intel_lrc.c 85.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136

#include "i915_drv.h"
137
#include "i915_gem_render_state.h"
138
#include "i915_vgpu.h"
139
#include "intel_engine_pm.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142
#include "intel_reset.h"
143
#include "intel_workarounds.h"
144

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
160
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161

162 163
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164
#define WA_TAIL_DWORDS 2
165
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166

167
#define ACTIVE_PRIORITY (I915_PRIORITY_NEWCLIENT | I915_PRIORITY_NOSEMAPHORE)
168

169 170
static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine);
171
static void execlists_init_reg_state(u32 *reg_state,
172
				     struct intel_context *ce,
173 174
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
175

176 177 178 179 180 181 182
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
183
	return rq->sched.attr.priority;
184 185
}

186 187
static int effective_prio(const struct i915_request *rq)
{
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
	int prio = rq_prio(rq);

	/*
	 * On unwinding the active request, we give it a priority bump
	 * equivalent to a freshly submitted request. This protects it from
	 * being gazumped again, but it would be preferable if we didn't
	 * let it be gazumped in the first place!
	 *
	 * See __unwind_incomplete_requests()
	 */
	if (~prio & ACTIVE_PRIORITY && __i915_request_has_started(rq)) {
		/*
		 * After preemption, we insert the active request at the
		 * end of the new priority level. This means that we will be
		 * _lower_ priority than the preemptee all things equal (and
		 * so the preemption is valid), so adjust our comparison
		 * accordingly.
		 */
		prio |= ACTIVE_PRIORITY;
		prio--;
	}

210
	/* Restrict mere WAIT boosts from triggering preemption */
211
	return prio | __NO_PREEMPTION;
212 213
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
static int queue_prio(const struct intel_engine_execlists *execlists)
{
	struct i915_priolist *p;
	struct rb_node *rb;

	rb = rb_first_cached(&execlists->queue);
	if (!rb)
		return INT_MIN;

	/*
	 * As the priolist[] are inverted, with the highest priority in [0],
	 * we have to flip the index value to become priority.
	 */
	p = to_priolist(rb);
	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}

231
static inline bool need_preempt(const struct intel_engine_cs *engine,
232 233
				const struct i915_request *rq)
{
234
	int last_prio;
235

236
	if (!engine->preempt_context)
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
		return false;

	if (i915_request_completed(rq))
		return false;

	/*
	 * Check if the current priority hint merits a preemption attempt.
	 *
	 * We record the highest value priority we saw during rescheduling
	 * prior to this dequeue, therefore we know that if it is strictly
	 * less than the current tail of ESLP[0], we do not need to force
	 * a preempt-to-idle cycle.
	 *
	 * However, the priority hint is a mere hint that we may need to
	 * preempt. If that hint is stale or we may be trying to preempt
	 * ourselves, ignore the request.
	 */
254
	last_prio = effective_prio(rq);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	if (!__execlists_need_preempt(engine->execlists.queue_priority_hint,
				      last_prio))
		return false;

	/*
	 * Check against the first request in ELSP[1], it will, thanks to the
	 * power of PI, be the highest priority of that context.
	 */
	if (!list_is_last(&rq->link, &engine->timeline.requests) &&
	    rq_prio(list_next_entry(rq, link)) > last_prio)
		return true;

	/*
	 * If the inflight context did not trigger the preemption, then maybe
	 * it was the set of queued requests? Pick the highest priority in
	 * the queue (the first active priolist) and see if it deserves to be
	 * running instead of ELSP[0].
	 *
	 * The highest priority request in the queue can not be either
	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
	 * context, it's priority would not exceed ELSP[0] aka last_prio.
	 */
	return queue_prio(&engine->execlists) > last_prio;
}

__maybe_unused static inline bool
281
assert_priority_queue(const struct i915_request *prev,
282
		      const struct i915_request *next)
283
{
284 285
	const struct intel_engine_execlists *execlists =
		&prev->engine->execlists;
286 287 288 289 290 291 292 293 294 295 296 297

	/*
	 * Without preemption, the prev may refer to the still active element
	 * which we refuse to let go.
	 *
	 * Even with preemption, there are times when we think it is better not
	 * to preempt and leave an ostensibly lower priority request in flight.
	 */
	if (port_request(execlists->port) == prev)
		return true;

	return rq_prio(prev) >= rq_prio(next);
298 299
}

300
/*
301 302 303 304 305
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
306 307
 * This is what a descriptor looks like, from LSB to MSB::
 *
308
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
309
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
310
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
311 312
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
313 314 315 316 317 318 319 320 321 322 323 324
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
325
 */
326 327
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
328
{
329
	struct i915_gem_context *ctx = ce->gem_context;
330
	u64 desc;
331

332 333
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
334

335
	desc = ctx->desc_template;				/* bits  0-11 */
336 337
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

338
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
339
								/* bits 12-31 */
340 341
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

342 343 344 345 346
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
347
	if (INTEL_GEN(engine->i915) >= 11) {
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
363

364
	return desc;
365 366
}

367
static void unwind_wa_tail(struct i915_request *rq)
368 369 370 371 372
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

373 374
static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs *engine)
375
{
376
	struct i915_request *rq, *rn, *active = NULL;
377
	struct list_head *uninitialized_var(pl);
378
	int prio = I915_PRIORITY_INVALID | ACTIVE_PRIORITY;
379

380
	lockdep_assert_held(&engine->timeline.lock);
381 382

	list_for_each_entry_safe_reverse(rq, rn,
383
					 &engine->timeline.requests,
384
					 link) {
385
		if (i915_request_completed(rq))
386
			break;
387

388
		__i915_request_unsubmit(rq);
389 390
		unwind_wa_tail(rq);

391 392
		GEM_BUG_ON(rq->hw_context->active);

393
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
394 395
		if (rq_prio(rq) != prio) {
			prio = rq_prio(rq);
396
			pl = i915_sched_lookup_priolist(engine, prio);
397
		}
398
		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
399

400
		list_add(&rq->sched.link, pl);
401 402 403 404 405 406 407 408

		active = rq;
	}

	/*
	 * The active request is now effectively the start of a new client
	 * stream, so give it the equivalent small priority bump to prevent
	 * it being gazumped a second time by another peer.
409 410 411 412 413 414 415 416 417 418 419 420
	 *
	 * Note we have to be careful not to apply a priority boost to a request
	 * still spinning on its semaphores. If the request hasn't started, that
	 * means it is still waiting for its dependencies to be signaled, and
	 * if we apply a priority boost to this request, we will boost it past
	 * its signalers and so break PI.
	 *
	 * One consequence of this preemption boost is that we may jump
	 * over lesser priorities (such as I915_PRIORITY_WAIT), effectively
	 * making those priorities non-preemptible. They will be moved forward
	 * in the priority queue, but they will not gain immediate access to
	 * the GPU.
421
	 */
422 423
	if (~prio & ACTIVE_PRIORITY && __i915_request_has_started(active)) {
		prio |= ACTIVE_PRIORITY;
424
		active->sched.attr.priority = prio;
425
		list_move_tail(&active->sched.link,
426
			       i915_sched_lookup_priolist(engine, prio));
427
	}
428 429

	return active;
430 431
}

432
struct i915_request *
433 434 435 436 437
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

438
	return __unwind_incomplete_requests(engine);
439 440
}

441
static inline void
442
execlists_context_status_change(struct i915_request *rq, unsigned long status)
443
{
444 445 446 447 448 449
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
450

451 452
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
453 454
}

455 456 457 458 459 460 461 462 463 464 465 466 467
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

468
static inline void
469
execlists_context_schedule_in(struct i915_request *rq)
470
{
471 472
	GEM_BUG_ON(rq->hw_context->active);

473
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
474
	intel_engine_context_in(rq->engine);
475
	rq->hw_context->active = rq->engine;
476 477 478
}

static inline void
479
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
480
{
481
	rq->hw_context->active = NULL;
482
	intel_engine_context_out(rq->engine);
483 484
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
485 486
}

487
static u64 execlists_update_context(struct i915_request *rq)
488
{
489
	struct intel_context *ce = rq->hw_context;
490

491 492
	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
		intel_ring_set_tail(rq->ring, rq->tail);
493

494 495 496 497 498 499 500 501 502
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
503 504 505 506 507
	 *
	 * Furthermore, Braswell, at least, wants a full mb to be sure that
	 * the writes are coherent in memory (visible to the GPU) prior to
	 * execution, and not just visible to other CPUs (as is the result of
	 * wmb).
508
	 */
509
	mb();
510
	return ce->lrc_desc;
511 512
}

513
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
514
{
515 516 517 518 519 520 521
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
522 523
}

524
static void execlists_submit_ports(struct intel_engine_cs *engine)
525
{
526 527
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
528
	unsigned int n;
529

530 531 532 533 534 535 536 537 538 539
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!engine->i915->gt.awake);

540 541 542 543 544 545 546
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
547
		struct i915_request *rq;
548 549 550 551 552 553 554
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
555
				execlists_context_schedule_in(rq);
556 557 558
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
559

560
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
561
				  engine->name, n,
562
				  port[n].context_id, count,
563
				  rq->fence.context, rq->fence.seqno,
564
				  hwsp_seqno(rq),
565
				  rq_prio(rq));
566 567 568 569
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
570

571
		write_desc(execlists, desc, n);
572
	}
573 574 575 576 577 578

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
579 580
}

581
static bool ctx_single_port_submission(const struct intel_context *ce)
582
{
583
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
584
		i915_gem_context_force_single_submission(ce->gem_context));
585
}
586

587 588
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
589 590 591
{
	if (prev != next)
		return false;
592

593 594
	if (ctx_single_port_submission(prev))
		return false;
595

596
	return true;
597 598
}

599 600 601 602 603 604 605 606 607 608 609
static bool can_merge_rq(const struct i915_request *prev,
			 const struct i915_request *next)
{
	GEM_BUG_ON(!assert_priority_queue(prev, next));

	if (!can_merge_ctx(prev->hw_context, next->hw_context))
		return false;

	return true;
}

610
static void port_assign(struct execlist_port *port, struct i915_request *rq)
611 612 613 614
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
615
		i915_request_put(port_request(port));
616

617
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
618 619
}

C
Chris Wilson 已提交
620 621
static void inject_preempt_context(struct intel_engine_cs *engine)
{
622
	struct intel_engine_execlists *execlists = &engine->execlists;
623
	struct intel_context *ce = engine->preempt_context;
C
Chris Wilson 已提交
624 625
	unsigned int n;

626
	GEM_BUG_ON(execlists->preempt_complete_status !=
627
		   upper_32_bits(ce->lrc_desc));
628

629 630 631 632
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
633
	GEM_TRACE("%s\n", engine->name);
634 635 636 637 638 639 640 641
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
642

643 644
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
645 646

	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
647 648 649 650 651 652
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

653 654 655
	if (inject_preempt_hang(execlists))
		return;

656
	execlists_cancel_port_requests(execlists);
657 658 659
	__unwind_incomplete_requests(container_of(execlists,
						  struct intel_engine_cs,
						  execlists));
C
Chris Wilson 已提交
660 661
}

662
static void execlists_dequeue(struct intel_engine_cs *engine)
663
{
664 665
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
666 667
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
668
	struct i915_request *last = port_request(port);
669
	struct rb_node *rb;
670 671
	bool submit = false;

672 673
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
692
	 */
693

C
Chris Wilson 已提交
694 695 696 697 698 699 700
	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
701 702
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
703
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
704

705 706 707 708 709 710 711 712
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
713
			return;
714

715
		if (need_preempt(engine, last)) {
C
Chris Wilson 已提交
716
			inject_preempt_context(engine);
717
			return;
C
Chris Wilson 已提交
718
		}
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
742
			return;
743 744 745 746 747

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
748
		 * request. See gen8_emit_fini_breadcrumb() for
749 750 751 752
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
753 754
	}

755
	while ((rb = rb_first_cached(&execlists->queue))) {
756
		struct i915_priolist *p = to_priolist(rb);
757
		struct i915_request *rq, *rn;
758
		int i;
759

760
		priolist_for_each_request_consume(rq, rn, p, i) {
761 762 763 764 765 766 767 768 769 770
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
771
			 */
772
			if (last && !can_merge_rq(last, rq)) {
773 774 775 776 777
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
778
				if (port == last_port)
779 780
					goto done;

781 782 783 784 785 786 787 788
				/*
				 * We must not populate both ELSP[] with the
				 * same LRCA, i.e. we must submit 2 different
				 * contexts if we submit 2 ELSP.
				 */
				if (last->hw_context == rq->hw_context)
					goto done;

789 790 791 792 793 794 795
				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
796
				if (ctx_single_port_submission(last->hw_context) ||
797
				    ctx_single_port_submission(rq->hw_context))
798 799 800 801 802 803
					goto done;


				if (submit)
					port_assign(port, last);
				port++;
804 805

				GEM_BUG_ON(port_isset(port));
806
			}
807

808 809
			list_del_init(&rq->sched.link);

810 811
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
812

813 814
			last = rq;
			submit = true;
815
		}
816

817
		rb_erase_cached(&p->node, &execlists->queue);
818
		i915_priolist_free(p);
819
	}
820

821
done:
822 823 824
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
825
	 * We choose the priority hint such that if we add a request of greater
826 827 828
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
829
	 * HW. We derive the priority hint then as the first "hole" in
830 831 832 833
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
834
	 * user, see queue_request(), the priority hint is bumped to that
835 836 837
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
838
	execlists->queue_priority_hint = queue_prio(execlists);
839

840
	if (submit) {
841
		port_assign(port, last);
842 843
		execlists_submit_ports(engine);
	}
844 845

	/* We must always keep the beast fed if we have work piled up */
846 847
	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
		   !port_isset(execlists->port));
848

849 850
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
851
		execlists_user_begin(execlists, execlists->port);
852

853 854 855 856
	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
857 858
}

859
void
860
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
861
{
862
	struct execlist_port *port = execlists->port;
863
	unsigned int num_ports = execlists_num_ports(execlists);
864

865
	while (num_ports-- && port_isset(port)) {
866
		struct i915_request *rq = port_request(port);
867

868
		GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
869 870 871
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->fence.context, rq->fence.seqno,
872
			  hwsp_seqno(rq));
873

874
		GEM_BUG_ON(!execlists->active);
875 876 877 878
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
879

880
		i915_request_put(rq);
881

882 883 884
		memset(port, 0, sizeof(*port));
		port++;
	}
885

886
	execlists_clear_all_active(execlists);
887 888
}

889 890 891 892 893 894 895
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
	clflush((void *)first);
	clflush((void *)last);
}

896 897 898 899 900 901
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

902
static void process_csb(struct intel_engine_cs *engine)
903
{
904
	struct intel_engine_execlists * const execlists = &engine->execlists;
905
	struct execlist_port *port = execlists->port;
906
	const u32 * const buf = execlists->csb_status;
907
	const u8 num_entries = execlists->csb_size;
908
	u8 head, tail;
909

910 911
	lockdep_assert_held(&engine->timeline.lock);

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
927

928 929 930 931 932 933 934 935 936
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
937

938
	do {
939 940 941 942
		struct i915_request *rq;
		unsigned int status;
		unsigned int count;

943
		if (++head == num_entries)
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
			  engine->name, head,
966
			  buf[2 * head + 0], buf[2 * head + 1],
967 968
			  execlists->active);

969
		status = buf[2 * head];
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
			      GEN8_CTX_STATUS_PREEMPTED))
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_HWACK);
		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
			execlists_clear_active(execlists,
					       EXECLISTS_ACTIVE_HWACK);

		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
			continue;

		/* We should never get a COMPLETED | IDLE_ACTIVE! */
		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

		if (status & GEN8_CTX_STATUS_COMPLETE &&
		    buf[2*head + 1] == execlists->preempt_complete_status) {
			GEM_TRACE("%s preempt-idle\n", engine->name);
			complete_preempt_context(execlists);
			continue;
989
		}
990

991 992 993 994
		if (status & GEN8_CTX_STATUS_PREEMPTED &&
		    execlists_is_active(execlists,
					EXECLISTS_ACTIVE_PREEMPT))
			continue;
995

996 997
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
998

999
		rq = port_unpack(port, &count);
1000
		GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
1001 1002 1003 1004
			  engine->name,
			  port->context_id, count,
			  rq ? rq->fence.context : 0,
			  rq ? rq->fence.seqno : 0,
1005
			  rq ? hwsp_seqno(rq) : 0,
1006 1007 1008 1009 1010 1011 1012
			  rq ? rq_prio(rq) : 0);

		/* Check the context/desc id for this event matches */
		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

		GEM_BUG_ON(count == 0);
		if (--count == 0) {
1013
			/*
1014 1015 1016 1017 1018 1019
			 * On the final event corresponding to the
			 * submission of this context, we expect either
			 * an element-switch event or a completion
			 * event (and on completion, the active-idle
			 * marker). No more preemptions, lite-restore
			 * or otherwise.
1020
			 */
1021 1022 1023 1024 1025
			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
			GEM_BUG_ON(port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
			GEM_BUG_ON(!port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1026

1027 1028 1029 1030 1031 1032 1033
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
			GEM_BUG_ON(!i915_request_completed(rq));
C
Chris Wilson 已提交
1034

1035 1036 1037
			execlists_context_schedule_out(rq,
						       INTEL_CONTEXT_SCHEDULE_OUT);
			i915_request_put(rq);
1038

1039 1040
			GEM_TRACE("%s completed ctx=%d\n",
				  engine->name, port->context_id);
1041

1042 1043 1044 1045 1046 1047 1048
			port = execlists_port_complete(execlists, port);
			if (port_isset(port))
				execlists_user_begin(execlists, port);
			else
				execlists_user_end(execlists);
		} else {
			port_set(port, port_pack(rq, count));
1049
		}
1050
	} while (head != tail);
1051

1052
	execlists->csb_head = head;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

	/*
	 * Gen11 has proven to fail wrt global observation point between
	 * entry and tail update, failing on the ordering and thus
	 * we see an old entry in the context status buffer.
	 *
	 * Forcibly evict out entries for the next gpu csb update,
	 * to increase the odds that we get a fresh entries with non
	 * working hardware. The cost for doing so comes out mostly with
	 * the wash as hardware, working or not, will need to do the
	 * invalidation before.
	 */
1065
	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1066
}
1067

1068
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1069
{
1070
	lockdep_assert_held(&engine->timeline.lock);
1071

C
Chris Wilson 已提交
1072
	process_csb(engine);
1073 1074
	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1075 1076
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

	GEM_TRACE("%s awake?=%d, active=%x\n",
		  engine->name,
1088
		  !!engine->i915->gt.awake,
1089 1090 1091
		  engine->execlists.active);

	spin_lock_irqsave(&engine->timeline.lock, flags);
1092
	__execlists_submission_tasklet(engine);
1093 1094 1095
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

1096
static void queue_request(struct intel_engine_cs *engine,
1097
			  struct i915_sched_node *node,
1098
			  int prio)
1099
{
1100
	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1114 1115
}

1116 1117
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1118 1119
	if (prio > engine->execlists.queue_priority_hint) {
		engine->execlists.queue_priority_hint = prio;
1120 1121
		__submit_queue_imm(engine);
	}
1122 1123
}

1124
static void execlists_submit_request(struct i915_request *request)
1125
{
1126
	struct intel_engine_cs *engine = request->engine;
1127
	unsigned long flags;
1128

1129
	/* Will be called from irq-context when using foreign fences. */
1130
	spin_lock_irqsave(&engine->timeline.lock, flags);
1131

1132
	queue_request(engine, &request->sched, rq_prio(request));
1133

1134
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1135
	GEM_BUG_ON(list_empty(&request->sched.link));
1136

1137 1138
	submit_queue(engine, rq_prio(request));

1139
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1140 1141
}

1142
static void __execlists_context_fini(struct intel_context *ce)
1143
{
1144
	intel_ring_put(ce->ring);
1145 1146 1147

	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
1148 1149
}

1150
static void execlists_context_destroy(struct kref *kref)
1151
{
1152 1153
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

1154
	GEM_BUG_ON(intel_context_is_pinned(ce));
1155 1156 1157 1158 1159 1160 1161

	if (ce->state)
		__execlists_context_fini(ce);

	intel_context_free(ce);
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
static int __context_pin(struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	flags = PIN_GLOBAL | PIN_HIGH;
	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return err;

	vma->obj->pin_global++;
	vma->obj->mm.dirty = true;

	return 0;
}

static void __context_unpin(struct i915_vma *vma)
{
	vma->obj->pin_global--;
	__i915_vma_unpin(vma);
}

1186
static void execlists_context_unpin(struct intel_context *ce)
1187
{
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	struct intel_engine_cs *engine;

	/*
	 * The tasklet may still be using a pointer to our state, via an
	 * old request. However, since we know we only unpin the context
	 * on retirement of the following request, we know that the last
	 * request referencing us will have had a completion CS interrupt.
	 * If we see that it is still active, it means that the tasklet hasn't
	 * had the chance to run yet; let it run before we teardown the
	 * reference it may use.
	 */
	engine = READ_ONCE(ce->active);
	if (unlikely(engine)) {
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline.lock, flags);
		process_csb(engine);
		spin_unlock_irqrestore(&engine->timeline.lock, flags);

		GEM_BUG_ON(READ_ONCE(ce->active));
	}

1210 1211
	i915_gem_context_unpin_hw_id(ce->gem_context);

1212 1213 1214
	intel_ring_unpin(ce->ring);

	i915_gem_object_unpin_map(ce->state->obj);
1215
	__context_unpin(ce->state);
1216 1217
}

1218
static void
1219 1220
__execlists_update_reg_state(struct intel_context *ce,
			     struct intel_engine_cs *engine)
1221 1222
{
	struct intel_ring *ring = ce->ring;
1223 1224 1225 1226
	u32 *regs = ce->lrc_reg_state;

	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1227 1228 1229 1230 1231 1232 1233

	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
	regs[CTX_RING_HEAD + 1] = ring->head;
	regs[CTX_RING_TAIL + 1] = ring->tail;

	/* RPCS */
	if (engine->class == RENDER_CLASS)
1234
		regs[CTX_R_PWR_CLK_STATE + 1] =
1235
			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1236 1237
}

1238 1239 1240
static int
__execlists_context_pin(struct intel_context *ce,
			struct intel_engine_cs *engine)
1241
{
1242
	void *vaddr;
1243
	int ret;
1244

1245 1246 1247
	GEM_BUG_ON(!ce->gem_context->ppgtt);

	ret = execlists_context_deferred_alloc(ce, engine);
1248 1249
	if (ret)
		goto err;
1250
	GEM_BUG_ON(!ce->state);
1251

1252
	ret = __context_pin(ce->state);
1253
	if (ret)
1254
		goto err;
1255

1256
	vaddr = i915_gem_object_pin_map(ce->state->obj,
1257
					i915_coherent_map_type(engine->i915) |
1258
					I915_MAP_OVERRIDE);
1259 1260
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1261
		goto unpin_vma;
1262 1263
	}

1264
	ret = intel_ring_pin(ce->ring);
1265
	if (ret)
1266
		goto unpin_map;
1267

1268
	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1269 1270 1271
	if (ret)
		goto unpin_ring;

1272
	ce->lrc_desc = lrc_descriptor(ce, engine);
1273
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1274
	__execlists_update_reg_state(ce, engine);
1275

1276
	return 0;
1277

1278 1279
unpin_ring:
	intel_ring_unpin(ce->ring);
1280
unpin_map:
1281 1282
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
1283
	__context_unpin(ce->state);
1284
err:
1285
	return ret;
1286 1287
}

1288
static int execlists_context_pin(struct intel_context *ce)
1289
{
1290
	return __execlists_context_pin(ce, ce->engine);
1291 1292
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static void execlists_context_reset(struct intel_context *ce)
{
	/*
	 * Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * The contexts that are stilled pinned on resume belong to the
	 * kernel, and are local to each engine. All other contexts will
	 * have their head/tail sanitized upon pinning before use, so they
	 * will never see garbage,
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	intel_ring_reset(ce->ring, 0);
	__execlists_update_reg_state(ce, ce->engine);
}

1315
static const struct intel_context_ops execlists_context_ops = {
1316
	.pin = execlists_context_pin,
1317
	.unpin = execlists_context_unpin,
1318

1319 1320 1321
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1322
	.reset = execlists_context_reset,
1323 1324 1325
	.destroy = execlists_context_destroy,
};

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
	 */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
	*cs++ = rq->timeline->hwsp_offset;
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

	intel_ring_advance(rq, cs);
1351 1352 1353 1354

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

1355 1356 1357
	return 0;
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
static int emit_pdps(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
	struct i915_hw_ppgtt * const ppgtt = rq->gem_context->ppgtt;
	int err, i;
	u32 *cs;

	GEM_BUG_ON(intel_vgpu_active(rq->i915));

	/*
	 * Beware ye of the dragons, this sequence is magic!
	 *
	 * Small changes to this sequence can cause anything from
	 * GPU hangs to forcewake errors and machine lockups!
	 */

	/* Flush any residual operations from the context load */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Magic required to prevent forcewake errors! */
	err = engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		return err;

	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Ensure the LRI have landed before we invalidate & continue */
	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
	for (i = GEN8_3LVL_PDPES; i--; ) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1392
		u32 base = engine->mmio_base;
1393

1394
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1395
		*cs++ = upper_32_bits(pd_daddr);
1396
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		*cs++ = lower_32_bits(pd_daddr);
	}
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	/* Be doubly sure the LRI have landed before proceeding */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Re-invalidate the TLB for luck */
	return engine->emit_flush(rq, EMIT_INVALIDATE);
}

1412
static int execlists_request_alloc(struct i915_request *request)
1413
{
1414
	int ret;
1415

1416
	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1417

1418 1419
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1420 1421 1422 1423 1424
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1425 1426
	/*
	 * Note that after this point, we have committed to using
1427 1428 1429 1430 1431 1432
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

1433
	/* Unconditionally invalidate GPU caches and TLBs. */
1434
	if (i915_vm_is_4lvl(&request->gem_context->ppgtt->vm))
1435 1436 1437 1438 1439 1440
		ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
	else
		ret = emit_pdps(request);
	if (ret)
		return ret;

1441 1442 1443 1444
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1461 1462
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1463
{
1464
	/* NB no one else is allowed to scribble over scratch + 256! */
1465 1466
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1467
	*batch++ = i915_scratch_offset(engine->i915) + 256;
1468 1469 1470 1471 1472 1473
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1474 1475 1476 1477
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1478 1479 1480

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1481
	*batch++ = i915_scratch_offset(engine->i915) + 256;
1482 1483 1484
	*batch++ = 0;

	return batch;
1485 1486
}

1487 1488 1489 1490 1491 1492
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1493
 *
1494 1495
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1496
 *
1497 1498 1499 1500
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1501
 */
1502
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1503
{
1504
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1505
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1506

1507
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1508 1509
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1510

1511 1512
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1513 1514 1515 1516 1517
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
1518
				       i915_scratch_offset(engine->i915) +
1519
				       2 * CACHELINE_BYTES);
1520

C
Chris Wilson 已提交
1521 1522
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1523
	/* Pad to end of cacheline */
1524 1525
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1526 1527 1528 1529 1530 1531 1532

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1533
	return batch;
1534 1535
}

1536 1537 1538 1539 1540 1541
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1542
{
1543
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1544

1545 1546 1547 1548 1549 1550
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1551

1552 1553
	return batch;
}
1554

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1579

1580
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1581

1582 1583
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1584

1585
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1586

1587
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1602 1603 1604 1605 1606 1607
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1608 1609
	}

C
Chris Wilson 已提交
1610 1611
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1612
	/* Pad to end of cacheline */
1613 1614
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1615

1616
	return batch;
1617 1618
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1653 1654 1655
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1656
{
1657 1658 1659
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1660

1661
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1662 1663
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1664

1665
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1666 1667 1668
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1669 1670
	}

1671
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1672 1673 1674 1675
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1676
	return 0;
1677 1678 1679 1680

err:
	i915_gem_object_put(obj);
	return err;
1681 1682
}

1683
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1684
{
1685
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1686 1687
}

1688 1689
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1690
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1691
{
1692
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1693 1694 1695
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1696
	struct page *page;
1697 1698
	void *batch, *batch_ptr;
	unsigned int i;
1699
	int ret;
1700

1701 1702
	if (engine->class != RENDER_CLASS)
		return 0;
1703

1704
	switch (INTEL_GEN(engine->i915)) {
1705 1706
	case 11:
		return 0;
1707
	case 10:
1708 1709 1710
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1711 1712
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1713
		wa_bb_fn[1] = NULL;
1714 1715 1716
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1717
		wa_bb_fn[1] = NULL;
1718 1719 1720
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1721
		return 0;
1722
	}
1723

1724
	ret = lrc_setup_wa_ctx(engine);
1725 1726 1727 1728 1729
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1730
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1731
	batch = batch_ptr = kmap_atomic(page);
1732

1733 1734 1735 1736 1737 1738 1739
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1740 1741
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
1742 1743 1744
			ret = -EINVAL;
			break;
		}
1745 1746
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1747
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1748 1749
	}

1750 1751
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1752 1753
	kunmap_atomic(batch);
	if (ret)
1754
		lrc_destroy_wa_ctx(engine);
1755 1756 1757 1758

	return ret;
}

1759
static void enable_execlists(struct intel_engine_cs *engine)
1760
{
1761
	struct drm_i915_private *dev_priv = engine->i915;
1762

1763
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
1764 1765 1766

	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
1767
			   _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1768 1769 1770 1771
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1772 1773 1774
	I915_WRITE(RING_MI_MODE(engine->mmio_base),
		   _MASKED_BIT_DISABLE(STOP_RING));

1775
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1776
		   i915_ggtt_offset(engine->status_page.vma));
1777 1778 1779
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool unexpected = false;

	if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

1793
static int execlists_resume(struct intel_engine_cs *engine)
1794
{
1795
	intel_engine_apply_workarounds(engine);
1796
	intel_engine_apply_whitelist(engine);
1797

1798
	intel_mocs_init_engine(engine);
1799

1800
	intel_engine_reset_breadcrumbs(engine);
1801

1802 1803 1804 1805 1806 1807
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

1808
	enable_execlists(engine);
1809

1810
	return 0;
1811 1812
}

1813
static void execlists_reset_prepare(struct intel_engine_cs *engine)
1814 1815
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
1816
	unsigned long flags;
1817

1818 1819
	GEM_TRACE("%s: depth<-%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
1820 1821 1822 1823 1824 1825

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
1826
	 * calling engine->resume() and also writing the ELSP.
1827 1828 1829 1830
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
1831
	GEM_BUG_ON(!reset_in_progress(execlists));
1832

1833 1834
	intel_engine_stop_cs(engine);

1835
	/* And flush any current direct submission. */
1836 1837
	spin_lock_irqsave(&engine->timeline.lock, flags);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1838 1839
}

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static bool lrc_regs_ok(const struct i915_request *rq)
{
	const struct intel_ring *ring = rq->ring;
	const u32 *regs = rq->hw_context->lrc_reg_state;

	/* Quick spot check for the common signs of context corruption */

	if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
	    (RING_CTL_SIZE(ring->size) | RING_VALID))
		return false;

	if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
		return false;

	return true;
}

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
	const unsigned int reset_value = execlists->csb_size - 1;

	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
1872
	wmb(); /* Make sure this is visible to HW (paranoia?) */
1873 1874 1875 1876 1877 1878

	invalidate_csb_entries(&execlists->csb_status[0],
			       &execlists->csb_status[reset_value]);
}

static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
1879
{
1880
	struct intel_engine_execlists * const execlists = &engine->execlists;
1881
	struct intel_context *ce;
1882
	struct i915_request *rq;
1883
	u32 *regs;
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	process_csb(engine); /* drain preemption events */

	/* Following the reset, we need to reload the CSB read/write pointers */
	reset_csb_pointers(&engine->execlists);

	/*
	 * Save the currently executing context, even if we completed
	 * its request, it was still running at the time of the
	 * reset and will have been clobbered.
	 */
	if (!port_isset(execlists->port))
		goto out_clear;

	ce = port_request(execlists->port)->hw_context;
1899

1900 1901 1902 1903 1904 1905 1906 1907 1908
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1909
	execlists_cancel_port_requests(execlists);
1910

1911
	/* Push back any incomplete requests for replay after the reset. */
1912 1913
	rq = __unwind_incomplete_requests(engine);
	if (!rq)
1914 1915 1916 1917 1918 1919
		goto out_replay;

	if (rq->hw_context != ce) { /* caught just before a CS event */
		rq = NULL;
		goto out_replay;
	}
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	/*
	 * If this request hasn't started yet, e.g. it is waiting on a
	 * semaphore, we need to avoid skipping the request or else we
	 * break the signaling chain. However, if the context is corrupt
	 * the request will not restart and we will be stuck with a wedged
	 * device. It is quite often the case that if we issue a reset
	 * while the GPU is loading the context image, that the context
	 * image becomes corrupt.
	 *
	 * Otherwise, if we have not started yet, the request should replay
	 * perfectly and we do not need to flag the result as being erroneous.
	 */
	if (!i915_request_started(rq) && lrc_regs_ok(rq))
1934
		goto out_replay;
1935

1936 1937
	/*
	 * If the request was innocent, we leave the request in the ELSP
1938 1939 1940 1941 1942 1943 1944 1945 1946
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1947
	i915_reset_request(rq, stalled);
1948
	if (!stalled && lrc_regs_ok(rq))
1949
		goto out_replay;
1950

1951 1952
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1953 1954 1955 1956 1957 1958
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1959
	regs = ce->lrc_reg_state;
1960 1961 1962 1963
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
1964
	}
1965
	execlists_init_reg_state(regs, ce, engine, ce->ring);
1966

1967
	/* Rerun the request; its payload has been neutered (if guilty). */
1968 1969 1970 1971 1972 1973 1974 1975 1976
out_replay:
	ce->ring->head =
		rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
	intel_ring_update_space(ce->ring);
	__execlists_update_reg_state(ce, engine);

out_clear:
	execlists_clear_all_active(execlists);
}
1977

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	spin_lock_irqsave(&engine->timeline.lock, flags);

	__execlists_reset(engine, stalled);

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	spin_lock_irqsave(&engine->timeline.lock, flags);

	__execlists_reset(engine, true);

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline.requests, link) {
		if (!i915_request_signaled(rq))
			dma_fence_set_error(&rq->fence, -EIO);

		i915_request_mark_complete(rq);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
			list_del_init(&rq->sched.link);
			__i915_request_submit(rq);
			dma_fence_set_error(&rq->fence, -EIO);
			i915_request_mark_complete(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;
	GEM_BUG_ON(port_isset(execlists->port));

	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;
2055

2056
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2057 2058
}

2059 2060
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
2061 2062
	struct intel_engine_execlists * const execlists = &engine->execlists;

2063
	/*
2064 2065 2066
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
2067
	 */
2068
	GEM_BUG_ON(!reset_in_progress(execlists));
2069 2070
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
2071

2072 2073 2074
	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);
2075 2076
	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2077 2078
}

2079
static int gen8_emit_bb_start(struct i915_request *rq,
2080
			      u64 offset, u32 len,
2081
			      const unsigned int flags)
2082
{
2083
	u32 *cs;
2084

2085
	cs = intel_ring_begin(rq, 4);
2086 2087
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2088

2089 2090 2091 2092 2093 2094 2095
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
2096 2097 2098 2099 2100
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
2101
	 */
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen9_emit_bb_start(struct i915_request *rq,
			      u64 offset, u32 len,
			      const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

2125 2126
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2127
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2128
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2129 2130
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2131 2132 2133

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2134

2135
	intel_ring_advance(rq, cs);
2136 2137 2138 2139

	return 0;
}

2140
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2141
{
2142 2143 2144
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
	ENGINE_POSTING_READ(engine, RING_IMR);
2145 2146
}

2147
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2148
{
2149
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2150 2151
}

2152
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2153
{
2154
	u32 cmd, *cs;
2155

2156 2157 2158
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2159 2160 2161

	cmd = MI_FLUSH_DW + 1;

2162 2163 2164 2165 2166 2167 2168
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2169
	if (mode & EMIT_INVALIDATE) {
2170
		cmd |= MI_INVALIDATE_TLB;
2171
		if (request->engine->class == VIDEO_DECODE_CLASS)
2172
			cmd |= MI_INVALIDATE_BSD;
2173 2174
	}

2175 2176 2177 2178 2179
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2180 2181 2182 2183

	return 0;
}

2184
static int gen8_emit_flush_render(struct i915_request *request,
2185
				  u32 mode)
2186
{
2187
	struct intel_engine_cs *engine = request->engine;
2188
	u32 scratch_addr =
2189
		i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2190
	bool vf_flush_wa = false, dc_flush_wa = false;
2191
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2192
	int len;
2193 2194 2195

	flags |= PIPE_CONTROL_CS_STALL;

2196
	if (mode & EMIT_FLUSH) {
2197 2198
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2199
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2200
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2201 2202
	}

2203
	if (mode & EMIT_INVALIDATE) {
2204 2205 2206 2207 2208 2209 2210 2211 2212
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2213 2214 2215 2216
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2217
		if (IS_GEN(request->i915, 9))
2218
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2219 2220 2221 2222

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2223
	}
2224

M
Mika Kuoppala 已提交
2225 2226 2227 2228 2229 2230 2231 2232
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2233 2234 2235
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2236

2237 2238
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2239

2240 2241 2242
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2243

2244
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2245

2246 2247
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2248

2249
	intel_ring_advance(request, cs);
2250 2251 2252 2253

	return 0;
}

2254 2255 2256 2257 2258
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2259
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2260
{
C
Chris Wilson 已提交
2261 2262
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2263 2264
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
2265 2266

	return cs;
C
Chris Wilson 已提交
2267
}
2268

2269
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2270
{
2271 2272
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
2273 2274
				  request->timeline->hwsp_offset,
				  0);
2275

2276 2277
	cs = gen8_emit_ggtt_write(cs,
				  intel_engine_next_hangcheck_seqno(request->engine),
2278 2279 2280
				  I915_GEM_HWS_HANGCHECK_ADDR,
				  MI_FLUSH_DW_STORE_INDEX);

2281

2282
	*cs++ = MI_USER_INTERRUPT;
2283
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2284

2285
	request->tail = intel_ring_offset(request, cs);
2286
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2287

2288
	return gen8_emit_wa_tail(request, cs);
2289
}
2290

2291
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2292
{
2293
	cs = gen8_emit_ggtt_write_rcs(cs,
2294 2295
				      request->fence.seqno,
				      request->timeline->hwsp_offset,
2296 2297 2298 2299 2300 2301
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				      PIPE_CONTROL_DC_FLUSH_ENABLE |
				      PIPE_CONTROL_FLUSH_ENABLE |
				      PIPE_CONTROL_CS_STALL);

2302 2303
	cs = gen8_emit_ggtt_write_rcs(cs,
				      intel_engine_next_hangcheck_seqno(request->engine),
2304 2305
				      I915_GEM_HWS_HANGCHECK_ADDR,
				      PIPE_CONTROL_STORE_DATA_INDEX);
2306

2307
	*cs++ = MI_USER_INTERRUPT;
2308
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2309

2310
	request->tail = intel_ring_offset(request, cs);
2311
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2312

2313
	return gen8_emit_wa_tail(request, cs);
2314
}
2315

2316
static int gen8_init_rcs_context(struct i915_request *rq)
2317 2318 2319
{
	int ret;

2320
	ret = intel_engine_emit_ctx_wa(rq);
2321 2322 2323
	if (ret)
		return ret;

2324
	ret = intel_rcs_context_init_mocs(rq);
2325 2326 2327 2328 2329 2330 2331
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2332
	return i915_gem_render_state_emit(rq);
2333 2334
}

2335 2336 2337 2338 2339
static void execlists_park(struct intel_engine_cs *engine)
{
	intel_engine_park(engine);
}

2340
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2341
{
2342
	engine->submit_request = execlists_submit_request;
2343
	engine->cancel_requests = execlists_cancel_requests;
2344
	engine->schedule = i915_schedule;
2345
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2346

2347
	engine->reset.prepare = execlists_reset_prepare;
2348 2349
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2350

2351
	engine->park = execlists_park;
2352
	engine->unpark = NULL;
2353 2354

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2355 2356
	if (!intel_vgpu_active(engine->i915))
		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2357 2358
	if (engine->preempt_context &&
	    HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2359
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2360 2361
}

2362 2363 2364 2365 2366 2367 2368
static void execlists_destroy(struct intel_engine_cs *engine)
{
	intel_engine_cleanup_common(engine);
	lrc_destroy_wa_ctx(engine);
	kfree(engine);
}

2369
static void
2370
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2371 2372
{
	/* Default vfuncs which can be overriden by each engine. */
2373 2374

	engine->destroy = execlists_destroy;
2375
	engine->resume = execlists_resume;
2376 2377 2378 2379

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2380

2381
	engine->cops = &execlists_context_ops;
2382 2383
	engine->request_alloc = execlists_request_alloc;

2384
	engine->emit_flush = gen8_emit_flush;
2385 2386
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2387

2388
	engine->set_default_submission = intel_execlists_set_default_submission;
2389

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2401 2402 2403 2404
	if (IS_GEN(engine->i915, 8))
		engine->emit_bb_start = gen8_emit_bb_start;
	else
		engine->emit_bb_start = gen9_emit_bb_start;
2405 2406
}

2407
static inline void
2408
logical_ring_default_irqs(struct intel_engine_cs *engine)
2409
{
2410 2411 2412 2413
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
2414 2415 2416 2417 2418
			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
			[VECS0] = GEN8_VECS_IRQ_SHIFT,
2419 2420 2421 2422 2423
		};

		shift = irq_shifts[engine->id];
	}

2424 2425
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2426 2427
}

2428
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2429 2430 2431 2432
{
	/* Intentionally left blank. */
	engine->buffer = NULL;

2433 2434
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2435 2436 2437

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
2438

2439 2440 2441 2442 2443 2444
	if (engine->class == RENDER_CLASS) {
		engine->init_context = gen8_init_rcs_context;
		engine->emit_flush = gen8_emit_flush_render;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
	}

2445
	return 0;
2446 2447
}

2448
int intel_execlists_submission_init(struct intel_engine_cs *engine)
2449
{
2450 2451
	struct drm_i915_private *i915 = engine->i915;
	struct intel_engine_execlists * const execlists = &engine->execlists;
2452
	u32 base = engine->mmio_base;
2453 2454
	int ret;

2455
	ret = intel_engine_init_common(engine);
2456
	if (ret)
2457
		return ret;
2458

2459
	intel_engine_init_workarounds(engine);
2460 2461 2462 2463 2464 2465 2466 2467 2468
	intel_engine_init_whitelist(engine);

	if (intel_init_workaround_bb(engine))
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed\n");
2469

2470
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
2471
		execlists->submit_reg = i915->uncore.regs +
2472
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2473
		execlists->ctrl_reg = i915->uncore.regs +
2474
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2475
	} else {
2476
		execlists->submit_reg = i915->uncore.regs +
2477
			i915_mmio_reg_offset(RING_ELSP(base));
2478
	}
2479

2480
	execlists->preempt_complete_status = ~0u;
2481
	if (engine->preempt_context)
2482
		execlists->preempt_complete_status =
2483
			upper_32_bits(engine->preempt_context->lrc_desc);
2484

2485
	execlists->csb_status =
2486
		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2487

2488
	execlists->csb_write =
2489
		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
2490

2491 2492 2493 2494
	if (INTEL_GEN(engine->i915) < 11)
		execlists->csb_size = GEN8_CSB_ENTRIES;
	else
		execlists->csb_size = GEN11_CSB_ENTRIES;
2495

2496
	reset_csb_pointers(execlists);
2497

2498 2499 2500
	return 0;
}

2501
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2502 2503 2504
{
	u32 indirect_ctx_offset;

2505
	switch (INTEL_GEN(engine->i915)) {
2506
	default:
2507
		MISSING_CASE(INTEL_GEN(engine->i915));
2508
		/* fall through */
2509 2510 2511 2512
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2513 2514 2515 2516
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2530
static void execlists_init_reg_state(u32 *regs,
2531
				     struct intel_context *ce,
2532 2533
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2534
{
2535
	struct i915_hw_ppgtt *ppgtt = ce->gem_context->ppgtt;
2536
	bool rcs = engine->class == RENDER_CLASS;
2537
	u32 base = engine->mmio_base;
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

2549
	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2550
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2551
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2552
	if (INTEL_GEN(engine->i915) < 11) {
2553 2554 2555 2556
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2569 2570
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2571 2572 2573
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2574
		if (wa_ctx->indirect_ctx.size) {
2575
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2576

2577
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2578 2579
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2580

2581
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2582
				intel_lr_indirect_ctx_offset(engine) << 6;
2583 2584 2585 2586 2587
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2588

2589
			regs[CTX_BB_PER_CTX_PTR + 1] =
2590
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2591
		}
2592
	}
2593 2594 2595 2596

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2597
	/* PDP values well be assigned later if needed */
2598 2599 2600 2601 2602 2603 2604 2605
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2606

2607
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
2608 2609 2610 2611
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2612
		ASSIGN_CTX_PML4(ppgtt, regs);
2613
	} else {
2614 2615 2616 2617
		ASSIGN_CTX_PDP(ppgtt, regs, 3);
		ASSIGN_CTX_PDP(ppgtt, regs, 2);
		ASSIGN_CTX_PDP(ppgtt, regs, 1);
		ASSIGN_CTX_PDP(ppgtt, regs, 0);
2618 2619
	}

2620 2621
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2622
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2623

2624
		i915_oa_init_reg_state(engine, ce, regs);
2625
	}
2626 2627

	regs[CTX_END] = MI_BATCH_BUFFER_END;
2628
	if (INTEL_GEN(engine->i915) >= 10)
2629
		regs[CTX_END] |= BIT(0);
2630 2631 2632
}

static int
2633
populate_lr_context(struct intel_context *ce,
2634 2635 2636 2637 2638
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2639
	u32 *regs;
2640 2641 2642 2643 2644 2645 2646 2647 2648
	int ret;

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2660 2661 2662 2663
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2664 2665 2666 2667 2668

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2669 2670
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2671
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2672
	execlists_init_reg_state(regs, ce, engine, ring);
2673 2674 2675
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2676 2677
	if (ce->gem_context == engine->i915->preempt_context &&
	    INTEL_GEN(engine->i915) < 11)
2678 2679 2680
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2681

2682
	ret = 0;
2683
err_unpin_ctx:
2684 2685 2686
	__i915_gem_object_flush_map(ctx_obj,
				    LRC_HEADER_PAGES * PAGE_SIZE,
				    engine->context_size);
2687
	i915_gem_object_unpin_map(ctx_obj);
2688
	return ret;
2689 2690
}

2691 2692
static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
{
2693 2694 2695 2696
	if (ctx->timeline)
		return i915_timeline_get(ctx->timeline);
	else
		return i915_timeline_create(ctx->i915, NULL);
2697 2698 2699 2700
}

static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine)
2701
{
2702
	struct drm_i915_gem_object *ctx_obj;
2703
	struct i915_vma *vma;
2704
	u32 context_size;
2705
	struct intel_ring *ring;
2706
	struct i915_timeline *timeline;
2707 2708
	int ret;

2709 2710
	if (ce->state)
		return 0;
2711

2712
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2713

2714 2715 2716 2717 2718
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2719

2720
	ctx_obj = i915_gem_object_create(engine->i915, context_size);
2721 2722
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
2723

2724
	vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
2725 2726 2727 2728 2729
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2730
	timeline = get_timeline(ce->gem_context);
2731 2732 2733 2734 2735
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

2736 2737 2738
	ring = intel_engine_create_ring(engine,
					timeline,
					ce->gem_context->ring_size);
2739
	i915_timeline_put(timeline);
2740 2741
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2742
		goto error_deref_obj;
2743 2744
	}

2745
	ret = populate_lr_context(ce, ctx_obj, engine, ring);
2746 2747
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2748
		goto error_ring_free;
2749 2750
	}

2751
	ce->ring = ring;
2752
	ce->state = vma;
2753 2754

	return 0;
2755

2756
error_ring_free:
2757
	intel_ring_put(ring);
2758
error_deref_obj:
2759
	i915_gem_object_put(ctx_obj);
2760
	return ret;
2761
}
2762

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
void intel_execlists_show_requests(struct intel_engine_cs *engine,
				   struct drm_printer *m,
				   void (*show_request)(struct drm_printer *m,
							struct i915_request *rq,
							const char *prefix),
				   unsigned int max)
{
	const struct intel_engine_execlists *execlists = &engine->execlists;
	struct i915_request *rq, *last;
	unsigned long flags;
	unsigned int count;
	struct rb_node *rb;

	spin_lock_irqsave(&engine->timeline.lock, flags);

	last = NULL;
	count = 0;
	list_for_each_entry(rq, &engine->timeline.requests, link) {
		if (count++ < max - 1)
			show_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
2797 2798 2799
	if (execlists->queue_priority_hint != INT_MIN)
		drm_printf(m, "\t\tQueue priority hint: %d\n",
			   execlists->queue_priority_hint);
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;

		priolist_for_each_request(rq, p, i) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tQ ");
	}

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
void intel_lr_context_reset(struct intel_engine_cs *engine,
			    struct intel_context *ce,
			    u32 head,
			    bool scrub)
{
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub) {
		u32 *regs = ce->lrc_reg_state;

		if (engine->pinned_default_state) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
		}
		execlists_init_reg_state(regs, ce, engine, ce->ring);
	}

	/* Rerun the request; its payload has been neutered (if guilty). */
	ce->ring->head = head;
	intel_ring_update_space(ce->ring);

	__execlists_update_reg_state(ce, engine);
}

2854
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2855
#include "selftest_lrc.c"
2856
#endif