core.c 210.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28
 */

29
#include <linux/kasan.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
34
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
35
#include <linux/highmem.h>
36
#include <linux/mmu_context.h>
L
Linus Torvalds 已提交
37
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
74
#include <linux/context_tracking.h>
75
#include <linux/compiler.h>
76
#include <linux/frame.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95

96
static void update_rq_clock_task(struct rq *rq, s64 delta);
97

98
void update_rq_clock(struct rq *rq)
99
{
100
	s64 delta;
101

102 103 104
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105
		return;
106

107
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 109
	if (delta < 0)
		return;
110 111
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
112 113
}

I
Ingo Molnar 已提交
114 115 116
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
117 118 119 120

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
121
const_debug unsigned int sysctl_sched_features =
122
#include "features.h"
P
Peter Zijlstra 已提交
123 124 125 126
	0;

#undef SCHED_FEAT

127 128 129 130 131 132
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

133 134 135 136 137 138 139 140
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
141
/*
P
Peter Zijlstra 已提交
142
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
143 144
 * default: 1s
 */
P
Peter Zijlstra 已提交
145
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
146

147
__read_mostly int scheduler_running;
148

P
Peter Zijlstra 已提交
149 150 151 152 153
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
154

155 156 157
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
158
/*
159
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
160
 */
A
Alexey Dobriyan 已提交
161
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
162 163
	__acquires(rq->lock)
{
164
	struct rq *rq;
L
Linus Torvalds 已提交
165 166 167

	local_irq_disable();
	rq = this_rq();
168
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
169 170 171 172

	return rq;
}

173 174 175
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
176
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
177 178 179 180 181 182 183 184 185 186
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187
			rf->cookie = lockdep_pin_lock(&rq->lock);
188 189 190 191 192 193 194 195 196 197 198 199
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
200
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
201 202 203 204 205 206
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
207
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
		 * If we observe the new cpu in task_rq_lock, the acquire will
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227
			rf->cookie = lockdep_pin_lock(&rq->lock);
228 229 230
			return rq;
		}
		raw_spin_unlock(&rq->lock);
231
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
232 233 234 235 236 237

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

P
Peter Zijlstra 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

259
	raw_spin_lock(&rq->lock);
260
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
261
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
263 264 265 266

	return HRTIMER_NORESTART;
}

267
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
268

269
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
270 271 272
{
	struct hrtimer *timer = &rq->hrtick_timer;

273
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
274 275
}

276 277 278 279
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
280
{
281
	struct rq *rq = arg;
282

283
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
284
	__hrtick_restart(rq);
285
	rq->hrtick_csd_pending = 0;
286
	raw_spin_unlock(&rq->lock);
287 288
}

289 290 291 292 293
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
294
void hrtick_start(struct rq *rq, u64 delay)
295
{
296
	struct hrtimer *timer = &rq->hrtick_timer;
297 298 299 300 301 302 303 304 305
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
306

307
	hrtimer_set_expires(timer, time);
308 309

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
310
		__hrtick_restart(rq);
311
	} else if (!rq->hrtick_csd_pending) {
312
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 314
		rq->hrtick_csd_pending = 1;
	}
315 316
}

317 318 319 320 321 322
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
323
void hrtick_start(struct rq *rq, u64 delay)
324
{
W
Wanpeng Li 已提交
325 326 327 328 329
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
330 331
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
332 333
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
334

335
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
336
{
337 338
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
339

340 341 342 343
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
344

345 346
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
347
}
A
Andrew Morton 已提交
348
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
349 350 351 352 353 354 355
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
356
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

376
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 378 379 380 381 382 383 384 385 386
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
387 388 389 390 391 392 393 394 395 396

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
397
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398 399 400 401 402 403 404 405 406 407 408 409 410 411

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

412 413 414 415 416 417
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
418 419 420 421 422 423 424

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
425 426
#endif

427 428 429 430 431 432 433 434 435 436
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
437
	 * barrier implied by the wakeup in wake_up_q().
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
473
/*
474
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
475 476 477 478 479
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
480
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
481
{
482
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
483 484
	int cpu;

485
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
486

487
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
488 489
		return;

490
	cpu = cpu_of(rq);
491

492
	if (cpu == smp_processor_id()) {
493
		set_tsk_need_resched(curr);
494
		set_preempt_need_resched();
I
Ingo Molnar 已提交
495
		return;
496
	}
I
Ingo Molnar 已提交
497

498
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
499
		smp_send_reschedule(cpu);
500 501
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
502 503
}

504
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
505 506 507 508
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

509
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
510
		return;
511
	resched_curr(rq);
512
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
513
}
514

515
#ifdef CONFIG_SMP
516
#ifdef CONFIG_NO_HZ_COMMON
517 518 519 520 521 522 523 524
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
525
int get_nohz_timer_target(void)
526
{
527
	int i, cpu = smp_processor_id();
528 529
	struct sched_domain *sd;

530
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531 532
		return cpu;

533
	rcu_read_lock();
534
	for_each_domain(cpu, sd) {
535
		for_each_cpu(i, sched_domain_span(sd)) {
536 537 538 539
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540 541 542 543
				cpu = i;
				goto unlock;
			}
		}
544
	}
545 546 547

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
548 549
unlock:
	rcu_read_unlock();
550 551
	return cpu;
}
552 553 554 555 556 557 558 559 560 561
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
562
static void wake_up_idle_cpu(int cpu)
563 564 565 566 567 568
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

569
	if (set_nr_and_not_polling(rq->idle))
570
		smp_send_reschedule(cpu);
571 572
	else
		trace_sched_wake_idle_without_ipi(cpu);
573 574
}

575
static bool wake_up_full_nohz_cpu(int cpu)
576
{
577 578 579 580 581 582
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
583
	if (tick_nohz_full_cpu(cpu)) {
584 585
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
586
			tick_nohz_full_kick_cpu(cpu);
587 588 589 590 591 592 593 594
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
595
	if (!wake_up_full_nohz_cpu(cpu))
596 597 598
		wake_up_idle_cpu(cpu);
}

599
static inline bool got_nohz_idle_kick(void)
600
{
601
	int cpu = smp_processor_id();
602 603 604 605 606 607 608 609 610 611 612 613 614

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
615 616
}

617
#else /* CONFIG_NO_HZ_COMMON */
618

619
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
620
{
621
	return false;
P
Peter Zijlstra 已提交
622 623
}

624
#endif /* CONFIG_NO_HZ_COMMON */
625

626
#ifdef CONFIG_NO_HZ_FULL
627
bool sched_can_stop_tick(struct rq *rq)
628
{
629 630 631 632 633 634
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

635
	/*
636 637
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
638
	 */
639 640 641 642 643
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
644 645
	}

646 647 648 649 650 651 652 653 654 655 656 657 658 659
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
660
		return false;
661

662
	return true;
663 664
}
#endif /* CONFIG_NO_HZ_FULL */
665

666
void sched_avg_update(struct rq *rq)
667
{
668 669
	s64 period = sched_avg_period();

670
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671 672 673 674 675 676
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
677 678 679
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
680 681
}

682
#endif /* CONFIG_SMP */
683

684 685
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
686
/*
687 688 689 690
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
691
 */
692
int walk_tg_tree_from(struct task_group *from,
693
			     tg_visitor down, tg_visitor up, void *data)
694 695
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
696
	int ret;
697

698 699
	parent = from;

700
down:
P
Peter Zijlstra 已提交
701 702
	ret = (*down)(parent, data);
	if (ret)
703
		goto out;
704 705 706 707 708 709 710
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
711
	ret = (*up)(parent, data);
712 713
	if (ret || parent == from)
		goto out;
714 715 716 717 718

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
719
out:
P
Peter Zijlstra 已提交
720
	return ret;
721 722
}

723
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
724
{
725
	return 0;
P
Peter Zijlstra 已提交
726
}
727 728
#endif

729 730
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
731 732 733
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
734 735 736
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
737
	if (idle_policy(p->policy)) {
738
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
739
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
740 741
		return;
	}
742

743 744
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
745 746
}

747
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
748
{
749
	update_rq_clock(rq);
750 751
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
752
	p->sched_class->enqueue_task(rq, p, flags);
753 754
}

755
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
756
{
757
	update_rq_clock(rq);
758 759
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
760
	p->sched_class->dequeue_task(rq, p, flags);
761 762
}

763
void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 765 766 767
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

768
	enqueue_task(rq, p, flags);
769 770
}

771
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 773 774 775
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

776
	dequeue_task(rq, p, flags);
777 778
}

779
static void update_rq_clock_task(struct rq *rq, s64 delta)
780
{
781 782 783 784 785 786 787 788
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
789
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
811 812
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
813
	if (static_key_false((&paravirt_steal_rq_enabled))) {
814 815 816 817 818 819 820 821 822 823 824
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

825 826
	rq->clock_task += delta;

827
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
828
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
829 830
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
831 832
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

863
/*
I
Ingo Molnar 已提交
864
 * __normal_prio - return the priority that is based on the static prio
865 866 867
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
868
	return p->static_prio;
869 870
}

871 872 873 874 875 876 877
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
878
static inline int normal_prio(struct task_struct *p)
879 880 881
{
	int prio;

882 883 884
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
885 886 887 888 889 890 891 892 893 894 895 896 897
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
898
static int effective_prio(struct task_struct *p)
899 900 901 902 903 904 905 906 907 908 909 910
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
911 912 913
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
914 915
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
916
 */
917
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
918 919 920 921
{
	return cpu_curr(task_cpu(p)) == p;
}

922
/*
923 924 925 926 927
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
928
 */
929 930
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
931
				       int oldprio)
932 933 934
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
935
			prev_class->switched_from(rq, p);
936

P
Peter Zijlstra 已提交
937
		p->sched_class->switched_to(rq, p);
938
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
939
		p->sched_class->prio_changed(rq, p, oldprio);
940 941
}

942
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
943 944 945 946 947 948 949 950 951 952
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
953
				resched_curr(rq);
954 955 956 957 958 959 960 961 962
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
963
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
964
		rq_clock_skip_update(rq, true);
965 966
}

L
Linus Torvalds 已提交
967
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
987
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
988 989 990 991
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
992
	dequeue_task(rq, p, 0);
P
Peter Zijlstra 已提交
993 994 995 996 997 998 999 1000
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
1001
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1021
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1022 1023
{
	if (unlikely(!cpu_active(dest_cpu)))
1024
		return rq;
P
Peter Zijlstra 已提交
1025 1026 1027

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028
		return rq;
P
Peter Zijlstra 已提交
1029

1030 1031 1032
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1043 1044
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1070 1071 1072 1073
	local_irq_enable();
	return 0;
}

1074 1075 1076 1077 1078
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1079 1080 1081 1082 1083
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1084 1085
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1086 1087 1088
	struct rq *rq = task_rq(p);
	bool queued, running;

1089
	lockdep_assert_held(&p->pi_lock);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1100
		dequeue_task(rq, p, DEQUEUE_SAVE);
1101 1102 1103 1104
	}
	if (running)
		put_prev_task(rq, p);

1105
	p->sched_class->set_cpus_allowed(p, new_mask);
1106 1107 1108 1109

	if (running)
		p->sched_class->set_curr_task(rq);
	if (queued)
1110
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1111 1112
}

P
Peter Zijlstra 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1122 1123
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1124
{
1125
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1126
	unsigned int dest_cpu;
1127 1128
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1129 1130
	int ret = 0;

1131
	rq = task_rq_lock(p, &rf);
P
Peter Zijlstra 已提交
1132

1133 1134 1135 1136 1137 1138 1139
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1140 1141 1142 1143 1144 1145 1146 1147 1148
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1149 1150 1151
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1152
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1153 1154 1155 1156 1157 1158
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
		 * !active we want to ensure they are strict per-cpu threads.
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1169 1170 1171 1172
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1173
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1174 1175 1176
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1177
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1178 1179 1180
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1181 1182 1183 1184 1185
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1186
		lockdep_unpin_lock(&rq->lock, rf.cookie);
1187
		rq = move_queued_task(rq, p, dest_cpu);
1188
		lockdep_repin_lock(&rq->lock, rf.cookie);
1189
	}
P
Peter Zijlstra 已提交
1190
out:
1191
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1192 1193 1194

	return ret;
}
1195 1196 1197 1198 1199

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1200 1201
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1202
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1203
{
1204 1205 1206 1207 1208
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1209
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1210
			!p->on_rq);
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1221
#ifdef CONFIG_LOCKDEP
1222 1223 1224 1225 1226
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1227
	 * see task_group().
1228 1229 1230 1231
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1232 1233 1234
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1235 1236
#endif

1237
	trace_sched_migrate_task(p, new_cpu);
1238

1239
	if (task_cpu(p) != new_cpu) {
1240
		if (p->sched_class->migrate_task_rq)
1241
			p->sched_class->migrate_task_rq(p);
1242
		p->se.nr_migrations++;
1243
		perf_event_task_migrate(p);
1244
	}
I
Ingo Molnar 已提交
1245 1246

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1247 1248
}

1249 1250
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1251
	if (task_on_rq_queued(p)) {
1252 1253 1254 1255 1256
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1257
		p->on_rq = TASK_ON_RQ_MIGRATING;
1258 1259 1260
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1261
		p->on_rq = TASK_ON_RQ_QUEUED;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1284 1285 1286
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1287 1288 1289
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1290 1291
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1292
	double_rq_lock(src_rq, dst_rq);
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1313 1314
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1337 1338 1339 1340
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1341 1342 1343 1344 1345 1346 1347 1348 1349
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1350
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351 1352 1353 1354 1355 1356
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1357 1358 1359
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1360 1361 1362 1363 1364 1365 1366
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1367 1368 1369 1370 1371 1372
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1373
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1374
{
1375
	int running, queued;
1376
	struct rq_flags rf;
R
Roland McGrath 已提交
1377
	unsigned long ncsw;
1378
	struct rq *rq;
L
Linus Torvalds 已提交
1379

1380 1381 1382 1383 1384 1385 1386 1387
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1400 1401 1402
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1403
			cpu_relax();
R
Roland McGrath 已提交
1404
		}
1405

1406 1407 1408 1409 1410
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1411
		rq = task_rq_lock(p, &rf);
1412
		trace_sched_wait_task(p);
1413
		running = task_running(rq, p);
1414
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1415
		ncsw = 0;
1416
		if (!match_state || p->state == match_state)
1417
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418
		task_rq_unlock(rq, p, &rf);
1419

R
Roland McGrath 已提交
1420 1421 1422 1423 1424 1425
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1436

1437 1438 1439 1440 1441
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1442
		 * So if it was still runnable (but just not actively
1443 1444 1445
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1446
		if (unlikely(queued)) {
1447 1448 1449 1450
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451 1452
			continue;
		}
1453

1454 1455 1456 1457 1458 1459 1460
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1461 1462

	return ncsw;
L
Linus Torvalds 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1472
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1473 1474 1475 1476 1477
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1478
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1488
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1489

1490
/*
1491
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
 *    cpu isn't yet part of the sched domains, and balancing will not
 *    see it.
 *
 *  - on cpu-down we clear cpu_active() to mask the sched domains and
 *    avoid the load balancer to place new tasks on the to be removed
 *    cpu. Existing tasks will remain running there and will be taken
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1511
 */
1512 1513
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1514 1515
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1516 1517
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1534
	}
1535

1536 1537
	for (;;) {
		/* Any allowed, online CPU? */
1538
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539 1540 1541
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1542 1543 1544
				continue;
			goto out;
		}
1545

1546
		/* No more Mr. Nice Guy. */
1547 1548
		switch (state) {
		case cpuset:
1549 1550 1551 1552 1553 1554
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
			/* fall-through */
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1574
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1575 1576
					task_pid_nr(p), p->comm, cpu);
		}
1577 1578 1579 1580 1581
	}

	return dest_cpu;
}

1582
/*
1583
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1584
 */
1585
static inline
1586
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1587
{
1588 1589
	lockdep_assert_held(&p->pi_lock);

1590
	if (tsk_nr_cpus_allowed(p) > 1)
1591
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1592 1593
	else
		cpu = cpumask_any(tsk_cpus_allowed(p));
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1605
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1606
		     !cpu_online(cpu)))
1607
		cpu = select_fallback_rq(task_cpu(p), p);
1608 1609

	return cpu;
1610
}
1611 1612 1613 1614 1615 1616

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1617 1618 1619 1620 1621 1622 1623 1624 1625

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1626
#endif /* CONFIG_SMP */
1627

P
Peter Zijlstra 已提交
1628
static void
1629
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1630
{
P
Peter Zijlstra 已提交
1631
#ifdef CONFIG_SCHEDSTATS
1632 1633
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1644
		rcu_read_lock();
P
Peter Zijlstra 已提交
1645 1646 1647 1648 1649 1650
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1651
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1652
	}
1653 1654 1655 1656

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1657 1658 1659
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1660
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1661 1662

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1663
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1664 1665 1666 1667

#endif /* CONFIG_SCHEDSTATS */
}

1668
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1669
{
T
Tejun Heo 已提交
1670
	activate_task(rq, p, en_flags);
1671
	p->on_rq = TASK_ON_RQ_QUEUED;
1672 1673 1674 1675

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1676 1677
}

1678 1679 1680
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1681 1682
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
			   struct pin_cookie cookie)
T
Tejun Heo 已提交
1683 1684 1685
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1686 1687
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1688
#ifdef CONFIG_SMP
1689 1690
	if (p->sched_class->task_woken) {
		/*
1691 1692
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1693
		 */
1694
		lockdep_unpin_lock(&rq->lock, cookie);
T
Tejun Heo 已提交
1695
		p->sched_class->task_woken(rq, p);
1696
		lockdep_repin_lock(&rq->lock, cookie);
1697
	}
T
Tejun Heo 已提交
1698

1699
	if (rq->idle_stamp) {
1700
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1701
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1702

1703 1704 1705
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1706
			rq->avg_idle = max;
1707

T
Tejun Heo 已提交
1708 1709 1710 1711 1712
		rq->idle_stamp = 0;
	}
#endif
}

1713
static void
1714 1715
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
		 struct pin_cookie cookie)
1716
{
1717 1718
	int en_flags = ENQUEUE_WAKEUP;

1719 1720
	lockdep_assert_held(&rq->lock);

1721 1722 1723
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1724 1725

	if (wake_flags & WF_MIGRATED)
1726
		en_flags |= ENQUEUE_MIGRATED;
1727 1728
#endif

1729
	ttwu_activate(rq, p, en_flags);
1730
	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1741
	struct rq_flags rf;
1742 1743 1744
	struct rq *rq;
	int ret = 0;

1745
	rq = __task_rq_lock(p, &rf);
1746
	if (task_on_rq_queued(p)) {
1747 1748
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1749
		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1750 1751
		ret = 1;
	}
1752
	__task_rq_unlock(rq, &rf);
1753 1754 1755 1756

	return ret;
}

1757
#ifdef CONFIG_SMP
1758
void sched_ttwu_pending(void)
1759 1760
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1761
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1762
	struct pin_cookie cookie;
P
Peter Zijlstra 已提交
1763
	struct task_struct *p;
1764
	unsigned long flags;
1765

1766 1767 1768 1769
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1770
	cookie = lockdep_pin_lock(&rq->lock);
1771

P
Peter Zijlstra 已提交
1772
	while (llist) {
P
Peter Zijlstra 已提交
1773 1774
		int wake_flags = 0;

P
Peter Zijlstra 已提交
1775 1776
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
P
Peter Zijlstra 已提交
1777 1778 1779 1780 1781

		if (p->sched_remote_wakeup)
			wake_flags = WF_MIGRATED;

		ttwu_do_activate(rq, p, wake_flags, cookie);
1782 1783
	}

1784
	lockdep_unpin_lock(&rq->lock, cookie);
1785
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1786 1787 1788 1789
}

void scheduler_ipi(void)
{
1790 1791 1792 1793 1794
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1795
	preempt_fold_need_resched();
1796

1797
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1814
	sched_ttwu_pending();
1815 1816 1817 1818

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1819
	if (unlikely(got_nohz_idle_kick())) {
1820
		this_rq()->idle_balance = 1;
1821
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1822
	}
1823
	irq_exit();
1824 1825
}

P
Peter Zijlstra 已提交
1826
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1827
{
1828 1829
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1830 1831
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1832 1833 1834 1835 1836 1837
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1838
}
1839

1840 1841 1842 1843 1844
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1845 1846 1847 1848
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1859 1860 1861

out:
	rcu_read_unlock();
1862 1863
}

1864
bool cpus_share_cache(int this_cpu, int that_cpu)
1865 1866 1867
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1868
#endif /* CONFIG_SMP */
1869

1870
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1871 1872
{
	struct rq *rq = cpu_rq(cpu);
1873
	struct pin_cookie cookie;
1874

1875
#if defined(CONFIG_SMP)
1876
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1877
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
P
Peter Zijlstra 已提交
1878
		ttwu_queue_remote(p, cpu, wake_flags);
1879 1880 1881 1882
		return;
	}
#endif

1883
	raw_spin_lock(&rq->lock);
1884
	cookie = lockdep_pin_lock(&rq->lock);
1885
	ttwu_do_activate(rq, p, wake_flags, cookie);
1886
	lockdep_unpin_lock(&rq->lock, cookie);
1887
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1888 1889
}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
 * execution on its new cpu [c1].
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
 * Note: the cpu doing B need not be c0 or c1
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1940
 *   2) smp_cond_load_acquire(!X->on_cpu)
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1951
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1977
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1978 1979 1980
 *
 */

T
Tejun Heo 已提交
1981
/**
L
Linus Torvalds 已提交
1982
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1983
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1984
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1985
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1986 1987 1988 1989 1990 1991 1992
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1993
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1994
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1995
 */
1996 1997
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1998 1999
{
	unsigned long flags;
2000
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2001

2002 2003 2004 2005 2006 2007 2008
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
2009
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2010
	if (!(p->state & state))
L
Linus Torvalds 已提交
2011 2012
		goto out;

2013 2014
	trace_sched_waking(p);

2015
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2016 2017
	cpu = task_cpu(p);

2018 2019
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2020 2021

#ifdef CONFIG_SMP
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2041
	/*
2042 2043
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
2044 2045 2046 2047 2048
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2049
	 */
2050
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2051

2052
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2053
	p->state = TASK_WAKING;
2054

2055
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2056 2057
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2058
		set_task_cpu(p, cpu);
2059
	}
L
Linus Torvalds 已提交
2060 2061
#endif /* CONFIG_SMP */

2062
	ttwu_queue(p, cpu, wake_flags);
2063
stat:
2064 2065
	if (schedstat_enabled())
		ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2066
out:
2067
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2068 2069 2070 2071

	return success;
}

T
Tejun Heo 已提交
2072 2073 2074 2075
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2076
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2077
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2078
 * the current task.
T
Tejun Heo 已提交
2079
 */
2080
static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
T
Tejun Heo 已提交
2081 2082 2083
{
	struct rq *rq = task_rq(p);

2084 2085 2086 2087
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2088 2089
	lockdep_assert_held(&rq->lock);

2090
	if (!raw_spin_trylock(&p->pi_lock)) {
2091 2092 2093 2094 2095 2096
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2097
		lockdep_unpin_lock(&rq->lock, cookie);
2098 2099 2100
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2101
		lockdep_repin_lock(&rq->lock, cookie);
2102 2103
	}

T
Tejun Heo 已提交
2104
	if (!(p->state & TASK_NORMAL))
2105
		goto out;
T
Tejun Heo 已提交
2106

2107 2108
	trace_sched_waking(p);

2109
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
2110 2111
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2112
	ttwu_do_wakeup(rq, p, 0, cookie);
2113 2114
	if (schedstat_enabled())
		ttwu_stat(p, smp_processor_id(), 0);
2115 2116
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2117 2118
}

2119 2120 2121 2122 2123
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2124 2125 2126
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2127 2128 2129 2130
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2131
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2132
{
2133
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2134 2135 2136
}
EXPORT_SYMBOL(wake_up_process);

2137
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2138 2139 2140 2141
{
	return try_to_wake_up(p, state, 0);
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2154 2155 2156

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
2157 2158
}

L
Linus Torvalds 已提交
2159 2160 2161
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2162 2163 2164
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2165
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2166
{
P
Peter Zijlstra 已提交
2167 2168 2169
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2170 2171
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2172
	p->se.prev_sum_exec_runtime	= 0;
2173
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2174
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2175
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2176

2177 2178 2179 2180
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2181
#ifdef CONFIG_SCHEDSTATS
2182
	/* Even if schedstat is disabled, there should not be garbage */
2183
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2184
#endif
N
Nick Piggin 已提交
2185

2186
	RB_CLEAR_NODE(&p->dl.rb_node);
2187
	init_dl_task_timer(&p->dl);
2188
	__dl_clear_params(p);
2189

P
Peter Zijlstra 已提交
2190
	INIT_LIST_HEAD(&p->rt.run_list);
2191 2192 2193 2194
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2195

2196 2197 2198
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2199 2200 2201

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2202
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2203 2204 2205
		p->mm->numa_scan_seq = 0;
	}

2206 2207 2208 2209 2210
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2211 2212
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2213
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2214
	p->numa_work.next = &p->numa_work;
2215
	p->numa_faults = NULL;
2216 2217
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2218 2219

	p->numa_group = NULL;
2220
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2221 2222
}

2223 2224
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2225
#ifdef CONFIG_NUMA_BALANCING
2226

2227 2228 2229
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2230
		static_branch_enable(&sched_numa_balancing);
2231
	else
2232
		static_branch_disable(&sched_numa_balancing);
2233
}
2234 2235 2236 2237 2238 2239 2240

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2241
	int state = static_branch_likely(&sched_numa_balancing);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2257

2258 2259
#ifdef CONFIG_SCHEDSTATS

2260
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2261
static bool __initdata __sched_schedstats = false;
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2285 2286 2287 2288 2289
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2290
	if (!strcmp(str, "enable")) {
2291
		__sched_schedstats = true;
2292 2293
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2294
		__sched_schedstats = false;
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2305 2306 2307 2308 2309
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2330 2331 2332 2333
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2334 2335 2336 2337

/*
 * fork()/clone()-time setup:
 */
2338
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2339
{
2340
	unsigned long flags;
I
Ingo Molnar 已提交
2341 2342
	int cpu = get_cpu();

2343
	__sched_fork(clone_flags, p);
2344
	/*
2345
	 * We mark the process as running here. This guarantees that
2346 2347 2348
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2349
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2350

2351 2352 2353 2354 2355
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2356 2357 2358 2359
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2360
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2361
			p->policy = SCHED_NORMAL;
2362
			p->static_prio = NICE_TO_PRIO(0);
2363 2364 2365 2366 2367 2368
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2369

2370 2371 2372 2373 2374 2375
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2376

2377 2378 2379 2380 2381 2382
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2383
		p->sched_class = &fair_sched_class;
2384
	}
2385

P
Peter Zijlstra 已提交
2386 2387 2388
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2389 2390 2391 2392 2393 2394 2395
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2396
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2397
	set_task_cpu(p, cpu);
2398
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2399

2400
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2401
	if (likely(sched_info_on()))
2402
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2403
#endif
P
Peter Zijlstra 已提交
2404 2405
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2406
#endif
2407
	init_task_preempt_count(p);
2408
#ifdef CONFIG_SMP
2409
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2410
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2411
#endif
2412

N
Nick Piggin 已提交
2413
	put_cpu();
2414
	return 0;
L
Linus Torvalds 已提交
2415 2416
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2436 2437
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2438 2439 2440
	return &cpu_rq(i)->rd->dl_bw;
}

2441
static inline int dl_bw_cpus(int i)
2442
{
2443 2444 2445
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2446 2447
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2448 2449 2450 2451
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2452 2453 2454 2455 2456 2457 2458
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2459
static inline int dl_bw_cpus(int i)
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2472 2473 2474
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2475 2476 2477 2478 2479 2480
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2481
	u64 period = attr->sched_period ?: attr->sched_deadline;
2482 2483
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2484
	int cpus, err = -1;
2485

2486 2487
	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2488 2489 2490 2491 2492 2493 2494 2495
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2496
	cpus = dl_bw_cpus(task_cpu(p));
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2517 2518 2519 2520 2521 2522 2523
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2524
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2525
{
2526
	struct rq_flags rf;
I
Ingo Molnar 已提交
2527
	struct rq *rq;
2528

2529 2530
	/* Initialize new task's runnable average */
	init_entity_runnable_average(&p->se);
2531
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2532 2533 2534 2535 2536 2537
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2538
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2539
#endif
2540
	rq = __task_rq_lock(p, &rf);
2541
	post_init_entity_util_avg(&p->se);
2542

P
Peter Zijlstra 已提交
2543
	activate_task(rq, p, 0);
2544
	p->on_rq = TASK_ON_RQ_QUEUED;
2545
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2546
	check_preempt_curr(rq, p, WF_FORK);
2547
#ifdef CONFIG_SMP
2548 2549 2550 2551 2552
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2553
		lockdep_unpin_lock(&rq->lock, rf.cookie);
2554
		p->sched_class->task_woken(rq, p);
2555
		lockdep_repin_lock(&rq->lock, rf.cookie);
2556
	}
2557
#endif
2558
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2559 2560
}

2561 2562
#ifdef CONFIG_PREEMPT_NOTIFIERS

2563 2564
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2577
/**
2578
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2579
 * @notifier: notifier struct to register
2580 2581 2582
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2583 2584 2585
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2586 2587 2588 2589 2590 2591
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2592
 * @notifier: notifier struct to unregister
2593
 *
2594
 * This is *not* safe to call from within a preemption notifier.
2595 2596 2597 2598 2599 2600 2601
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2602
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2603 2604 2605
{
	struct preempt_notifier *notifier;

2606
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2607 2608 2609
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2610 2611 2612 2613 2614 2615
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2616
static void
2617 2618
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2619 2620 2621
{
	struct preempt_notifier *notifier;

2622
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2623 2624 2625
		notifier->ops->sched_out(notifier, next);
}

2626 2627 2628 2629 2630 2631 2632 2633
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2634
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2635

2636
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2637 2638 2639
{
}

2640
static inline void
2641 2642 2643 2644 2645
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2646
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2647

2648 2649 2650
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2651
 * @prev: the current task that is being switched out
2652 2653 2654 2655 2656 2657 2658 2659 2660
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2661 2662 2663
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2664
{
2665
	sched_info_switch(rq, prev, next);
2666
	perf_event_task_sched_out(prev, next);
2667
	fire_sched_out_preempt_notifiers(prev, next);
2668 2669 2670 2671
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2672 2673 2674 2675
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2676 2677 2678 2679
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2680 2681
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2682
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2683 2684
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2685 2686 2687 2688 2689
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2690
 */
2691
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2692 2693
	__releases(rq->lock)
{
2694
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2695
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2696
	long prev_state;
L
Linus Torvalds 已提交
2697

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2709 2710 2711 2712
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2713

L
Linus Torvalds 已提交
2714 2715 2716 2717
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2718
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2719 2720
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2721 2722 2723 2724 2725
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2726
	 */
O
Oleg Nesterov 已提交
2727
	prev_state = prev->state;
2728
	vtime_task_switch(prev);
2729
	perf_event_task_sched_in(prev, current);
2730
	finish_lock_switch(rq, prev);
2731
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2732

2733
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2734 2735
	if (mm)
		mmdrop(mm);
2736
	if (unlikely(prev_state == TASK_DEAD)) {
2737 2738 2739
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2740 2741 2742
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2743
		 */
2744
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2745
		put_task_struct(prev);
2746
	}
2747

2748
	tick_nohz_task_switch();
2749
	return rq;
L
Linus Torvalds 已提交
2750 2751
}

2752 2753 2754
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2755
static void __balance_callback(struct rq *rq)
2756
{
2757 2758 2759
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2760

2761 2762 2763 2764 2765 2766 2767 2768
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2769

2770
		func(rq);
2771
	}
2772 2773 2774 2775 2776 2777 2778
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2779 2780 2781
}

#else
2782

2783
static inline void balance_callback(struct rq *rq)
2784
{
L
Linus Torvalds 已提交
2785 2786
}

2787 2788
#endif

L
Linus Torvalds 已提交
2789 2790 2791 2792
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2793
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2794 2795
	__releases(rq->lock)
{
2796
	struct rq *rq;
2797

2798 2799 2800 2801 2802 2803 2804 2805 2806
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2807
	rq = finish_task_switch(prev);
2808
	balance_callback(rq);
2809
	preempt_enable();
2810

L
Linus Torvalds 已提交
2811
	if (current->set_child_tid)
2812
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2813 2814 2815
}

/*
2816
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2817
 */
2818
static __always_inline struct rq *
2819
context_switch(struct rq *rq, struct task_struct *prev,
2820
	       struct task_struct *next, struct pin_cookie cookie)
L
Linus Torvalds 已提交
2821
{
I
Ingo Molnar 已提交
2822
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2823

2824
	prepare_task_switch(rq, prev, next);
2825

I
Ingo Molnar 已提交
2826 2827
	mm = next->mm;
	oldmm = prev->active_mm;
2828 2829 2830 2831 2832
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2833
	arch_start_context_switch(prev);
2834

2835
	if (!mm) {
L
Linus Torvalds 已提交
2836 2837 2838 2839
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
2840
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2841

2842
	if (!prev->mm) {
L
Linus Torvalds 已提交
2843 2844 2845
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2846 2847 2848 2849 2850 2851
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2852
	lockdep_unpin_lock(&rq->lock, cookie);
2853
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2854 2855 2856

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2857
	barrier();
2858 2859

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2860 2861 2862
}

/*
2863
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2864 2865
 *
 * externally visible scheduler statistics: current number of runnable
2866
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2876
}
L
Linus Torvalds 已提交
2877

2878 2879
/*
 * Check if only the current task is running on the cpu.
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2890 2891 2892
 */
bool single_task_running(void)
{
2893
	return raw_rq()->nr_running == 1;
2894 2895 2896
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2897
unsigned long long nr_context_switches(void)
2898
{
2899 2900
	int i;
	unsigned long long sum = 0;
2901

2902
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2903
		sum += cpu_rq(i)->nr_switches;
2904

L
Linus Torvalds 已提交
2905 2906
	return sum;
}
2907

L
Linus Torvalds 已提交
2908 2909 2910
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2911

2912
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2913
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2914

L
Linus Torvalds 已提交
2915 2916
	return sum;
}
2917

2918
unsigned long nr_iowait_cpu(int cpu)
2919
{
2920
	struct rq *this = cpu_rq(cpu);
2921 2922
	return atomic_read(&this->nr_iowait);
}
2923

2924 2925
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2926 2927 2928
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2929 2930
}

I
Ingo Molnar 已提交
2931
#ifdef CONFIG_SMP
2932

2933
/*
P
Peter Zijlstra 已提交
2934 2935
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2936
 */
P
Peter Zijlstra 已提交
2937
void sched_exec(void)
2938
{
P
Peter Zijlstra 已提交
2939
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2940
	unsigned long flags;
2941
	int dest_cpu;
2942

2943
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2944
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2945 2946
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2947

2948
	if (likely(cpu_active(dest_cpu))) {
2949
		struct migration_arg arg = { p, dest_cpu };
2950

2951 2952
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2953 2954
		return;
	}
2955
unlock:
2956
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2957
}
I
Ingo Molnar 已提交
2958

L
Linus Torvalds 已提交
2959 2960 2961
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2962
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2963 2964

EXPORT_PER_CPU_SYMBOL(kstat);
2965
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2966

2967 2968 2969 2970 2971 2972 2973
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
2974
	struct rq_flags rf;
2975
	struct rq *rq;
2976
	u64 ns;
2977

2978 2979 2980 2981 2982 2983 2984 2985 2986
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2987 2988
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2989
	 */
2990
	if (!p->on_cpu || !task_on_rq_queued(p))
2991 2992 2993
		return p->se.sum_exec_runtime;
#endif

2994
	rq = task_rq_lock(p, &rf);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3005
	task_rq_unlock(rq, p, &rf);
3006 3007 3008

	return ns;
}
3009

3010 3011 3012 3013 3014 3015 3016 3017
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3018
	struct task_struct *curr = rq->curr;
3019 3020

	sched_clock_tick();
I
Ingo Molnar 已提交
3021

3022
	raw_spin_lock(&rq->lock);
3023
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3024
	curr->sched_class->task_tick(rq, curr, 0);
3025
	cpu_load_update_active(rq);
3026
	calc_global_load_tick(rq);
3027
	raw_spin_unlock(&rq->lock);
3028

3029
	perf_event_task_tick();
3030

3031
#ifdef CONFIG_SMP
3032
	rq->idle_balance = idle_cpu(cpu);
3033
	trigger_load_balance(rq);
3034
#endif
3035
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3036 3037
}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3049 3050
 *
 * Return: Maximum deferment in nanoseconds.
3051 3052 3053 3054
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3055
	unsigned long next, now = READ_ONCE(jiffies);
3056 3057 3058 3059 3060 3061

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3062
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3063
}
3064
#endif
L
Linus Torvalds 已提交
3065

3066 3067
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3082

3083
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3084
{
3085
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3086 3087 3088
	/*
	 * Underflow?
	 */
3089 3090
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3091
#endif
3092
	__preempt_count_add(val);
3093
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3094 3095 3096
	/*
	 * Spinlock count overflowing soon?
	 */
3097 3098
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3099
#endif
3100
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3101
}
3102
EXPORT_SYMBOL(preempt_count_add);
3103
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3104

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3115
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3116
{
3117
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3118 3119 3120
	/*
	 * Underflow?
	 */
3121
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3122
		return;
L
Linus Torvalds 已提交
3123 3124 3125
	/*
	 * Is the spinlock portion underflowing?
	 */
3126 3127 3128
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3129
#endif
3130

3131
	preempt_latency_stop(val);
3132
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3133
}
3134
EXPORT_SYMBOL(preempt_count_sub);
3135
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3136

3137 3138 3139
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3140 3141 3142
#endif

/*
I
Ingo Molnar 已提交
3143
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3144
 */
I
Ingo Molnar 已提交
3145
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3146
{
3147 3148 3149
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3150 3151
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3152

I
Ingo Molnar 已提交
3153
	debug_show_held_locks(prev);
3154
	print_modules();
I
Ingo Molnar 已提交
3155 3156
	if (irqs_disabled())
		print_irqtrace_events(prev);
3157 3158 3159 3160 3161 3162 3163
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
3164
	dump_stack();
3165
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3166
}
L
Linus Torvalds 已提交
3167

I
Ingo Molnar 已提交
3168 3169 3170 3171 3172
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3173
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3174 3175
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3176
#endif
3177

3178
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3179
		__schedule_bug(prev);
3180 3181
		preempt_count_set(PREEMPT_DISABLED);
	}
3182
	rcu_sleep_check();
I
Ingo Molnar 已提交
3183

L
Linus Torvalds 已提交
3184 3185
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3186
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3187 3188 3189 3190 3191 3192
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3193
pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
I
Ingo Molnar 已提交
3194
{
3195
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
3196
	struct task_struct *p;
L
Linus Torvalds 已提交
3197 3198

	/*
I
Ingo Molnar 已提交
3199 3200
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3201
	 */
3202
	if (likely(prev->sched_class == class &&
3203
		   rq->nr_running == rq->cfs.h_nr_running)) {
3204
		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3205 3206 3207 3208 3209
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
3210
			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3211 3212

		return p;
L
Linus Torvalds 已提交
3213 3214
	}

3215
again:
3216
	for_each_class(class) {
3217
		p = class->pick_next_task(rq, prev, cookie);
3218 3219 3220
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3221
			return p;
3222
		}
I
Ingo Molnar 已提交
3223
	}
3224 3225

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3226
}
L
Linus Torvalds 已提交
3227

I
Ingo Molnar 已提交
3228
/*
3229
 * __schedule() is the main scheduler function.
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3264
 *
3265
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3266
 */
3267
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3268 3269
{
	struct task_struct *prev, *next;
3270
	unsigned long *switch_count;
3271
	struct pin_cookie cookie;
I
Ingo Molnar 已提交
3272
	struct rq *rq;
3273
	int cpu;
I
Ingo Molnar 已提交
3274 3275 3276 3277 3278

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	/*
	 * do_exit() calls schedule() with preemption disabled as an exception;
	 * however we must fix that up, otherwise the next task will see an
	 * inconsistent (higher) preempt count.
	 *
	 * It also avoids the below schedule_debug() test from complaining
	 * about this.
	 */
	if (unlikely(prev->state == TASK_DEAD))
		preempt_enable_no_resched_notrace();

I
Ingo Molnar 已提交
3290
	schedule_debug(prev);
L
Linus Torvalds 已提交
3291

3292
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3293
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3294

3295 3296 3297
	local_irq_disable();
	rcu_note_context_switch();

3298 3299 3300 3301 3302 3303
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3304
	raw_spin_lock(&rq->lock);
3305
	cookie = lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3306

3307 3308
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3309
	switch_count = &prev->nivcsw;
3310
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3311
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3312
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3313
		} else {
3314 3315 3316
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3317
			/*
3318 3319 3320
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3321 3322 3323 3324
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3325
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3326
				if (to_wakeup)
3327
					try_to_wake_up_local(to_wakeup, cookie);
T
Tejun Heo 已提交
3328 3329
			}
		}
I
Ingo Molnar 已提交
3330
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3331 3332
	}

3333
	if (task_on_rq_queued(prev))
3334 3335
		update_rq_clock(rq);

3336
	next = pick_next_task(rq, prev, cookie);
3337
	clear_tsk_need_resched(prev);
3338
	clear_preempt_need_resched();
3339
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3340 3341 3342 3343 3344 3345

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3346
		trace_sched_switch(preempt, prev, next);
3347
		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3348
	} else {
3349
		lockdep_unpin_lock(&rq->lock, cookie);
3350
		raw_spin_unlock_irq(&rq->lock);
3351
	}
L
Linus Torvalds 已提交
3352

3353
	balance_callback(rq);
L
Linus Torvalds 已提交
3354
}
3355
STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3356

3357 3358
static inline void sched_submit_work(struct task_struct *tsk)
{
3359
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3360 3361 3362 3363 3364 3365 3366 3367 3368
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3369
asmlinkage __visible void __sched schedule(void)
3370
{
3371 3372 3373
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3374
	do {
3375
		preempt_disable();
3376
		__schedule(false);
3377
		sched_preempt_enable_no_resched();
3378
	} while (need_resched());
3379
}
L
Linus Torvalds 已提交
3380 3381
EXPORT_SYMBOL(schedule);

3382
#ifdef CONFIG_CONTEXT_TRACKING
3383
asmlinkage __visible void __sched schedule_user(void)
3384 3385 3386 3387 3388 3389
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3390 3391
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3392
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3393
	 * too frequently to make sense yet.
3394
	 */
3395
	enum ctx_state prev_state = exception_enter();
3396
	schedule();
3397
	exception_exit(prev_state);
3398 3399 3400
}
#endif

3401 3402 3403 3404 3405 3406 3407
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3408
	sched_preempt_enable_no_resched();
3409 3410 3411 3412
	schedule();
	preempt_disable();
}

3413
static void __sched notrace preempt_schedule_common(void)
3414 3415
{
	do {
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3429
		preempt_disable_notrace();
3430
		preempt_latency_start(1);
3431
		__schedule(true);
3432
		preempt_latency_stop(1);
3433
		preempt_enable_no_resched_notrace();
3434 3435 3436 3437 3438 3439 3440 3441

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3442 3443
#ifdef CONFIG_PREEMPT
/*
3444
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3445
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3446 3447
 * occur there and call schedule directly.
 */
3448
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3449 3450 3451
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3452
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3453
	 */
3454
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3455 3456
		return;

3457
	preempt_schedule_common();
L
Linus Torvalds 已提交
3458
}
3459
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3460
EXPORT_SYMBOL(preempt_schedule);
3461 3462

/**
3463
 * preempt_schedule_notrace - preempt_schedule called by tracing
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3476
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3477 3478 3479 3480 3481 3482 3483
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3497
		preempt_disable_notrace();
3498
		preempt_latency_start(1);
3499 3500 3501 3502 3503 3504
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3505
		__schedule(true);
3506 3507
		exception_exit(prev_ctx);

3508
		preempt_latency_stop(1);
3509
		preempt_enable_no_resched_notrace();
3510 3511
	} while (need_resched());
}
3512
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3513

3514
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3515 3516

/*
3517
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3518 3519 3520 3521
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3522
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3523
{
3524
	enum ctx_state prev_state;
3525

3526
	/* Catch callers which need to be fixed */
3527
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3528

3529 3530
	prev_state = exception_enter();

3531
	do {
3532
		preempt_disable();
3533
		local_irq_enable();
3534
		__schedule(true);
3535
		local_irq_disable();
3536
		sched_preempt_enable_no_resched();
3537
	} while (need_resched());
3538 3539

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3540 3541
}

P
Peter Zijlstra 已提交
3542
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3543
			  void *key)
L
Linus Torvalds 已提交
3544
{
P
Peter Zijlstra 已提交
3545
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3546 3547 3548
}
EXPORT_SYMBOL(default_wake_function);

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3559 3560
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3561
 */
3562
void rt_mutex_setprio(struct task_struct *p, int prio)
3563
{
3564
	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3565
	const struct sched_class *prev_class;
3566 3567
	struct rq_flags rf;
	struct rq *rq;
3568

3569
	BUG_ON(prio > MAX_PRIO);
3570

3571
	rq = __task_rq_lock(p, &rf);
3572

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3591
	trace_sched_pi_setprio(p, prio);
3592
	oldprio = p->prio;
3593 3594 3595 3596

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3597
	prev_class = p->sched_class;
3598
	queued = task_on_rq_queued(p);
3599
	running = task_current(rq, p);
3600
	if (queued)
3601
		dequeue_task(rq, p, queue_flag);
3602
	if (running)
3603
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3604

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3615 3616 3617
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3618
			p->dl.dl_boosted = 1;
3619
			queue_flag |= ENQUEUE_REPLENISH;
3620 3621
		} else
			p->dl.dl_boosted = 0;
3622
		p->sched_class = &dl_sched_class;
3623 3624 3625 3626
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3627
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3628
		p->sched_class = &rt_sched_class;
3629 3630 3631
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3632 3633
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3634
		p->sched_class = &fair_sched_class;
3635
	}
I
Ingo Molnar 已提交
3636

3637 3638
	p->prio = prio;

3639 3640
	if (running)
		p->sched_class->set_curr_task(rq);
3641
	if (queued)
3642
		enqueue_task(rq, p, queue_flag);
3643

P
Peter Zijlstra 已提交
3644
	check_class_changed(rq, p, prev_class, oldprio);
3645
out_unlock:
3646
	preempt_disable(); /* avoid rq from going away on us */
3647
	__task_rq_unlock(rq, &rf);
3648 3649 3650

	balance_callback(rq);
	preempt_enable();
3651 3652
}
#endif
3653

3654
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3655
{
3656
	int old_prio, delta, queued;
3657
	struct rq_flags rf;
3658
	struct rq *rq;
L
Linus Torvalds 已提交
3659

3660
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3661 3662 3663 3664 3665
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3666
	rq = task_rq_lock(p, &rf);
L
Linus Torvalds 已提交
3667 3668 3669 3670
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3671
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3672
	 */
3673
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3674 3675 3676
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3677 3678
	queued = task_on_rq_queued(p);
	if (queued)
3679
		dequeue_task(rq, p, DEQUEUE_SAVE);
L
Linus Torvalds 已提交
3680 3681

	p->static_prio = NICE_TO_PRIO(nice);
3682
	set_load_weight(p);
3683 3684 3685
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3686

3687
	if (queued) {
3688
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3689
		/*
3690 3691
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3692
		 */
3693
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3694
			resched_curr(rq);
L
Linus Torvalds 已提交
3695 3696
	}
out_unlock:
3697
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3698 3699 3700
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3701 3702 3703 3704 3705
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3706
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3707
{
3708
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3709
	int nice_rlim = nice_to_rlimit(nice);
3710

3711
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3712 3713 3714
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3724
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3725
{
3726
	long nice, retval;
L
Linus Torvalds 已提交
3727 3728 3729 3730 3731 3732

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3733
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3734
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3735

3736
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3737 3738 3739
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3754
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3755 3756 3757
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3758
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3759 3760 3761 3762 3763 3764 3765
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3766 3767
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3768 3769 3770
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3785 3786 3787 3788 3789
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3790 3791
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3792
 */
3793
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3794 3795 3796 3797 3798 3799 3800
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3801 3802
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3803
 */
A
Alexey Dobriyan 已提交
3804
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3805
{
3806
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3807 3808
}

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3824
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3825
	dl_se->flags = attr->sched_flags;
3826
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3847 3848
}

3849 3850 3851 3852 3853 3854
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3855 3856
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3857
{
3858 3859
	int policy = attr->sched_policy;

3860
	if (policy == SETPARAM_POLICY)
3861 3862
		policy = p->policy;

L
Linus Torvalds 已提交
3863
	p->policy = policy;
3864

3865 3866
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3867
	else if (fair_policy(policy))
3868 3869
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3870 3871 3872 3873 3874 3875
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3876
	p->normal_prio = normal_prio(p);
3877 3878
	set_load_weight(p);
}
3879

3880 3881
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3882
			   const struct sched_attr *attr, bool keep_boost)
3883 3884
{
	__setscheduler_params(p, attr);
3885

3886
	/*
3887 3888
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3889
	 */
3890 3891 3892 3893
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3894

3895 3896 3897
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3898 3899 3900
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3901
}
3902 3903 3904 3905 3906 3907 3908 3909 3910

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3911
	attr->sched_period = dl_se->dl_period;
3912 3913 3914 3915 3916 3917
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3918
 * than the runtime, as well as the period of being zero or
3919
 * greater than deadline. Furthermore, we have to be sure that
3920 3921 3922 3923
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3924 3925 3926 3927
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3954 3955
}

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3966 3967
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3968 3969 3970 3971
	rcu_read_unlock();
	return match;
}

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3986 3987
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
3988
				bool user, bool pi)
L
Linus Torvalds 已提交
3989
{
3990 3991
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3992
	int retval, oldprio, oldpolicy = -1, queued, running;
3993
	int new_effective_prio, policy = attr->sched_policy;
3994
	const struct sched_class *prev_class;
3995
	struct rq_flags rf;
3996
	int reset_on_fork;
3997
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3998
	struct rq *rq;
L
Linus Torvalds 已提交
3999

4000 4001
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4002 4003
recheck:
	/* double check policy once rq lock held */
4004 4005
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4006
		policy = oldpolicy = p->policy;
4007
	} else {
4008
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4009

4010
		if (!valid_policy(policy))
4011 4012 4013
			return -EINVAL;
	}

4014 4015 4016
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
4017 4018
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4019 4020
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4021
	 */
4022
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4023
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4024
		return -EINVAL;
4025 4026
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4027 4028
		return -EINVAL;

4029 4030 4031
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4032
	if (user && !capable(CAP_SYS_NICE)) {
4033
		if (fair_policy(policy)) {
4034
			if (attr->sched_nice < task_nice(p) &&
4035
			    !can_nice(p, attr->sched_nice))
4036 4037 4038
				return -EPERM;
		}

4039
		if (rt_policy(policy)) {
4040 4041
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4042 4043 4044 4045 4046 4047

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
4048 4049
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4050 4051
				return -EPERM;
		}
4052

4053 4054 4055 4056 4057 4058 4059 4060 4061
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4062
		/*
4063 4064
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4065
		 */
4066
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4067
			if (!can_nice(p, task_nice(p)))
4068 4069
				return -EPERM;
		}
4070

4071
		/* can't change other user's priorities */
4072
		if (!check_same_owner(p))
4073
			return -EPERM;
4074 4075 4076 4077

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4078
	}
L
Linus Torvalds 已提交
4079

4080
	if (user) {
4081
		retval = security_task_setscheduler(p);
4082 4083 4084 4085
		if (retval)
			return retval;
	}

4086 4087 4088
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4089
	 *
L
Lucas De Marchi 已提交
4090
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4091 4092
	 * runqueue lock must be held.
	 */
4093
	rq = task_rq_lock(p, &rf);
4094

4095 4096 4097 4098
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4099
		task_rq_unlock(rq, p, &rf);
4100 4101 4102
		return -EINVAL;
	}

4103
	/*
4104 4105
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4106
	 */
4107
	if (unlikely(policy == p->policy)) {
4108
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4109 4110 4111
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4112
		if (dl_policy(policy) && dl_param_changed(p, attr))
4113
			goto change;
4114

4115
		p->sched_reset_on_fork = reset_on_fork;
4116
		task_rq_unlock(rq, p, &rf);
4117 4118
		return 0;
	}
4119
change:
4120

4121
	if (user) {
4122
#ifdef CONFIG_RT_GROUP_SCHED
4123 4124 4125 4126 4127
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4128 4129
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4130
			task_rq_unlock(rq, p, &rf);
4131 4132 4133
			return -EPERM;
		}
#endif
4134 4135 4136 4137 4138 4139 4140 4141 4142
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4143 4144
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4145
				task_rq_unlock(rq, p, &rf);
4146 4147 4148 4149 4150
				return -EPERM;
			}
		}
#endif
	}
4151

L
Linus Torvalds 已提交
4152 4153 4154
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4155
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4156 4157
		goto recheck;
	}
4158 4159 4160 4161 4162 4163

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4164
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4165
		task_rq_unlock(rq, p, &rf);
4166 4167 4168
		return -EBUSY;
	}

4169 4170 4171
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4172 4173 4174 4175 4176 4177 4178 4179 4180
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4181 4182
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4183 4184
	}

4185
	queued = task_on_rq_queued(p);
4186
	running = task_current(rq, p);
4187
	if (queued)
4188
		dequeue_task(rq, p, queue_flags);
4189
	if (running)
4190
		put_prev_task(rq, p);
4191

4192
	prev_class = p->sched_class;
4193
	__setscheduler(rq, p, attr, pi);
4194

4195 4196
	if (running)
		p->sched_class->set_curr_task(rq);
4197
	if (queued) {
4198 4199 4200 4201
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4202 4203
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4204

4205
		enqueue_task(rq, p, queue_flags);
4206
	}
4207

P
Peter Zijlstra 已提交
4208
	check_class_changed(rq, p, prev_class, oldprio);
4209
	preempt_disable(); /* avoid rq from going away on us */
4210
	task_rq_unlock(rq, p, &rf);
4211

4212 4213
	if (pi)
		rt_mutex_adjust_pi(p);
4214

4215 4216 4217 4218 4219
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
4220

L
Linus Torvalds 已提交
4221 4222
	return 0;
}
4223

4224 4225 4226 4227 4228 4229 4230 4231 4232
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4233 4234
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4235 4236 4237 4238 4239
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4240
	return __sched_setscheduler(p, &attr, check, true);
4241
}
4242 4243 4244 4245 4246 4247
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4248 4249
 * Return: 0 on success. An error code otherwise.
 *
4250 4251 4252
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4253
		       const struct sched_param *param)
4254
{
4255
	return _sched_setscheduler(p, policy, param, true);
4256
}
L
Linus Torvalds 已提交
4257 4258
EXPORT_SYMBOL_GPL(sched_setscheduler);

4259 4260
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4261
	return __sched_setscheduler(p, attr, true, true);
4262 4263 4264
}
EXPORT_SYMBOL_GPL(sched_setattr);

4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4275 4276
 *
 * Return: 0 on success. An error code otherwise.
4277 4278
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4279
			       const struct sched_param *param)
4280
{
4281
	return _sched_setscheduler(p, policy, param, false);
4282
}
4283
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4284

I
Ingo Molnar 已提交
4285 4286
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4287 4288 4289
{
	struct sched_param lparam;
	struct task_struct *p;
4290
	int retval;
L
Linus Torvalds 已提交
4291 4292 4293 4294 4295

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4296 4297 4298

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4299
	p = find_process_by_pid(pid);
4300 4301 4302
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4303

L
Linus Torvalds 已提交
4304 4305 4306
	return retval;
}

4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4369
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4370

4371
	return 0;
4372 4373 4374

err_size:
	put_user(sizeof(*attr), &uattr->size);
4375
	return -E2BIG;
4376 4377
}

L
Linus Torvalds 已提交
4378 4379 4380 4381 4382
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4383 4384
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4385
 */
4386 4387
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4388
{
4389 4390 4391 4392
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4393 4394 4395 4396 4397 4398 4399
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4400 4401
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4402
 */
4403
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4404
{
4405
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4406 4407
}

4408 4409 4410
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4411
 * @uattr: structure containing the extended parameters.
4412
 * @flags: for future extension.
4413
 */
4414 4415
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4416 4417 4418 4419 4420
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4421
	if (!uattr || pid < 0 || flags)
4422 4423
		return -EINVAL;

4424 4425 4426
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4427

4428
	if ((int)attr.sched_policy < 0)
4429
		return -EINVAL;
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4441 4442 4443
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4444 4445 4446
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4447
 */
4448
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4449
{
4450
	struct task_struct *p;
4451
	int retval;
L
Linus Torvalds 已提交
4452 4453

	if (pid < 0)
4454
		return -EINVAL;
L
Linus Torvalds 已提交
4455 4456

	retval = -ESRCH;
4457
	rcu_read_lock();
L
Linus Torvalds 已提交
4458 4459 4460 4461
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4462 4463
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4464
	}
4465
	rcu_read_unlock();
L
Linus Torvalds 已提交
4466 4467 4468 4469
	return retval;
}

/**
4470
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4471 4472
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4473 4474 4475
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4476
 */
4477
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4478
{
4479
	struct sched_param lp = { .sched_priority = 0 };
4480
	struct task_struct *p;
4481
	int retval;
L
Linus Torvalds 已提交
4482 4483

	if (!param || pid < 0)
4484
		return -EINVAL;
L
Linus Torvalds 已提交
4485

4486
	rcu_read_lock();
L
Linus Torvalds 已提交
4487 4488 4489 4490 4491 4492 4493 4494 4495
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4496 4497
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4498
	rcu_read_unlock();
L
Linus Torvalds 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4508
	rcu_read_unlock();
L
Linus Torvalds 已提交
4509 4510 4511
	return retval;
}

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4535
				return -EFBIG;
4536 4537 4538 4539 4540
		}

		attr->size = usize;
	}

4541
	ret = copy_to_user(uattr, attr, attr->size);
4542 4543 4544
	if (ret)
		return -EFAULT;

4545
	return 0;
4546 4547 4548
}

/**
4549
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4550
 * @pid: the pid in question.
J
Juri Lelli 已提交
4551
 * @uattr: structure containing the extended parameters.
4552
 * @size: sizeof(attr) for fwd/bwd comp.
4553
 * @flags: for future extension.
4554
 */
4555 4556
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4557 4558 4559 4560 4561 4562 4563 4564
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4565
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4579 4580
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4581 4582 4583
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4584 4585
		attr.sched_priority = p->rt_priority;
	else
4586
		attr.sched_nice = task_nice(p);
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4598
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4599
{
4600
	cpumask_var_t cpus_allowed, new_mask;
4601 4602
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4603

4604
	rcu_read_lock();
L
Linus Torvalds 已提交
4605 4606 4607

	p = find_process_by_pid(pid);
	if (!p) {
4608
		rcu_read_unlock();
L
Linus Torvalds 已提交
4609 4610 4611
		return -ESRCH;
	}

4612
	/* Prevent p going away */
L
Linus Torvalds 已提交
4613
	get_task_struct(p);
4614
	rcu_read_unlock();
L
Linus Torvalds 已提交
4615

4616 4617 4618 4619
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4620 4621 4622 4623 4624 4625 4626 4627
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4628
	retval = -EPERM;
E
Eric W. Biederman 已提交
4629 4630 4631 4632
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4633
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4634 4635 4636
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4637

4638
	retval = security_task_setscheduler(p);
4639
	if (retval)
4640
		goto out_free_new_mask;
4641

4642 4643 4644 4645

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4646 4647 4648 4649 4650 4651 4652
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4653 4654 4655
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4656
			retval = -EBUSY;
4657
			rcu_read_unlock();
4658
			goto out_free_new_mask;
4659
		}
4660
		rcu_read_unlock();
4661 4662
	}
#endif
P
Peter Zijlstra 已提交
4663
again:
4664
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4665

P
Paul Menage 已提交
4666
	if (!retval) {
4667 4668
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4669 4670 4671 4672 4673
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4674
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4675 4676 4677
			goto again;
		}
	}
4678
out_free_new_mask:
4679 4680 4681 4682
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4683 4684 4685 4686 4687
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4688
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4689
{
4690 4691 4692 4693 4694
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4695 4696 4697 4698 4699 4700 4701 4702
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4703 4704
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4705
 */
4706 4707
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4708
{
4709
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4710 4711
	int retval;

4712 4713
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4714

4715 4716 4717 4718 4719
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4720 4721
}

4722
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4723
{
4724
	struct task_struct *p;
4725
	unsigned long flags;
L
Linus Torvalds 已提交
4726 4727
	int retval;

4728
	rcu_read_lock();
L
Linus Torvalds 已提交
4729 4730 4731 4732 4733 4734

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4735 4736 4737 4738
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4739
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4740
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4741
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4742 4743

out_unlock:
4744
	rcu_read_unlock();
L
Linus Torvalds 已提交
4745

4746
	return retval;
L
Linus Torvalds 已提交
4747 4748 4749 4750 4751 4752 4753
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4754 4755
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4756
 */
4757 4758
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4759 4760
{
	int ret;
4761
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4762

A
Anton Blanchard 已提交
4763
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4764 4765
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4766 4767
		return -EINVAL;

4768 4769
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4770

4771 4772
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4773
		size_t retlen = min_t(size_t, len, cpumask_size());
4774 4775

		if (copy_to_user(user_mask_ptr, mask, retlen))
4776 4777
			ret = -EFAULT;
		else
4778
			ret = retlen;
4779 4780
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4781

4782
	return ret;
L
Linus Torvalds 已提交
4783 4784 4785 4786 4787
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4788 4789
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4790 4791
 *
 * Return: 0.
L
Linus Torvalds 已提交
4792
 */
4793
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4794
{
4795
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4796

4797
	schedstat_inc(rq, yld_count);
4798
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4799 4800 4801 4802 4803 4804

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4805
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4806
	do_raw_spin_unlock(&rq->lock);
4807
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4808 4809 4810 4811 4812 4813

	schedule();

	return 0;
}

4814
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4815
{
4816
	if (should_resched(0)) {
4817
		preempt_schedule_common();
L
Linus Torvalds 已提交
4818 4819 4820 4821
		return 1;
	}
	return 0;
}
4822
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4823 4824

/*
4825
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4826 4827
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4828
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4829 4830 4831
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4832
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4833
{
4834
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4835 4836
	int ret = 0;

4837 4838
	lockdep_assert_held(lock);

4839
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4840
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4841
		if (resched)
4842
			preempt_schedule_common();
N
Nick Piggin 已提交
4843 4844
		else
			cpu_relax();
J
Jan Kara 已提交
4845
		ret = 1;
L
Linus Torvalds 已提交
4846 4847
		spin_lock(lock);
	}
J
Jan Kara 已提交
4848
	return ret;
L
Linus Torvalds 已提交
4849
}
4850
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4851

4852
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4853 4854 4855
{
	BUG_ON(!in_softirq());

4856
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4857
		local_bh_enable();
4858
		preempt_schedule_common();
L
Linus Torvalds 已提交
4859 4860 4861 4862 4863
		local_bh_disable();
		return 1;
	}
	return 0;
}
4864
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4865 4866 4867 4868

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4887 4888 4889 4890 4891 4892 4893 4894
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4895 4896 4897 4898
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4899 4900
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4901 4902 4903 4904
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4905
 * Return:
4906 4907 4908
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4909
 */
4910
int __sched yield_to(struct task_struct *p, bool preempt)
4911 4912 4913 4914
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4915
	int yielded = 0;
4916 4917 4918 4919 4920 4921

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4922 4923 4924 4925 4926 4927 4928 4929 4930
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4931
	double_rq_lock(rq, p_rq);
4932
	if (task_rq(p) != p_rq) {
4933 4934 4935 4936 4937
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4938
		goto out_unlock;
4939 4940

	if (curr->sched_class != p->sched_class)
4941
		goto out_unlock;
4942 4943

	if (task_running(p_rq, p) || p->state)
4944
		goto out_unlock;
4945 4946

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4947
	if (yielded) {
4948
		schedstat_inc(rq, yld_count);
4949 4950 4951 4952 4953
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4954
			resched_curr(p_rq);
4955
	}
4956

4957
out_unlock:
4958
	double_rq_unlock(rq, p_rq);
4959
out_irq:
4960 4961
	local_irq_restore(flags);

4962
	if (yielded > 0)
4963 4964 4965 4966 4967 4968
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4969
/*
I
Ingo Molnar 已提交
4970
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4971 4972 4973 4974
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4975 4976
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4977 4978
	long ret;

4979
	current->in_iowait = 1;
4980
	blk_schedule_flush_plug(current);
4981

4982
	delayacct_blkio_start();
4983
	rq = raw_rq();
L
Linus Torvalds 已提交
4984 4985
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4986
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4987
	atomic_dec(&rq->nr_iowait);
4988
	delayacct_blkio_end();
4989

L
Linus Torvalds 已提交
4990 4991
	return ret;
}
4992
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4993 4994 4995 4996 4997

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4998 4999 5000
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5001
 */
5002
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5003 5004 5005 5006 5007 5008 5009 5010
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5011
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5012
	case SCHED_NORMAL:
5013
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5014
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5025 5026 5027
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5028
 */
5029
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035 5036 5037
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5038
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5039
	case SCHED_NORMAL:
5040
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5041
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5054 5055 5056
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5057
 */
5058
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5059
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5060
{
5061
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5062
	unsigned int time_slice;
5063 5064
	struct rq_flags rf;
	struct timespec t;
5065
	struct rq *rq;
5066
	int retval;
L
Linus Torvalds 已提交
5067 5068

	if (pid < 0)
5069
		return -EINVAL;
L
Linus Torvalds 已提交
5070 5071

	retval = -ESRCH;
5072
	rcu_read_lock();
L
Linus Torvalds 已提交
5073 5074 5075 5076 5077 5078 5079 5080
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5081
	rq = task_rq_lock(p, &rf);
5082 5083 5084
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5085
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5086

5087
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5088
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5089 5090
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5091

L
Linus Torvalds 已提交
5092
out_unlock:
5093
	rcu_read_unlock();
L
Linus Torvalds 已提交
5094 5095 5096
	return retval;
}

5097
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5098

5099
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5100 5101
{
	unsigned long free = 0;
5102
	int ppid;
5103
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5104

5105 5106
	if (state)
		state = __ffs(state) + 1;
5107
	printk(KERN_INFO "%-15.15s %c", p->comm,
5108
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5109
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5110
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5111
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5112
	else
P
Peter Zijlstra 已提交
5113
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5114 5115
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5116
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5117
	else
P
Peter Zijlstra 已提交
5118
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5119 5120
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5121
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5122
#endif
5123
	ppid = 0;
5124
	rcu_read_lock();
5125 5126
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5127
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5128
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5129
		task_pid_nr(p), ppid,
5130
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5131

5132
	print_worker_info(KERN_INFO, p);
5133
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5134 5135
}

I
Ingo Molnar 已提交
5136
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5137
{
5138
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5139

5140
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5141 5142
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5143
#else
P
Peter Zijlstra 已提交
5144 5145
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5146
#endif
5147
	rcu_read_lock();
5148
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5149 5150
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5151
		 * console might take a lot of time:
5152 5153 5154
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5155 5156
		 */
		touch_nmi_watchdog();
5157
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5158
		if (!state_filter || (p->state & state_filter))
5159
			sched_show_task(p);
5160
	}
L
Linus Torvalds 已提交
5161

I
Ingo Molnar 已提交
5162
#ifdef CONFIG_SCHED_DEBUG
5163 5164
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5165
#endif
5166
	rcu_read_unlock();
I
Ingo Molnar 已提交
5167 5168 5169
	/*
	 * Only show locks if all tasks are dumped:
	 */
5170
	if (!state_filter)
I
Ingo Molnar 已提交
5171
		debug_show_all_locks();
L
Linus Torvalds 已提交
5172 5173
}

5174
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5175
{
I
Ingo Molnar 已提交
5176
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5177 5178
}

5179 5180 5181 5182 5183 5184 5185 5186
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5187
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5188
{
5189
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5190 5191
	unsigned long flags;

5192 5193
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5194

5195
	__sched_fork(0, idle);
5196
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5197 5198
	idle->se.exec_start = sched_clock();

5199 5200
	kasan_unpoison_task_stack(idle);

5201 5202 5203 5204 5205 5206 5207 5208 5209
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5221
	__set_task_cpu(idle, cpu);
5222
	rcu_read_unlock();
L
Linus Torvalds 已提交
5223 5224

	rq->curr = rq->idle = idle;
5225
	idle->on_rq = TASK_ON_RQ_QUEUED;
5226
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5227
	idle->on_cpu = 1;
5228
#endif
5229 5230
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5231 5232

	/* Set the preempt count _outside_ the spinlocks! */
5233
	init_idle_preempt_count(idle, cpu);
5234

I
Ingo Molnar 已提交
5235 5236 5237 5238
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5239
	ftrace_graph_init_idle_task(idle, cpu);
5240
	vtime_init_idle(idle, cpu);
5241
#ifdef CONFIG_SMP
5242 5243
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5244 5245
}

5246 5247 5248 5249 5250 5251 5252
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5253 5254 5255
	if (!cpumask_weight(cur))
		return ret;

5256
	rcu_read_lock_sched();
5257 5258 5259 5260 5261 5262 5263 5264
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5265
	rcu_read_unlock_sched();
5266 5267 5268 5269

	return ret;
}

5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5294
		struct dl_bw *dl_b;
5295 5296 5297 5298
		bool overflow;
		int cpus;
		unsigned long flags;

5299 5300
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5316
		rcu_read_unlock_sched();
5317 5318 5319 5320 5321 5322 5323

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5324 5325
#ifdef CONFIG_SMP

5326 5327
static bool sched_smp_initialized __read_mostly;

5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5343
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5344 5345
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5346 5347 5348 5349 5350 5351 5352

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5353
	bool queued, running;
5354 5355
	struct rq_flags rf;
	struct rq *rq;
5356

5357
	rq = task_rq_lock(p, &rf);
5358
	queued = task_on_rq_queued(p);
5359 5360
	running = task_current(rq, p);

5361
	if (queued)
5362
		dequeue_task(rq, p, DEQUEUE_SAVE);
5363
	if (running)
5364
		put_prev_task(rq, p);
5365 5366 5367 5368 5369

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5370
	if (queued)
5371
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5372
	task_rq_unlock(rq, p, &rf);
5373
}
P
Peter Zijlstra 已提交
5374
#endif /* CONFIG_NUMA_BALANCING */
5375

L
Linus Torvalds 已提交
5376
#ifdef CONFIG_HOTPLUG_CPU
5377
/*
5378 5379
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5380
 */
5381
void idle_task_exit(void)
L
Linus Torvalds 已提交
5382
{
5383
	struct mm_struct *mm = current->active_mm;
5384

5385
	BUG_ON(cpu_online(smp_processor_id()));
5386

5387
	if (mm != &init_mm) {
5388
		switch_mm_irqs_off(mm, &init_mm, current);
5389 5390
		finish_arch_post_lock_switch();
	}
5391
	mmdrop(mm);
L
Linus Torvalds 已提交
5392 5393 5394
}

/*
5395 5396
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5397 5398 5399
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5400 5401
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5402
 */
5403
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5404
{
5405
	long delta = calc_load_fold_active(rq, 1);
5406 5407
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5408 5409
}

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5426
/*
5427 5428 5429 5430 5431 5432
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5433
 */
5434
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5435
{
5436
	struct rq *rq = dead_rq;
5437
	struct task_struct *next, *stop = rq->stop;
5438
	struct pin_cookie cookie;
5439
	int dest_cpu;
L
Linus Torvalds 已提交
5440 5441

	/*
5442 5443 5444 5445 5446 5447 5448
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5449
	 */
5450
	rq->stop = NULL;
5451

5452 5453 5454 5455 5456 5457 5458
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5459
	for (;;) {
5460 5461 5462 5463 5464
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5465
			break;
5466

5467
		/*
W
Wanpeng Li 已提交
5468
		 * pick_next_task assumes pinned rq->lock.
5469
		 */
5470 5471
		cookie = lockdep_pin_lock(&rq->lock);
		next = pick_next_task(rq, &fake_task, cookie);
5472
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5473
		next->sched_class->put_prev_task(rq, next);
5474

W
Wanpeng Li 已提交
5475 5476 5477 5478 5479 5480 5481 5482 5483
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5484
		lockdep_unpin_lock(&rq->lock, cookie);
W
Wanpeng Li 已提交
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5499
		/* Find suitable destination for @next, with force if needed. */
5500
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5501

5502 5503 5504 5505 5506 5507
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5508
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5509
	}
5510

5511
	rq->stop = stop;
5512
}
L
Linus Torvalds 已提交
5513 5514
#endif /* CONFIG_HOTPLUG_CPU */

5515 5516 5517 5518 5519
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5520
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5540
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5541 5542 5543 5544
		rq->online = 0;
	}
}

5545
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5546
{
5547
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5548

5549 5550 5551
	rq->age_stamp = sched_clock_cpu(cpu);
}

5552 5553
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5554
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5555

5556
static __read_mostly int sched_debug_enabled;
5557

5558
static int __init sched_debug_setup(char *str)
5559
{
5560
	sched_debug_enabled = 1;
5561 5562 5563

	return 0;
}
5564 5565 5566 5567 5568 5569
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5570

5571
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5572
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5573
{
I
Ingo Molnar 已提交
5574
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5575

5576
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5577 5578 5579 5580

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5581
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5582
		if (sd->parent)
P
Peter Zijlstra 已提交
5583 5584
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5585
		return -1;
N
Nick Piggin 已提交
5586 5587
	}

5588 5589
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5590

5591
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5592 5593
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5594
	}
5595
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5596 5597
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5598
	}
L
Linus Torvalds 已提交
5599

I
Ingo Molnar 已提交
5600
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5601
	do {
I
Ingo Molnar 已提交
5602
		if (!group) {
P
Peter Zijlstra 已提交
5603 5604
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5605 5606 5607
			break;
		}

5608
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5609 5610
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5611 5612
			break;
		}
L
Linus Torvalds 已提交
5613

5614 5615
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5616 5617
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5618 5619
			break;
		}
L
Linus Torvalds 已提交
5620

5621
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5622

5623 5624
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5625
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5626 5627
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5628
		}
L
Linus Torvalds 已提交
5629

I
Ingo Molnar 已提交
5630 5631
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5632
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5633

5634
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5635
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5636

5637 5638
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5639 5640
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5641 5642
	return 0;
}
L
Linus Torvalds 已提交
5643

I
Ingo Molnar 已提交
5644 5645 5646
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5647

5648
	if (!sched_debug_enabled)
5649 5650
		return;

I
Ingo Molnar 已提交
5651 5652 5653 5654
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5655

I
Ingo Molnar 已提交
5656 5657 5658
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5659
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5660
			break;
L
Linus Torvalds 已提交
5661 5662
		level++;
		sd = sd->parent;
5663
		if (!sd)
I
Ingo Molnar 已提交
5664 5665
			break;
	}
L
Linus Torvalds 已提交
5666
}
5667
#else /* !CONFIG_SCHED_DEBUG */
5668
# define sched_domain_debug(sd, cpu) do { } while (0)
5669 5670 5671 5672
static inline bool sched_debug(void)
{
	return false;
}
5673
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5674

5675
static int sd_degenerate(struct sched_domain *sd)
5676
{
5677
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5678 5679 5680 5681 5682 5683
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5684
			 SD_BALANCE_EXEC |
5685
			 SD_SHARE_CPUCAPACITY |
5686 5687
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5688 5689 5690 5691 5692
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5693
	if (sd->flags & (SD_WAKE_AFFINE))
5694 5695 5696 5697 5698
		return 0;

	return 1;
}

5699 5700
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5701 5702 5703 5704 5705 5706
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5707
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5708 5709 5710 5711 5712 5713 5714
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5715
				SD_BALANCE_EXEC |
5716
				SD_SHARE_CPUCAPACITY |
5717
				SD_SHARE_PKG_RESOURCES |
5718 5719
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5720 5721
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5722 5723 5724 5725 5726 5727 5728
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5729
static void free_rootdomain(struct rcu_head *rcu)
5730
{
5731
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5732

5733
	cpupri_cleanup(&rd->cpupri);
5734
	cpudl_cleanup(&rd->cpudl);
5735
	free_cpumask_var(rd->dlo_mask);
5736 5737 5738 5739 5740 5741
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5742 5743
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5744
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5745 5746
	unsigned long flags;

5747
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5748 5749

	if (rq->rd) {
I
Ingo Molnar 已提交
5750
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5751

5752
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5753
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5754

5755
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5756

I
Ingo Molnar 已提交
5757
		/*
5758
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5759 5760 5761 5762 5763
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5764 5765 5766 5767 5768
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5769
	cpumask_set_cpu(rq->cpu, rd->span);
5770
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5771
		set_rq_online(rq);
G
Gregory Haskins 已提交
5772

5773
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5774 5775

	if (old_rd)
5776
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5777 5778
}

5779
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5780 5781 5782
{
	memset(rd, 0, sizeof(*rd));

5783
	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5784
		goto out;
5785
	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5786
		goto free_span;
5787
	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5788
		goto free_online;
5789
	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5790
		goto free_dlo_mask;
5791

5792
	init_dl_bw(&rd->dl_bw);
5793 5794
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5795

5796
	if (cpupri_init(&rd->cpupri) != 0)
5797
		goto free_rto_mask;
5798
	return 0;
5799

5800 5801
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5802 5803
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5804 5805 5806 5807
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5808
out:
5809
	return -ENOMEM;
G
Gregory Haskins 已提交
5810 5811
}

5812 5813 5814 5815 5816 5817
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5818 5819
static void init_defrootdomain(void)
{
5820
	init_rootdomain(&def_root_domain);
5821

G
Gregory Haskins 已提交
5822 5823 5824
	atomic_set(&def_root_domain.refcount, 1);
}

5825
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5826 5827 5828 5829 5830 5831 5832
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5833
	if (init_rootdomain(rd) != 0) {
5834 5835 5836
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5837 5838 5839 5840

	return rd;
}

5841
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5852 5853
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5854 5855 5856 5857 5858 5859

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5860 5861 5862
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5863 5864 5865 5866 5867 5868 5869 5870

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5871
		kfree(sd->groups->sgc);
5872
		kfree(sd->groups);
5873
	}
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5888 5889 5890 5891 5892 5893 5894
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5895
 * two cpus are in the same cache domain, see cpus_share_cache().
5896 5897
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5898
DEFINE_PER_CPU(int, sd_llc_size);
5899
DEFINE_PER_CPU(int, sd_llc_id);
5900
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5901 5902
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5903 5904 5905 5906

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5907
	struct sched_domain *busy_sd = NULL;
5908
	int id = cpu;
5909
	int size = 1;
5910 5911

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5912
	if (sd) {
5913
		id = cpumask_first(sched_domain_span(sd));
5914
		size = cpumask_weight(sched_domain_span(sd));
5915
		busy_sd = sd->parent; /* sd_busy */
5916
	}
5917
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5918 5919

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5920
	per_cpu(sd_llc_size, cpu) = size;
5921
	per_cpu(sd_llc_id, cpu) = id;
5922 5923 5924

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5925 5926 5927

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5928 5929
}

L
Linus Torvalds 已提交
5930
/*
I
Ingo Molnar 已提交
5931
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5932 5933
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5934 5935
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5936
{
5937
	struct rq *rq = cpu_rq(cpu);
5938 5939 5940
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5941
	for (tmp = sd; tmp; ) {
5942 5943 5944
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5945

5946
		if (sd_parent_degenerate(tmp, parent)) {
5947
			tmp->parent = parent->parent;
5948 5949
			if (parent->parent)
				parent->parent->child = tmp;
5950 5951 5952 5953 5954 5955 5956
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5957
			destroy_sched_domain(parent, cpu);
5958 5959
		} else
			tmp = tmp->parent;
5960 5961
	}

5962
	if (sd && sd_degenerate(sd)) {
5963
		tmp = sd;
5964
		sd = sd->parent;
5965
		destroy_sched_domain(tmp, cpu);
5966 5967 5968
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5969

5970
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5971

G
Gregory Haskins 已提交
5972
	rq_attach_root(rq, rd);
5973
	tmp = rq->sd;
N
Nick Piggin 已提交
5974
	rcu_assign_pointer(rq->sd, sd);
5975
	destroy_sched_domains(tmp, cpu);
5976 5977

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5978 5979 5980 5981 5982
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
5983 5984
	int ret;

R
Rusty Russell 已提交
5985
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5986 5987 5988 5989 5990
	ret = cpulist_parse(str, cpu_isolated_map);
	if (ret) {
		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
		return 0;
	}
L
Linus Torvalds 已提交
5991 5992
	return 1;
}
I
Ingo Molnar 已提交
5993
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5994

5995
struct s_data {
5996
	struct sched_domain ** __percpu sd;
5997 5998 5999
	struct root_domain	*rd;
};

6000 6001
enum s_alloc {
	sa_rootdomain,
6002
	sa_sd,
6003
	sa_sd_storage,
6004 6005 6006
	sa_none,
};

P
Peter Zijlstra 已提交
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6045 6046 6047 6048 6049 6050 6051
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6052
	struct sched_domain *sibling;
6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6063
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6064 6065

		/* See the comment near build_group_mask(). */
6066
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6067 6068
			continue;

6069
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6070
				GFP_KERNEL, cpu_to_node(cpu));
6071 6072 6073 6074 6075

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6076 6077 6078
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6079 6080 6081 6082
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6083 6084
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6085 6086
			build_group_mask(sd, sg);

6087
		/*
6088
		 * Initialize sgc->capacity such that even if we mess up the
6089 6090 6091
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6092
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6093

P
Peter Zijlstra 已提交
6094 6095 6096 6097 6098
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6099
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6100
		    group_balance_cpu(sg) == cpu)
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6120
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6121
{
6122 6123
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6124

6125 6126
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6127

6128
	if (sg) {
6129
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6130 6131
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6132
	}
6133 6134

	return cpu;
6135 6136
}

6137
/*
6138 6139
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6140
 * and ->cpu_capacity to 0.
6141 6142
 *
 * Assumes the sched_domain tree is fully constructed
6143
 */
6144 6145
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6146
{
6147 6148 6149
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6150
	struct cpumask *covered;
6151
	int i;
6152

6153 6154 6155
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6156
	if (cpu != cpumask_first(span))
6157 6158
		return 0;

6159 6160 6161
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6162
	cpumask_clear(covered);
6163

6164 6165
	for_each_cpu(i, span) {
		struct sched_group *sg;
6166
		int group, j;
6167

6168 6169
		if (cpumask_test_cpu(i, covered))
			continue;
6170

6171
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6172
		cpumask_setall(sched_group_mask(sg));
6173

6174 6175 6176
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6177

6178 6179 6180
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6181

6182 6183 6184 6185 6186 6187 6188
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6189 6190

	return 0;
6191
}
6192

6193
/*
6194
 * Initialize sched groups cpu_capacity.
6195
 *
6196
 * cpu_capacity indicates the capacity of sched group, which is used while
6197
 * distributing the load between different sched groups in a sched domain.
6198 6199 6200 6201
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6202
 */
6203
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6204
{
6205
	struct sched_group *sg = sd->groups;
6206

6207
	WARN_ON(!sg);
6208 6209 6210 6211 6212

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6213

P
Peter Zijlstra 已提交
6214
	if (cpu != group_balance_cpu(sg))
6215
		return;
6216

6217 6218
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6219 6220
}

6221 6222 6223 6224 6225
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6226
static int default_relax_domain_level = -1;
6227
int sched_domain_level_max;
6228 6229 6230

static int __init setup_relax_domain_level(char *str)
{
6231 6232
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6233

6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6252
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6253 6254
	} else {
		/* turn on idle balance on this domain */
6255
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6256 6257 6258
	}
}

6259 6260 6261
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6262 6263 6264 6265 6266
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6267 6268
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6269 6270
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6271
	case sa_sd_storage:
6272
		__sdt_free(cpu_map); /* fall through */
6273 6274 6275 6276
	case sa_none:
		break;
	}
}
6277

6278 6279 6280
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6281 6282
	memset(d, 0, sizeof(*d));

6283 6284
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6285 6286 6287
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6288
	d->rd = alloc_rootdomain();
6289
	if (!d->rd)
6290
		return sa_sd;
6291 6292
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6293

6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6306
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6307
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6308

6309 6310
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6311 6312
}

6313 6314
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6315
enum numa_topology_type sched_numa_topology_type;
6316
static int *sched_domains_numa_distance;
6317
int sched_max_numa_distance;
6318 6319
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6320
#endif
6321

6322 6323 6324
/*
 * SD_flags allowed in topology descriptions.
 *
6325
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6326 6327
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6328
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6329 6330 6331 6332 6333
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6334
	(SD_SHARE_CPUCAPACITY |		\
6335 6336
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6337 6338
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6339 6340

static struct sched_domain *
6341
sd_init(struct sched_domain_topology_level *tl, int cpu)
6342 6343
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6360 6361 6362 6363 6364

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6365
		.imbalance_pct		= 125,
6366 6367 6368 6369

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6370 6371 6372 6373 6374 6375
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6376 6377
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6378
					| 0*SD_BALANCE_WAKE
6379
					| 1*SD_WAKE_AFFINE
6380
					| 0*SD_SHARE_CPUCAPACITY
6381
					| 0*SD_SHARE_PKG_RESOURCES
6382
					| 0*SD_SERIALIZE
6383
					| 0*SD_PREFER_SIBLING
6384 6385
					| 0*SD_NUMA
					| sd_flags
6386
					,
6387

6388 6389
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6390
		.smt_gain		= 0,
6391 6392
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6393 6394 6395
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6396 6397 6398
	};

	/*
6399
	 * Convert topological properties into behaviour.
6400
	 */
6401

6402
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6403
		sd->flags |= SD_PREFER_SIBLING;
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6434 6435 6436 6437

	return sd;
}

6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

6452 6453
static struct sched_domain_topology_level *sched_domain_topology =
	default_topology;
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6465 6466 6467 6468 6469
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6491
bool find_numa_distance(int distance)
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6531
	if (sched_domains_numa_levels <= 1) {
6532
		sched_numa_topology_type = NUMA_DIRECT;
6533 6534
		return;
	}
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6603
		}
6604 6605 6606 6607 6608 6609

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6610
	}
6611 6612 6613 6614

	if (!level)
		return;

6615 6616 6617 6618
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6619
	 * The sched_domains_numa_distance[] array includes the actual distance
6620 6621 6622
	 * numbers.
	 */

6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6649
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6650 6651 6652 6653 6654
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

6655
			for_each_node(k) {
6656
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6657 6658 6659 6660 6661 6662 6663
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6664 6665 6666
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6667
	tl = kzalloc((i + level + 1) *
6668 6669 6670 6671 6672 6673 6674
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6675 6676
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6677 6678 6679 6680 6681 6682 6683

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6684
			.sd_flags = cpu_numa_flags,
6685 6686
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6687
			SD_INIT_NAME(NUMA)
6688 6689 6690 6691
		};
	}

	sched_domain_topology = tl;
6692 6693

	sched_domains_numa_levels = level;
6694
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6695 6696

	init_numa_topology_type();
6697
}
6698

6699
static void sched_domains_numa_masks_set(unsigned int cpu)
6700 6701
{
	int node = cpu_to_node(cpu);
6702
	int i, j;
6703 6704 6705 6706 6707 6708 6709 6710 6711

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

6712
static void sched_domains_numa_masks_clear(unsigned int cpu)
6713 6714
{
	int i, j;
6715

6716 6717 6718 6719 6720 6721
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

6722
#else
6723 6724 6725
static inline void sched_init_numa(void) { }
static void sched_domains_numa_masks_set(unsigned int cpu) { }
static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6726 6727
#endif /* CONFIG_NUMA */

6728 6729 6730 6731 6732
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6733
	for_each_sd_topology(tl) {
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6744 6745
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6746 6747
			return -ENOMEM;

6748 6749 6750
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6751
			struct sched_group_capacity *sgc;
6752

P
Peter Zijlstra 已提交
6753
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6765 6766
			sg->next = sg;

6767
			*per_cpu_ptr(sdd->sg, j) = sg;
6768

6769
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6770
					GFP_KERNEL, cpu_to_node(j));
6771
			if (!sgc)
6772 6773
				return -ENOMEM;

6774
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6786
	for_each_sd_topology(tl) {
6787 6788 6789
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6801 6802
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6803 6804
		}
		free_percpu(sdd->sd);
6805
		sdd->sd = NULL;
6806
		free_percpu(sdd->sg);
6807
		sdd->sg = NULL;
6808 6809
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6810 6811 6812
	}
}

6813
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6814 6815
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6816
{
6817
	struct sched_domain *sd = sd_init(tl, cpu);
6818
	if (!sd)
6819
		return child;
6820 6821

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6822 6823 6824
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6825
		child->parent = sd;
6826
		sd->child = child;
P
Peter Zijlstra 已提交
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6841
	}
6842
	set_domain_attribute(sd, attr);
6843 6844 6845 6846

	return sd;
}

6847 6848 6849 6850
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6851 6852
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6853
{
6854
	enum s_alloc alloc_state;
6855
	struct sched_domain *sd;
6856
	struct s_data d;
6857
	int i, ret = -ENOMEM;
6858

6859 6860 6861
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6862

6863
	/* Set up domains for cpus specified by the cpu_map. */
6864
	for_each_cpu(i, cpu_map) {
6865 6866
		struct sched_domain_topology_level *tl;

6867
		sd = NULL;
6868
		for_each_sd_topology(tl) {
6869
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6870 6871
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6872 6873
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6874 6875
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6876
		}
6877 6878 6879 6880 6881 6882
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6883 6884 6885 6886 6887 6888 6889
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6890
		}
6891
	}
6892

6893
	/* Calculate CPU capacity for physical packages and nodes */
6894 6895 6896
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6897

6898 6899
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6900
			init_sched_groups_capacity(i, sd);
6901
		}
6902
	}
6903

L
Linus Torvalds 已提交
6904
	/* Attach the domains */
6905
	rcu_read_lock();
6906
	for_each_cpu(i, cpu_map) {
6907
		sd = *per_cpu_ptr(d.sd, i);
6908
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6909
	}
6910
	rcu_read_unlock();
6911

6912
	ret = 0;
6913
error:
6914
	__free_domain_allocs(&d, alloc_state, cpu_map);
6915
	return ret;
L
Linus Torvalds 已提交
6916
}
P
Paul Jackson 已提交
6917

6918
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6919
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6920 6921
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6922 6923 6924

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6925 6926
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6927
 */
6928
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6929

6930 6931 6932 6933 6934
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6935
int __weak arch_update_cpu_topology(void)
6936
{
6937
	return 0;
6938 6939
}

6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6965
/*
I
Ingo Molnar 已提交
6966
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6967 6968
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6969
 */
6970
static int init_sched_domains(const struct cpumask *cpu_map)
6971
{
6972 6973
	int err;

6974
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6975
	ndoms_cur = 1;
6976
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6977
	if (!doms_cur)
6978 6979
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6980
	err = build_sched_domains(doms_cur[0], NULL);
6981
	register_sched_domain_sysctl();
6982 6983

	return err;
6984 6985 6986 6987 6988 6989
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6990
static void detach_destroy_domains(const struct cpumask *cpu_map)
6991 6992 6993
{
	int i;

6994
	rcu_read_lock();
6995
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6996
		cpu_attach_domain(NULL, &def_root_domain, i);
6997
	rcu_read_unlock();
6998 6999
}

7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7016 7017
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7018
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7019 7020 7021
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7022
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7023 7024 7025
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7026 7027 7028
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7029 7030 7031 7032 7033 7034
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7035
 *
7036
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7037 7038
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7039
 *
P
Paul Jackson 已提交
7040 7041
 * Call with hotplug lock held
 */
7042
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7043
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7044
{
7045
	int i, j, n;
7046
	int new_topology;
P
Paul Jackson 已提交
7047

7048
	mutex_lock(&sched_domains_mutex);
7049

7050 7051 7052
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7053 7054 7055
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7056
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7057 7058 7059

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7060
		for (j = 0; j < n && !new_topology; j++) {
7061
			if (cpumask_equal(doms_cur[i], doms_new[j])
7062
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7063 7064 7065
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7066
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7067 7068 7069 7070
match1:
		;
	}

7071
	n = ndoms_cur;
7072
	if (doms_new == NULL) {
7073
		n = 0;
7074
		doms_new = &fallback_doms;
7075
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7076
		WARN_ON_ONCE(dattr_new);
7077 7078
	}

P
Paul Jackson 已提交
7079 7080
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7081
		for (j = 0; j < n && !new_topology; j++) {
7082
			if (cpumask_equal(doms_new[i], doms_cur[j])
7083
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7084 7085 7086
				goto match2;
		}
		/* no match - add a new doms_new */
7087
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7088 7089 7090 7091 7092
match2:
		;
	}

	/* Remember the new sched domains */
7093 7094
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7095
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7096
	doms_cur = doms_new;
7097
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7098
	ndoms_cur = ndoms_new;
7099 7100

	register_sched_domain_sysctl();
7101

7102
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7103 7104
}

7105 7106
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7107
/*
7108 7109 7110
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7111 7112 7113
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7114
 */
7115
static void cpuset_cpu_active(void)
7116
{
7117
	if (cpuhp_tasks_frozen) {
7118 7119 7120 7121 7122 7123 7124 7125 7126
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
7127
			return;
7128 7129 7130 7131 7132 7133
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
7134
	}
7135
	cpuset_update_active_cpus(true);
7136
}
7137

7138
static int cpuset_cpu_inactive(unsigned int cpu)
7139
{
7140 7141
	unsigned long flags;
	struct dl_bw *dl_b;
7142 7143
	bool overflow;
	int cpus;
7144

7145
	if (!cpuhp_tasks_frozen) {
7146 7147
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7148

7149 7150 7151 7152
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7153

7154
		rcu_read_unlock_sched();
7155

7156
		if (overflow)
7157
			return -EBUSY;
7158
		cpuset_update_active_cpus(false);
7159
	} else {
7160 7161
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
7162
	}
7163
	return 0;
7164 7165
}

7166
int sched_cpu_activate(unsigned int cpu)
7167
{
7168 7169 7170
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

7171
	set_cpu_active(cpu, true);
7172

7173
	if (sched_smp_initialized) {
7174
		sched_domains_numa_masks_set(cpu);
7175
		cpuset_cpu_active();
7176
	}
7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
	 *    after all cpus have been brought up.
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
	raw_spin_unlock_irqrestore(&rq->lock, flags);

	update_max_interval();

7196
	return 0;
7197 7198
}

7199
int sched_cpu_deactivate(unsigned int cpu)
7200 7201 7202
{
	int ret;

7203
	set_cpu_active(cpu, false);
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
	 * not imply sync_sched(), so wait for both.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT))
		synchronize_rcu_mult(call_rcu, call_rcu_sched);
	else
		synchronize_rcu();
7218 7219 7220 7221 7222 7223 7224 7225

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
7226
	}
7227 7228
	sched_domains_numa_masks_clear(cpu);
	return 0;
7229 7230
}

7231 7232 7233 7234 7235 7236 7237 7238 7239
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	account_reset_rq(rq);
	update_max_interval();
}

7240 7241 7242
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
7243
	sched_rq_cpu_starting(cpu);
7244
	return 0;
7245 7246
}

7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
	migrate_tasks(rq);
	BUG_ON(rq->nr_running != 1);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
	calc_load_migrate(rq);
	update_max_interval();
7265
	nohz_balance_exit_idle(cpu);
7266
	hrtick_clear(rq);
7267 7268 7269 7270
	return 0;
}
#endif

L
Linus Torvalds 已提交
7271 7272
void __init sched_init_smp(void)
{
7273 7274 7275
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7276
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7277

7278 7279
	sched_init_numa();

7280 7281 7282 7283 7284
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7285
	mutex_lock(&sched_domains_mutex);
7286
	init_sched_domains(cpu_active_mask);
7287 7288 7289
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7290
	mutex_unlock(&sched_domains_mutex);
7291

7292
	/* Move init over to a non-isolated CPU */
7293
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7294
		BUG();
I
Ingo Molnar 已提交
7295
	sched_init_granularity();
7296
	free_cpumask_var(non_isolated_cpus);
7297

7298
	init_sched_rt_class();
7299
	init_sched_dl_class();
7300
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
7301
}
7302 7303 7304

static int __init migration_init(void)
{
7305
	sched_rq_cpu_starting(smp_processor_id());
7306
	return 0;
L
Linus Torvalds 已提交
7307
}
7308 7309
early_initcall(migration_init);

L
Linus Torvalds 已提交
7310 7311 7312
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7313
	sched_init_granularity();
L
Linus Torvalds 已提交
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7324
#ifdef CONFIG_CGROUP_SCHED
7325 7326 7327 7328
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7329
struct task_group root_task_group;
7330
LIST_HEAD(task_groups);
7331 7332 7333

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
7334
#endif
P
Peter Zijlstra 已提交
7335

7336
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7337

L
Linus Torvalds 已提交
7338 7339
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7340
	int i, j;
7341 7342 7343 7344 7345 7346 7347 7348 7349
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7350
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7351 7352

#ifdef CONFIG_FAIR_GROUP_SCHED
7353
		root_task_group.se = (struct sched_entity **)ptr;
7354 7355
		ptr += nr_cpu_ids * sizeof(void **);

7356
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7357
		ptr += nr_cpu_ids * sizeof(void **);
7358

7359
#endif /* CONFIG_FAIR_GROUP_SCHED */
7360
#ifdef CONFIG_RT_GROUP_SCHED
7361
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7362 7363
		ptr += nr_cpu_ids * sizeof(void **);

7364
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7365 7366
		ptr += nr_cpu_ids * sizeof(void **);

7367
#endif /* CONFIG_RT_GROUP_SCHED */
7368
	}
7369
#ifdef CONFIG_CPUMASK_OFFSTACK
7370 7371 7372
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7373
	}
7374
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7375

7376 7377 7378
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7379
			global_rt_period(), global_rt_runtime());
7380

G
Gregory Haskins 已提交
7381 7382 7383 7384
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7385
#ifdef CONFIG_RT_GROUP_SCHED
7386
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7387
			global_rt_period(), global_rt_runtime());
7388
#endif /* CONFIG_RT_GROUP_SCHED */
7389

D
Dhaval Giani 已提交
7390
#ifdef CONFIG_CGROUP_SCHED
7391 7392
	task_group_cache = KMEM_CACHE(task_group, 0);

7393 7394
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7395
	INIT_LIST_HEAD(&root_task_group.siblings);
7396
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7397
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7398

7399
	for_each_possible_cpu(i) {
7400
		struct rq *rq;
L
Linus Torvalds 已提交
7401 7402

		rq = cpu_rq(i);
7403
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7404
		rq->nr_running = 0;
7405 7406
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7407
		init_cfs_rq(&rq->cfs);
7408 7409
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7410
#ifdef CONFIG_FAIR_GROUP_SCHED
7411
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7412
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7413
		/*
7414
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7415 7416 7417 7418
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7419
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7420 7421 7422
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7423
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7424 7425 7426
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7427
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7428
		 *
7429 7430
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7431
		 */
7432
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7433
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7434 7435 7436
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7437
#ifdef CONFIG_RT_GROUP_SCHED
7438
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7439
#endif
L
Linus Torvalds 已提交
7440

I
Ingo Molnar 已提交
7441 7442
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7443

L
Linus Torvalds 已提交
7444
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7445
		rq->sd = NULL;
G
Gregory Haskins 已提交
7446
		rq->rd = NULL;
7447
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7448
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7449
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7450
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7451
		rq->push_cpu = 0;
7452
		rq->cpu = i;
7453
		rq->online = 0;
7454 7455
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7456
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7457 7458 7459

		INIT_LIST_HEAD(&rq->cfs_tasks);

7460
		rq_attach_root(rq, &def_root_domain);
7461
#ifdef CONFIG_NO_HZ_COMMON
7462
		rq->last_load_update_tick = jiffies;
7463
		rq->nohz_flags = 0;
7464
#endif
7465 7466 7467
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
7468
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
7469
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7470 7471 7472
		atomic_set(&rq->nr_iowait, 0);
	}

7473
	set_load_weight(&init_task);
7474

7475 7476 7477 7478
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7479 7480 7481 7482 7483 7484
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7485 7486 7487 7488 7489
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7490 7491 7492 7493 7494 7495 7496
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7497 7498 7499

	calc_load_update = jiffies + LOAD_FREQ;

7500
#ifdef CONFIG_SMP
7501
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7502 7503 7504
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7505
	idle_thread_set_boot_cpu();
7506
	set_cpu_rq_start_time(smp_processor_id());
7507 7508
#endif
	init_sched_fair_class();
7509

7510 7511
	init_schedstats();

7512
	scheduler_running = 1;
L
Linus Torvalds 已提交
7513 7514
}

7515
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7516 7517
static inline int preempt_count_equals(int preempt_offset)
{
7518
	int nested = preempt_count() + rcu_preempt_depth();
7519

A
Arnd Bergmann 已提交
7520
	return (nested == preempt_offset);
7521 7522
}

7523
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7524
{
P
Peter Zijlstra 已提交
7525 7526 7527 7528 7529
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7530
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7531 7532 7533 7534
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7535
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7536

7537 7538 7539 7540 7541
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7542 7543 7544
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7545
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7546 7547
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7548
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7549 7550 7551 7552 7553
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7554 7555 7556 7557 7558 7559 7560
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7561

7562 7563 7564
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7565 7566 7567
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7568 7569 7570 7571 7572 7573 7574
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7575
	dump_stack();
L
Linus Torvalds 已提交
7576
}
7577
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7578 7579 7580
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7581
void normalize_rt_tasks(void)
7582
{
7583
	struct task_struct *g, *p;
7584 7585 7586
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7587

7588
	read_lock(&tasklist_lock);
7589
	for_each_process_thread(g, p) {
7590 7591 7592
		/*
		 * Only normalize user tasks:
		 */
7593
		if (p->flags & PF_KTHREAD)
7594 7595
			continue;

I
Ingo Molnar 已提交
7596 7597
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7598 7599 7600
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7601
#endif
I
Ingo Molnar 已提交
7602

7603
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7604 7605 7606 7607
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7608
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7609
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7610
			continue;
I
Ingo Molnar 已提交
7611
		}
L
Linus Torvalds 已提交
7612

7613
		__sched_setscheduler(p, &attr, false, false);
7614
	}
7615
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7616 7617 7618
}

#endif /* CONFIG_MAGIC_SYSRQ */
7619

7620
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7621
/*
7622
 * These functions are only useful for the IA64 MCA handling, or kdb.
7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7636 7637
 *
 * Return: The current task for @cpu.
7638
 */
7639
struct task_struct *curr_task(int cpu)
7640 7641 7642 7643
{
	return cpu_curr(cpu);
}

7644 7645 7646
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7647 7648 7649 7650 7651 7652
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7653 7654
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7655 7656 7657 7658 7659 7660 7661
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7662
void set_curr_task(int cpu, struct task_struct *p)
7663 7664 7665 7666 7667
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7668

D
Dhaval Giani 已提交
7669
#ifdef CONFIG_CGROUP_SCHED
7670 7671 7672
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7673
static void sched_free_group(struct task_group *tg)
7674 7675 7676
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7677
	autogroup_free(tg);
7678
	kmem_cache_free(task_group_cache, tg);
7679 7680 7681
}

/* allocate runqueue etc for a new task group */
7682
struct task_group *sched_create_group(struct task_group *parent)
7683 7684 7685
{
	struct task_group *tg;

7686
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7687 7688 7689
	if (!tg)
		return ERR_PTR(-ENOMEM);

7690
	if (!alloc_fair_sched_group(tg, parent))
7691 7692
		goto err;

7693
	if (!alloc_rt_sched_group(tg, parent))
7694 7695
		goto err;

7696 7697 7698
	return tg;

err:
7699
	sched_free_group(tg);
7700 7701 7702 7703 7704 7705 7706
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7707
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7708
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7709 7710 7711 7712 7713

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7714
	list_add_rcu(&tg->siblings, &parent->children);
7715
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7716 7717
}

7718
/* rcu callback to free various structures associated with a task group */
7719
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7720 7721
{
	/* now it should be safe to free those cfs_rqs */
7722
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7723 7724
}

7725
void sched_destroy_group(struct task_group *tg)
7726 7727
{
	/* wait for possible concurrent references to cfs_rqs complete */
7728
	call_rcu(&tg->rcu, sched_free_group_rcu);
7729 7730 7731
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7732
{
7733
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
7734

7735
	/* end participation in shares distribution */
7736
	unregister_fair_sched_group(tg);
7737 7738

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7739
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7740
	list_del_rcu(&tg->siblings);
7741
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7742 7743
}

7744
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7745 7746 7747
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7748 7749
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7750
{
P
Peter Zijlstra 已提交
7751
	struct task_group *tg;
7752
	int queued, running;
7753
	struct rq_flags rf;
S
Srivatsa Vaddagiri 已提交
7754 7755
	struct rq *rq;

7756
	rq = task_rq_lock(tsk, &rf);
S
Srivatsa Vaddagiri 已提交
7757

7758
	running = task_current(rq, tsk);
7759
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7760

7761
	if (queued)
7762
		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7763
	if (unlikely(running))
7764
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7765

7766 7767 7768 7769 7770 7771
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7772 7773 7774 7775
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7776
#ifdef CONFIG_FAIR_GROUP_SCHED
7777
	if (tsk->sched_class->task_move_group)
7778
		tsk->sched_class->task_move_group(tsk);
7779
	else
P
Peter Zijlstra 已提交
7780
#endif
7781
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7782

7783 7784
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7785
	if (queued)
7786
		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
S
Srivatsa Vaddagiri 已提交
7787

7788
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
7789
}
D
Dhaval Giani 已提交
7790
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7791

7792 7793 7794 7795 7796
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7797

P
Peter Zijlstra 已提交
7798 7799
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7800
{
P
Peter Zijlstra 已提交
7801
	struct task_struct *g, *p;
7802

7803 7804 7805 7806 7807 7808
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7809
	for_each_process_thread(g, p) {
7810
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7811
			return 1;
7812
	}
7813

P
Peter Zijlstra 已提交
7814 7815
	return 0;
}
7816

P
Peter Zijlstra 已提交
7817 7818 7819 7820 7821
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7822

7823
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7824 7825 7826 7827 7828
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7829

P
Peter Zijlstra 已提交
7830 7831
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7832

P
Peter Zijlstra 已提交
7833 7834 7835
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7836 7837
	}

7838 7839 7840 7841 7842
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7843

7844 7845 7846
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7847 7848
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7849

P
Peter Zijlstra 已提交
7850
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7851

7852 7853 7854 7855 7856
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7857

7858 7859 7860
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7861 7862 7863
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7864

P
Peter Zijlstra 已提交
7865 7866 7867 7868
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7869

P
Peter Zijlstra 已提交
7870
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7871
	}
P
Peter Zijlstra 已提交
7872

P
Peter Zijlstra 已提交
7873 7874 7875 7876
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7877 7878
}

P
Peter Zijlstra 已提交
7879
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7880
{
7881 7882
	int ret;

P
Peter Zijlstra 已提交
7883 7884 7885 7886 7887 7888
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7889 7890 7891 7892 7893
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7894 7895
}

7896
static int tg_set_rt_bandwidth(struct task_group *tg,
7897
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7898
{
P
Peter Zijlstra 已提交
7899
	int i, err = 0;
P
Peter Zijlstra 已提交
7900

7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7912
	mutex_lock(&rt_constraints_mutex);
7913
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7914 7915
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7916
		goto unlock;
P
Peter Zijlstra 已提交
7917

7918
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7919 7920
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7921 7922 7923 7924

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7925
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7926
		rt_rq->rt_runtime = rt_runtime;
7927
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7928
	}
7929
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7930
unlock:
7931
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7932 7933 7934
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7935 7936
}

7937
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7938 7939 7940 7941 7942 7943 7944 7945
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7946
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7947 7948
}

7949
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7950 7951 7952
{
	u64 rt_runtime_us;

7953
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7954 7955
		return -1;

7956
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7957 7958 7959
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7960

7961
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7962 7963 7964
{
	u64 rt_runtime, rt_period;

7965
	rt_period = rt_period_us * NSEC_PER_USEC;
7966 7967
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7968
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7969 7970
}

7971
static long sched_group_rt_period(struct task_group *tg)
7972 7973 7974 7975 7976 7977 7978
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7979
#endif /* CONFIG_RT_GROUP_SCHED */
7980

7981
#ifdef CONFIG_RT_GROUP_SCHED
7982 7983 7984 7985 7986
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7987
	read_lock(&tasklist_lock);
7988
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7989
	read_unlock(&tasklist_lock);
7990 7991 7992 7993
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7994

7995
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7996 7997 7998 7999 8000 8001 8002 8003
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8004
#else /* !CONFIG_RT_GROUP_SCHED */
8005 8006
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8007
	unsigned long flags;
8008
	int i;
8009

8010
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8011 8012 8013
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8014
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8015
		rt_rq->rt_runtime = global_rt_runtime();
8016
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8017
	}
8018
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8019

8020
	return 0;
8021
}
8022
#endif /* CONFIG_RT_GROUP_SCHED */
8023

8024
static int sched_dl_global_validate(void)
8025
{
8026 8027
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
8028
	u64 new_bw = to_ratio(period, runtime);
8029
	struct dl_bw *dl_b;
8030
	int cpu, ret = 0;
8031
	unsigned long flags;
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
8042
	for_each_possible_cpu(cpu) {
8043 8044
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8045

8046
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8047 8048
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
8049
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8050

8051 8052
		rcu_read_unlock_sched();

8053 8054
		if (ret)
			break;
8055 8056
	}

8057
	return ret;
8058 8059
}

8060
static void sched_dl_do_global(void)
8061
{
8062
	u64 new_bw = -1;
8063
	struct dl_bw *dl_b;
8064
	int cpu;
8065
	unsigned long flags;
8066

8067 8068 8069 8070 8071 8072 8073 8074 8075 8076
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
8077 8078
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8079

8080
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8081
		dl_b->bw = new_bw;
8082
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8083 8084

		rcu_read_unlock_sched();
8085
	}
8086 8087 8088 8089 8090 8091 8092
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8093 8094
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8095 8096 8097 8098 8099 8100 8101 8102 8103
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8104 8105
}

8106
int sched_rt_handler(struct ctl_table *table, int write,
8107
		void __user *buffer, size_t *lenp,
8108 8109 8110 8111
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8112
	int ret;
8113 8114 8115 8116 8117

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8118
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8119 8120

	if (!ret && write) {
8121 8122 8123 8124
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8125
		ret = sched_dl_global_validate();
8126 8127 8128
		if (ret)
			goto undo;

8129
		ret = sched_rt_global_constraints();
8130 8131 8132 8133 8134 8135 8136 8137 8138 8139
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8140 8141 8142 8143 8144
	}
	mutex_unlock(&mutex);

	return ret;
}
8145

8146
int sched_rr_handler(struct ctl_table *table, int write,
8147 8148 8149 8150 8151 8152 8153 8154
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8155 8156
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8157
	if (!ret && write) {
8158 8159
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8160 8161 8162 8163 8164
	}
	mutex_unlock(&mutex);
	return ret;
}

8165
#ifdef CONFIG_CGROUP_SCHED
8166

8167
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8168
{
8169
	return css ? container_of(css, struct task_group, css) : NULL;
8170 8171
}

8172 8173
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8174
{
8175 8176
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8177

8178
	if (!parent) {
8179
		/* This is early initialization for the top cgroup */
8180
		return &root_task_group.css;
8181 8182
	}

8183
	tg = sched_create_group(parent);
8184 8185 8186
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

8187 8188
	sched_online_group(tg, parent);

8189 8190 8191
	return &tg->css;
}

8192
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8193
{
8194
	struct task_group *tg = css_tg(css);
8195

8196
	sched_offline_group(tg);
8197 8198
}

8199
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8200
{
8201
	struct task_group *tg = css_tg(css);
8202

8203 8204 8205 8206
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
8207 8208
}

8209
static void cpu_cgroup_fork(struct task_struct *task)
8210 8211 8212 8213
{
	sched_move_task(task);
}

8214
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8215
{
8216
	struct task_struct *task;
8217
	struct cgroup_subsys_state *css;
8218

8219
	cgroup_taskset_for_each(task, css, tset) {
8220
#ifdef CONFIG_RT_GROUP_SCHED
8221
		if (!sched_rt_can_attach(css_tg(css), task))
8222
			return -EINVAL;
8223
#else
8224 8225 8226
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8227
#endif
8228
	}
8229 8230
	return 0;
}
8231

8232
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8233
{
8234
	struct task_struct *task;
8235
	struct cgroup_subsys_state *css;
8236

8237
	cgroup_taskset_for_each(task, css, tset)
8238
		sched_move_task(task);
8239 8240
}

8241
#ifdef CONFIG_FAIR_GROUP_SCHED
8242 8243
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8244
{
8245
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8246 8247
}

8248 8249
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8250
{
8251
	struct task_group *tg = css_tg(css);
8252

8253
	return (u64) scale_load_down(tg->shares);
8254
}
8255 8256

#ifdef CONFIG_CFS_BANDWIDTH
8257 8258
static DEFINE_MUTEX(cfs_constraints_mutex);

8259 8260 8261
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8262 8263
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8264 8265
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8266
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8267
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8288 8289 8290 8291 8292
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8293 8294 8295 8296 8297
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8298
	runtime_enabled = quota != RUNTIME_INF;
8299
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8300 8301 8302 8303 8304 8305
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8306 8307 8308
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8309

P
Paul Turner 已提交
8310
	__refill_cfs_bandwidth_runtime(cfs_b);
8311
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8312 8313
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8314 8315
	raw_spin_unlock_irq(&cfs_b->lock);

8316
	for_each_online_cpu(i) {
8317
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8318
		struct rq *rq = cfs_rq->rq;
8319 8320

		raw_spin_lock_irq(&rq->lock);
8321
		cfs_rq->runtime_enabled = runtime_enabled;
8322
		cfs_rq->runtime_remaining = 0;
8323

8324
		if (cfs_rq->throttled)
8325
			unthrottle_cfs_rq(cfs_rq);
8326 8327
		raw_spin_unlock_irq(&rq->lock);
	}
8328 8329
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8330 8331
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8332
	put_online_cpus();
8333

8334
	return ret;
8335 8336 8337 8338 8339 8340
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8341
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8354
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8355 8356
		return -1;

8357
	quota_us = tg->cfs_bandwidth.quota;
8358 8359 8360 8361 8362 8363 8364 8365 8366 8367
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8368
	quota = tg->cfs_bandwidth.quota;
8369 8370 8371 8372 8373 8374 8375 8376

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8377
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8378 8379 8380 8381 8382
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8383 8384
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8385
{
8386
	return tg_get_cfs_quota(css_tg(css));
8387 8388
}

8389 8390
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8391
{
8392
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8393 8394
}

8395 8396
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8397
{
8398
	return tg_get_cfs_period(css_tg(css));
8399 8400
}

8401 8402
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8403
{
8404
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8405 8406
}

8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8439
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8440 8441 8442 8443 8444
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8445
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8446 8447

		quota = normalize_cfs_quota(tg, d);
8448
		parent_quota = parent_b->hierarchical_quota;
8449 8450 8451 8452 8453 8454 8455 8456 8457 8458

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8459
	cfs_b->hierarchical_quota = quota;
8460 8461 8462 8463 8464 8465

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8466
	int ret;
8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8478 8479 8480 8481 8482
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8483
}
8484

8485
static int cpu_stats_show(struct seq_file *sf, void *v)
8486
{
8487
	struct task_group *tg = css_tg(seq_css(sf));
8488
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8489

8490 8491 8492
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8493 8494 8495

	return 0;
}
8496
#endif /* CONFIG_CFS_BANDWIDTH */
8497
#endif /* CONFIG_FAIR_GROUP_SCHED */
8498

8499
#ifdef CONFIG_RT_GROUP_SCHED
8500 8501
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8502
{
8503
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8504 8505
}

8506 8507
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8508
{
8509
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8510
}
8511

8512 8513
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8514
{
8515
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8516 8517
}

8518 8519
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8520
{
8521
	return sched_group_rt_period(css_tg(css));
8522
}
8523
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8524

8525
static struct cftype cpu_files[] = {
8526
#ifdef CONFIG_FAIR_GROUP_SCHED
8527 8528
	{
		.name = "shares",
8529 8530
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8531
	},
8532
#endif
8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8544 8545
	{
		.name = "stat",
8546
		.seq_show = cpu_stats_show,
8547
	},
8548
#endif
8549
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8550
	{
P
Peter Zijlstra 已提交
8551
		.name = "rt_runtime_us",
8552 8553
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8554
	},
8555 8556
	{
		.name = "rt_period_us",
8557 8558
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8559
	},
8560
#endif
8561
	{ }	/* terminate */
8562 8563
};

8564
struct cgroup_subsys cpu_cgrp_subsys = {
8565
	.css_alloc	= cpu_cgroup_css_alloc,
8566
	.css_released	= cpu_cgroup_css_released,
8567
	.css_free	= cpu_cgroup_css_free,
8568
	.fork		= cpu_cgroup_fork,
8569 8570
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8571
	.legacy_cftypes	= cpu_files,
8572
	.early_init	= true,
8573 8574
};

8575
#endif	/* CONFIG_CGROUP_SCHED */
8576

8577 8578 8579 8580 8581
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};