inode.c 158.9 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include "ext4_jbd2.h"
41 42
#include "xattr.h"
#include "acl.h"
43
#include "ext4_extents.h"
44

45 46
#define MPAGE_DA_EXTENT_TAIL 0x01

47 48 49
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
50 51 52 53
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
54 55
}

56 57
static void ext4_invalidatepage(struct page *page, unsigned long offset);

58 59 60
/*
 * Test whether an inode is a fast symlink.
 */
61
static int ext4_inode_is_fast_symlink(struct inode *inode)
62
{
63
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 65 66 67 68 69
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
70
 * The ext4 forget function must perform a revoke if we are freeing data
71 72 73 74 75 76
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
77 78
 *
 * If the handle isn't valid we're not journaling so there's nothing to do.
79
 */
80 81
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
82 83 84
{
	int err;

85 86 87
	if (!ext4_handle_valid(handle))
		return 0;

88 89 90 91 92 93 94 95 96 97 98 99 100 101
	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

102 103
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
104
		if (bh) {
105
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106
			return ext4_journal_forget(handle, bh);
107 108 109 110 111 112 113
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
114 115
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
116
	if (err)
117
		ext4_abort(inode->i_sb, __func__,
118 119 120 121 122 123 124 125 126 127 128
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
129
	ext4_lblk_t needed;
130 131 132 133 134 135

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
136
	 * like a regular file for ext4 to try to delete it.  Things
137 138 139 140 141 142 143
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
144 145
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
146

147
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

164
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 166 167
	if (!IS_ERR(result))
		return result;

168
	ext4_std_error(inode->i_sb, PTR_ERR(result));
169 170 171 172 173 174 175 176 177 178 179
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
180 181 182
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183
		return 0;
184
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 186 187 188 189 190 191 192 193
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
194
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195
{
196
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197
	jbd_debug(2, "restarting handle %p\n", handle);
198
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 200 201 202 203
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
204
void ext4_delete_inode(struct inode *inode)
205 206
{
	handle_t *handle;
207
	int err;
208

209 210
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
211 212 213 214 215
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

216
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217
	if (IS_ERR(handle)) {
218
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 220 221 222 223
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
224
		ext4_orphan_del(NULL, inode);
225 226 227 228
		goto no_delete;
	}

	if (IS_SYNC(inode))
229
		ext4_handle_sync(handle);
230
	inode->i_size = 0;
231 232 233 234 235 236
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
237
	if (inode->i_blocks)
238
		ext4_truncate(inode);
239 240 241 242 243 244 245

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
246
	if (!ext4_handle_has_enough_credits(handle, 3)) {
247 248 249 250 251 252 253 254 255 256 257 258
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

259
	/*
260
	 * Kill off the orphan record which ext4_truncate created.
261
	 * AKPM: I think this can be inside the above `if'.
262
	 * Note that ext4_orphan_del() has to be able to cope with the
263
	 * deletion of a non-existent orphan - this is because we don't
264
	 * know if ext4_truncate() actually created an orphan record.
265 266
	 * (Well, we could do this if we need to, but heck - it works)
	 */
267 268
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
269 270 271 272 273 274 275 276

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
277
	if (ext4_mark_inode_dirty(handle, inode))
278 279 280
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
281 282
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
301
 *	ext4_block_to_path - parse the block number into array of offsets
302 303 304
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
305 306
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
307
 *
308
 *	To store the locations of file's data ext4 uses a data structure common
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

331
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
332 333
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
334
{
335 336 337
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
338 339 340 341 342 343
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
344
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 346 347
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
348
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349
		offsets[n++] = EXT4_IND_BLOCK;
350 351 352
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
353
		offsets[n++] = EXT4_DIND_BLOCK;
354 355 356 357
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358
		offsets[n++] = EXT4_TIND_BLOCK;
359 360 361 362 363
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
364
		ext4_warning(inode->i_sb, "ext4_block_to_path",
365
				"block %lu > max in inode %lu",
366
				i_block + direct_blocks +
367
				indirect_blocks + double_blocks, inode->i_ino);
368 369 370 371 372 373
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

374
static int __ext4_check_blockref(const char *function, struct inode *inode,
375 376
				 __le32 *p, unsigned int max)
{
377
	__le32 *bref = p;
378 379
	unsigned int blk;

380
	while (bref < p+max) {
381 382 383 384
		blk = le32_to_cpu(*bref++);
		if (blk && 
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 
						    blk, 1))) {
385
			ext4_error(inode->i_sb, function,
386 387
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
 			return -EIO;
 		}
 	}
 	return 0;
}


#define ext4_check_indirect_blockref(inode, bh)                         \
        __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
        __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
			      EXT4_NDIR_BLOCKS)

403
/**
404
 *	ext4_get_branch - read the chain of indirect blocks leading to data
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
429 430
 *
 *      Need to be called with
431
 *      down_read(&EXT4_I(inode)->i_data_sem)
432
 */
A
Aneesh Kumar K.V 已提交
433 434
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
435 436 437 438 439 440 441 442
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
443
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
444 445 446
	if (!p->key)
		goto no_block;
	while (--depth) {
447 448
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
449
			goto failure;
450 451 452 453 454 455 456 457 458 459 460 461 462
                  
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
		
463
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
464 465 466 467 468 469 470 471 472 473 474 475 476
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
477
 *	ext4_find_near - find a place for allocation with sufficient locality
478 479 480
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
481
 *	This function returns the preferred place for block allocation.
482 483 484 485 486 487 488 489 490 491 492 493 494 495
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
496
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
497
{
498
	struct ext4_inode_info *ei = EXT4_I(inode);
499
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
500
	__le32 *p;
501
	ext4_fsblk_t bg_start;
502
	ext4_fsblk_t last_block;
503
	ext4_grpblk_t colour;
504 505
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
521 522 523 524 525 526 527
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
528 529
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

530 531 532 533 534 535 536
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

537 538
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
539
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
540 541
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
542 543 544 545
	return bg_start + colour;
}

/**
546
 *	ext4_find_goal - find a preferred place for allocation.
547 548 549 550
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
551
 *	Normally this function find the preferred place for block allocation,
552
 *	returns it.
553
 */
A
Aneesh Kumar K.V 已提交
554
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
555
		Indirect *partial)
556 557
{
	/*
558
	 * XXX need to get goal block from mballoc's data structures
559 560
	 */

561
	return ext4_find_near(inode, partial);
562 563 564
}

/**
565
 *	ext4_blks_to_allocate: Look up the block map and count the number
566 567 568 569 570 571 572 573 574 575
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
576
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
577 578
		int blocks_to_boundary)
{
579
	unsigned int count = 0;
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
603
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
604 605 606 607 608 609 610 611
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
612
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
613 614 615
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
616
{
617
	struct ext4_allocation_request ar;
618
	int target, i;
619
	unsigned long count = 0, blk_allocated = 0;
620
	int index = 0;
621
	ext4_fsblk_t current_block = 0;
622 623 624 625 626 627 628 629 630 631
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
632 633 634
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
635 636
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
637 638
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
639 640 641 642 643 644 645 646 647
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
648 649 650 651 652 653 654 655 656
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
657
			break;
658
		}
659 660
	}

661 662 663 664 665
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
666 667 668 669 670 671 672 673 674 675 676
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
692
		blk_allocated += ar.len;
693 694
	}
allocated:
695
	/* total number of blocks allocated for direct blocks */
696
	ret = blk_allocated;
697 698 699
	*err = 0;
	return ret;
failed_out:
700
	for (i = 0; i < index; i++)
701
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
702 703 704 705
	return ret;
}

/**
706
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
707 708 709 710 711 712 713 714 715 716
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
717
 *	the same format as ext4_get_branch() would do. We are calling it after
718 719
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
720
 *	picture as after the successful ext4_get_block(), except that in one
721 722 723 724 725 726
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
727
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
728 729
 *	as described above and return 0.
 */
730
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
731 732 733
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
734 735 736 737 738 739
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
740 741
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
742

743
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
762
		err = ext4_journal_get_create_access(handle, bh);
763 764 765 766 767 768 769 770 771 772
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
773
		if (n == indirect_blks) {
774 775 776 777 778 779 780 781 782 783 784 785 786
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

787 788
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
789 790 791 792 793 794 795 796
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
797
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
798
		ext4_journal_forget(handle, branch[i].bh);
799
	}
800
	for (i = 0; i < indirect_blks; i++)
801
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
802

803
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
804 805 806 807 808

	return err;
}

/**
809
 * ext4_splice_branch - splice the allocated branch onto inode.
810 811 812
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
813
 *	ext4_alloc_branch)
814 815 816 817 818 819 820 821
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
822
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
823
			ext4_lblk_t block, Indirect *where, int num, int blks)
824 825 826
{
	int i;
	int err = 0;
827
	ext4_fsblk_t current_block;
828 829 830 831 832 833 834 835

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
836
		err = ext4_journal_get_write_access(handle, where->bh);
837 838 839 840 841 842 843 844 845 846 847 848 849 850
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
851
			*(where->p + i) = cpu_to_le32(current_block++);
852 853 854 855
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
856
	inode->i_ctime = ext4_current_time(inode);
857
	ext4_mark_inode_dirty(handle, inode);
858 859 860 861 862 863 864 865 866

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
867
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
868 869
		 */
		jbd_debug(5, "splicing indirect only\n");
870 871
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
872 873 874 875 876 877 878 879 880 881 882 883 884
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
885
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
886
		ext4_journal_forget(handle, where[i].bh);
887 888
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
889
	}
890
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
891 892 893 894 895

	return err;
}

/*
896 897 898 899
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
916
 *
917 918 919 920 921
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
922
 */
923
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
924 925
				  ext4_lblk_t iblock, unsigned int maxblocks,
				  struct buffer_head *bh_result,
926
				  int flags)
927 928
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
929
	ext4_lblk_t offsets[4];
930 931
	Indirect chain[4];
	Indirect *partial;
932
	ext4_fsblk_t goal;
933 934 935 936
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
937
	ext4_fsblk_t first_block = 0;
938

A
Alex Tomas 已提交
939
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
940
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
A
Aneesh Kumar K.V 已提交
941 942
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
943 944 945 946

	if (depth == 0)
		goto out;

947
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
948 949 950 951 952 953 954 955

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
956
			ext4_fsblk_t blk;
957 958 959 960 961 962 963 964

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
965
		goto got_it;
966 967 968
	}

	/* Next simple case - plain lookup or failed read of indirect block */
969
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
970 971 972
		goto cleanup;

	/*
973
	 * Okay, we need to do block allocation.
974
	*/
975
	goal = ext4_find_goal(inode, iblock, partial);
976 977 978 979 980 981 982 983

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
984
	count = ext4_blks_to_allocate(partial, indirect_blks,
985 986
					maxblocks, blocks_to_boundary);
	/*
987
	 * Block out ext4_truncate while we alter the tree
988
	 */
989 990 991
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
992 993

	/*
994
	 * The ext4_splice_branch call will free and forget any buffers
995 996 997 998 999 1000
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1001
		err = ext4_splice_branch(handle, inode, iblock,
1002
					partial, indirect_blks, count);
1003
	else 
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1061 1062 1063
	if (!blocks)
		return 0;

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1084 1085 1086 1087 1088 1089 1090 1091 1092
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1093 1094 1095 1096 1097

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1098 1099 1100 1101 1102 1103

	/*
	 * free those over-booking quota for metadata blocks
	 */
	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1104 1105 1106 1107 1108 1109 1110 1111

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
	if (!total && (atomic_read(&inode->i_writecount) == 0))
		ext4_discard_preallocations(inode);
1112 1113
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
static int check_block_validity(struct inode *inode, sector_t logical,
				sector_t phys, int len)
{
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
		ext4_error(inode->i_sb, "check_block_validity",
			   "inode #%lu logical block %llu mapped to %llu "
			   "(size %d)", inode->i_ino,
			   (unsigned long long) logical,
			   (unsigned long long) phys, len);
		WARN_ON(1);
		return -EIO;
	}
	return 0;
}

1129
/*
1130
 * The ext4_get_blocks() function tries to look up the requested blocks,
1131
 * and returns if the blocks are already mapped.
1132 1133 1134 1135 1136 1137
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
1138
 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1151 1152
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
1153
		    int flags)
1154 1155
{
	int retval;
1156 1157

	clear_buffer_mapped(bh);
1158
	clear_buffer_unwritten(bh);
1159

1160
	/*
1161 1162
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1163 1164 1165 1166
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1167
				bh, 0);
1168
	} else {
1169
		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1170
					     bh, 0);
1171
	}
1172
	up_read((&EXT4_I(inode)->i_data_sem));
1173

1174 1175 1176 1177 1178 1179 1180
	if (retval > 0 && buffer_mapped(bh)) {
		int ret = check_block_validity(inode, block, 
					       bh->b_blocknr, retval);
		if (ret != 0)
			return ret;
	}

1181
	/* If it is only a block(s) look up */
1182
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1193 1194
		return retval;

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1207
	/*
1208 1209 1210 1211
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1212 1213
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1214 1215 1216 1217 1218 1219 1220

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1221
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1222
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1223 1224 1225 1226
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1227 1228
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1229
					      bh, flags);
1230
	} else {
1231
		retval = ext4_ind_get_blocks(handle, inode, block,
1232
					     max_blocks, bh, flags);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1243
	}
1244

1245
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1246
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1247 1248 1249 1250 1251 1252 1253

	/*
	 * Update reserved blocks/metadata blocks after successful
	 * block allocation which had been deferred till now.
	 */
	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
		ext4_da_update_reserve_space(inode, retval);
1254

1255
	up_write((&EXT4_I(inode)->i_data_sem));
1256 1257 1258 1259 1260 1261
	if (retval > 0 && buffer_mapped(bh)) {
		int ret = check_block_validity(inode, block, 
					       bh->b_blocknr, retval);
		if (ret != 0)
			return ret;
	}
1262 1263 1264
	return retval;
}

1265 1266 1267
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1268 1269
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1270
{
1271
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1272
	int ret = 0, started = 0;
1273
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1274
	int dio_credits;
1275

J
Jan Kara 已提交
1276 1277 1278 1279
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1280 1281
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1282
		if (IS_ERR(handle)) {
1283
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1284
			goto out;
1285
		}
J
Jan Kara 已提交
1286
		started = 1;
1287 1288
	}

1289
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1290
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1291 1292 1293
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1294
	}
J
Jan Kara 已提交
1295 1296 1297
	if (started)
		ext4_journal_stop(handle);
out:
1298 1299 1300 1301 1302 1303
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1304
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1305
				ext4_lblk_t block, int create, int *errp)
1306 1307 1308
{
	struct buffer_head dummy;
	int fatal = 0, err;
1309
	int flags = 0;
1310 1311 1312 1313 1314 1315

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1316 1317 1318
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1319
	/*
1320 1321
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1338
			J_ASSERT(handle != NULL);
1339 1340 1341 1342 1343

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1344
			 * writes use ext4_get_block instead, so it's not a
1345 1346 1347 1348
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1349
			fatal = ext4_journal_get_create_access(handle, bh);
1350
			if (!fatal && !buffer_uptodate(bh)) {
1351
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1352 1353 1354
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1355 1356
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1373
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1374
			       ext4_lblk_t block, int create, int *err)
1375
{
1376
	struct buffer_head *bh;
1377

1378
	bh = ext4_getblk(handle, inode, block, create, err);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1392 1393 1394 1395 1396 1397 1398
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1399 1400 1401 1402 1403 1404 1405
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1406 1407 1408
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
	     block_start = block_end, bh = next)
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1427
 * close off a transaction and start a new one between the ext4_get_block()
1428
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1429 1430
 * prepare_write() is the right place.
 *
1431 1432
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1433 1434 1435 1436
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1437
 * By accident, ext4 can be reentered when a transaction is open via
1438 1439 1440 1441 1442 1443
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1444
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1445 1446 1447 1448 1449 1450 1451 1452 1453
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1454
	return ext4_journal_get_write_access(handle, bh);
1455 1456
}

N
Nick Piggin 已提交
1457 1458 1459
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1460
{
1461
	struct inode *inode = mapping->host;
1462
	int ret, needed_blocks;
1463 1464
	handle_t *handle;
	int retries = 0;
1465
	struct page *page;
N
Nick Piggin 已提交
1466
 	pgoff_t index;
1467
	unsigned from, to;
N
Nick Piggin 已提交
1468

1469 1470 1471 1472
	trace_mark(ext4_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
1473 1474 1475 1476 1477
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
N
Nick Piggin 已提交
1478
 	index = pos >> PAGE_CACHE_SHIFT;
1479 1480
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1481 1482

retry:
1483 1484 1485 1486
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1487
	}
1488

1489 1490 1491 1492
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1493
	page = grab_cache_page_write_begin(mapping, index, flags);
1494 1495 1496 1497 1498 1499 1500
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1501
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1502
				ext4_get_block);
N
Nick Piggin 已提交
1503 1504

	if (!ret && ext4_should_journal_data(inode)) {
1505 1506 1507
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1508 1509

	if (ret) {
1510 1511
		unlock_page(page);
		page_cache_release(page);
1512 1513 1514 1515
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1516 1517 1518
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1519 1520
		 */
		if (pos + len > inode->i_size)
1521 1522 1523 1524
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1525
			vmtruncate(inode, inode->i_size);
1526 1527 1528 1529 1530 1531 1532 1533 1534
			/* 
			 * If vmtruncate failed early the inode might
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1535 1536
	}

1537
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1538
		goto retry;
1539
out:
1540 1541 1542
	return ret;
}

N
Nick Piggin 已提交
1543 1544
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1545 1546 1547 1548
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1549
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1550 1551
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
static int ext4_generic_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1598 1599 1600 1601
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1602
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1603 1604
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1605 1606 1607 1608
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1609
{
1610
	handle_t *handle = ext4_journal_current_handle();
1611
	struct inode *inode = mapping->host;
1612 1613
	int ret = 0, ret2;

1614 1615 1616 1617
	trace_mark(ext4_ordered_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
1618
	ret = ext4_jbd2_file_inode(handle, inode);
1619 1620

	if (ret == 0) {
1621
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1622
							page, fsdata);
1623
		copied = ret2;
1624 1625 1626 1627 1628 1629
		if (pos + len > inode->i_size)
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1630 1631
		if (ret2 < 0)
			ret = ret2;
1632
	}
1633
	ret2 = ext4_journal_stop(handle);
1634 1635
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	if (pos + len > inode->i_size) {
		vmtruncate(inode, inode->i_size);
		/* 
		 * If vmtruncate failed early the inode might still be
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1649
	return ret ? ret : copied;
1650 1651
}

N
Nick Piggin 已提交
1652 1653 1654 1655
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1656
{
1657
	handle_t *handle = ext4_journal_current_handle();
1658
	struct inode *inode = mapping->host;
1659 1660
	int ret = 0, ret2;

1661 1662 1663 1664
	trace_mark(ext4_writeback_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
1665
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1666
							page, fsdata);
1667
	copied = ret2;
1668 1669 1670 1671 1672 1673 1674
	if (pos + len > inode->i_size)
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1675 1676
	if (ret2 < 0)
		ret = ret2;
1677

1678
	ret2 = ext4_journal_stop(handle);
1679 1680
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1681

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	if (pos + len > inode->i_size) {
		vmtruncate(inode, inode->i_size);
		/* 
		 * If vmtruncate failed early the inode might still be
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1693
	return ret ? ret : copied;
1694 1695
}

N
Nick Piggin 已提交
1696 1697 1698 1699
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1700
{
1701
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1702
	struct inode *inode = mapping->host;
1703 1704
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1705
	unsigned from, to;
1706
	loff_t new_i_size;
1707

1708 1709 1710 1711
	trace_mark(ext4_journalled_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1712 1713 1714 1715 1716 1717 1718 1719
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1720 1721

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1722
				to, &partial, write_end_fn);
1723 1724
	if (!partial)
		SetPageUptodate(page);
1725 1726
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1727
		i_size_write(inode, pos+copied);
1728
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1729 1730
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1731
		ret2 = ext4_mark_inode_dirty(handle, inode);
1732 1733 1734
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1735

1736
	unlock_page(page);
1737 1738 1739 1740 1741 1742 1743 1744
	page_cache_release(page);
	if (pos + len > inode->i_size)
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1745
	ret2 = ext4_journal_stop(handle);
1746 1747
	if (!ret)
		ret = ret2;
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	if (pos + len > inode->i_size) {
		vmtruncate(inode, inode->i_size);
		/* 
		 * If vmtruncate failed early the inode might still be
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1758 1759

	return ret ? ret : copied;
1760
}
1761 1762 1763

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1764
	int retries = 0;
1765 1766
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1767 1768 1769 1770 1771 1772

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1773
repeat:
1774 1775 1776 1777 1778 1779 1780 1781
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1792
	if (ext4_claim_free_blocks(sbi, total)) {
1793
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1794 1795 1796 1797
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1798
		vfs_dq_release_reservation_block(inode, total);
1799 1800 1801 1802 1803 1804 1805 1806 1807
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1808
static void ext4_da_release_space(struct inode *inode, int to_free)
1809 1810 1811 1812
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1813 1814 1815
	if (!to_free)
		return;		/* Nothing to release, exit */

1816
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1832
	/* recalculate the number of metablocks still need to be reserved */
1833
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1834 1835 1836 1837 1838 1839 1840 1841
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1842 1843
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1844 1845

	/* update per-inode reservations */
1846 1847
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1848 1849 1850 1851

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1852 1853

	vfs_dq_release_reservation_block(inode, release);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
}

static void ext4_da_page_release_reservation(struct page *page,
						unsigned long offset)
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1874
	ext4_da_release_space(page->mapping->host, to_release);
1875
}
1876

1877 1878 1879 1880 1881 1882
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
1883 1884 1885
	sector_t b_blocknr;		/* start block number of extent */
	size_t b_size;			/* size of extent */
	unsigned long b_state;		/* state of the extent */
1886 1887
	unsigned long first_page, next_page;	/* extent of pages */
	struct writeback_control *wbc;
1888
	int io_done;
1889
	int pages_written;
1890
	int retval;
1891 1892 1893 1894
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1895
 * them with writepage() call back
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1908
	long pages_skipped;
1909 1910 1911 1912 1913
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1914 1915

	BUG_ON(mpd->next_page <= mpd->first_page);
1916 1917 1918
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1919
	 * If we look at mpd->b_blocknr we would only be looking
1920 1921
	 * at the currently mapped buffer_heads.
	 */
1922 1923 1924
	index = mpd->first_page;
	end = mpd->next_page - 1;

1925
	pagevec_init(&pvec, 0);
1926
	while (index <= end) {
1927
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1928 1929 1930 1931 1932
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1933 1934 1935 1936 1937 1938 1939 1940
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1941
			pages_skipped = mpd->wbc->pages_skipped;
1942
			err = mapping->a_ops->writepage(page, mpd->wbc);
1943 1944 1945 1946 1947
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1948
				mpd->pages_written++;
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
1971
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1972 1973 1974 1975 1976 1977 1978 1979 1980
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1981
	pgoff_t index, end;
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2039
				} else if (buffer_mapped(bh))
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

2099 2100 2101 2102 2103 2104 2105
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
2106
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2107
	printk(KERN_EMERG "dirty_blocks=%lld\n",
2108
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2109
	printk(KERN_EMERG "Block reservation details\n");
2110
	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2111
			EXT4_I(inode)->i_reserved_data_blocks);
2112
	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2113 2114 2115 2116
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

2117 2118 2119
/*
 * mpage_da_map_blocks - go through given space
 *
2120
 * @mpd - bh describing space
2121 2122 2123 2124
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2125
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2126
{
2127
	int err, blks, get_blocks_flags;
A
Aneesh Kumar K.V 已提交
2128
	struct buffer_head new;
2129 2130 2131 2132
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2133 2134 2135 2136

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2137
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2138 2139
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2140
		return 0;
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2151
	/*
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2168
	 */
2169 2170 2171 2172 2173
	new.b_state = 0;
	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
	if (mpd->b_state & (1 << BH_Delay))
		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2174
	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2175
			       &new, get_blocks_flags);
2176 2177
	if (blks < 0) {
		err = blks;
2178 2179 2180 2181
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2182 2183 2184
		 */
		if (err == -EAGAIN)
			return 0;
2185 2186

		if (err == -ENOSPC &&
2187
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2188 2189 2190 2191
			mpd->retval = err;
			return 0;
		}

2192
		/*
2193 2194 2195 2196 2197
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2198 2199 2200 2201 2202 2203
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
2204
				  mpd->b_size >> mpd->inode->i_blkbits, err);
2205 2206
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2207
		if (err == -ENOSPC) {
2208
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2209
		}
2210
		/* invalidate all the pages */
2211
		ext4_da_block_invalidatepages(mpd, next,
2212
				mpd->b_size >> mpd->inode->i_blkbits);
2213 2214
		return err;
	}
2215 2216 2217
	BUG_ON(blks == 0);

	new.b_size = (blks << mpd->inode->i_blkbits);
2218

2219 2220
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2221

2222 2223 2224 2225
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2226 2227
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2228
		mpage_put_bnr_to_bhs(mpd, next, &new);
2229

2230 2231 2232 2233 2234 2235 2236
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2237
	 * Update on-disk size along with block allocation.
2238 2239 2240 2241 2242 2243 2244 2245 2246
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2247
	return 0;
2248 2249
}

2250 2251
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2263 2264
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2265 2266
{
	sector_t next;
2267
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2268

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2291 2292 2293
	/*
	 * First block in the extent
	 */
2294 2295 2296 2297
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2298 2299 2300
		return;
	}

2301
	next = mpd->b_blocknr + nrblocks;
2302 2303 2304
	/*
	 * Can we merge the block to our big extent?
	 */
2305 2306
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2307 2308 2309
		return;
	}

2310
flush_it:
2311 2312 2313 2314
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2315 2316
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2317 2318
	mpd->io_done = 1;
	return;
2319 2320
}

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
	/*
	 * unmapped buffer is possible for holes.
	 * delay buffer is possible with delayed allocation.
	 * We also need to consider unwritten buffer as unmapped.
	 */
	return (!buffer_mapped(bh) || buffer_delay(bh) ||
				buffer_unwritten(bh)) && buffer_dirty(bh);
}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2346
	struct buffer_head *bh, *head;
2347 2348
	sector_t logical;

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2360 2361 2362 2363 2364 2365
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2366
		 * and start IO on them using writepage()
2367 2368
		 */
		if (mpd->next_page != mpd->first_page) {
2369 2370
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2371 2372 2373 2374 2375 2376 2377
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2388 2389 2390
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2391 2392 2393 2394 2395 2396 2397
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2398 2399
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2400 2401
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2402 2403 2404 2405 2406 2407 2408 2409
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2410 2411 2412 2413 2414 2415
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
			 * with the page in ext4_da_writepage
			 */
2416
			if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2417 2418 2419
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2420 2421
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2422 2423 2424 2425 2426 2427 2428 2429 2430
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2431 2432
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2433
			}
2434 2435 2436 2437 2438 2439 2440 2441
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2442 2443 2444
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2445 2446 2447 2448 2449 2450 2451
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2452 2453 2454 2455 2456
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2457 2458 2459 2460
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2461 2462 2463 2464 2465 2466 2467 2468 2469

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2470
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2471 2472
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2473 2474 2475 2476
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2477 2478 2479 2480 2481
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2482
		map_bh(bh_result, inode->i_sb, invalid_block);
2483 2484 2485 2486
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2487 2488 2489 2490 2491 2492 2493 2494
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2495
			set_buffer_new(bh_result);
2496 2497
			set_buffer_mapped(bh_result);
		}
2498 2499 2500 2501 2502
		ret = 0;
	}

	return ret;
}
2503

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2521 2522 2523 2524 2525
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

2526 2527
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

2528 2529 2530 2531
	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2532
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2533
	BUG_ON(create && ret == 0);
2534 2535 2536 2537 2538
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2539 2540 2541
}

/*
2542 2543 2544 2545 2546
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2547
 */
2548 2549 2550 2551
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	int ret = 0;
2552
	loff_t size;
2553
	unsigned int len;
2554 2555 2556
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2557 2558 2559
	trace_mark(ext4_da_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
2560 2561 2562 2563 2564
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2565

2566
	if (page_has_buffers(page)) {
2567
		page_bufs = page_buffers(page);
2568 2569
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					ext4_bh_unmapped_or_delay)) {
2570
			/*
2571 2572
			 * We don't want to do  block allocation
			 * So redirty the page and return
2573 2574 2575
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2597
					  noalloc_get_block_write);
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
						ext4_bh_unmapped_or_delay)) {
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2612 2613 2614 2615 2616
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2617 2618
		/* now mark the buffer_heads as dirty and uptodate */
		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2619 2620 2621
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2622
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2623
	else
2624 2625
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2626 2627 2628 2629

	return ret;
}

2630
/*
2631 2632 2633 2634 2635
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2636
 */
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2654

2655
static int ext4_da_writepages(struct address_space *mapping,
2656
			      struct writeback_control *wbc)
2657
{
2658 2659
	pgoff_t	index;
	int range_whole = 0;
2660
	handle_t *handle = NULL;
2661
	struct mpage_da_data mpd;
2662
	struct inode *inode = mapping->host;
2663
	int no_nrwrite_index_update;
2664 2665
	int pages_written = 0;
	long pages_skipped;
2666
	int range_cyclic, cycled = 1, io_done = 0;
2667 2668
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2669

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	trace_mark(ext4_da_writepages,
		   "dev %s ino %lu nr_t_write %ld "
		   "pages_skipped %ld range_start %llu "
		   "range_end %llu nonblocking %d "
		   "for_kupdate %d for_reclaim %d "
		   "for_writepages %d range_cyclic %d",
		   inode->i_sb->s_id, inode->i_ino,
		   wbc->nr_to_write, wbc->pages_skipped,
		   (unsigned long long) wbc->range_start,
		   (unsigned long long) wbc->range_end,
		   wbc->nonblocking, wbc->for_kupdate,
		   wbc->for_reclaim, wbc->for_writepages,
		   wbc->range_cyclic);

2684 2685 2686 2687 2688
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2689
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2690
		return 0;
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
		return -EROFS;

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2715 2716
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2717

2718 2719
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2720
		index = mapping->writeback_index;
2721 2722 2723 2724 2725 2726
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2727
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2728

2729 2730 2731
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2732 2733 2734 2735 2736 2737 2738 2739
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2740
retry:
2741
	while (!ret && wbc->nr_to_write > 0) {
2742 2743 2744 2745 2746 2747 2748 2749

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2750
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2751

2752 2753 2754 2755
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2756
			printk(KERN_CRIT "%s: jbd2_start: "
2757 2758 2759
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2760 2761
			goto out_writepages;
		}
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
		 * If we have a contigous extent of pages and we
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
		wbc->nr_to_write -= mpd.pages_written;
2794

2795
		ext4_journal_stop(handle);
2796

2797
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2798 2799 2800 2801
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2802
			jbd2_journal_force_commit_nested(sbi->s_journal);
2803 2804 2805
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2806 2807 2808 2809
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2810 2811
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2812
			ret = 0;
2813
			io_done = 1;
2814
		} else if (wbc->nr_to_write)
2815 2816 2817 2818 2819 2820
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2821
	}
2822 2823 2824 2825 2826 2827 2828
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2829 2830 2831 2832 2833 2834 2835
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
2836
	wbc->range_cyclic = range_cyclic;
2837 2838 2839 2840 2841 2842
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2843

2844
out_writepages:
2845 2846 2847
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2848 2849 2850 2851 2852 2853 2854 2855
	trace_mark(ext4_da_writepage_result,
		   "dev %s ino %lu ret %d pages_written %d "
		   "pages_skipped %ld congestion %d "
		   "more_io %d no_nrwrite_index_update %d",
		   inode->i_sb->s_id, inode->i_ino, ret,
		   pages_written, wbc->pages_skipped,
		   wbc->encountered_congestion, wbc->more_io,
		   wbc->no_nrwrite_index_update);
2856
	return ret;
2857 2858
}

2859 2860 2861 2862 2863 2864 2865 2866 2867
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2868
	 * counters can get slightly wrong with percpu_counter_batch getting
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2886 2887 2888 2889
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
2890
	int ret, retries = 0;
2891 2892 2893 2894 2895 2896 2897 2898 2899
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2900 2901 2902 2903 2904 2905 2906

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2907 2908 2909 2910 2911

	trace_mark(ext4_da_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
2912
retry:
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2924 2925 2926
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2927

2928
	page = grab_cache_page_write_begin(mapping, index, flags);
2929 2930 2931 2932 2933
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2934 2935 2936
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2937
				ext4_da_get_block_prep);
2938 2939 2940 2941
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2942 2943 2944 2945 2946 2947 2948
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
2949 2950
	}

2951 2952
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2953 2954 2955 2956
out:
	return ret;
}

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
					 unsigned long offset)
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2972
	for (i = 0; i < idx; i++)
2973 2974
		bh = bh->b_this_page;

2975
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2976 2977 2978 2979
		return 0;
	return 1;
}

2980 2981 2982 2983 2984 2985 2986 2987 2988
static int ext4_da_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2989
	unsigned long start, end;
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3003

3004 3005 3006 3007
	trace_mark(ext4_da_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
3008
	start = pos & (PAGE_CACHE_SIZE - 1);
3009
	end = start + copied - 1;
3010 3011 3012 3013 3014 3015 3016 3017

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3029

3030 3031 3032
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3033 3034 3035 3036 3037
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3038
		}
3039
	}
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3061
	ext4_da_page_release_reservation(page, offset);
3062 3063 3064 3065 3066 3067 3068

out:
	ext4_invalidatepage(page, offset);

	return;
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
	 * 
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
	 * 
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3111

3112 3113 3114 3115 3116
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3117
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3118 3119 3120 3121 3122 3123 3124 3125
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3126
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3127 3128 3129 3130 3131
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3142
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3154
		 * NB. EXT4_STATE_JDATA is not set on files other than
3155 3156 3157 3158 3159 3160
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3161 3162
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
3163 3164 3165
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3166 3167 3168 3169 3170

		if (err)
			return 0;
	}

3171
	return generic_block_bmap(mapping, block, ext4_get_block);
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
3187 3188 3189 3190 3191 3192 3193 3194
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
3195
 *
3196
 * In all journaling modes block_write_full_page() will start the I/O.
3197 3198 3199
 *
 * Problem:
 *
3200 3201
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
3202 3203 3204
 *
 * Similar for:
 *
3205
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3206
 *
3207
 * Same applies to ext4_get_block().  We will deadlock on various things like
3208
 * lock_journal and i_data_sem
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
3239
static int __ext4_normal_writepage(struct page *page,
3240 3241 3242 3243 3244
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
3245
		return nobh_writepage(page, noalloc_get_block_write, wbc);
3246
	else
3247 3248
		return block_write_full_page(page, noalloc_get_block_write,
					     wbc);
3249 3250
}

3251
static int ext4_normal_writepage(struct page *page,
3252 3253 3254
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3255 3256 3257
	loff_t size = i_size_read(inode);
	loff_t len;

3258 3259 3260
	trace_mark(ext4_normal_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3261 3262 3263 3264 3265
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3280 3281

	if (!ext4_journal_current_handle())
3282
		return __ext4_normal_writepage(page, wbc);
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
3295 3296 3297 3298
	handle_t *handle = NULL;
	int ret = 0;
	int err;

3299
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3300
				  noalloc_get_block_write);
3301 3302 3303 3304 3305 3306 3307 3308 3309
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
3310

3311
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3312 3313
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
3314
		goto out;
3315 3316
	}

3317 3318
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3319

3320 3321 3322 3323
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
3324
	err = ext4_journal_stop(handle);
3325 3326 3327
	if (!ret)
		ret = err;

3328 3329 3330 3331 3332 3333
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
3334
	unlock_page(page);
3335
out:
3336 3337 3338
	return ret;
}

3339
static int ext4_journalled_writepage(struct page *page,
3340 3341 3342
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3343 3344
	loff_t size = i_size_read(inode);
	loff_t len;
3345

3346 3347 3348
	trace_mark(ext4_journalled_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3349 3350 3351 3352 3353
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3368

3369
	if (ext4_journal_current_handle())
3370 3371
		goto no_write;

3372
	if (PageChecked(page)) {
3373 3374 3375 3376 3377
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
3378
		return __ext4_journalled_writepage(page, wbc);
3379 3380 3381 3382 3383 3384
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
3385 3386
		return block_write_full_page(page, noalloc_get_block_write,
					     wbc);
3387 3388 3389 3390
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
3391
	return 0;
3392 3393
}

3394
static int ext4_readpage(struct file *file, struct page *page)
3395
{
3396
	return mpage_readpage(page, ext4_get_block);
3397 3398 3399
}

static int
3400
ext4_readpages(struct file *file, struct address_space *mapping,
3401 3402
		struct list_head *pages, unsigned nr_pages)
{
3403
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3404 3405
}

3406
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3407
{
3408
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3409 3410 3411 3412 3413 3414 3415

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3416 3417 3418 3419
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3420 3421
}

3422
static int ext4_releasepage(struct page *page, gfp_t wait)
3423
{
3424
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3425 3426 3427 3428

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3429 3430 3431 3432
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3433 3434 3435 3436 3437 3438 3439 3440
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3441 3442
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3443
 */
3444
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3445 3446 3447 3448 3449
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3450
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3451
	handle_t *handle;
3452 3453 3454 3455 3456 3457 3458 3459
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3460 3461 3462 3463 3464 3465
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3466
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3467 3468 3469 3470
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3471 3472
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3473
			ext4_journal_stop(handle);
3474 3475 3476 3477 3478
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3479
				 ext4_get_block, NULL);
3480

J
Jan Kara 已提交
3481
	if (orphan) {
3482 3483
		int err;

J
Jan Kara 已提交
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3494
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3495
		if (ret > 0) {
3496 3497 3498 3499 3500 3501 3502 3503
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3504
				 * ext4_mark_inode_dirty() to userspace.  So
3505 3506
				 * ignore it.
				 */
3507
				ext4_mark_inode_dirty(handle, inode);
3508 3509
			}
		}
3510
		err = ext4_journal_stop(handle);
3511 3512 3513 3514 3515 3516 3517 3518
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3519
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3531
static int ext4_journalled_set_page_dirty(struct page *page)
3532 3533 3534 3535 3536
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3537
static const struct address_space_operations ext4_ordered_aops = {
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3550 3551
};

3552
static const struct address_space_operations ext4_writeback_aops = {
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3565 3566
};

3567
static const struct address_space_operations ext4_journalled_aops = {
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_journalled_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3579 3580
};

3581
static const struct address_space_operations ext4_da_aops = {
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_da_writepage,
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3595 3596
};

3597
void ext4_set_aops(struct inode *inode)
3598
{
3599 3600 3601 3602
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3603
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3604 3605 3606
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3607 3608
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3609
	else
3610
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3611 3612 3613
}

/*
3614
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3615 3616 3617 3618
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3619
int ext4_block_truncate_page(handle_t *handle,
3620 3621
		struct address_space *mapping, loff_t from)
{
3622
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3623
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3624 3625
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3626 3627
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3628
	struct page *page;
3629 3630
	int err = 0;

3631 3632 3633 3634
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

3635 3636 3637 3638 3639 3640 3641 3642 3643
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3644
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3645
		zero_user(page, offset, length);
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3670
		ext4_get_block(inode, iblock, bh, 0);
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3691
	if (ext4_should_journal_data(inode)) {
3692
		BUFFER_TRACE(bh, "get write access");
3693
		err = ext4_journal_get_write_access(handle, bh);
3694 3695 3696 3697
		if (err)
			goto unlock;
	}

3698
	zero_user(page, offset, length);
3699 3700 3701 3702

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3703
	if (ext4_should_journal_data(inode)) {
3704
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3705
	} else {
3706
		if (ext4_should_order_data(inode))
3707
			err = ext4_jbd2_file_inode(handle, inode);
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3731
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3732 3733
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3734
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3735 3736 3737
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3738
 *	This is a helper function used by ext4_truncate().
3739 3740 3741 3742 3743 3744 3745
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3746
 *	past the truncation point is possible until ext4_truncate()
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3765
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
3766
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3767 3768 3769 3770 3771 3772 3773 3774
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3775
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3786
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3798
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3799 3800 3801 3802 3803 3804
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3805
	while (partial > p) {
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3821 3822
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3823 3824 3825 3826 3827
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3828 3829
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3830
		}
3831 3832
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3833 3834
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3835
			ext4_journal_get_write_access(handle, bh);
3836 3837 3838 3839 3840
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
3841
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3842
	 * on them.  We've already detached each block from the file, so
3843
	 * bforget() in jbd2_journal_forget() should be safe.
3844
	 *
3845
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3846 3847 3848 3849
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3850
			struct buffer_head *tbh;
3851 3852

			*p = 0;
A
Aneesh Kumar K.V 已提交
3853 3854
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3855 3856 3857
		}
	}

3858
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3859 3860 3861
}

/**
3862
 * ext4_free_data - free a list of data blocks
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3880
static void ext4_free_data(handle_t *handle, struct inode *inode,
3881 3882 3883
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3884
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3885 3886 3887 3888
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3889
	ext4_fsblk_t nr;		    /* Current block # */
3890 3891 3892 3893 3894 3895
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3896
		err = ext4_journal_get_write_access(handle, this_bh);
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3914
				ext4_clear_blocks(handle, inode, this_bh,
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3925
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3926 3927 3928
				  count, block_to_free_p, p);

	if (this_bh) {
3929
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3930 3931 3932 3933 3934 3935 3936

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
3937
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3938
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3939 3940 3941 3942 3943 3944
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3945 3946 3947 3948
	}
}

/**
3949
 *	ext4_free_branches - free an array of branches
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3961
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3962 3963 3964
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3965
	ext4_fsblk_t nr;
3966 3967
	__le32 *p;

3968
	if (ext4_handle_is_aborted(handle))
3969 3970 3971 3972
		return;

	if (depth--) {
		struct buffer_head *bh;
3973
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3988
				ext4_error(inode->i_sb, "ext4_free_branches",
3989
					   "Read failure, inode=%lu, block=%llu",
3990 3991 3992 3993 3994 3995
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3996
			ext4_free_branches(handle, inode, bh,
3997 3998 3999
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4000 4001 4002 4003 4004

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
4005
			 * jbd2_journal_revoke().
4006 4007 4008
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
4009
			 * transaction then jbd2_journal_forget() will simply
4010
			 * brelse() it.  That means that if the underlying
4011
			 * block is reallocated in ext4_get_block(),
4012 4013 4014 4015 4016 4017 4018 4019
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
4020
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4038
			if (ext4_handle_is_aborted(handle))
4039 4040
				return;
			if (try_to_extend_transaction(handle, inode)) {
4041 4042
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
4043 4044
			}

4045
			ext4_free_blocks(handle, inode, nr, 1, 1);
4046 4047 4048 4049 4050 4051 4052

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4053
				if (!ext4_journal_get_write_access(handle,
4054 4055 4056
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4057 4058 4059 4060
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4061 4062 4063 4064 4065 4066
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4067
		ext4_free_data(handle, inode, parent_bh, first, last);
4068 4069 4070
	}
}

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4084
/*
4085
 * ext4_truncate()
4086
 *
4087 4088
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4105
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4106
 * that this inode's truncate did not complete and it will again call
4107 4108
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4109
 * that's fine - as long as they are linked from the inode, the post-crash
4110
 * ext4_truncate() run will find them and release them.
4111
 */
4112
void ext4_truncate(struct inode *inode)
4113 4114
{
	handle_t *handle;
4115
	struct ext4_inode_info *ei = EXT4_I(inode);
4116
	__le32 *i_data = ei->i_data;
4117
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4118
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4119
	ext4_lblk_t offsets[4];
4120 4121 4122 4123
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4124
	ext4_lblk_t last_block;
4125 4126
	unsigned blocksize = inode->i_sb->s_blocksize;

4127
	if (!ext4_can_truncate(inode))
4128 4129
		return;

4130
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4131 4132
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
4133
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4134
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4135 4136
		return;
	}
A
Alex Tomas 已提交
4137

4138
	handle = start_transaction(inode);
4139
	if (IS_ERR(handle))
4140 4141 4142
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4143
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4144

4145 4146 4147
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4148

4149
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4162
	if (ext4_orphan_add(handle, inode))
4163 4164
		goto out_stop;

4165 4166 4167 4168 4169
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4170

4171
	ext4_discard_preallocations(inode);
4172

4173 4174 4175 4176 4177
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4178
	 * ext4 *really* writes onto the disk inode.
4179 4180 4181 4182
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4183 4184
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4185 4186 4187
		goto do_indirects;
	}

4188
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4189 4190 4191 4192
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4193
			ext4_free_branches(handle, inode, NULL,
4194 4195 4196 4197 4198 4199 4200 4201 4202
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4203
			ext4_free_branches(handle, inode, partial->bh,
4204 4205 4206 4207 4208 4209
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4210
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4221
		nr = i_data[EXT4_IND_BLOCK];
4222
		if (nr) {
4223 4224
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4225
		}
4226 4227
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4228
		if (nr) {
4229 4230
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4231
		}
4232 4233
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4234
		if (nr) {
4235 4236
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4237
		}
4238
	case EXT4_TIND_BLOCK:
4239 4240 4241
		;
	}

4242
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4243
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4244
	ext4_mark_inode_dirty(handle, inode);
4245 4246 4247 4248 4249 4250

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4251
		ext4_handle_sync(handle);
4252 4253 4254 4255 4256
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4257
	 * ext4_delete_inode(), and we allow that function to clean up the
4258 4259 4260
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4261
		ext4_orphan_del(handle, inode);
4262

4263
	ext4_journal_stop(handle);
4264 4265 4266
}

/*
4267
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4268 4269 4270 4271
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4272 4273
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4274
{
4275 4276 4277 4278 4279 4280
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4281
	iloc->bh = NULL;
4282 4283
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4284

4285 4286 4287
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4288 4289
		return -EIO;

4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4300
	if (!bh) {
4301 4302 4303
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4304 4305 4306 4307
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4331
			int i, start;
4332

4333
			start = inode_offset & ~(inodes_per_block - 1);
4334

4335 4336
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4349
			for (i = start; i < start + inodes_per_block; i++) {
4350 4351
				if (i == inode_offset)
					continue;
4352
				if (ext4_test_bit(i, bitmap_bh->b_data))
4353 4354 4355
					break;
			}
			brelse(bitmap_bh);
4356
			if (i == start + inodes_per_block) {
4357 4358 4359 4360 4361 4362 4363 4364 4365
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4366 4367 4368 4369 4370 4371 4372 4373 4374
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4375
			/* s_inode_readahead_blks is always a power of 2 */
4376 4377 4378 4379 4380 4381 4382
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4383
				num -= ext4_itable_unused_count(sb, gdp);
4384 4385 4386 4387 4388 4389 4390
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4401 4402 4403
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4404 4405 4406 4407 4408 4409 4410 4411 4412
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4413
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4414 4415
{
	/* We have all inode data except xattrs in memory here. */
4416 4417
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4418 4419
}

4420
void ext4_set_inode_flags(struct inode *inode)
4421
{
4422
	unsigned int flags = EXT4_I(inode)->i_flags;
4423 4424

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4425
	if (flags & EXT4_SYNC_FL)
4426
		inode->i_flags |= S_SYNC;
4427
	if (flags & EXT4_APPEND_FL)
4428
		inode->i_flags |= S_APPEND;
4429
	if (flags & EXT4_IMMUTABLE_FL)
4430
		inode->i_flags |= S_IMMUTABLE;
4431
	if (flags & EXT4_NOATIME_FL)
4432
		inode->i_flags |= S_NOATIME;
4433
	if (flags & EXT4_DIRSYNC_FL)
4434 4435 4436
		inode->i_flags |= S_DIRSYNC;
}

4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4455 4456 4457 4458
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4459 4460
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4461 4462 4463 4464 4465 4466

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4467 4468 4469 4470 4471 4472
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4473 4474 4475 4476
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4477

4478
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4479
{
4480 4481
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4482
	struct ext4_inode_info *ei;
4483
	struct buffer_head *bh;
4484 4485
	struct inode *inode;
	long ret;
4486 4487
	int block;

4488 4489 4490 4491 4492 4493 4494
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
T
Theodore Ts'o 已提交
4495
#ifdef CONFIG_EXT4_FS_POSIX_ACL
4496 4497
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4498 4499
#endif

4500 4501
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4502 4503
		goto bad_inode;
	bh = iloc.bh;
4504
	raw_inode = ext4_raw_inode(&iloc);
4505 4506 4507
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4508
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4524
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4525
			/* this inode is deleted */
4526
			brelse(bh);
4527
			ret = -ESTALE;
4528 4529 4530 4531 4532 4533 4534 4535
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4536
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4537
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4538
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4539 4540
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4541
	inode->i_size = ext4_isize(raw_inode);
4542 4543 4544
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4545
	ei->i_last_alloc_group = ~0;
4546 4547 4548 4549
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4550
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4551 4552 4553
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4554
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4555
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4556
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4557
		    EXT4_INODE_SIZE(inode->i_sb)) {
4558
			brelse(bh);
4559
			ret = -EIO;
4560
			goto bad_inode;
4561
		}
4562 4563
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4564 4565
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4566 4567
		} else {
			__le32 *magic = (void *)raw_inode +
4568
					EXT4_GOOD_OLD_INODE_SIZE +
4569
					ei->i_extra_isize;
4570 4571
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
4572 4573 4574 4575
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4576 4577 4578 4579 4580
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4581 4582 4583 4584 4585 4586 4587
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4588
	ret = 0;
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
	if (ei->i_file_acl &&
	    ((ei->i_file_acl < 
	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
	       EXT4_SB(sb)->s_gdb_count)) ||
	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
		ext4_error(sb, __func__,
			   "bad extended attribute block %llu in inode #%lu",
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4600 4601 4602 4603 4604
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4605 4606 4607 4608 4609 4610 4611 4612 4613
 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
	 	/* Validate block references which are part of inode */
		ret = ext4_check_inode_blockref(inode);
	}
	if (ret) {
 		brelse(bh);
 		goto bad_inode;
4614 4615
	}

4616
	if (S_ISREG(inode->i_mode)) {
4617 4618 4619
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4620
	} else if (S_ISDIR(inode->i_mode)) {
4621 4622
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4623
	} else if (S_ISLNK(inode->i_mode)) {
4624
		if (ext4_inode_is_fast_symlink(inode)) {
4625
			inode->i_op = &ext4_fast_symlink_inode_operations;
4626 4627 4628
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4629 4630
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4631
		}
4632 4633
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4634
		inode->i_op = &ext4_special_inode_operations;
4635 4636 4637 4638 4639 4640
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4641 4642 4643 4644 4645 4646 4647
	} else {
		brelse(bh);
		ret = -EIO;
		ext4_error(inode->i_sb, __func__, 
			   "bogus i_mode (%o) for inode=%lu",
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
4648
	}
4649
	brelse(iloc.bh);
4650
	ext4_set_inode_flags(inode);
4651 4652
	unlock_new_inode(inode);
	return inode;
4653 4654

bad_inode:
4655 4656
	iget_failed(inode);
	return ERR_PTR(ret);
4657 4658
}

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4672
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4673
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4674
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4675 4676 4677 4678 4679 4680
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4681 4682 4683 4684
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4685
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4686
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4687
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4688
	} else {
A
Aneesh Kumar K.V 已提交
4689 4690 4691 4692 4693
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4694
	}
4695
	return 0;
4696 4697
}

4698 4699 4700 4701 4702 4703 4704
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4705
static int ext4_do_update_inode(handle_t *handle,
4706
				struct inode *inode,
4707
				struct ext4_iloc *iloc)
4708
{
4709 4710
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4711 4712 4713 4714 4715
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4716 4717
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4718

4719
	ext4_get_inode_flags(ei);
4720
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4721
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4722 4723 4724 4725 4726 4727
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4728
		if (!ei->i_dtime) {
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4746 4747 4748 4749 4750 4751

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4752 4753
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4754
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4755 4756
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4757 4758
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4759 4760
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4761
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4778
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4779
			sb->s_dirt = 1;
4780 4781
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4782
					EXT4_SB(sb)->s_sbh);
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4797
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4798 4799
		raw_inode->i_block[block] = ei->i_data[block];

4800 4801 4802 4803 4804
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4805
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4806 4807
	}

4808 4809
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4810 4811
	if (!err)
		err = rc;
4812
	ei->i_state &= ~EXT4_STATE_NEW;
4813 4814

out_brelse:
4815
	brelse(bh);
4816
	ext4_std_error(inode->i_sb, err);
4817 4818 4819 4820
	return err;
}

/*
4821
 * ext4_write_inode()
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4838
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4855
int ext4_write_inode(struct inode *inode, int wait)
4856 4857 4858 4859
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4860
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4861
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4862 4863 4864 4865 4866 4867 4868
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4869
	return ext4_force_commit(inode->i_sb);
4870 4871 4872
}

/*
4873
 * ext4_setattr()
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4887 4888 4889 4890 4891 4892 4893 4894
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4895
 */
4896
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4912 4913
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4914 4915 4916 4917
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4918
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4919
		if (error) {
4920
			ext4_journal_stop(handle);
4921 4922 4923 4924 4925 4926 4927 4928
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4929 4930
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4931 4932
	}

4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4944 4945 4946 4947
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4948
		handle = ext4_journal_start(inode, 3);
4949 4950 4951 4952 4953
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4954 4955 4956
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4957 4958
		if (!error)
			error = rc;
4959
		ext4_journal_stop(handle);
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4976 4977 4978 4979
	}

	rc = inode_setattr(inode, attr);

4980
	/* If inode_setattr's call to ext4_truncate failed to get a
4981 4982 4983
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4984
		ext4_orphan_del(NULL, inode);
4985 4986

	if (!rc && (ia_valid & ATTR_MODE))
4987
		rc = ext4_acl_chmod(inode);
4988 4989

err_out:
4990
	ext4_std_error(inode->i_sb, error);
4991 4992 4993 4994 4995
	if (!error)
		error = rc;
	return error;
}

4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5022

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5051 5052
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5053
}
5054

5055
/*
5056 5057 5058
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5059
 *
5060 5061 5062
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
5063
 *
5064 5065 5066 5067
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5068 5069
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5096 5097
	if (groups > ngroups)
		groups = ngroups;
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5112 5113
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5114
 *
5115
 * This could be called via ext4_write_begin()
5116
 *
5117
 * We need to consider the worse case, when
5118
 * one new block per extent.
5119
 */
A
Alex Tomas 已提交
5120
int ext4_writepage_trans_blocks(struct inode *inode)
5121
{
5122
	int bpp = ext4_journal_blocks_per_page(inode);
5123 5124
	int ret;

5125
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5126

5127
	/* Account for data blocks for journalled mode */
5128
	if (ext4_should_journal_data(inode))
5129
		ret += bpp;
5130 5131
	return ret;
}
5132 5133 5134 5135 5136

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5137
 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5138 5139 5140 5141 5142 5143 5144 5145 5146
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5147
/*
5148
 * The caller must have previously called ext4_reserve_inode_write().
5149 5150
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5151 5152
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
5153 5154 5155
{
	int err = 0;

5156 5157 5158
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5159 5160 5161
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5162
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5163
	err = ext4_do_update_inode(handle, inode, iloc);
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5174 5175
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5176
{
5177 5178 5179 5180 5181 5182 5183 5184 5185
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5186 5187
		}
	}
5188
	ext4_std_error(inode->i_sb, err);
5189 5190 5191
	return err;
}

5192 5193 5194 5195
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5196 5197 5198 5199
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5248
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5249
{
5250
	struct ext4_iloc iloc;
5251 5252 5253
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5254 5255

	might_sleep();
5256
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5257 5258
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5274 5275
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5276
					ext4_warning(inode->i_sb, __func__,
5277 5278 5279
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5280 5281
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5282 5283 5284 5285
				}
			}
		}
	}
5286
	if (!err)
5287
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5288 5289 5290 5291
	return err;
}

/*
5292
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5293 5294 5295 5296 5297
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5298
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5299 5300 5301 5302 5303 5304
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5305
void ext4_dirty_inode(struct inode *inode)
5306
{
5307
	handle_t *current_handle = ext4_journal_current_handle();
5308 5309
	handle_t *handle;

5310 5311 5312 5313 5314
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

5315
	handle = ext4_journal_start(inode, 2);
5316 5317 5318 5319 5320 5321
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
5322
		       __func__);
5323 5324 5325
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
5326
		ext4_mark_inode_dirty(handle, inode);
5327
	}
5328
	ext4_journal_stop(handle);
5329 5330 5331 5332 5333 5334 5335 5336
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5337
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5338 5339 5340
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5341
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5342
{
5343
	struct ext4_iloc iloc;
5344 5345 5346

	int err = 0;
	if (handle) {
5347
		err = ext4_get_inode_loc(inode, &iloc);
5348 5349
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5350
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5351
			if (!err)
5352 5353 5354
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5355 5356 5357
			brelse(iloc.bh);
		}
	}
5358
	ext4_std_error(inode->i_sb, err);
5359 5360 5361 5362
	return err;
}
#endif

5363
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5379
	journal = EXT4_JOURNAL(inode);
5380 5381
	if (!journal)
		return 0;
5382
	if (is_journal_aborted(journal))
5383 5384
		return -EROFS;

5385 5386
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5397
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5398
	else
5399 5400
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5401

5402
	jbd2_journal_unlock_updates(journal);
5403 5404 5405

	/* Finally we can mark the inode as dirty. */

5406
	handle = ext4_journal_start(inode, 1);
5407 5408 5409
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5410
	err = ext4_mark_inode_dirty(handle, inode);
5411
	ext4_handle_sync(handle);
5412 5413
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5414 5415 5416

	return err;
}
5417 5418 5419 5420 5421 5422

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5423
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5424
{
5425
	struct page *page = vmf->page;
5426 5427 5428
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5429
	void *fsdata;
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5468
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5469 5470 5471
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5472
			len, len, page, fsdata);
5473 5474 5475 5476
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5477 5478
	if (ret)
		ret = VM_FAULT_SIGBUS;
5479 5480 5481
	up_read(&inode->i_alloc_sem);
	return ret;
}