intel_lrc.c 81.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "i915_vgpu.h"
141
#include "intel_lrc_reg.h"
142
#include "intel_mocs.h"
143
#include "intel_workarounds.h"
144

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
160
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161

162 163
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164
#define WA_TAIL_DWORDS 2
165
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166

167
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168 169
					    struct intel_engine_cs *engine,
					    struct intel_context *ce);
170 171 172 173
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
174

175 176 177 178 179 180 181
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
182
	return rq->sched.attr.priority;
183 184 185 186 187 188
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
189
	return (intel_engine_has_preemption(engine) &&
190 191
		__execlists_need_preempt(prio, rq_prio(last)) &&
		!i915_request_completed(last));
192 193
}

194
/*
195 196 197 198 199
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
200 201
 * This is what a descriptor looks like, from LSB to MSB::
 *
202
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205 206
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
207 208 209 210 211 212 213 214 215 216 217 218
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
219
 */
220
static void
221
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222 223
				   struct intel_engine_cs *engine,
				   struct intel_context *ce)
224
{
225
	u64 desc;
226

227 228
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229

230
	desc = ctx->desc_template;				/* bits  0-11 */
231 232
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

233
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234
								/* bits 12-31 */
235 236
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

237 238 239 240 241
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
258

259
	ce->lrc_desc = desc;
260 261
}

262
static void unwind_wa_tail(struct i915_request *rq)
263 264 265 266 267
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

268
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
269
{
270
	struct i915_request *rq, *rn, *active = NULL;
271
	struct list_head *uninitialized_var(pl);
272
	int prio = I915_PRIORITY_INVALID | I915_PRIORITY_NEWCLIENT;
273

274
	lockdep_assert_held(&engine->timeline.lock);
275 276

	list_for_each_entry_safe_reverse(rq, rn,
277
					 &engine->timeline.requests,
278
					 link) {
279
		if (i915_request_completed(rq))
280
			break;
281

282
		__i915_request_unsubmit(rq);
283 284
		unwind_wa_tail(rq);

285 286
		GEM_BUG_ON(rq->hw_context->active);

287
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
288 289
		if (rq_prio(rq) != prio) {
			prio = rq_prio(rq);
290
			pl = i915_sched_lookup_priolist(engine, prio);
291
		}
292
		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
293

294
		list_add(&rq->sched.link, pl);
295 296 297 298 299 300 301 302 303 304 305 306

		active = rq;
	}

	/*
	 * The active request is now effectively the start of a new client
	 * stream, so give it the equivalent small priority bump to prevent
	 * it being gazumped a second time by another peer.
	 */
	if (!(prio & I915_PRIORITY_NEWCLIENT)) {
		prio |= I915_PRIORITY_NEWCLIENT;
		list_move_tail(&active->sched.link,
307
			       i915_sched_lookup_priolist(engine, prio));
308 309 310
	}
}

311
void
312 313 314 315 316 317 318 319
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	__unwind_incomplete_requests(engine);
}

320
static inline void
321
execlists_context_status_change(struct i915_request *rq, unsigned long status)
322
{
323 324 325 326 327 328
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
329

330 331
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
332 333
}

334 335 336 337 338 339 340 341 342 343 344 345 346
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

347
static inline void
348
execlists_context_schedule_in(struct i915_request *rq)
349
{
350 351
	GEM_BUG_ON(rq->hw_context->active);

352
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
353
	intel_engine_context_in(rq->engine);
354
	rq->hw_context->active = rq->engine;
355 356 357
}

static inline void
358
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
359
{
360
	rq->hw_context->active = NULL;
361
	intel_engine_context_out(rq->engine);
362 363
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
364 365
}

366 367 368 369 370 371 372 373 374
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

375
static u64 execlists_update_context(struct i915_request *rq)
376
{
377
	struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
378
	struct intel_context *ce = rq->hw_context;
379
	u32 *reg_state = ce->lrc_reg_state;
380

381
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
382

383 384
	/*
	 * True 32b PPGTT with dynamic page allocation: update PDP
385 386 387 388
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
389
	if (!i915_vm_is_48bit(&ppgtt->vm))
390
		execlists_update_context_pdps(ppgtt, reg_state);
391

392 393 394 395 396 397 398 399 400
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
401 402 403 404 405
	 *
	 * Furthermore, Braswell, at least, wants a full mb to be sure that
	 * the writes are coherent in memory (visible to the GPU) prior to
	 * execution, and not just visible to other CPUs (as is the result of
	 * wmb).
406
	 */
407
	mb();
408
	return ce->lrc_desc;
409 410
}

411
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
412
{
413 414 415 416 417 418 419
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
420 421
}

422
static void execlists_submit_ports(struct intel_engine_cs *engine)
423
{
424 425
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
426
	unsigned int n;
427

428 429 430 431 432 433 434 435 436 437
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!engine->i915->gt.awake);

438 439 440 441 442 443 444
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
445
		struct i915_request *rq;
446 447 448 449 450 451 452
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
453
				execlists_context_schedule_in(rq);
454 455 456
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
457

458
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
459
				  engine->name, n,
460
				  port[n].context_id, count,
461
				  rq->global_seqno,
462
				  rq->fence.context, rq->fence.seqno,
463
				  intel_engine_get_seqno(engine),
464
				  rq_prio(rq));
465 466 467 468
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
469

470
		write_desc(execlists, desc, n);
471
	}
472 473 474 475 476 477

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
478 479
}

480
static bool ctx_single_port_submission(const struct intel_context *ce)
481
{
482
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
483
		i915_gem_context_force_single_submission(ce->gem_context));
484
}
485

486 487
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
488 489 490
{
	if (prev != next)
		return false;
491

492 493
	if (ctx_single_port_submission(prev))
		return false;
494

495
	return true;
496 497
}

498
static void port_assign(struct execlist_port *port, struct i915_request *rq)
499 500 501 502
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
503
		i915_request_put(port_request(port));
504

505
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
506 507
}

C
Chris Wilson 已提交
508 509
static void inject_preempt_context(struct intel_engine_cs *engine)
{
510
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
511
	struct intel_context *ce =
512
		to_intel_context(engine->i915->preempt_context, engine);
C
Chris Wilson 已提交
513 514
	unsigned int n;

515
	GEM_BUG_ON(execlists->preempt_complete_status !=
516
		   upper_32_bits(ce->lrc_desc));
517

518 519 520 521
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
522
	GEM_TRACE("%s\n", engine->name);
523 524 525 526 527 528 529 530
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
531

532 533 534 535 536 537 538 539
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

540 541 542
	if (inject_preempt_hang(execlists))
		return;

543
	execlists_cancel_port_requests(execlists);
544 545 546
	__unwind_incomplete_requests(container_of(execlists,
						  struct intel_engine_cs,
						  execlists));
C
Chris Wilson 已提交
547 548
}

549
static void execlists_dequeue(struct intel_engine_cs *engine)
550
{
551 552
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
553 554
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
555
	struct i915_request *last = port_request(port);
556
	struct rb_node *rb;
557 558
	bool submit = false;

559 560
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
579
	 */
580

C
Chris Wilson 已提交
581 582 583 584 585 586 587
	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
588 589
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
590
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
591

592 593 594 595 596 597 598 599
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
600
			return;
601

602
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
603
			inject_preempt_context(engine);
604
			return;
C
Chris Wilson 已提交
605
		}
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
629
			return;
630 631 632 633 634 635 636 637 638 639

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
640 641
	}

642
	while ((rb = rb_first_cached(&execlists->queue))) {
643
		struct i915_priolist *p = to_priolist(rb);
644
		struct i915_request *rq, *rn;
645
		int i;
646

647
		priolist_for_each_request_consume(rq, rn, p, i) {
648 649 650 651 652 653 654 655 656 657
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
658
			 */
659 660
			if (last &&
			    !can_merge_ctx(rq->hw_context, last->hw_context)) {
661 662 663 664 665
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
666
				if (port == last_port)
667 668 669 670 671 672 673 674 675
					goto done;

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
676
				if (ctx_single_port_submission(last->hw_context) ||
677
				    ctx_single_port_submission(rq->hw_context))
678 679
					goto done;

680
				GEM_BUG_ON(last->hw_context == rq->hw_context);
681 682 683 684

				if (submit)
					port_assign(port, last);
				port++;
685 686

				GEM_BUG_ON(port_isset(port));
687
			}
688

689 690
			list_del_init(&rq->sched.link);

691 692
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
693

694 695
			last = rq;
			submit = true;
696
		}
697

698
		rb_erase_cached(&p->node, &execlists->queue);
699
		if (p->priority != I915_PRIORITY_NORMAL)
700
			kmem_cache_free(engine->i915->priorities, p);
701
	}
702

703
done:
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
	 * We choose queue_priority such that if we add a request of greater
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
	 * HW. We derive the queue_priority then as the first "hole" in
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
	 * user, see queue_request(), the queue_priority is bumped to that
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
	execlists->queue_priority =
		port != execlists->port ? rq_prio(last) : INT_MIN;

723
	if (submit) {
724
		port_assign(port, last);
725 726
		execlists_submit_ports(engine);
	}
727 728

	/* We must always keep the beast fed if we have work piled up */
729 730
	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
		   !port_isset(execlists->port));
731

732 733
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
734
		execlists_user_begin(execlists, execlists->port);
735

736 737 738 739
	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
740 741
}

742
void
743
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
744
{
745
	struct execlist_port *port = execlists->port;
746
	unsigned int num_ports = execlists_num_ports(execlists);
747

748
	while (num_ports-- && port_isset(port)) {
749
		struct i915_request *rq = port_request(port);
750

751 752 753 754 755 756 757
		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->global_seqno,
			  rq->fence.context, rq->fence.seqno,
			  intel_engine_get_seqno(rq->engine));

758
		GEM_BUG_ON(!execlists->active);
759 760 761 762
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
763

764
		i915_request_put(rq);
765

766 767 768
		memset(port, 0, sizeof(*port));
		port++;
	}
769

770
	execlists_clear_all_active(execlists);
771 772
}

773 774
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
775 776
	const unsigned int reset_value = GEN8_CSB_ENTRIES - 1;

777 778 779 780 781 782 783 784 785
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
786 787
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
788 789
}

790 791 792 793 794
static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

795 796
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
797
	struct intel_engine_execlists * const execlists = &engine->execlists;
798
	struct i915_request *rq, *rn;
799 800 801
	struct rb_node *rb;
	unsigned long flags;

802 803
	GEM_TRACE("%s current %d\n",
		  engine->name, intel_engine_get_seqno(engine));
804

805 806 807 808 809 810 811 812 813 814 815 816 817 818
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
819
	spin_lock_irqsave(&engine->timeline.lock, flags);
820 821

	/* Cancel the requests on the HW and clear the ELSP tracker. */
822
	execlists_cancel_port_requests(execlists);
823
	execlists_user_end(execlists);
824 825

	/* Mark all executing requests as skipped. */
826
	list_for_each_entry(rq, &engine->timeline.requests, link) {
827
		GEM_BUG_ON(!rq->global_seqno);
828 829 830 831 832

		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
			continue;

		dma_fence_set_error(&rq->fence, -EIO);
833 834 835
	}

	/* Flush the queued requests to the timeline list (for retiring). */
836
	while ((rb = rb_first_cached(&execlists->queue))) {
837
		struct i915_priolist *p = to_priolist(rb);
838
		int i;
839

840 841
		priolist_for_each_request_consume(rq, rn, p, i) {
			list_del_init(&rq->sched.link);
842 843

			dma_fence_set_error(&rq->fence, -EIO);
844
			__i915_request_submit(rq);
845 846
		}

847
		rb_erase_cached(&p->node, &execlists->queue);
848 849 850 851
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

852 853 854 855
	intel_write_status_page(engine,
				I915_GEM_HWS_INDEX,
				intel_engine_last_submit(engine));

856 857
	/* Remaining _unready_ requests will be nop'ed when submitted */

858
	execlists->queue_priority = INT_MIN;
859
	execlists->queue = RB_ROOT_CACHED;
860
	GEM_BUG_ON(port_isset(execlists->port));
861

862 863 864
	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;

865
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
866 867
}

868 869 870 871 872 873
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

874
static void process_csb(struct intel_engine_cs *engine)
875
{
876
	struct intel_engine_execlists * const execlists = &engine->execlists;
877
	struct execlist_port *port = execlists->port;
878 879
	const u32 * const buf = execlists->csb_status;
	u8 head, tail;
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
896

897 898 899 900 901 902 903 904 905
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
906

907
	do {
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
		struct i915_request *rq;
		unsigned int status;
		unsigned int count;

		if (++head == GEN8_CSB_ENTRIES)
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
			  engine->name, head,
935
			  buf[2 * head + 0], buf[2 * head + 1],
936 937
			  execlists->active);

938
		status = buf[2 * head];
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
			      GEN8_CTX_STATUS_PREEMPTED))
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_HWACK);
		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
			execlists_clear_active(execlists,
					       EXECLISTS_ACTIVE_HWACK);

		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
			continue;

		/* We should never get a COMPLETED | IDLE_ACTIVE! */
		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

		if (status & GEN8_CTX_STATUS_COMPLETE &&
		    buf[2*head + 1] == execlists->preempt_complete_status) {
			GEM_TRACE("%s preempt-idle\n", engine->name);
			complete_preempt_context(execlists);
			continue;
958
		}
959

960 961 962 963
		if (status & GEN8_CTX_STATUS_PREEMPTED &&
		    execlists_is_active(execlists,
					EXECLISTS_ACTIVE_PREEMPT))
			continue;
964

965 966
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
967

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
		rq = port_unpack(port, &count);
		GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
			  engine->name,
			  port->context_id, count,
			  rq ? rq->global_seqno : 0,
			  rq ? rq->fence.context : 0,
			  rq ? rq->fence.seqno : 0,
			  intel_engine_get_seqno(engine),
			  rq ? rq_prio(rq) : 0);

		/* Check the context/desc id for this event matches */
		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

		GEM_BUG_ON(count == 0);
		if (--count == 0) {
983
			/*
984 985 986 987 988 989
			 * On the final event corresponding to the
			 * submission of this context, we expect either
			 * an element-switch event or a completion
			 * event (and on completion, the active-idle
			 * marker). No more preemptions, lite-restore
			 * or otherwise.
990
			 */
991 992 993 994 995
			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
			GEM_BUG_ON(port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
			GEM_BUG_ON(!port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
996

997 998 999 1000 1001 1002 1003
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
			GEM_BUG_ON(!i915_request_completed(rq));
C
Chris Wilson 已提交
1004

1005 1006 1007
			execlists_context_schedule_out(rq,
						       INTEL_CONTEXT_SCHEDULE_OUT);
			i915_request_put(rq);
1008

1009 1010
			GEM_TRACE("%s completed ctx=%d\n",
				  engine->name, port->context_id);
1011

1012 1013 1014 1015 1016 1017 1018
			port = execlists_port_complete(execlists, port);
			if (port_isset(port))
				execlists_user_begin(execlists, port);
			else
				execlists_user_end(execlists);
		} else {
			port_set(port, port_pack(rq, count));
1019
		}
1020
	} while (head != tail);
1021

1022
	execlists->csb_head = head;
1023
}
1024

1025
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1026
{
1027
	lockdep_assert_held(&engine->timeline.lock);
1028

C
Chris Wilson 已提交
1029
	process_csb(engine);
1030 1031
	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1032 1033
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

	GEM_TRACE("%s awake?=%d, active=%x\n",
		  engine->name,
		  engine->i915->gt.awake,
		  engine->execlists.active);

	spin_lock_irqsave(&engine->timeline.lock, flags);
1049
	__execlists_submission_tasklet(engine);
1050 1051 1052
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

1053
static void queue_request(struct intel_engine_cs *engine,
1054
			  struct i915_sched_node *node,
1055
			  int prio)
1056
{
1057
	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1071 1072
}

1073 1074
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1075
	if (prio > engine->execlists.queue_priority) {
1076
		engine->execlists.queue_priority = prio;
1077 1078
		__submit_queue_imm(engine);
	}
1079 1080
}

1081
static void execlists_submit_request(struct i915_request *request)
1082
{
1083
	struct intel_engine_cs *engine = request->engine;
1084
	unsigned long flags;
1085

1086
	/* Will be called from irq-context when using foreign fences. */
1087
	spin_lock_irqsave(&engine->timeline.lock, flags);
1088

1089
	queue_request(engine, &request->sched, rq_prio(request));
1090

1091
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1092
	GEM_BUG_ON(list_empty(&request->sched.link));
1093

1094 1095
	submit_queue(engine, rq_prio(request));

1096
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1097 1098
}

1099 1100 1101 1102
static void execlists_context_destroy(struct intel_context *ce)
{
	GEM_BUG_ON(ce->pin_count);

1103 1104 1105
	if (!ce->state)
		return;

1106
	intel_ring_free(ce->ring);
1107 1108 1109

	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
1110 1111
}

1112
static void execlists_context_unpin(struct intel_context *ce)
1113
{
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	struct intel_engine_cs *engine;

	/*
	 * The tasklet may still be using a pointer to our state, via an
	 * old request. However, since we know we only unpin the context
	 * on retirement of the following request, we know that the last
	 * request referencing us will have had a completion CS interrupt.
	 * If we see that it is still active, it means that the tasklet hasn't
	 * had the chance to run yet; let it run before we teardown the
	 * reference it may use.
	 */
	engine = READ_ONCE(ce->active);
	if (unlikely(engine)) {
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline.lock, flags);
		process_csb(engine);
		spin_unlock_irqrestore(&engine->timeline.lock, flags);

		GEM_BUG_ON(READ_ONCE(ce->active));
	}

1136 1137
	i915_gem_context_unpin_hw_id(ce->gem_context);

1138 1139 1140 1141 1142 1143 1144 1145 1146
	intel_ring_unpin(ce->ring);

	ce->state->obj->pin_global--;
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);

	i915_gem_context_put(ce->gem_context);
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1158
		err = i915_gem_object_set_to_wc_domain(vma->obj, true);
1159 1160 1161 1162 1163
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
1164
	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1165

1166
	return i915_vma_pin(vma, 0, 0, flags);
1167 1168
}

1169 1170 1171 1172
static struct intel_context *
__execlists_context_pin(struct intel_engine_cs *engine,
			struct i915_gem_context *ctx,
			struct intel_context *ce)
1173
{
1174
	void *vaddr;
1175
	int ret;
1176

1177
	ret = execlists_context_deferred_alloc(ctx, engine, ce);
1178 1179
	if (ret)
		goto err;
1180
	GEM_BUG_ON(!ce->state);
1181

1182
	ret = __context_pin(ctx, ce->state);
1183
	if (ret)
1184
		goto err;
1185

1186 1187 1188
	vaddr = i915_gem_object_pin_map(ce->state->obj,
					i915_coherent_map_type(ctx->i915) |
					I915_MAP_OVERRIDE);
1189 1190
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1191
		goto unpin_vma;
1192 1193
	}

1194
	ret = intel_ring_pin(ce->ring);
1195
	if (ret)
1196
		goto unpin_map;
1197

1198 1199 1200 1201
	ret = i915_gem_context_pin_hw_id(ctx);
	if (ret)
		goto unpin_ring;

1202
	intel_lr_context_descriptor_update(ctx, engine, ce);
1203

1204 1205
	GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));

1206 1207
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1208
		i915_ggtt_offset(ce->ring->vma);
1209 1210
	ce->lrc_reg_state[CTX_RING_HEAD + 1] = ce->ring->head;
	ce->lrc_reg_state[CTX_RING_TAIL + 1] = ce->ring->tail;
1211

1212
	ce->state->obj->pin_global++;
1213
	i915_gem_context_get(ctx);
1214
	return ce;
1215

1216 1217
unpin_ring:
	intel_ring_unpin(ce->ring);
1218
unpin_map:
1219 1220 1221
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1222
err:
1223
	ce->pin_count = 0;
1224
	return ERR_PTR(ret);
1225 1226
}

1227 1228 1229 1230 1231 1232 1233 1234
static const struct intel_context_ops execlists_context_ops = {
	.unpin = execlists_context_unpin,
	.destroy = execlists_context_destroy,
};

static struct intel_context *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1235
{
1236
	struct intel_context *ce = to_intel_context(ctx, engine);
1237

1238
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1239
	GEM_BUG_ON(!ctx->ppgtt);
1240

1241 1242 1243
	if (likely(ce->pin_count++))
		return ce;
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1244

1245
	ce->ops = &execlists_context_ops;
1246

1247
	return __execlists_context_pin(engine, ctx, ce);
1248 1249
}

1250
static int execlists_request_alloc(struct i915_request *request)
1251
{
1252
	int ret;
1253

1254
	GEM_BUG_ON(!request->hw_context->pin_count);
1255

1256 1257 1258 1259 1260 1261
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1262 1263 1264
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1293 1294
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1295
{
1296
	/* NB no one else is allowed to scribble over scratch + 256! */
1297 1298
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1299
	*batch++ = i915_scratch_offset(engine->i915) + 256;
1300 1301 1302 1303 1304 1305
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1306 1307 1308 1309
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1310 1311 1312

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1313
	*batch++ = i915_scratch_offset(engine->i915) + 256;
1314 1315 1316
	*batch++ = 0;

	return batch;
1317 1318
}

1319 1320 1321 1322 1323 1324
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1325
 *
1326 1327
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1328
 *
1329 1330 1331 1332
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1333
 */
1334
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1335
{
1336
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1337
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1338

1339
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1340 1341
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1342

1343 1344
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1345 1346 1347 1348 1349
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
1350
				       i915_scratch_offset(engine->i915) +
1351
				       2 * CACHELINE_BYTES);
1352

C
Chris Wilson 已提交
1353 1354
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1355
	/* Pad to end of cacheline */
1356 1357
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1358 1359 1360 1361 1362 1363 1364

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1365
	return batch;
1366 1367
}

1368 1369 1370 1371 1372 1373
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1374
{
1375
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1376

1377 1378 1379 1380 1381 1382
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1383

1384 1385
	return batch;
}
1386

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1411

1412
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1413

1414 1415
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1416

1417
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1418

1419
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1434 1435 1436 1437 1438 1439
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1440 1441
	}

C
Chris Wilson 已提交
1442 1443
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1444
	/* Pad to end of cacheline */
1445 1446
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1447

1448
	return batch;
1449 1450
}

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1485 1486 1487
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1488
{
1489 1490 1491
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1492

1493
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1494 1495
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1496

1497
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1498 1499 1500
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1501 1502
	}

1503
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1504 1505 1506 1507
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1508
	return 0;
1509 1510 1511 1512

err:
	i915_gem_object_put(obj);
	return err;
1513 1514
}

1515
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1516
{
1517
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1518 1519
}

1520 1521
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1522
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1523
{
1524
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1525 1526 1527
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1528
	struct page *page;
1529 1530
	void *batch, *batch_ptr;
	unsigned int i;
1531
	int ret;
1532

1533
	if (GEM_DEBUG_WARN_ON(engine->id != RCS))
1534
		return -EINVAL;
1535

1536
	switch (INTEL_GEN(engine->i915)) {
1537 1538
	case 11:
		return 0;
1539
	case 10:
1540 1541 1542
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1543 1544
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1545
		wa_bb_fn[1] = NULL;
1546 1547 1548
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1549
		wa_bb_fn[1] = NULL;
1550 1551 1552
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1553
		return 0;
1554
	}
1555

1556
	ret = lrc_setup_wa_ctx(engine);
1557 1558 1559 1560 1561
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1562
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1563
	batch = batch_ptr = kmap_atomic(page);
1564

1565 1566 1567 1568 1569 1570 1571
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1572 1573
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
1574 1575 1576
			ret = -EINVAL;
			break;
		}
1577 1578
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1579
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1580 1581
	}

1582 1583
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1584 1585
	kunmap_atomic(batch);
	if (ret)
1586
		lrc_destroy_wa_ctx(engine);
1587 1588 1589 1590

	return ret;
}

1591
static void enable_execlists(struct intel_engine_cs *engine)
1592
{
1593
	struct drm_i915_private *dev_priv = engine->i915;
1594 1595

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1612 1613 1614
	I915_WRITE(RING_MI_MODE(engine->mmio_base),
		   _MASKED_BIT_DISABLE(STOP_RING));

1615 1616 1617 1618 1619
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool unexpected = false;

	if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

1633 1634
static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1635 1636
	intel_engine_apply_workarounds(engine);

1637
	intel_mocs_init_engine(engine);
1638

1639
	intel_engine_reset_breadcrumbs(engine);
1640

1641 1642 1643 1644 1645 1646
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

1647
	enable_execlists(engine);
1648

1649
	return 0;
1650 1651
}

1652
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1653
{
1654
	struct drm_i915_private *dev_priv = engine->i915;
1655 1656
	int ret;

1657
	ret = gen8_init_common_ring(engine);
1658 1659 1660
	if (ret)
		return ret;

1661
	intel_engine_apply_whitelist(engine);
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1673
	return 0;
1674 1675
}

1676
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1677 1678 1679
{
	int ret;

1680
	ret = gen8_init_common_ring(engine);
1681 1682 1683
	if (ret)
		return ret;

1684
	intel_engine_apply_whitelist(engine);
1685 1686

	return 0;
1687 1688
}

1689 1690 1691 1692
static struct i915_request *
execlists_reset_prepare(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
1693
	struct i915_request *request, *active;
1694
	unsigned long flags;
1695

1696 1697
	GEM_TRACE("%s: depth<-%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);

1710 1711
	spin_lock_irqsave(&engine->timeline.lock, flags);

1712 1713 1714 1715 1716 1717 1718
	/*
	 * We want to flush the pending context switches, having disabled
	 * the tasklet above, we can assume exclusive access to the execlists.
	 * For this allows us to catch up with an inflight preemption event,
	 * and avoid blaming an innocent request if the stall was due to the
	 * preemption itself.
	 */
C
Chris Wilson 已提交
1719
	process_csb(engine);
1720 1721 1722 1723 1724 1725 1726 1727 1728

	/*
	 * The last active request can then be no later than the last request
	 * now in ELSP[0]. So search backwards from there, so that if the GPU
	 * has advanced beyond the last CSB update, it will be pardoned.
	 */
	active = NULL;
	request = port_request(execlists->port);
	if (request) {
1729 1730 1731 1732 1733 1734
		/*
		 * Prevent the breadcrumb from advancing before we decide
		 * which request is currently active.
		 */
		intel_engine_stop_cs(engine);

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
		list_for_each_entry_from_reverse(request,
						 &engine->timeline.requests,
						 link) {
			if (__i915_request_completed(request,
						     request->global_seqno))
				break;

			active = request;
		}
	}

1746 1747
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

1748
	return active;
1749 1750 1751 1752
}

static void execlists_reset(struct intel_engine_cs *engine,
			    struct i915_request *request)
1753
{
1754
	struct intel_engine_execlists * const execlists = &engine->execlists;
1755
	unsigned long flags;
1756
	u32 *regs;
1757

1758
	GEM_TRACE("%s request global=%d, current=%d\n",
1759 1760
		  engine->name, request ? request->global_seqno : 0,
		  intel_engine_get_seqno(engine));
1761

1762
	spin_lock_irqsave(&engine->timeline.lock, flags);
1763

1764 1765 1766 1767 1768 1769 1770 1771 1772
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1773
	execlists_cancel_port_requests(execlists);
1774

1775
	/* Push back any incomplete requests for replay after the reset. */
1776
	__unwind_incomplete_requests(engine);
1777

1778
	/* Following the reset, we need to reload the CSB read/write pointers */
1779
	reset_csb_pointers(&engine->execlists);
1780

1781
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1782

1783 1784
	/*
	 * If the request was innocent, we leave the request in the ELSP
1785 1786 1787 1788 1789 1790 1791 1792 1793
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1794
	if (!request || request->fence.error != -EIO)
1795
		return;
1796

1797 1798
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1799 1800 1801 1802 1803 1804
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1805
	regs = request->hw_context->lrc_reg_state;
1806 1807 1808 1809
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
1810
	}
C
Chris Wilson 已提交
1811 1812
	execlists_init_reg_state(regs,
				 request->gem_context, engine, request->ring);
1813

1814
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1815
	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1816

1817 1818 1819
	request->ring->head = intel_ring_wrap(request->ring, request->postfix);
	regs[CTX_RING_HEAD + 1] = request->ring->head;

1820 1821
	intel_ring_update_space(request->ring);

1822
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1823
	unwind_wa_tail(request);
1824 1825
}

1826 1827
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
1828 1829
	struct intel_engine_execlists * const execlists = &engine->execlists;

1830
	/*
1831 1832 1833
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
1834 1835
	 *
	 */
1836 1837
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
1838

1839
	tasklet_enable(&execlists->tasklet);
1840 1841
	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
1842 1843
}

1844
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1845
{
C
Chris Wilson 已提交
1846
	struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
1847
	struct intel_engine_cs *engine = rq->engine;
1848
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1849 1850
	u32 *cs;
	int i;
1851

1852
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1853 1854
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1855

1856
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1857
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1858 1859
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1860 1861 1862 1863
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1864 1865
	}

1866
	*cs++ = MI_NOOP;
1867
	intel_ring_advance(rq, cs);
1868 1869 1870 1871

	return 0;
}

1872
static int gen8_emit_bb_start(struct i915_request *rq,
1873
			      u64 offset, u32 len,
1874
			      const unsigned int flags)
1875
{
1876
	u32 *cs;
1877 1878
	int ret;

1879 1880 1881 1882
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1883 1884
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1885
	if ((intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
1886
	    !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
1887 1888
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
1889 1890
		if (ret)
			return ret;
1891

C
Chris Wilson 已提交
1892
		rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1893 1894
	}

1895
	cs = intel_ring_begin(rq, 6);
1896 1897
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1916 1917
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1918
	/* FIXME(BDW): Address space and security selectors. */
1919
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
1920
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
1921 1922
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
1923 1924 1925

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
1926
	intel_ring_advance(rq, cs);
1927 1928 1929 1930

	return 0;
}

1931
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1932
{
1933
	struct drm_i915_private *dev_priv = engine->i915;
1934 1935 1936
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1937 1938
}

1939
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1940
{
1941
	struct drm_i915_private *dev_priv = engine->i915;
1942
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1943 1944
}

1945
static int gen8_emit_flush(struct i915_request *request, u32 mode)
1946
{
1947
	u32 cmd, *cs;
1948

1949 1950 1951
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1952 1953 1954

	cmd = MI_FLUSH_DW + 1;

1955 1956 1957 1958 1959 1960 1961
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1962
	if (mode & EMIT_INVALIDATE) {
1963
		cmd |= MI_INVALIDATE_TLB;
1964
		if (request->engine->class == VIDEO_DECODE_CLASS)
1965
			cmd |= MI_INVALIDATE_BSD;
1966 1967
	}

1968 1969 1970 1971 1972
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1973 1974 1975 1976

	return 0;
}

1977
static int gen8_emit_flush_render(struct i915_request *request,
1978
				  u32 mode)
1979
{
1980
	struct intel_engine_cs *engine = request->engine;
1981
	u32 scratch_addr =
1982
		i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1983
	bool vf_flush_wa = false, dc_flush_wa = false;
1984
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1985
	int len;
1986 1987 1988

	flags |= PIPE_CONTROL_CS_STALL;

1989
	if (mode & EMIT_FLUSH) {
1990 1991
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1992
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1993
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1994 1995
	}

1996
	if (mode & EMIT_INVALIDATE) {
1997 1998 1999 2000 2001 2002 2003 2004 2005
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2006 2007 2008 2009
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2010
		if (IS_GEN9(request->i915))
2011
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2012 2013 2014 2015

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2016
	}
2017

M
Mika Kuoppala 已提交
2018 2019 2020 2021 2022 2023 2024 2025
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2026 2027 2028
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2029

2030 2031
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2032

2033 2034 2035
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2036

2037
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2038

2039 2040
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2041

2042
	intel_ring_advance(request, cs);
2043 2044 2045 2046

	return 0;
}

2047 2048 2049 2050 2051
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2052
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2053
{
C
Chris Wilson 已提交
2054 2055
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2056 2057
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
2058
}
2059

2060
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2061
{
2062 2063
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2064

2065 2066
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2067
	*cs++ = MI_USER_INTERRUPT;
2068
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2069
	request->tail = intel_ring_offset(request, cs);
2070
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2071

2072
	gen8_emit_wa_tail(request, cs);
2073
}
2074 2075
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2076
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2077
{
2078 2079 2080
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2081 2082
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2083
	*cs++ = MI_USER_INTERRUPT;
2084
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2085
	request->tail = intel_ring_offset(request, cs);
2086
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2087

2088
	gen8_emit_wa_tail(request, cs);
2089
}
2090
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2091

2092
static int gen8_init_rcs_context(struct i915_request *rq)
2093 2094 2095
{
	int ret;

2096
	ret = intel_engine_emit_ctx_wa(rq);
2097 2098 2099
	if (ret)
		return ret;

2100
	ret = intel_rcs_context_init_mocs(rq);
2101 2102 2103 2104 2105 2106 2107
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2108
	return i915_gem_render_state_emit(rq);
2109 2110
}

2111 2112
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2113
 * @engine: Engine Command Streamer.
2114
 */
2115
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2116
{
2117
	struct drm_i915_private *dev_priv;
2118

2119 2120 2121 2122
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2123 2124 2125
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2126

2127
	dev_priv = engine->i915;
2128

2129 2130
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2131
	}
2132

2133 2134
	if (engine->cleanup)
		engine->cleanup(engine);
2135

2136
	intel_engine_cleanup_common(engine);
2137

2138
	lrc_destroy_wa_ctx(engine);
2139

2140
	engine->i915 = NULL;
2141 2142
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2143 2144
}

2145
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2146
{
2147
	engine->submit_request = execlists_submit_request;
2148
	engine->cancel_requests = execlists_cancel_requests;
2149
	engine->schedule = i915_schedule;
2150
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2151

2152 2153
	engine->reset.prepare = execlists_reset_prepare;

2154 2155
	engine->park = NULL;
	engine->unpark = NULL;
2156 2157

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2158 2159
	if (engine->i915->preempt_context)
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2160 2161 2162 2163

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2164
	if (intel_engine_has_preemption(engine))
2165
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2166 2167
}

2168
static void
2169
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2170 2171
{
	/* Default vfuncs which can be overriden by each engine. */
2172
	engine->init_hw = gen8_init_common_ring;
2173 2174 2175 2176

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2177 2178

	engine->context_pin = execlists_context_pin;
2179 2180
	engine->request_alloc = execlists_request_alloc;

2181
	engine->emit_flush = gen8_emit_flush;
2182
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2183
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2184

2185
	engine->set_default_submission = intel_execlists_set_default_submission;
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2198
	engine->emit_bb_start = gen8_emit_bb_start;
2199 2200
}

2201
static inline void
2202
logical_ring_default_irqs(struct intel_engine_cs *engine)
2203
{
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2218 2219
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2220 2221
}

2222 2223 2224
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
2225 2226
	intel_engine_setup_common(engine);

2227 2228 2229
	/* Intentionally left blank. */
	engine->buffer = NULL;

2230 2231
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2232 2233 2234 2235 2236

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2237
static int logical_ring_init(struct intel_engine_cs *engine)
2238
{
2239 2240
	struct drm_i915_private *i915 = engine->i915;
	struct intel_engine_execlists * const execlists = &engine->execlists;
2241 2242
	int ret;

2243
	ret = intel_engine_init_common(engine);
2244
	if (ret)
2245
		return ret;
2246

2247 2248
	intel_engine_init_workarounds(engine);

2249 2250
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
		execlists->submit_reg = i915->regs +
2251
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2252
		execlists->ctrl_reg = i915->regs +
2253 2254
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
2255
		execlists->submit_reg = i915->regs +
2256 2257
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2258

2259 2260
	execlists->preempt_complete_status = ~0u;
	if (i915->preempt_context) {
2261
		struct intel_context *ce =
2262
			to_intel_context(i915->preempt_context, engine);
2263

2264
		execlists->preempt_complete_status =
2265 2266
			upper_32_bits(ce->lrc_desc);
	}
2267

2268 2269
	execlists->csb_status =
		&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
2270

2271 2272
	execlists->csb_write =
		&engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2273

2274
	reset_csb_pointers(execlists);
2275

2276 2277 2278
	return 0;
}

2279
int logical_render_ring_init(struct intel_engine_cs *engine)
2280 2281 2282 2283
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2284 2285
	logical_ring_setup(engine);

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2296 2297
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2298

2299
	ret = logical_ring_init(engine);
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2314
	intel_engine_init_whitelist(engine);
2315

2316
	return 0;
2317 2318
}

2319
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2320 2321 2322 2323
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2324 2325
}

2326
static u32
2327
make_rpcs(struct drm_i915_private *dev_priv)
2328
{
2329 2330 2331
	bool subslice_pg = INTEL_INFO(dev_priv)->sseu.has_subslice_pg;
	u8 slices = hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask);
	u8 subslices = hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]);
2332 2333 2334 2335 2336 2337
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2338
	if (INTEL_GEN(dev_priv) < 9)
2339 2340
		return 0;

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	/*
	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
	 * wide and Icelake has up to eight subslices, specfial programming is
	 * needed in order to correctly enable all subslices.
	 *
	 * According to documentation software must consider the configuration
	 * as 2x4x8 and hardware will translate this to 1x8x8.
	 *
	 * Furthemore, even though SScount is three bits, maximum documented
	 * value for it is four. From this some rules/restrictions follow:
	 *
	 * 1.
	 * If enabled subslice count is greater than four, two whole slices must
	 * be enabled instead.
	 *
	 * 2.
	 * When more than one slice is enabled, hardware ignores the subslice
	 * count altogether.
	 *
	 * From these restrictions it follows that it is not possible to enable
	 * a count of subslices between the SScount maximum of four restriction,
	 * and the maximum available number on a particular SKU. Either all
	 * subslices are enabled, or a count between one and four on the first
	 * slice.
	 */
	if (IS_GEN11(dev_priv) && slices == 1 && subslices >= 4) {
		GEM_BUG_ON(subslices & 1);

		subslice_pg = false;
		slices *= 2;
	}

2373 2374 2375 2376 2377 2378
	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2379
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
		u32 mask, val = slices;

		if (INTEL_GEN(dev_priv) >= 11) {
			mask = GEN11_RPCS_S_CNT_MASK;
			val <<= GEN11_RPCS_S_CNT_SHIFT;
		} else {
			mask = GEN8_RPCS_S_CNT_MASK;
			val <<= GEN8_RPCS_S_CNT_SHIFT;
		}

		GEM_BUG_ON(val & ~mask);
		val &= mask;

		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
2394 2395
	}

2396 2397 2398 2399 2400 2401 2402 2403 2404
	if (subslice_pg) {
		u32 val = subslices;

		val <<= GEN8_RPCS_SS_CNT_SHIFT;

		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
		val &= GEN8_RPCS_SS_CNT_MASK;

		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
2405 2406
	}

2407
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
		u32 val;

		val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
		      GEN8_RPCS_EU_MIN_SHIFT;
		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
		val &= GEN8_RPCS_EU_MIN_MASK;

		rpcs |= val;

		val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
		      GEN8_RPCS_EU_MAX_SHIFT;
		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
		val &= GEN8_RPCS_EU_MAX_MASK;

		rpcs |= val;

2424 2425 2426 2427 2428 2429
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2430
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2431 2432 2433
{
	u32 indirect_ctx_offset;

2434
	switch (INTEL_GEN(engine->i915)) {
2435
	default:
2436
		MISSING_CASE(INTEL_GEN(engine->i915));
2437
		/* fall through */
2438 2439 2440 2441
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2442 2443 2444 2445
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2459
static void execlists_init_reg_state(u32 *regs,
2460 2461 2462
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2463
{
2464
	struct drm_i915_private *dev_priv = engine->i915;
2465
	u32 base = engine->mmio_base;
2466
	bool rcs = engine->class == RENDER_CLASS;
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2479
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2480
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2481 2482 2483 2484 2485
	if (INTEL_GEN(dev_priv) < 11) {
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2498 2499
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2500 2501 2502
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2503
		if (wa_ctx->indirect_ctx.size) {
2504
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2505

2506
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2507 2508
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2509

2510
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2511
				intel_lr_indirect_ctx_offset(engine) << 6;
2512 2513 2514 2515 2516
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2517

2518
			regs[CTX_BB_PER_CTX_PTR + 1] =
2519
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2520
		}
2521
	}
2522 2523 2524 2525

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2526
	/* PDP values well be assigned later if needed */
2527 2528 2529 2530 2531 2532 2533 2534
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2535

2536
	if (i915_vm_is_48bit(&ctx->ppgtt->vm)) {
2537 2538 2539 2540
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2541
		ASSIGN_CTX_PML4(ctx->ppgtt, regs);
2542 2543
	}

2544 2545 2546 2547
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2548 2549

		i915_oa_init_reg_state(engine, ctx, regs);
2550
	}
2551 2552 2553 2554

	regs[CTX_END] = MI_BATCH_BUFFER_END;
	if (INTEL_GEN(dev_priv) >= 10)
		regs[CTX_END] |= BIT(0);
2555 2556 2557 2558 2559 2560 2561 2562 2563
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2564
	u32 *regs;
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2579
	ctx_obj->mm.dirty = true;
2580

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2592 2593 2594 2595
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2596 2597 2598 2599 2600

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2601 2602
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2603 2604 2605 2606 2607
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2608
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2609 2610 2611
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2612

2613
err_unpin_ctx:
2614
	i915_gem_object_unpin_map(ctx_obj);
2615
	return ret;
2616 2617
}

2618
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2619 2620
					    struct intel_engine_cs *engine,
					    struct intel_context *ce)
2621
{
2622
	struct drm_i915_gem_object *ctx_obj;
2623
	struct i915_vma *vma;
2624
	uint32_t context_size;
2625
	struct intel_ring *ring;
2626
	struct i915_timeline *timeline;
2627 2628
	int ret;

2629 2630
	if (ce->state)
		return 0;
2631

2632
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2633

2634 2635 2636 2637 2638
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2639

2640
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2641 2642
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
2643

2644
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2645 2646 2647 2648 2649
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2650 2651 2652 2653 2654 2655 2656 2657
	timeline = i915_timeline_create(ctx->i915, ctx->name);
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
	i915_timeline_put(timeline);
2658 2659
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2660
		goto error_deref_obj;
2661 2662
	}

2663
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2664 2665
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2666
		goto error_ring_free;
2667 2668
	}

2669
	ce->ring = ring;
2670
	ce->state = vma;
2671 2672

	return 0;
2673

2674
error_ring_free:
2675
	intel_ring_free(ring);
2676
error_deref_obj:
2677
	i915_gem_object_put(ctx_obj);
2678
	return ret;
2679
}
2680

2681
void intel_lr_context_resume(struct drm_i915_private *i915)
2682
{
2683
	struct intel_engine_cs *engine;
2684
	struct i915_gem_context *ctx;
2685
	enum intel_engine_id id;
2686

2687 2688
	/*
	 * Because we emit WA_TAIL_DWORDS there may be a disparity
2689 2690 2691 2692 2693 2694 2695 2696 2697
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2698 2699
	list_for_each_entry(ctx, &i915->contexts.list, link) {
		for_each_engine(engine, i915, id) {
2700 2701
			struct intel_context *ce =
				to_intel_context(ctx, engine);
2702

2703 2704
			if (!ce->state)
				continue;
2705

2706
			intel_ring_reset(ce->ring, 0);
2707

2708 2709
			if (ce->pin_count) { /* otherwise done in context_pin */
				u32 *regs = ce->lrc_reg_state;
2710

2711 2712 2713
				regs[CTX_RING_HEAD + 1] = ce->ring->head;
				regs[CTX_RING_TAIL + 1] = ce->ring->tail;
			}
2714
		}
2715 2716
	}
}
2717 2718 2719 2720

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif