg offset from UMAC base for misc counters */
	u16 reg_offset;
};

#define STAT_NETDEV(m) { \
	.stat_string = __stringify(m), \
	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
	.stat_offset = offsetof(struct net_device_stats, m), \
	.type = BCMGENET_STAT_NETDEV, \
}

#define STAT_GENET_MIB(str, m, _type) { \
	.stat_string = str, \
	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
	.stat_offset = offsetof(struct bcmgenet_priv, m), \
	.type = _type, \
}

#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
537
#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

#define STAT_GENET_MISC(str, m, offset) { \
	.stat_string = str, \
	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
	.stat_offset = offsetof(struct bcmgenet_priv, m), \
	.type = BCMGENET_STAT_MISC, \
	.reg_offset = offset, \
}


/* There is a 0xC gap between the end of RX and beginning of TX stats and then
 * between the end of TX stats and the beginning of the RX RUNT
 */
#define BCMGENET_STAT_OFFSET	0xc

/* Hardware counters must be kept in sync because the order/offset
 * is important here (order in structure declaration = order in hardware)
 */
static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
	/* general stats */
	STAT_NETDEV(rx_packets),
	STAT_NETDEV(tx_packets),
	STAT_NETDEV(rx_bytes),
	STAT_NETDEV(tx_bytes),
	STAT_NETDEV(rx_errors),
	STAT_NETDEV(tx_errors),
	STAT_NETDEV(rx_dropped),
	STAT_NETDEV(tx_dropped),
	STAT_NETDEV(multicast),
	/* UniMAC RSV counters */
	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
	/* UniMAC TSV counters */
	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
	/* UniMAC RUNT counters */
	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
	/* Misc UniMAC counters */
	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
			UMAC_RBUF_OVFL_CNT),
	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
637 638 639
	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
640 641 642 643 644
};

#define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)

static void bcmgenet_get_drvinfo(struct net_device *dev,
645
				 struct ethtool_drvinfo *info)
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
{
	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
	strlcpy(info->version, "v2.0", sizeof(info->version));
	info->n_stats = BCMGENET_STATS_LEN;
}

static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
{
	switch (string_set) {
	case ETH_SS_STATS:
		return BCMGENET_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
}

662 663
static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
				 u8 *data)
664 665 666 667 668 669 670
{
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
			memcpy(data + i * ETH_GSTRING_LEN,
671 672
			       bcmgenet_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		}
		break;
	}
}

static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
{
	int i, j = 0;

	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
		const struct bcmgenet_stats *s;
		u8 offset = 0;
		u32 val = 0;
		char *p;

		s = &bcmgenet_gstrings_stats[i];
		switch (s->type) {
		case BCMGENET_STAT_NETDEV:
691
		case BCMGENET_STAT_SOFT:
692 693 694 695 696 697
			continue;
		case BCMGENET_STAT_MIB_RX:
		case BCMGENET_STAT_MIB_TX:
		case BCMGENET_STAT_RUNT:
			if (s->type != BCMGENET_STAT_MIB_RX)
				offset = BCMGENET_STAT_OFFSET;
698 699
			val = bcmgenet_umac_readl(priv,
						  UMAC_MIB_START + j + offset);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
			break;
		case BCMGENET_STAT_MISC:
			val = bcmgenet_umac_readl(priv, s->reg_offset);
			/* clear if overflowed */
			if (val == ~0)
				bcmgenet_umac_writel(priv, 0, s->reg_offset);
			break;
		}

		j += s->stat_sizeof;
		p = (char *)priv + s->stat_offset;
		*(u32 *)p = val;
	}
}

static void bcmgenet_get_ethtool_stats(struct net_device *dev,
716 717
				       struct ethtool_stats *stats,
				       u64 *data)
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int i;

	if (netif_running(dev))
		bcmgenet_update_mib_counters(priv);

	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
		const struct bcmgenet_stats *s;
		char *p;

		s = &bcmgenet_gstrings_stats[i];
		if (s->type == BCMGENET_STAT_NETDEV)
			p = (char *)&dev->stats;
		else
			p = (char *)priv;
		p += s->stat_offset;
		data[i] = *(u32 *)p;
	}
}

F
Florian Fainelli 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
	u32 reg;

	if (enable && !priv->clk_eee_enabled) {
		clk_prepare_enable(priv->clk_eee);
		priv->clk_eee_enabled = true;
	}

	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
	if (enable)
		reg |= EEE_EN;
	else
		reg &= ~EEE_EN;
	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);

	/* Enable EEE and switch to a 27Mhz clock automatically */
	reg = __raw_readl(priv->base + off);
	if (enable)
		reg |= TBUF_EEE_EN | TBUF_PM_EN;
	else
		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
	__raw_writel(reg, priv->base + off);

	/* Do the same for thing for RBUF */
	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
	if (enable)
		reg |= RBUF_EEE_EN | RBUF_PM_EN;
	else
		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);

	if (!enable && priv->clk_eee_enabled) {
		clk_disable_unprepare(priv->clk_eee);
		priv->clk_eee_enabled = false;
	}

	priv->eee.eee_enabled = enable;
	priv->eee.eee_active = enable;
}

static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct ethtool_eee *p = &priv->eee;

	if (GENET_IS_V1(priv))
		return -EOPNOTSUPP;

	e->eee_enabled = p->eee_enabled;
	e->eee_active = p->eee_active;
	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);

	return phy_ethtool_get_eee(priv->phydev, e);
}

static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct ethtool_eee *p = &priv->eee;
	int ret = 0;

	if (GENET_IS_V1(priv))
		return -EOPNOTSUPP;

	p->eee_enabled = e->eee_enabled;

	if (!p->eee_enabled) {
		bcmgenet_eee_enable_set(dev, false);
	} else {
		ret = phy_init_eee(priv->phydev, 0);
		if (ret) {
			netif_err(priv, hw, dev, "EEE initialization failed\n");
			return ret;
		}

		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
		bcmgenet_eee_enable_set(dev, true);
	}

	return phy_ethtool_set_eee(priv->phydev, e);
}

824 825 826 827 828 829 830
static int bcmgenet_nway_reset(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	return genphy_restart_aneg(priv->phydev);
}

831 832 833 834 835 836 837 838 839 840 841
/* standard ethtool support functions. */
static struct ethtool_ops bcmgenet_ethtool_ops = {
	.get_strings		= bcmgenet_get_strings,
	.get_sset_count		= bcmgenet_get_sset_count,
	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
	.get_settings		= bcmgenet_get_settings,
	.set_settings		= bcmgenet_set_settings,
	.get_drvinfo		= bcmgenet_get_drvinfo,
	.get_link		= ethtool_op_get_link,
	.get_msglevel		= bcmgenet_get_msglevel,
	.set_msglevel		= bcmgenet_set_msglevel,
842 843
	.get_wol		= bcmgenet_get_wol,
	.set_wol		= bcmgenet_set_wol,
F
Florian Fainelli 已提交
844 845
	.get_eee		= bcmgenet_get_eee,
	.set_eee		= bcmgenet_set_eee,
846
	.nway_reset		= bcmgenet_nway_reset,
847 848 849
};

/* Power down the unimac, based on mode. */
850
static int bcmgenet_power_down(struct bcmgenet_priv *priv,
851 852
				enum bcmgenet_power_mode mode)
{
853
	int ret = 0;
854 855 856 857
	u32 reg;

	switch (mode) {
	case GENET_POWER_CABLE_SENSE:
858
		phy_detach(priv->phydev);
859 860
		break;

861
	case GENET_POWER_WOL_MAGIC:
862
		ret = bcmgenet_wol_power_down_cfg(priv, mode);
863 864
		break;

865 866 867 868 869 870 871
	case GENET_POWER_PASSIVE:
		/* Power down LED */
		if (priv->hw_params->flags & GENET_HAS_EXT) {
			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
			reg |= (EXT_PWR_DOWN_PHY |
				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
872 873

			bcmgenet_phy_power_set(priv->dev, false);
874 875 876 877 878
		}
		break;
	default:
		break;
	}
879 880

	return 0;
881 882 883
}

static void bcmgenet_power_up(struct bcmgenet_priv *priv,
884
			      enum bcmgenet_power_mode mode)
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
{
	u32 reg;

	if (!(priv->hw_params->flags & GENET_HAS_EXT))
		return;

	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);

	switch (mode) {
	case GENET_POWER_PASSIVE:
		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
				EXT_PWR_DOWN_BIAS);
		/* fallthrough */
	case GENET_POWER_CABLE_SENSE:
		/* enable APD */
		reg |= EXT_PWR_DN_EN_LD;
		break;
902 903 904
	case GENET_POWER_WOL_MAGIC:
		bcmgenet_wol_power_up_cfg(priv, mode);
		return;
905 906 907 908 909
	default:
		break;
	}

	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
910 911
	if (mode == GENET_POWER_PASSIVE)
		bcmgenet_phy_power_set(priv->dev, true);
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
}

/* ioctl handle special commands that are not present in ethtool. */
static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int val = 0;

	if (!netif_running(dev))
		return -EINVAL;

	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		if (!priv->phydev)
			val = -ENODEV;
		else
			val = phy_mii_ioctl(priv->phydev, rq, cmd);
		break;

	default:
		val = -EINVAL;
		break;
	}

	return val;
}

static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
					 struct bcmgenet_tx_ring *ring)
{
	struct enet_cb *tx_cb_ptr;

	tx_cb_ptr = ring->cbs;
	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
948

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	/* Advancing local write pointer */
	if (ring->write_ptr == ring->end_ptr)
		ring->write_ptr = ring->cb_ptr;
	else
		ring->write_ptr++;

	return tx_cb_ptr;
}

/* Simple helper to free a control block's resources */
static void bcmgenet_free_cb(struct enet_cb *cb)
{
	dev_kfree_skb_any(cb->skb);
	cb->skb = NULL;
	dma_unmap_addr_set(cb, dma_addr, 0);
}

966 967
static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
{
968
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
969 970 971 972 973
				 INTRL2_CPU_MASK_SET);
}

static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
{
974
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
				 INTRL2_CPU_MASK_CLEAR);
}

static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
{
	bcmgenet_intrl2_1_writel(ring->priv,
				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
				 INTRL2_CPU_MASK_SET);
}

static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
{
	bcmgenet_intrl2_1_writel(ring->priv,
				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
				 INTRL2_CPU_MASK_CLEAR);
}

992
static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
993
{
994
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
995
				 INTRL2_CPU_MASK_SET);
996 997
}

998
static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
999
{
1000
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1001
				 INTRL2_CPU_MASK_CLEAR);
1002 1003
}

1004
static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1005
{
1006
	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1007
				 INTRL2_CPU_MASK_CLEAR);
1008 1009
}

1010
static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1011
{
1012
	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1013
				 INTRL2_CPU_MASK_SET);
1014 1015 1016
}

/* Unlocked version of the reclaim routine */
1017 1018
static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
					  struct bcmgenet_tx_ring *ring)
1019 1020 1021
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct enet_cb *tx_cb_ptr;
1022
	struct netdev_queue *txq;
1023
	unsigned int pkts_compl = 0;
1024
	unsigned int c_index;
1025 1026
	unsigned int txbds_ready;
	unsigned int txbds_processed = 0;
1027

B
Brian Norris 已提交
1028
	/* Compute how many buffers are transmitted since last xmit call */
1029
	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1030
	c_index &= DMA_C_INDEX_MASK;
1031

1032 1033
	if (likely(c_index >= ring->c_index))
		txbds_ready = c_index - ring->c_index;
1034
	else
1035
		txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1036 1037

	netif_dbg(priv, tx_done, dev,
1038 1039
		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1040 1041

	/* Reclaim transmitted buffers */
1042 1043
	while (txbds_processed < txbds_ready) {
		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1044
		if (tx_cb_ptr->skb) {
1045
			pkts_compl++;
1046
			dev->stats.tx_packets++;
1047 1048
			dev->stats.tx_bytes += tx_cb_ptr->skb->len;
			dma_unmap_single(&dev->dev,
1049 1050 1051
					 dma_unmap_addr(tx_cb_ptr, dma_addr),
					 tx_cb_ptr->skb->len,
					 DMA_TO_DEVICE);
1052 1053 1054 1055 1056
			bcmgenet_free_cb(tx_cb_ptr);
		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
			dev->stats.tx_bytes +=
				dma_unmap_len(tx_cb_ptr, dma_len);
			dma_unmap_page(&dev->dev,
1057 1058 1059
				       dma_unmap_addr(tx_cb_ptr, dma_addr),
				       dma_unmap_len(tx_cb_ptr, dma_len),
				       DMA_TO_DEVICE);
1060 1061 1062
			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
		}

1063 1064 1065 1066 1067
		txbds_processed++;
		if (likely(ring->clean_ptr < ring->end_ptr))
			ring->clean_ptr++;
		else
			ring->clean_ptr = ring->cb_ptr;
1068 1069
	}

1070 1071 1072
	ring->free_bds += txbds_processed;
	ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;

1073
	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1074
		txq = netdev_get_tx_queue(dev, ring->queue);
1075 1076 1077
		if (netif_tx_queue_stopped(txq))
			netif_tx_wake_queue(txq);
	}
1078

1079
	return pkts_compl;
1080 1081
}

1082
static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1083
				struct bcmgenet_tx_ring *ring)
1084
{
1085
	unsigned int released;
1086 1087 1088
	unsigned long flags;

	spin_lock_irqsave(&ring->lock, flags);
1089
	released = __bcmgenet_tx_reclaim(dev, ring);
1090
	spin_unlock_irqrestore(&ring->lock, flags);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

	return released;
}

static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
{
	struct bcmgenet_tx_ring *ring =
		container_of(napi, struct bcmgenet_tx_ring, napi);
	unsigned int work_done = 0;

	work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);

	if (work_done == 0) {
		napi_complete(napi);
1105
		ring->int_enable(ring);
1106 1107 1108 1109 1110

		return 0;
	}

	return budget;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
}

static void bcmgenet_tx_reclaim_all(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int i;

	if (netif_is_multiqueue(dev)) {
		for (i = 0; i < priv->hw_params->tx_queues; i++)
			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
	}

	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
}

/* Transmits a single SKB (either head of a fragment or a single SKB)
 * caller must hold priv->lock
 */
static int bcmgenet_xmit_single(struct net_device *dev,
				struct sk_buff *skb,
				u16 dma_desc_flags,
				struct bcmgenet_tx_ring *ring)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct device *kdev = &priv->pdev->dev;
	struct enet_cb *tx_cb_ptr;
	unsigned int skb_len;
	dma_addr_t mapping;
	u32 length_status;
	int ret;

	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);

	if (unlikely(!tx_cb_ptr))
		BUG();

	tx_cb_ptr->skb = skb;

	skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);

	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
	ret = dma_mapping_error(kdev, mapping);
	if (ret) {
1154
		priv->mib.tx_dma_failed++;
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
		dev_kfree_skb(skb);
		return ret;
	}

	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
	dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
			DMA_TX_APPEND_CRC;

	if (skb->ip_summed == CHECKSUM_PARTIAL)
		length_status |= DMA_TX_DO_CSUM;

	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);

	return 0;
}

B
Brian Norris 已提交
1174
/* Transmit a SKB fragment */
1175
static int bcmgenet_xmit_frag(struct net_device *dev,
1176 1177 1178
			      skb_frag_t *frag,
			      u16 dma_desc_flags,
			      struct bcmgenet_tx_ring *ring)
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct device *kdev = &priv->pdev->dev;
	struct enet_cb *tx_cb_ptr;
	dma_addr_t mapping;
	int ret;

	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);

	if (unlikely(!tx_cb_ptr))
		BUG();
	tx_cb_ptr->skb = NULL;

	mapping = skb_frag_dma_map(kdev, frag, 0,
1193
				   skb_frag_size(frag), DMA_TO_DEVICE);
1194 1195
	ret = dma_mapping_error(kdev, mapping);
	if (ret) {
1196
		priv->mib.tx_dma_failed++;
1197
		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1198
			  __func__);
1199 1200 1201 1202 1203 1204 1205
		return ret;
	}

	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
	dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);

	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1206 1207
		    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1208 1209 1210 1211 1212 1213 1214

	return 0;
}

/* Reallocate the SKB to put enough headroom in front of it and insert
 * the transmit checksum offsets in the descriptors
 */
1215 1216
static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
					    struct sk_buff *skb)
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
{
	struct status_64 *status = NULL;
	struct sk_buff *new_skb;
	u16 offset;
	u8 ip_proto;
	u16 ip_ver;
	u32 tx_csum_info;

	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
		/* If 64 byte status block enabled, must make sure skb has
		 * enough headroom for us to insert 64B status block.
		 */
		new_skb = skb_realloc_headroom(skb, sizeof(*status));
		dev_kfree_skb(skb);
		if (!new_skb) {
			dev->stats.tx_dropped++;
1233
			return NULL;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
		}
		skb = new_skb;
	}

	skb_push(skb, sizeof(*status));
	status = (struct status_64 *)skb->data;

	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
		ip_ver = htons(skb->protocol);
		switch (ip_ver) {
		case ETH_P_IP:
			ip_proto = ip_hdr(skb)->protocol;
			break;
		case ETH_P_IPV6:
			ip_proto = ipv6_hdr(skb)->nexthdr;
			break;
		default:
1251
			return skb;
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		}

		offset = skb_checksum_start_offset(skb) - sizeof(*status);
		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
				(offset + skb->csum_offset);

		/* Set the length valid bit for TCP and UDP and just set
		 * the special UDP flag for IPv4, else just set to 0.
		 */
		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
			tx_csum_info |= STATUS_TX_CSUM_LV;
			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1265
		} else {
1266
			tx_csum_info = 0;
1267
		}
1268 1269 1270 1271

		status->tx_csum_info = tx_csum_info;
	}

1272
	return skb;
1273 1274 1275 1276 1277 1278
}

static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct bcmgenet_tx_ring *ring = NULL;
1279
	struct netdev_queue *txq;
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	unsigned long flags = 0;
	int nr_frags, index;
	u16 dma_desc_flags;
	int ret;
	int i;

	index = skb_get_queue_mapping(skb);
	/* Mapping strategy:
	 * queue_mapping = 0, unclassified, packet xmited through ring16
	 * queue_mapping = 1, goes to ring 0. (highest priority queue
	 * queue_mapping = 2, goes to ring 1.
	 * queue_mapping = 3, goes to ring 2.
	 * queue_mapping = 4, goes to ring 3.
	 */
	if (index == 0)
		index = DESC_INDEX;
	else
		index -= 1;

	nr_frags = skb_shinfo(skb)->nr_frags;
	ring = &priv->tx_rings[index];
1301
	txq = netdev_get_tx_queue(dev, ring->queue);
1302 1303 1304

	spin_lock_irqsave(&ring->lock, flags);
	if (ring->free_bds <= nr_frags + 1) {
1305
		netif_tx_stop_queue(txq);
1306
		netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1307
			   __func__, index, ring->queue);
1308 1309 1310 1311
		ret = NETDEV_TX_BUSY;
		goto out;
	}

1312 1313 1314 1315 1316
	if (skb_padto(skb, ETH_ZLEN)) {
		ret = NETDEV_TX_OK;
		goto out;
	}

1317 1318
	/* set the SKB transmit checksum */
	if (priv->desc_64b_en) {
1319 1320
		skb = bcmgenet_put_tx_csum(dev, skb);
		if (!skb) {
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
			ret = NETDEV_TX_OK;
			goto out;
		}
	}

	dma_desc_flags = DMA_SOP;
	if (nr_frags == 0)
		dma_desc_flags |= DMA_EOP;

	/* Transmit single SKB or head of fragment list */
	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
	if (ret) {
		ret = NETDEV_TX_OK;
		goto out;
	}

	/* xmit fragment */
	for (i = 0; i < nr_frags; i++) {
		ret = bcmgenet_xmit_frag(dev,
1340 1341 1342
					 &skb_shinfo(skb)->frags[i],
					 (i == nr_frags - 1) ? DMA_EOP : 0,
					 ring);
1343 1344 1345 1346 1347 1348
		if (ret) {
			ret = NETDEV_TX_OK;
			goto out;
		}
	}

1349 1350
	skb_tx_timestamp(skb);

1351 1352 1353 1354 1355
	/* Decrement total BD count and advance our write pointer */
	ring->free_bds -= nr_frags + 1;
	ring->prod_index += nr_frags + 1;
	ring->prod_index &= DMA_P_INDEX_MASK;

1356
	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1357
		netif_tx_stop_queue(txq);
1358

1359 1360 1361 1362
	if (!skb->xmit_more || netif_xmit_stopped(txq))
		/* Packets are ready, update producer index */
		bcmgenet_tdma_ring_writel(priv, ring->index,
					  ring->prod_index, TDMA_PROD_INDEX);
1363 1364 1365 1366 1367 1368
out:
	spin_unlock_irqrestore(&ring->lock, flags);

	return ret;
}

1369 1370
static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
					  struct enet_cb *cb)
1371 1372 1373
{
	struct device *kdev = &priv->pdev->dev;
	struct sk_buff *skb;
1374
	struct sk_buff *rx_skb;
1375 1376
	dma_addr_t mapping;

1377
	/* Allocate a new Rx skb */
1378
	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1379 1380 1381 1382 1383 1384
	if (!skb) {
		priv->mib.alloc_rx_buff_failed++;
		netif_err(priv, rx_err, priv->dev,
			  "%s: Rx skb allocation failed\n", __func__);
		return NULL;
	}
1385

1386 1387 1388 1389
	/* DMA-map the new Rx skb */
	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
				 DMA_FROM_DEVICE);
	if (dma_mapping_error(kdev, mapping)) {
1390
		priv->mib.rx_dma_failed++;
1391
		dev_kfree_skb_any(skb);
1392
		netif_err(priv, rx_err, priv->dev,
1393 1394
			  "%s: Rx skb DMA mapping failed\n", __func__);
		return NULL;
1395 1396
	}

1397 1398 1399 1400 1401 1402 1403 1404
	/* Grab the current Rx skb from the ring and DMA-unmap it */
	rx_skb = cb->skb;
	if (likely(rx_skb))
		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
				 priv->rx_buf_len, DMA_FROM_DEVICE);

	/* Put the new Rx skb on the ring */
	cb->skb = skb;
1405
	dma_unmap_addr_set(cb, dma_addr, mapping);
1406
	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1407

1408 1409
	/* Return the current Rx skb to caller */
	return rx_skb;
1410 1411 1412 1413 1414
}

/* bcmgenet_desc_rx - descriptor based rx process.
 * this could be called from bottom half, or from NAPI polling method.
 */
1415
static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1416 1417
				     unsigned int budget)
{
1418
	struct bcmgenet_priv *priv = ring->priv;
1419 1420 1421 1422 1423
	struct net_device *dev = priv->dev;
	struct enet_cb *cb;
	struct sk_buff *skb;
	u32 dma_length_status;
	unsigned long dma_flag;
1424
	int len;
1425 1426
	unsigned int rxpktprocessed = 0, rxpkttoprocess;
	unsigned int p_index;
1427
	unsigned int discards;
1428 1429
	unsigned int chksum_ok = 0;

1430
	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
		   DMA_P_INDEX_DISCARD_CNT_MASK;
	if (discards > ring->old_discards) {
		discards = discards - ring->old_discards;
		dev->stats.rx_missed_errors += discards;
		dev->stats.rx_errors += discards;
		ring->old_discards += discards;

		/* Clear HW register when we reach 75% of maximum 0xFFFF */
		if (ring->old_discards >= 0xC000) {
			ring->old_discards = 0;
1443
			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1444 1445 1446 1447
						  RDMA_PROD_INDEX);
		}
	}

1448 1449
	p_index &= DMA_P_INDEX_MASK;

1450 1451
	if (likely(p_index >= ring->c_index))
		rxpkttoprocess = p_index - ring->c_index;
1452
	else
1453 1454
		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
				 p_index;
1455 1456

	netif_dbg(priv, rx_status, dev,
1457
		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1458 1459

	while ((rxpktprocessed < rxpkttoprocess) &&
1460
	       (rxpktprocessed < budget)) {
1461
		cb = &priv->rx_cbs[ring->read_ptr];
1462
		skb = bcmgenet_rx_refill(priv, cb);
1463 1464 1465

		if (unlikely(!skb)) {
			dev->stats.rx_dropped++;
1466
			goto next;
1467 1468
		}

1469
		if (!priv->desc_64b_en) {
1470
			dma_length_status =
1471
				dmadesc_get_length_status(priv, cb->bd_addr);
1472 1473
		} else {
			struct status_64 *status;
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
			status = (struct status_64 *)skb->data;
			dma_length_status = status->length_status;
		}

		/* DMA flags and length are still valid no matter how
		 * we got the Receive Status Vector (64B RSB or register)
		 */
		dma_flag = dma_length_status & 0xffff;
		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;

		netif_dbg(priv, rx_status, dev,
1486
			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1487 1488
			  __func__, p_index, ring->c_index,
			  ring->read_ptr, dma_length_status);
1489 1490 1491

		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
			netif_err(priv, rx_status, dev,
1492
				  "dropping fragmented packet!\n");
1493
			dev->stats.rx_errors++;
1494 1495
			dev_kfree_skb_any(skb);
			goto next;
1496
		}
1497

1498 1499 1500 1501 1502 1503 1504
		/* report errors */
		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
						DMA_RX_OV |
						DMA_RX_NO |
						DMA_RX_LG |
						DMA_RX_RXER))) {
			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1505
				  (unsigned int)dma_flag);
1506 1507 1508 1509 1510 1511 1512 1513 1514
			if (dma_flag & DMA_RX_CRC_ERROR)
				dev->stats.rx_crc_errors++;
			if (dma_flag & DMA_RX_OV)
				dev->stats.rx_over_errors++;
			if (dma_flag & DMA_RX_NO)
				dev->stats.rx_frame_errors++;
			if (dma_flag & DMA_RX_LG)
				dev->stats.rx_length_errors++;
			dev->stats.rx_errors++;
1515 1516
			dev_kfree_skb_any(skb);
			goto next;
1517 1518 1519
		} /* error packet */

		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1520
			     priv->desc_rxchk_en;
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

		skb_put(skb, len);
		if (priv->desc_64b_en) {
			skb_pull(skb, 64);
			len -= 64;
		}

		if (likely(chksum_ok))
			skb->ip_summed = CHECKSUM_UNNECESSARY;

		/* remove hardware 2bytes added for IP alignment */
		skb_pull(skb, 2);
		len -= 2;

		if (priv->crc_fwd_en) {
			skb_trim(skb, len - ETH_FCS_LEN);
			len -= ETH_FCS_LEN;
		}

		/*Finish setting up the received SKB and send it to the kernel*/
		skb->protocol = eth_type_trans(skb, priv->dev);
		dev->stats.rx_packets++;
		dev->stats.rx_bytes += len;
		if (dma_flag & DMA_RX_MULT)
			dev->stats.multicast++;

		/* Notify kernel */
1548
		napi_gro_receive(&ring->napi, skb);
1549 1550
		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");

1551
next:
1552
		rxpktprocessed++;
1553 1554 1555 1556 1557 1558
		if (likely(ring->read_ptr < ring->end_ptr))
			ring->read_ptr++;
		else
			ring->read_ptr = ring->cb_ptr;

		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1559
		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1560 1561 1562 1563 1564
	}

	return rxpktprocessed;
}

1565 1566 1567
/* Rx NAPI polling method */
static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
{
1568 1569
	struct bcmgenet_rx_ring *ring = container_of(napi,
			struct bcmgenet_rx_ring, napi);
1570 1571
	unsigned int work_done;

1572
	work_done = bcmgenet_desc_rx(ring, budget);
1573 1574 1575

	if (work_done < budget) {
		napi_complete(napi);
1576
		ring->int_enable(ring);
1577 1578 1579 1580 1581
	}

	return work_done;
}

1582
/* Assign skb to RX DMA descriptor. */
1583 1584
static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
				     struct bcmgenet_rx_ring *ring)
1585 1586
{
	struct enet_cb *cb;
1587
	struct sk_buff *skb;
1588 1589
	int i;

1590
	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1591 1592

	/* loop here for each buffer needing assign */
1593 1594
	for (i = 0; i < ring->size; i++) {
		cb = ring->cbs + i;
1595 1596 1597 1598 1599
		skb = bcmgenet_rx_refill(priv, cb);
		if (skb)
			dev_kfree_skb_any(skb);
		if (!cb->skb)
			return -ENOMEM;
1600 1601
	}

1602
	return 0;
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
}

static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
{
	struct enet_cb *cb;
	int i;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = &priv->rx_cbs[i];

		if (dma_unmap_addr(cb, dma_addr)) {
			dma_unmap_single(&priv->dev->dev,
1615 1616
					 dma_unmap_addr(cb, dma_addr),
					 priv->rx_buf_len, DMA_FROM_DEVICE);
1617 1618 1619 1620 1621 1622 1623 1624
			dma_unmap_addr_set(cb, dma_addr, 0);
		}

		if (cb->skb)
			bcmgenet_free_cb(cb);
	}
}

1625
static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
{
	u32 reg;

	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	if (enable)
		reg |= mask;
	else
		reg &= ~mask;
	bcmgenet_umac_writel(priv, reg, UMAC_CMD);

	/* UniMAC stops on a packet boundary, wait for a full-size packet
	 * to be processed
	 */
	if (enable == 0)
		usleep_range(1000, 2000);
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static int reset_umac(struct bcmgenet_priv *priv)
{
	struct device *kdev = &priv->pdev->dev;
	unsigned int timeout = 0;
	u32 reg;

	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
	bcmgenet_rbuf_ctrl_set(priv, 0);
	udelay(10);

	/* disable MAC while updating its registers */
	bcmgenet_umac_writel(priv, 0, UMAC_CMD);

	/* issue soft reset, wait for it to complete */
	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
	while (timeout++ < 1000) {
		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
		if (!(reg & CMD_SW_RESET))
			return 0;

		udelay(1);
	}

	if (timeout == 1000) {
		dev_err(kdev,
B
Brian Norris 已提交
1668
			"timeout waiting for MAC to come out of reset\n");
1669 1670 1671 1672 1673 1674
		return -ETIMEDOUT;
	}

	return 0;
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
{
	/* Mask all interrupts.*/
	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
}

1686 1687 1688 1689
static int init_umac(struct bcmgenet_priv *priv)
{
	struct device *kdev = &priv->pdev->dev;
	int ret;
P
Petri Gynther 已提交
1690 1691 1692 1693
	u32 reg;
	u32 int0_enable = 0;
	u32 int1_enable = 0;
	int i;
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");

	ret = reset_umac(priv);
	if (ret)
		return ret;

	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
	/* clear tx/rx counter */
	bcmgenet_umac_writel(priv,
1704 1705
			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
			     UMAC_MIB_CTRL);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);

	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);

	/* init rx registers, enable ip header optimization */
	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
	reg |= RBUF_ALIGN_2B;
	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);

	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);

1718
	bcmgenet_intr_disable(priv);
1719

P
Petri Gynther 已提交
1720
	/* Enable Rx default queue 16 interrupts */
1721
	int0_enable |= UMAC_IRQ_RXDMA_DONE;
1722

P
Petri Gynther 已提交
1723
	/* Enable Tx default queue 16 interrupts */
1724
	int0_enable |= UMAC_IRQ_TXDMA_DONE;
1725

B
Brian Norris 已提交
1726
	/* Monitor cable plug/unplugged event for internal PHY */
1727
	if (priv->internal_phy) {
1728
		int0_enable |= UMAC_IRQ_LINK_EVENT;
1729
	} else if (priv->ext_phy) {
1730
		int0_enable |= UMAC_IRQ_LINK_EVENT;
1731
	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1732 1733 1734
		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
			int0_enable |= UMAC_IRQ_LINK_EVENT;

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
		reg = bcmgenet_bp_mc_get(priv);
		reg |= BIT(priv->hw_params->bp_in_en_shift);

		/* bp_mask: back pressure mask */
		if (netif_is_multiqueue(priv->dev))
			reg |= priv->hw_params->bp_in_mask;
		else
			reg &= ~priv->hw_params->bp_in_mask;
		bcmgenet_bp_mc_set(priv, reg);
	}

	/* Enable MDIO interrupts on GENET v3+ */
	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
P
Petri Gynther 已提交
1748
		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1749

1750 1751 1752 1753
	/* Enable Rx priority queue interrupts */
	for (i = 0; i < priv->hw_params->rx_queues; ++i)
		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));

P
Petri Gynther 已提交
1754 1755 1756
	/* Enable Tx priority queue interrupts */
	for (i = 0; i < priv->hw_params->tx_queues; ++i)
		int1_enable |= (1 << i);
1757

P
Petri Gynther 已提交
1758 1759
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1760

1761 1762 1763 1764 1765 1766
	/* Enable rx/tx engine.*/
	dev_dbg(kdev, "done init umac\n");

	return 0;
}

1767
/* Initialize a Tx ring along with corresponding hardware registers */
1768 1769
static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
				  unsigned int index, unsigned int size,
1770
				  unsigned int start_ptr, unsigned int end_ptr)
1771 1772 1773 1774 1775 1776
{
	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
	u32 words_per_bd = WORDS_PER_BD(priv);
	u32 flow_period_val = 0;

	spin_lock_init(&ring->lock);
1777
	ring->priv = priv;
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	ring->index = index;
	if (index == DESC_INDEX) {
		ring->queue = 0;
		ring->int_enable = bcmgenet_tx_ring16_int_enable;
		ring->int_disable = bcmgenet_tx_ring16_int_disable;
	} else {
		ring->queue = index + 1;
		ring->int_enable = bcmgenet_tx_ring_int_enable;
		ring->int_disable = bcmgenet_tx_ring_int_disable;
	}
1788
	ring->cbs = priv->tx_cbs + start_ptr;
1789
	ring->size = size;
1790
	ring->clean_ptr = start_ptr;
1791 1792
	ring->c_index = 0;
	ring->free_bds = size;
1793 1794
	ring->write_ptr = start_ptr;
	ring->cb_ptr = start_ptr;
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	ring->end_ptr = end_ptr - 1;
	ring->prod_index = 0;

	/* Set flow period for ring != 16 */
	if (index != DESC_INDEX)
		flow_period_val = ENET_MAX_MTU_SIZE << 16;

	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
	/* Disable rate control for now */
	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1807
				  TDMA_FLOW_PERIOD);
1808
	bcmgenet_tdma_ring_writel(priv, index,
1809 1810
				  ((size << DMA_RING_SIZE_SHIFT) |
				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1811 1812

	/* Set start and end address, read and write pointers */
1813
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1814
				  DMA_START_ADDR);
1815
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1816
				  TDMA_READ_PTR);
1817
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1818
				  TDMA_WRITE_PTR);
1819
	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1820
				  DMA_END_ADDR);
1821 1822 1823 1824
}

/* Initialize a RDMA ring */
static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1825 1826
				 unsigned int index, unsigned int size,
				 unsigned int start_ptr, unsigned int end_ptr)
1827
{
1828
	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1829 1830 1831
	u32 words_per_bd = WORDS_PER_BD(priv);
	int ret;

1832
	ring->priv = priv;
1833
	ring->index = index;
1834 1835 1836 1837 1838 1839 1840
	if (index == DESC_INDEX) {
		ring->int_enable = bcmgenet_rx_ring16_int_enable;
		ring->int_disable = bcmgenet_rx_ring16_int_disable;
	} else {
		ring->int_enable = bcmgenet_rx_ring_int_enable;
		ring->int_disable = bcmgenet_rx_ring_int_disable;
	}
1841 1842 1843 1844 1845 1846
	ring->cbs = priv->rx_cbs + start_ptr;
	ring->size = size;
	ring->c_index = 0;
	ring->read_ptr = start_ptr;
	ring->cb_ptr = start_ptr;
	ring->end_ptr = end_ptr - 1;
1847

1848 1849
	ret = bcmgenet_alloc_rx_buffers(priv, ring);
	if (ret)
1850 1851 1852 1853
		return ret;

	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1854
	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1855
	bcmgenet_rdma_ring_writel(priv, index,
1856 1857
				  ((size << DMA_RING_SIZE_SHIFT) |
				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1858
	bcmgenet_rdma_ring_writel(priv, index,
1859 1860 1861
				  (DMA_FC_THRESH_LO <<
				   DMA_XOFF_THRESHOLD_SHIFT) |
				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1862 1863

	/* Set start and end address, read and write pointers */
1864 1865 1866 1867 1868 1869 1870
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  DMA_START_ADDR);
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  RDMA_READ_PTR);
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  RDMA_WRITE_PTR);
	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1871
				  DMA_END_ADDR);
1872 1873 1874 1875

	return ret;
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
}

static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		napi_enable(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	napi_enable(&ring->napi);
}

static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		napi_disable(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	napi_disable(&ring->napi);
}

static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		netif_napi_del(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	netif_napi_del(&ring->napi);
}

1932
/* Initialize Tx queues
1933
 *
1934
 * Queues 0-3 are priority-based, each one has 32 descriptors,
1935 1936
 * with queue 0 being the highest priority queue.
 *
1937
 * Queue 16 is the default Tx queue with
1938
 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
1939
 *
1940 1941 1942 1943 1944 1945
 * The transmit control block pool is then partitioned as follows:
 * - Tx queue 0 uses tx_cbs[0..31]
 * - Tx queue 1 uses tx_cbs[32..63]
 * - Tx queue 2 uses tx_cbs[64..95]
 * - Tx queue 3 uses tx_cbs[96..127]
 * - Tx queue 16 uses tx_cbs[128..255]
1946
 */
1947
static void bcmgenet_init_tx_queues(struct net_device *dev)
1948 1949
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
1950 1951
	u32 i, dma_enable;
	u32 dma_ctrl, ring_cfg;
1952
	u32 dma_priority[3] = {0, 0, 0};
1953 1954 1955 1956 1957 1958

	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
	dma_enable = dma_ctrl & DMA_EN;
	dma_ctrl &= ~DMA_EN;
	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);

1959 1960 1961
	dma_ctrl = 0;
	ring_cfg = 0;

1962 1963 1964
	/* Enable strict priority arbiter mode */
	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);

1965
	/* Initialize Tx priority queues */
1966
	for (i = 0; i < priv->hw_params->tx_queues; i++) {
1967 1968 1969
		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
				      i * priv->hw_params->tx_bds_per_q,
				      (i + 1) * priv->hw_params->tx_bds_per_q);
1970 1971
		ring_cfg |= (1 << i);
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
1972 1973
		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
1974 1975
	}

1976
	/* Initialize Tx default queue 16 */
1977
	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
1978
			      priv->hw_params->tx_queues *
1979
			      priv->hw_params->tx_bds_per_q,
1980 1981 1982
			      TOTAL_DESC);
	ring_cfg |= (1 << DESC_INDEX);
	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
1983 1984 1985
	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
1986 1987

	/* Set Tx queue priorities */
1988 1989 1990 1991
	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);

1992 1993 1994
	/* Initialize Tx NAPI */
	bcmgenet_init_tx_napi(priv);

1995 1996
	/* Enable Tx queues */
	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
1997

1998
	/* Enable Tx DMA */
1999
	if (dma_enable)
2000 2001
		dma_ctrl |= DMA_EN;
	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2002 2003
}

2004 2005
static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
{
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2016 2017 2018 2019
}

static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
{
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		napi_enable(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	napi_enable(&ring->napi);
2030 2031 2032 2033
}

static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
{
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		napi_disable(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	napi_disable(&ring->napi);
2044 2045 2046 2047
}

static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
{
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		netif_napi_del(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	netif_napi_del(&ring->napi);
2058 2059
}

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
/* Initialize Rx queues
 *
 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
 * used to direct traffic to these queues.
 *
 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
 */
static int bcmgenet_init_rx_queues(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 i;
	u32 dma_enable;
	u32 dma_ctrl;
	u32 ring_cfg;
	int ret;

	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
	dma_enable = dma_ctrl & DMA_EN;
	dma_ctrl &= ~DMA_EN;
	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);

	dma_ctrl = 0;
	ring_cfg = 0;

	/* Initialize Rx priority queues */
	for (i = 0; i < priv->hw_params->rx_queues; i++) {
		ret = bcmgenet_init_rx_ring(priv, i,
					    priv->hw_params->rx_bds_per_q,
					    i * priv->hw_params->rx_bds_per_q,
					    (i + 1) *
					    priv->hw_params->rx_bds_per_q);
		if (ret)
			return ret;

		ring_cfg |= (1 << i);
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	}

	/* Initialize Rx default queue 16 */
	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
				    priv->hw_params->rx_queues *
				    priv->hw_params->rx_bds_per_q,
				    TOTAL_DESC);
	if (ret)
		return ret;

	ring_cfg |= (1 << DESC_INDEX);
	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));

2109 2110 2111
	/* Initialize Rx NAPI */
	bcmgenet_init_rx_napi(priv);

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	/* Enable rings */
	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);

	/* Configure ring as descriptor ring and re-enable DMA if enabled */
	if (dma_enable)
		dma_ctrl |= DMA_EN;
	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);

	return 0;
}

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
{
	int ret = 0;
	int timeout = 0;
	u32 reg;

	/* Disable TDMA to stop add more frames in TX DMA */
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~DMA_EN;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

	/* Check TDMA status register to confirm TDMA is disabled */
	while (timeout++ < DMA_TIMEOUT_VAL) {
		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
		if (reg & DMA_DISABLED)
			break;

		udelay(1);
	}

	if (timeout == DMA_TIMEOUT_VAL) {
		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
		ret = -ETIMEDOUT;
	}

	/* Wait 10ms for packet drain in both tx and rx dma */
	usleep_range(10000, 20000);

	/* Disable RDMA */
	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~DMA_EN;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	timeout = 0;
	/* Check RDMA status register to confirm RDMA is disabled */
	while (timeout++ < DMA_TIMEOUT_VAL) {
		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
		if (reg & DMA_DISABLED)
			break;

		udelay(1);
	}

	if (timeout == DMA_TIMEOUT_VAL) {
		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
		ret = -ETIMEDOUT;
	}

	return ret;
}

2174
static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2175 2176 2177
{
	int i;

2178 2179 2180
	bcmgenet_fini_rx_napi(priv);
	bcmgenet_fini_tx_napi(priv);

2181
	/* disable DMA */
2182
	bcmgenet_dma_teardown(priv);
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

	for (i = 0; i < priv->num_tx_bds; i++) {
		if (priv->tx_cbs[i].skb != NULL) {
			dev_kfree_skb(priv->tx_cbs[i].skb);
			priv->tx_cbs[i].skb = NULL;
		}
	}

	bcmgenet_free_rx_buffers(priv);
	kfree(priv->rx_cbs);
	kfree(priv->tx_cbs);
}

/* init_edma: Initialize DMA control register */
static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
{
	int ret;
2200 2201
	unsigned int i;
	struct enet_cb *cb;
2202

2203
	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2204

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	/* Initialize common Rx ring structures */
	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
	priv->num_rx_bds = TOTAL_DESC;
	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
			       GFP_KERNEL);
	if (!priv->rx_cbs)
		return -ENOMEM;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = priv->rx_cbs + i;
		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
	}

B
Brian Norris 已提交
2218
	/* Initialize common TX ring structures */
2219 2220
	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
	priv->num_tx_bds = TOTAL_DESC;
2221
	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2222
			       GFP_KERNEL);
2223
	if (!priv->tx_cbs) {
2224
		kfree(priv->rx_cbs);
2225 2226 2227
		return -ENOMEM;
	}

2228 2229 2230 2231 2232
	for (i = 0; i < priv->num_tx_bds; i++) {
		cb = priv->tx_cbs + i;
		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
	}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	/* Init rDma */
	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);

	/* Initialize Rx queues */
	ret = bcmgenet_init_rx_queues(priv->dev);
	if (ret) {
		netdev_err(priv->dev, "failed to initialize Rx queues\n");
		bcmgenet_free_rx_buffers(priv);
		kfree(priv->rx_cbs);
		kfree(priv->tx_cbs);
		return ret;
	}

	/* Init tDma */
	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);

2249 2250
	/* Initialize Tx queues */
	bcmgenet_init_tx_queues(priv->dev);
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

	return 0;
}

/* Interrupt bottom half */
static void bcmgenet_irq_task(struct work_struct *work)
{
	struct bcmgenet_priv *priv = container_of(
			work, struct bcmgenet_priv, bcmgenet_irq_work);

	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);

2263 2264 2265 2266 2267 2268 2269
	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
		netif_dbg(priv, wol, priv->dev,
			  "magic packet detected, waking up\n");
		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
	}

2270 2271
	/* Link UP/DOWN event */
	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2272
	    (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) {
2273
		phy_mac_interrupt(priv->phydev,
2274
				  !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2275
		priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2276 2277 2278
	}
}

2279
/* bcmgenet_isr1: handle Rx and Tx priority queues */
2280 2281 2282
static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;
2283 2284
	struct bcmgenet_rx_ring *rx_ring;
	struct bcmgenet_tx_ring *tx_ring;
2285 2286 2287 2288 2289
	unsigned int index;

	/* Save irq status for bottom-half processing. */
	priv->irq1_stat =
		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2290
		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2291

B
Brian Norris 已提交
2292
	/* clear interrupts */
2293 2294 2295
	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);

	netif_dbg(priv, intr, priv->dev,
2296
		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2297

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	/* Check Rx priority queue interrupts */
	for (index = 0; index < priv->hw_params->rx_queues; index++) {
		if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
			continue;

		rx_ring = &priv->rx_rings[index];

		if (likely(napi_schedule_prep(&rx_ring->napi))) {
			rx_ring->int_disable(rx_ring);
			__napi_schedule(&rx_ring->napi);
		}
	}

	/* Check Tx priority queue interrupts */
2312 2313 2314 2315
	for (index = 0; index < priv->hw_params->tx_queues; index++) {
		if (!(priv->irq1_stat & BIT(index)))
			continue;

2316
		tx_ring = &priv->tx_rings[index];
2317

2318 2319 2320
		if (likely(napi_schedule_prep(&tx_ring->napi))) {
			tx_ring->int_disable(tx_ring);
			__napi_schedule(&tx_ring->napi);
2321 2322
		}
	}
2323

2324 2325 2326
	return IRQ_HANDLED;
}

2327
/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2328 2329 2330
static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;
2331 2332
	struct bcmgenet_rx_ring *rx_ring;
	struct bcmgenet_tx_ring *tx_ring;
2333 2334 2335 2336 2337

	/* Save irq status for bottom-half processing. */
	priv->irq0_stat =
		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2338

B
Brian Norris 已提交
2339
	/* clear interrupts */
2340 2341 2342
	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);

	netif_dbg(priv, intr, priv->dev,
2343
		  "IRQ=0x%x\n", priv->irq0_stat);
2344

2345
	if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2346 2347 2348 2349 2350
		rx_ring = &priv->rx_rings[DESC_INDEX];

		if (likely(napi_schedule_prep(&rx_ring->napi))) {
			rx_ring->int_disable(rx_ring);
			__napi_schedule(&rx_ring->napi);
2351 2352
		}
	}
2353

2354
	if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2355 2356 2357 2358 2359
		tx_ring = &priv->tx_rings[DESC_INDEX];

		if (likely(napi_schedule_prep(&tx_ring->napi))) {
			tx_ring->int_disable(tx_ring);
			__napi_schedule(&tx_ring->napi);
2360
		}
2361
	}
2362

2363 2364
	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
				UMAC_IRQ_PHY_DET_F |
2365
				UMAC_IRQ_LINK_EVENT |
2366 2367 2368 2369 2370 2371 2372 2373
				UMAC_IRQ_HFB_SM |
				UMAC_IRQ_HFB_MM |
				UMAC_IRQ_MPD_R)) {
		/* all other interested interrupts handled in bottom half */
		schedule_work(&priv->bcmgenet_irq_work);
	}

	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2374
	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2375 2376 2377 2378 2379 2380 2381
		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
		wake_up(&priv->wq);
	}

	return IRQ_HANDLED;
}

2382 2383 2384 2385 2386 2387 2388 2389 2390
static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;

	pm_wakeup_event(&priv->pdev->dev, 0);

	return IRQ_HANDLED;
}

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
{
	u32 reg;

	reg = bcmgenet_rbuf_ctrl_get(priv);
	reg |= BIT(1);
	bcmgenet_rbuf_ctrl_set(priv, reg);
	udelay(10);

	reg &= ~BIT(1);
	bcmgenet_rbuf_ctrl_set(priv, reg);
	udelay(10);
}

static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2406
				 unsigned char *addr)
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
{
	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | addr[3], UMAC_MAC0);
	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
}

/* Returns a reusable dma control register value */
static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
{
	u32 reg;
	u32 dma_ctrl;

	/* disable DMA */
	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
	udelay(10);
	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);

	return dma_ctrl;
}

static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
{
	u32 reg;

	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg |= dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg |= dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
					   u32 f_index)
{
	u32 offset;
	u32 reg;

	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
	reg = bcmgenet_hfb_reg_readl(priv, offset);
	return !!(reg & (1 << (f_index % 32)));
}

static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
{
	u32 offset;
	u32 reg;

	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
	reg = bcmgenet_hfb_reg_readl(priv, offset);
	reg |= (1 << (f_index % 32));
	bcmgenet_hfb_reg_writel(priv, reg, offset);
}

static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
						     u32 f_index, u32 rx_queue)
{
	u32 offset;
	u32 reg;

	offset = f_index / 8;
	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
	reg &= ~(0xF << (4 * (f_index % 8)));
	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
}

static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
					   u32 f_index, u32 f_length)
{
	u32 offset;
	u32 reg;

	offset = HFB_FLT_LEN_V3PLUS +
		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
		 sizeof(u32);
	reg = bcmgenet_hfb_reg_readl(priv, offset);
	reg &= ~(0xFF << (8 * (f_index % 4)));
	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
	bcmgenet_hfb_reg_writel(priv, reg, offset);
}

static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
{
	u32 f_index;

	for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
		if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
			return f_index;

	return -ENOMEM;
}

/* bcmgenet_hfb_add_filter
 *
 * Add new filter to Hardware Filter Block to match and direct Rx traffic to
 * desired Rx queue.
 *
 * f_data is an array of unsigned 32-bit integers where each 32-bit integer
 * provides filter data for 2 bytes (4 nibbles) of Rx frame:
 *
 * bits 31:20 - unused
 * bit  19    - nibble 0 match enable
 * bit  18    - nibble 1 match enable
 * bit  17    - nibble 2 match enable
 * bit  16    - nibble 3 match enable
 * bits 15:12 - nibble 0 data
 * bits 11:8  - nibble 1 data
 * bits 7:4   - nibble 2 data
 * bits 3:0   - nibble 3 data
 *
 * Example:
 * In order to match:
 * - Ethernet frame type = 0x0800 (IP)
 * - IP version field = 4
 * - IP protocol field = 0x11 (UDP)
 *
 * The following filter is needed:
 * u32 hfb_filter_ipv4_udp[] = {
 *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
 *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
 *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
 * };
 *
 * To add the filter to HFB and direct the traffic to Rx queue 0, call:
 * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
 *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
 */
int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
			    u32 f_length, u32 rx_queue)
{
	int f_index;
	u32 i;

	f_index = bcmgenet_hfb_find_unused_filter(priv);
	if (f_index < 0)
		return -ENOMEM;

	if (f_length > priv->hw_params->hfb_filter_size)
		return -EINVAL;

	for (i = 0; i < f_length; i++)
		bcmgenet_hfb_writel(priv, f_data[i],
			(f_index * priv->hw_params->hfb_filter_size + i) *
			sizeof(u32));

	bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
	bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
	bcmgenet_hfb_enable_filter(priv, f_index);
	bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);

	return 0;
}

/* bcmgenet_hfb_clear
 *
 * Clear Hardware Filter Block and disable all filtering.
 */
static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
{
	u32 i;

	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);

	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
		bcmgenet_rdma_writel(priv, 0x0, i);

	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
		bcmgenet_hfb_reg_writel(priv, 0x0,
					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));

	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
			priv->hw_params->hfb_filter_size; i++)
		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
}

static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
		return;

	bcmgenet_hfb_clear(priv);
}

2603 2604 2605 2606 2607
static void bcmgenet_netif_start(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Start the network engine */
2608
	bcmgenet_enable_rx_napi(priv);
2609
	bcmgenet_enable_tx_napi(priv);
2610 2611 2612 2613 2614 2615 2616 2617

	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);

	netif_tx_start_all_queues(dev);

	phy_start(priv->phydev);
}

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
static int bcmgenet_open(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long dma_ctrl;
	u32 reg;
	int ret;

	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");

	/* Turn on the clock */
2628
	clk_prepare_enable(priv->clk);
2629

2630 2631 2632
	/* If this is an internal GPHY, power it back on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
2633
	if (priv->internal_phy)
2634 2635
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

2636 2637 2638 2639 2640 2641 2642 2643
	/* take MAC out of reset */
	bcmgenet_umac_reset(priv);

	ret = init_umac(priv);
	if (ret)
		goto err_clk_disable;

	/* disable ethernet MAC while updating its registers */
2644
	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2645

2646 2647 2648 2649
	/* Make sure we reflect the value of CRC_CMD_FWD */
	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);

2650 2651
	bcmgenet_set_hw_addr(priv, dev->dev_addr);

2652
	if (priv->internal_phy) {
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
		reg |= EXT_ENERGY_DET_MASK;
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
	}

	/* Disable RX/TX DMA and flush TX queues */
	dma_ctrl = bcmgenet_dma_disable(priv);

	/* Reinitialize TDMA and RDMA and SW housekeeping */
	ret = bcmgenet_init_dma(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize DMA\n");
2665
		goto err_clk_disable;
2666 2667 2668 2669 2670
	}

	/* Always enable ring 16 - descriptor ring */
	bcmgenet_enable_dma(priv, dma_ctrl);

2671 2672 2673
	/* HFB init */
	bcmgenet_hfb_init(priv);

2674
	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2675
			  dev->name, priv);
2676 2677 2678 2679 2680 2681
	if (ret < 0) {
		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
		goto err_fini_dma;
	}

	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2682
			  dev->name, priv);
2683 2684 2685 2686 2687
	if (ret < 0) {
		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
		goto err_irq0;
	}

2688 2689 2690 2691 2692
	ret = bcmgenet_mii_probe(dev);
	if (ret) {
		netdev_err(dev, "failed to connect to PHY\n");
		goto err_irq1;
	}
2693

2694
	bcmgenet_netif_start(dev);
2695 2696 2697

	return 0;

2698 2699
err_irq1:
	free_irq(priv->irq1, priv);
2700
err_irq0:
2701
	free_irq(priv->irq0, priv);
2702 2703 2704
err_fini_dma:
	bcmgenet_fini_dma(priv);
err_clk_disable:
2705
	clk_disable_unprepare(priv->clk);
2706 2707 2708
	return ret;
}

2709 2710 2711 2712 2713 2714 2715
static void bcmgenet_netif_stop(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	netif_tx_stop_all_queues(dev);
	phy_stop(priv->phydev);
	bcmgenet_intr_disable(priv);
2716
	bcmgenet_disable_rx_napi(priv);
2717
	bcmgenet_disable_tx_napi(priv);
2718 2719 2720 2721 2722

	/* Wait for pending work items to complete. Since interrupts are
	 * disabled no new work will be scheduled.
	 */
	cancel_work_sync(&priv->bcmgenet_irq_work);
2723 2724

	priv->old_link = -1;
2725
	priv->old_speed = -1;
2726
	priv->old_duplex = -1;
2727
	priv->old_pause = -1;
2728 2729
}

2730 2731 2732 2733 2734 2735 2736
static int bcmgenet_close(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int ret;

	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");

2737
	bcmgenet_netif_stop(dev);
2738

2739 2740 2741
	/* Really kill the PHY state machine and disconnect from it */
	phy_disconnect(priv->phydev);

2742
	/* Disable MAC receive */
2743
	umac_enable_set(priv, CMD_RX_EN, false);
2744 2745 2746 2747 2748 2749

	ret = bcmgenet_dma_teardown(priv);
	if (ret)
		return ret;

	/* Disable MAC transmit. TX DMA disabled have to done before this */
2750
	umac_enable_set(priv, CMD_TX_EN, false);
2751 2752 2753 2754 2755 2756 2757 2758

	/* tx reclaim */
	bcmgenet_tx_reclaim_all(dev);
	bcmgenet_fini_dma(priv);

	free_irq(priv->irq0, priv);
	free_irq(priv->irq1, priv);

2759
	if (priv->internal_phy)
2760
		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2761

2762
	clk_disable_unprepare(priv->clk);
2763

2764
	return ret;
2765 2766
}

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
{
	struct bcmgenet_priv *priv = ring->priv;
	u32 p_index, c_index, intsts, intmsk;
	struct netdev_queue *txq;
	unsigned int free_bds;
	unsigned long flags;
	bool txq_stopped;

	if (!netif_msg_tx_err(priv))
		return;

	txq = netdev_get_tx_queue(priv->dev, ring->queue);

	spin_lock_irqsave(&ring->lock, flags);
	if (ring->index == DESC_INDEX) {
		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
	} else {
		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
		intmsk = 1 << ring->index;
	}
	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
	txq_stopped = netif_tx_queue_stopped(txq);
	free_bds = ring->free_bds;
	spin_unlock_irqrestore(&ring->lock, flags);

	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
		  "TX queue status: %s, interrupts: %s\n"
		  "(sw)free_bds: %d (sw)size: %d\n"
		  "(sw)p_index: %d (hw)p_index: %d\n"
		  "(sw)c_index: %d (hw)c_index: %d\n"
		  "(sw)clean_p: %d (sw)write_p: %d\n"
		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
		  ring->index, ring->queue,
		  txq_stopped ? "stopped" : "active",
		  intsts & intmsk ? "enabled" : "disabled",
		  free_bds, ring->size,
		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
		  ring->c_index, c_index & DMA_C_INDEX_MASK,
		  ring->clean_ptr, ring->write_ptr,
		  ring->cb_ptr, ring->end_ptr);
}

2812 2813 2814
static void bcmgenet_timeout(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
2815 2816 2817
	u32 int0_enable = 0;
	u32 int1_enable = 0;
	unsigned int q;
2818 2819 2820

	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
	bcmgenet_disable_tx_napi(priv);

	for (q = 0; q < priv->hw_params->tx_queues; q++)
		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);

	bcmgenet_tx_reclaim_all(dev);

	for (q = 0; q < priv->hw_params->tx_queues; q++)
		int1_enable |= (1 << q);

	int0_enable = UMAC_IRQ_TXDMA_DONE;

	/* Re-enable TX interrupts if disabled */
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);

	bcmgenet_enable_tx_napi(priv);

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
	dev->trans_start = jiffies;

	dev->stats.tx_errors++;

	netif_tx_wake_all_queues(dev);
}

#define MAX_MC_COUNT	16

static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
					 unsigned char *addr,
					 int *i,
					 int *mc)
{
	u32 reg;

2856 2857 2858 2859 2860
	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
			     UMAC_MDF_ADDR + (*i * 4));
	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
			     addr[4] << 8 | addr[5],
			     UMAC_MDF_ADDR + ((*i + 1) * 4));
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
	reg |= (1 << (MAX_MC_COUNT - *mc));
	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
	*i += 2;
	(*mc)++;
}

static void bcmgenet_set_rx_mode(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct netdev_hw_addr *ha;
	int i, mc;
	u32 reg;

	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);

B
Brian Norris 已提交
2877
	/* Promiscuous mode */
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	if (dev->flags & IFF_PROMISC) {
		reg |= CMD_PROMISC;
		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
		return;
	} else {
		reg &= ~CMD_PROMISC;
		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
	}

	/* UniMac doesn't support ALLMULTI */
	if (dev->flags & IFF_ALLMULTI) {
		netdev_warn(dev, "ALLMULTI is not supported\n");
		return;
	}

	/* update MDF filter */
	i = 0;
	mc = 0;
	/* Broadcast */
	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
	/* my own address.*/
	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
	/* Unicast list*/
	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
		return;

	if (!netdev_uc_empty(dev))
		netdev_for_each_uc_addr(ha, dev)
			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
	/* Multicast */
	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
		return;

	netdev_for_each_mc_addr(ha, dev)
		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
}

/* Set the hardware MAC address. */
static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
{
	struct sockaddr *addr = p;

	/* Setting the MAC address at the hardware level is not possible
	 * without disabling the UniMAC RX/TX enable bits.
	 */
	if (netif_running(dev))
		return -EBUSY;

	ether_addr_copy(dev->dev_addr, addr->sa_data);

	return 0;
}

static const struct net_device_ops bcmgenet_netdev_ops = {
	.ndo_open		= bcmgenet_open,
	.ndo_stop		= bcmgenet_close,
	.ndo_start_xmit		= bcmgenet_xmit,
	.ndo_tx_timeout		= bcmgenet_timeout,
	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
	.ndo_do_ioctl		= bcmgenet_ioctl,
	.ndo_set_features	= bcmgenet_set_features,
};

/* Array of GENET hardware parameters/characteristics */
static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
	[GENET_V1] = {
		.tx_queues = 0,
2948
		.tx_bds_per_q = 0,
2949
		.rx_queues = 0,
2950
		.rx_bds_per_q = 0,
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
		.bp_in_en_shift = 16,
		.bp_in_mask = 0xffff,
		.hfb_filter_cnt = 16,
		.qtag_mask = 0x1F,
		.hfb_offset = 0x1000,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x3000,
		.words_per_bd = 2,
	},
	[GENET_V2] = {
		.tx_queues = 4,
2962
		.tx_bds_per_q = 32,
2963
		.rx_queues = 0,
2964
		.rx_bds_per_q = 0,
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
		.bp_in_en_shift = 16,
		.bp_in_mask = 0xffff,
		.hfb_filter_cnt = 16,
		.qtag_mask = 0x1F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x1000,
		.hfb_reg_offset = 0x2000,
		.rdma_offset = 0x3000,
		.tdma_offset = 0x4000,
		.words_per_bd = 2,
		.flags = GENET_HAS_EXT,
	},
	[GENET_V3] = {
		.tx_queues = 4,
2979
		.tx_bds_per_q = 32,
2980
		.rx_queues = 0,
2981
		.rx_bds_per_q = 0,
2982 2983 2984
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
2985
		.hfb_filter_size = 128,
2986 2987 2988 2989 2990 2991 2992
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x10000,
		.tdma_offset = 0x11000,
		.words_per_bd = 2,
2993 2994
		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
			 GENET_HAS_MOCA_LINK_DET,
2995 2996 2997
	},
	[GENET_V4] = {
		.tx_queues = 4,
2998
		.tx_bds_per_q = 32,
2999
		.rx_queues = 0,
3000
		.rx_bds_per_q = 0,
3001 3002 3003
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
3004
		.hfb_filter_size = 128,
3005 3006 3007 3008 3009 3010 3011
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x4000,
		.words_per_bd = 3,
3012 3013
		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3014 3015 3016 3017 3018 3019 3020 3021 3022
	},
};

/* Infer hardware parameters from the detected GENET version */
static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
{
	struct bcmgenet_hw_params *params;
	u32 reg;
	u8 major;
3023
	u16 gphy_rev;
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

	if (GENET_IS_V4(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
		genet_dma_ring_regs = genet_dma_ring_regs_v4;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
		priv->version = GENET_V4;
	} else if (GENET_IS_V3(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
		priv->version = GENET_V3;
	} else if (GENET_IS_V2(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
		priv->version = GENET_V2;
	} else if (GENET_IS_V1(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
		priv->version = GENET_V1;
	}

	/* enum genet_version starts at 1 */
	priv->hw_params = &bcmgenet_hw_params[priv->version];
	params = priv->hw_params;

	/* Read GENET HW version */
	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
	major = (reg >> 24 & 0x0f);
	if (major == 5)
		major = 4;
	else if (major == 0)
		major = 1;
	if (major != priv->version) {
		dev_err(&priv->pdev->dev,
			"GENET version mismatch, got: %d, configured for: %d\n",
			major, priv->version);
	}

	/* Print the GENET core version */
	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3066
		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3067

3068 3069 3070 3071
	/* Store the integrated PHY revision for the MDIO probing function
	 * to pass this information to the PHY driver. The PHY driver expects
	 * to find the PHY major revision in bits 15:8 while the GENET register
	 * stores that information in bits 7:0, account for that.
3072 3073 3074 3075 3076 3077 3078
	 *
	 * On newer chips, starting with PHY revision G0, a new scheme is
	 * deployed similar to the Starfighter 2 switch with GPHY major
	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
	 * is reserved as well as special value 0x01ff, we have a small
	 * heuristic to check for the new GPHY revision and re-arrange things
	 * so the GPHY driver is happy.
3079
	 */
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	gphy_rev = reg & 0xffff;

	/* This is the good old scheme, just GPHY major, no minor nor patch */
	if ((gphy_rev & 0xf0) != 0)
		priv->gphy_rev = gphy_rev << 8;

	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
	else if ((gphy_rev & 0xff00) != 0)
		priv->gphy_rev = gphy_rev;

	/* This is reserved so should require special treatment */
	else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
		return;
	}
3095

3096 3097 3098 3099 3100 3101
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (!(params->flags & GENET_HAS_40BITS))
		pr_warn("GENET does not support 40-bits PA\n");
#endif

	pr_debug("Configuration for version: %d\n"
3102
		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3103 3104 3105 3106 3107 3108
		"BP << en: %2d, BP msk: 0x%05x\n"
		"HFB count: %2d, QTAQ msk: 0x%05x\n"
		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
		"RDMA: 0x%05x, TDMA: 0x%05x\n"
		"Words/BD: %d\n",
		priv->version,
3109
		params->tx_queues, params->tx_bds_per_q,
3110
		params->rx_queues, params->rx_bds_per_q,
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
		params->bp_in_en_shift, params->bp_in_mask,
		params->hfb_filter_cnt, params->qtag_mask,
		params->tbuf_offset, params->hfb_offset,
		params->hfb_reg_offset,
		params->rdma_offset, params->tdma_offset,
		params->words_per_bd);
}

static const struct of_device_id bcmgenet_match[] = {
	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
	{ },
};

static int bcmgenet_probe(struct platform_device *pdev)
{
3129
	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3130
	struct device_node *dn = pdev->dev.of_node;
3131
	const struct of_device_id *of_id = NULL;
3132 3133 3134 3135 3136 3137
	struct bcmgenet_priv *priv;
	struct net_device *dev;
	const void *macaddr;
	struct resource *r;
	int err = -EIO;

3138 3139 3140
	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
				 GENET_MAX_MQ_CNT + 1);
3141 3142 3143 3144 3145
	if (!dev) {
		dev_err(&pdev->dev, "can't allocate net device\n");
		return -ENOMEM;
	}

3146 3147 3148 3149 3150
	if (dn) {
		of_id = of_match_node(bcmgenet_match, dn);
		if (!of_id)
			return -EINVAL;
	}
3151 3152 3153 3154

	priv = netdev_priv(dev);
	priv->irq0 = platform_get_irq(pdev, 0);
	priv->irq1 = platform_get_irq(pdev, 1);
3155
	priv->wol_irq = platform_get_irq(pdev, 2);
3156 3157 3158 3159 3160 3161
	if (!priv->irq0 || !priv->irq1) {
		dev_err(&pdev->dev, "can't find IRQs\n");
		err = -EINVAL;
		goto err;
	}

3162 3163 3164 3165 3166 3167 3168 3169 3170
	if (dn) {
		macaddr = of_get_mac_address(dn);
		if (!macaddr) {
			dev_err(&pdev->dev, "can't find MAC address\n");
			err = -EINVAL;
			goto err;
		}
	} else {
		macaddr = pd->mac_address;
3171 3172 3173
	}

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3174 3175 3176
	priv->base = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(priv->base)) {
		err = PTR_ERR(priv->base);
3177 3178 3179 3180 3181 3182 3183
		goto err;
	}

	SET_NETDEV_DEV(dev, &pdev->dev);
	dev_set_drvdata(&pdev->dev, dev);
	ether_addr_copy(dev->dev_addr, macaddr);
	dev->watchdog_timeo = 2 * HZ;
3184
	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3185 3186 3187 3188 3189 3190 3191 3192
	dev->netdev_ops = &bcmgenet_netdev_ops;

	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);

	/* Set hardware features */
	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;

3193 3194 3195 3196 3197 3198 3199
	/* Request the WOL interrupt and advertise suspend if available */
	priv->wol_irq_disabled = true;
	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
			       dev->name, priv);
	if (!err)
		device_set_wakeup_capable(&pdev->dev, 1);

3200 3201 3202 3203 3204 3205 3206 3207 3208
	/* Set the needed headroom to account for any possible
	 * features enabling/disabling at runtime
	 */
	dev->needed_headroom += 64;

	netdev_boot_setup_check(dev);

	priv->dev = dev;
	priv->pdev = pdev;
3209 3210 3211 3212
	if (of_id)
		priv->version = (enum bcmgenet_version)of_id->data;
	else
		priv->version = pd->genet_version;
3213

3214
	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3215
	if (IS_ERR(priv->clk)) {
3216
		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3217 3218
		priv->clk = NULL;
	}
3219

3220
	clk_prepare_enable(priv->clk);
3221

3222 3223 3224 3225 3226 3227 3228 3229 3230
	bcmgenet_set_hw_params(priv);

	/* Mii wait queue */
	init_waitqueue_head(&priv->wq);
	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
	priv->rx_buf_len = RX_BUF_LENGTH;
	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);

	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3231
	if (IS_ERR(priv->clk_wol)) {
3232
		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3233 3234
		priv->clk_wol = NULL;
	}
3235

F
Florian Fainelli 已提交
3236 3237 3238 3239 3240 3241
	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
	if (IS_ERR(priv->clk_eee)) {
		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
		priv->clk_eee = NULL;
	}

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	err = reset_umac(priv);
	if (err)
		goto err_clk_disable;

	err = bcmgenet_mii_init(dev);
	if (err)
		goto err_clk_disable;

	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
	 * just the ring 16 descriptor based TX
	 */
	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);

3256 3257 3258
	/* libphy will determine the link state */
	netif_carrier_off(dev);

3259
	/* Turn off the main clock, WOL clock is handled separately */
3260
	clk_disable_unprepare(priv->clk);
3261

3262 3263 3264 3265
	err = register_netdev(dev);
	if (err)
		goto err;

3266 3267 3268
	return err;

err_clk_disable:
3269
	clk_disable_unprepare(priv->clk);
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
err:
	free_netdev(dev);
	return err;
}

static int bcmgenet_remove(struct platform_device *pdev)
{
	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);

	dev_set_drvdata(&pdev->dev, NULL);
	unregister_netdev(priv->dev);
	bcmgenet_mii_exit(priv->dev);
	free_netdev(priv->dev);

	return 0;
}

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
#ifdef CONFIG_PM_SLEEP
static int bcmgenet_suspend(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int ret;

	if (!netif_running(dev))
		return 0;

	bcmgenet_netif_stop(dev);

3299 3300
	phy_suspend(priv->phydev);

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	netif_device_detach(dev);

	/* Disable MAC receive */
	umac_enable_set(priv, CMD_RX_EN, false);

	ret = bcmgenet_dma_teardown(priv);
	if (ret)
		return ret;

	/* Disable MAC transmit. TX DMA disabled have to done before this */
	umac_enable_set(priv, CMD_TX_EN, false);

	/* tx reclaim */
	bcmgenet_tx_reclaim_all(dev);
	bcmgenet_fini_dma(priv);

3317 3318
	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
	if (device_may_wakeup(d) && priv->wolopts) {
3319
		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3320
		clk_prepare_enable(priv->clk_wol);
3321
	} else if (priv->internal_phy) {
3322
		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3323 3324
	}

3325 3326 3327
	/* Turn off the clocks */
	clk_disable_unprepare(priv->clk);

3328
	return ret;
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
}

static int bcmgenet_resume(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long dma_ctrl;
	int ret;
	u32 reg;

	if (!netif_running(dev))
		return 0;

	/* Turn on the clock */
	ret = clk_prepare_enable(priv->clk);
	if (ret)
		return ret;

3347 3348 3349
	/* If this is an internal GPHY, power it back on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
3350
	if (priv->internal_phy)
3351 3352
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

3353 3354 3355 3356 3357 3358
	bcmgenet_umac_reset(priv);

	ret = init_umac(priv);
	if (ret)
		goto out_clk_disable;

3359 3360 3361 3362 3363 3364
	/* From WOL-enabled suspend, switch to regular clock */
	if (priv->wolopts)
		clk_disable_unprepare(priv->clk_wol);

	phy_init_hw(priv->phydev);
	/* Speed settings must be restored */
3365
	bcmgenet_mii_config(priv->dev);
3366

3367 3368 3369 3370 3371
	/* disable ethernet MAC while updating its registers */
	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);

	bcmgenet_set_hw_addr(priv, dev->dev_addr);

3372
	if (priv->internal_phy) {
3373 3374 3375 3376 3377
		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
		reg |= EXT_ENERGY_DET_MASK;
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
	}

3378 3379 3380
	if (priv->wolopts)
		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	/* Disable RX/TX DMA and flush TX queues */
	dma_ctrl = bcmgenet_dma_disable(priv);

	/* Reinitialize TDMA and RDMA and SW housekeeping */
	ret = bcmgenet_init_dma(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize DMA\n");
		goto out_clk_disable;
	}

	/* Always enable ring 16 - descriptor ring */
	bcmgenet_enable_dma(priv, dma_ctrl);

	netif_device_attach(dev);

3396 3397
	phy_resume(priv->phydev);

F
Florian Fainelli 已提交
3398 3399 3400
	if (priv->eee.eee_enabled)
		bcmgenet_eee_enable_set(dev, true);

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	bcmgenet_netif_start(dev);

	return 0;

out_clk_disable:
	clk_disable_unprepare(priv->clk);
	return ret;
}
#endif /* CONFIG_PM_SLEEP */

static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);

3413 3414 3415 3416 3417 3418
static struct platform_driver bcmgenet_driver = {
	.probe	= bcmgenet_probe,
	.remove	= bcmgenet_remove,
	.driver	= {
		.name	= "bcmgenet",
		.of_match_table = bcmgenet_match,
3419
		.pm	= &bcmgenet_pm_ops,
3420 3421 3422 3423 3424 3425 3426 3427
	},
};
module_platform_driver(bcmgenet_driver);

MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
MODULE_ALIAS("platform:bcmgenet");
MODULE_LICENSE("GPL");