posix-timers.c 35.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * linux/kernel/posix-timers.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *
 * 2002-10-15  Posix Clocks & timers
 *                           by George Anzinger george@mvista.com
 *
 *			     Copyright (C) 2002 2003 by MontaVista Software.
 *
 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 *			     Copyright (C) 2004 Boris Hu
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
 */

/* These are all the functions necessary to implement
 * POSIX clocks & timers
 */
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
A
Arjan van de Ven 已提交
37
#include <linux/mutex.h>
38
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
39

40
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
41 42 43
#include <linux/list.h>
#include <linux/init.h>
#include <linux/compiler.h>
44
#include <linux/hash.h>
45
#include <linux/posix-clock.h>
L
Linus Torvalds 已提交
46 47 48 49
#include <linux/posix-timers.h>
#include <linux/syscalls.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
50
#include <linux/export.h>
51
#include <linux/hashtable.h>
52
#include <linux/compat.h>
53
#include <linux/nospec.h>
L
Linus Torvalds 已提交
54

55
#include "timekeeping.h"
56
#include "posix-timers.h"
57

L
Linus Torvalds 已提交
58
/*
59 60 61 62 63 64
 * Management arrays for POSIX timers. Timers are now kept in static hash table
 * with 512 entries.
 * Timer ids are allocated by local routine, which selects proper hash head by
 * key, constructed from current->signal address and per signal struct counter.
 * This keeps timer ids unique per process, but now they can intersect between
 * processes.
L
Linus Torvalds 已提交
65 66 67 68 69
 */

/*
 * Lets keep our timers in a slab cache :-)
 */
70
static struct kmem_cache *posix_timers_cache;
71 72 73

static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
static DEFINE_SPINLOCK(hash_lock);
L
Linus Torvalds 已提交
74

75 76
static const struct k_clock * const posix_clocks[];
static const struct k_clock *clockid_to_kclock(const clockid_t id);
77
static const struct k_clock clock_realtime, clock_monotonic;
78

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87
/*
 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
 * SIGEV values.  Here we put out an error if this assumption fails.
 */
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
#endif

88 89 90 91 92 93 94 95
/*
 * parisc wants ENOTSUP instead of EOPNOTSUPP
 */
#ifndef ENOTSUP
# define ENANOSLEEP_NOTSUP EOPNOTSUPP
#else
# define ENANOSLEEP_NOTSUP ENOTSUP
#endif
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108

/*
 * The timer ID is turned into a timer address by idr_find().
 * Verifying a valid ID consists of:
 *
 * a) checking that idr_find() returns other than -1.
 * b) checking that the timer id matches the one in the timer itself.
 * c) that the timer owner is in the callers thread group.
 */

/*
 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 *	    to implement others.  This structure defines the various
R
Richard Cochran 已提交
109
 *	    clocks.
L
Linus Torvalds 已提交
110 111 112 113 114 115 116 117 118
 *
 * RESOLUTION: Clock resolution is used to round up timer and interval
 *	    times, NOT to report clock times, which are reported with as
 *	    much resolution as the system can muster.  In some cases this
 *	    resolution may depend on the underlying clock hardware and
 *	    may not be quantifiable until run time, and only then is the
 *	    necessary code is written.	The standard says we should say
 *	    something about this issue in the documentation...
 *
R
Richard Cochran 已提交
119 120
 * FUNCTIONS: The CLOCKs structure defines possible functions to
 *	    handle various clock functions.
L
Linus Torvalds 已提交
121
 *
R
Richard Cochran 已提交
122 123 124 125
 *	    The standard POSIX timer management code assumes the
 *	    following: 1.) The k_itimer struct (sched.h) is used for
 *	    the timer.  2.) The list, it_lock, it_clock, it_id and
 *	    it_pid fields are not modified by timer code.
L
Linus Torvalds 已提交
126 127 128 129 130 131 132 133
 *
 * Permissions: It is assumed that the clock_settime() function defined
 *	    for each clock will take care of permission checks.	 Some
 *	    clocks may be set able by any user (i.e. local process
 *	    clocks) others not.	 Currently the only set able clock we
 *	    have is CLOCK_REALTIME and its high res counter part, both of
 *	    which we beg off on and pass to do_sys_settimeofday().
 */
N
Namhyung Kim 已提交
134 135 136 137 138 139 140
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);

#define lock_timer(tid, flags)						   \
({	struct k_itimer *__timr;					   \
	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
	__timr;								   \
})
L
Linus Torvalds 已提交
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static int hash(struct signal_struct *sig, unsigned int nr)
{
	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
}

static struct k_itimer *__posix_timers_find(struct hlist_head *head,
					    struct signal_struct *sig,
					    timer_t id)
{
	struct k_itimer *timer;

	hlist_for_each_entry_rcu(timer, head, t_hash) {
		if ((timer->it_signal == sig) && (timer->it_id == id))
			return timer;
	}
	return NULL;
}

static struct k_itimer *posix_timer_by_id(timer_t id)
{
	struct signal_struct *sig = current->signal;
	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];

	return __posix_timers_find(head, sig, id);
}

static int posix_timer_add(struct k_itimer *timer)
{
	struct signal_struct *sig = current->signal;
	int first_free_id = sig->posix_timer_id;
	struct hlist_head *head;
	int ret = -ENOENT;

	do {
		spin_lock(&hash_lock);
		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
			hlist_add_head_rcu(&timer->t_hash, head);
			ret = sig->posix_timer_id;
		}
		if (++sig->posix_timer_id < 0)
			sig->posix_timer_id = 0;
		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
			/* Loop over all possible ids completed */
			ret = -EAGAIN;
		spin_unlock(&hash_lock);
	} while (ret == -ENOENT);
	return ret;
}

L
Linus Torvalds 已提交
192 193 194 195 196
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
	spin_unlock_irqrestore(&timr->it_lock, flags);
}

197
/* Get clock_realtime */
198
static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
199
{
200
	ktime_get_real_ts64(tp);
201 202 203
	return 0;
}

204 205
/* Set clock_realtime */
static int posix_clock_realtime_set(const clockid_t which_clock,
206
				    const struct timespec64 *tp)
207
{
208
	return do_sys_settimeofday64(tp, NULL);
209 210
}

211 212 213 214 215 216
static int posix_clock_realtime_adj(const clockid_t which_clock,
				    struct timex *t)
{
	return do_adjtimex(t);
}

217 218 219
/*
 * Get monotonic time for posix timers
 */
220
static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
221
{
222
	ktime_get_ts64(tp);
223 224
	return 0;
}
L
Linus Torvalds 已提交
225

226
/*
227
 * Get monotonic-raw time for posix timers
228
 */
229
static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
230
{
231
	ktime_get_raw_ts64(tp);
232 233 234
	return 0;
}

235

236
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
237
{
238
	ktime_get_coarse_real_ts64(tp);
239 240 241 242
	return 0;
}

static int posix_get_monotonic_coarse(clockid_t which_clock,
243
						struct timespec64 *tp)
244
{
245
	ktime_get_coarse_ts64(tp);
246 247 248
	return 0;
}

249
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
250
{
251
	*tp = ktime_to_timespec64(KTIME_LOW_RES);
252 253
	return 0;
}
254

255
static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
256
{
257
	ktime_get_boottime_ts64(tp);
258 259 260
	return 0;
}

261
static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
J
John Stultz 已提交
262
{
263
	ktime_get_clocktai_ts64(tp);
J
John Stultz 已提交
264 265
	return 0;
}
266

267
static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
268 269 270 271 272 273
{
	tp->tv_sec = 0;
	tp->tv_nsec = hrtimer_resolution;
	return 0;
}

L
Linus Torvalds 已提交
274 275 276 277 278 279
/*
 * Initialize everything, well, just everything in Posix clocks/timers ;)
 */
static __init int init_posix_timers(void)
{
	posix_timers_cache = kmem_cache_create("posix_timers_cache",
280 281
					sizeof (struct k_itimer), 0, SLAB_PANIC,
					NULL);
L
Linus Torvalds 已提交
282 283 284 285
	return 0;
}
__initcall(init_posix_timers);

286
static void common_hrtimer_rearm(struct k_itimer *timr)
L
Linus Torvalds 已提交
287
{
288 289
	struct hrtimer *timer = &timr->it.real.timer;

290
	if (!timr->it_interval)
L
Linus Torvalds 已提交
291 292
		return;

D
Davide Libenzi 已提交
293 294
	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
						timer->base->get_time(),
295
						timr->it_interval);
296
	hrtimer_restart(timer);
L
Linus Torvalds 已提交
297 298 299 300 301 302 303 304 305 306
}

/*
 * This function is exported for use by the signal deliver code.  It is
 * called just prior to the info block being released and passes that
 * block to us.  It's function is to update the overrun entry AND to
 * restart the timer.  It should only be called if the timer is to be
 * restarted (i.e. we have flagged this in the sys_private entry of the
 * info block).
 *
L
Lucas De Marchi 已提交
307
 * To protect against the timer going away while the interrupt is queued,
L
Linus Torvalds 已提交
308 309
 * we require that the it_requeue_pending flag be set.
 */
310
void posixtimer_rearm(struct siginfo *info)
L
Linus Torvalds 已提交
311 312 313 314 315
{
	struct k_itimer *timr;
	unsigned long flags;

	timr = lock_timer(info->si_tid, &flags);
316 317
	if (!timr)
		return;
L
Linus Torvalds 已提交
318

319
	if (timr->it_requeue_pending == info->si_sys_private) {
320
		timr->kclock->timer_rearm(timr);
L
Linus Torvalds 已提交
321

322
		timr->it_active = 1;
323 324 325 326
		timr->it_overrun_last = timr->it_overrun;
		timr->it_overrun = -1;
		++timr->it_requeue_pending;

327
		info->si_overrun += timr->it_overrun_last;
328 329
	}

330
	unlock_timer(timr, flags);
L
Linus Torvalds 已提交
331 332
}

333
int posix_timer_event(struct k_itimer *timr, int si_private)
L
Linus Torvalds 已提交
334
{
335 336
	struct task_struct *task;
	int shared, ret = -1;
337 338
	/*
	 * FIXME: if ->sigq is queued we can race with
339
	 * dequeue_signal()->posixtimer_rearm().
340 341
	 *
	 * If dequeue_signal() sees the "right" value of
342
	 * si_sys_private it calls posixtimer_rearm().
343
	 * We re-queue ->sigq and drop ->it_lock().
344
	 * posixtimer_rearm() locks the timer
345 346 347
	 * and re-schedules it while ->sigq is pending.
	 * Not really bad, but not that we want.
	 */
L
Linus Torvalds 已提交
348 349
	timr->sigq->info.si_sys_private = si_private;

350 351 352 353 354 355 356
	rcu_read_lock();
	task = pid_task(timr->it_pid, PIDTYPE_PID);
	if (task) {
		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
		ret = send_sigqueue(timr->sigq, task, shared);
	}
	rcu_read_unlock();
357 358
	/* If we failed to send the signal the timer stops. */
	return ret > 0;
L
Linus Torvalds 已提交
359 360 361 362 363 364 365 366 367
}

/*
 * This function gets called when a POSIX.1b interval timer expires.  It
 * is used as a callback from the kernel internal timer.  The
 * run_timer_list code ALWAYS calls with interrupts on.

 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 */
368
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
L
Linus Torvalds 已提交
369
{
370
	struct k_itimer *timr;
L
Linus Torvalds 已提交
371
	unsigned long flags;
372
	int si_private = 0;
373
	enum hrtimer_restart ret = HRTIMER_NORESTART;
L
Linus Torvalds 已提交
374

375
	timr = container_of(timer, struct k_itimer, it.real.timer);
L
Linus Torvalds 已提交
376 377
	spin_lock_irqsave(&timr->it_lock, flags);

378
	timr->it_active = 0;
379
	if (timr->it_interval != 0)
380
		si_private = ++timr->it_requeue_pending;
L
Linus Torvalds 已提交
381

382 383 384 385 386 387
	if (posix_timer_event(timr, si_private)) {
		/*
		 * signal was not sent because of sig_ignor
		 * we will not get a call back to restart it AND
		 * it should be restarted.
		 */
388
		if (timr->it_interval != 0) {
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
			ktime_t now = hrtimer_cb_get_time(timer);

			/*
			 * FIXME: What we really want, is to stop this
			 * timer completely and restart it in case the
			 * SIG_IGN is removed. This is a non trivial
			 * change which involves sighand locking
			 * (sigh !), which we don't want to do late in
			 * the release cycle.
			 *
			 * For now we just let timers with an interval
			 * less than a jiffie expire every jiffie to
			 * avoid softirq starvation in case of SIG_IGN
			 * and a very small interval, which would put
			 * the timer right back on the softirq pending
			 * list. By moving now ahead of time we trick
			 * hrtimer_forward() to expire the timer
			 * later, while we still maintain the overrun
			 * accuracy, but have some inconsistency in
			 * the timer_gettime() case. This is at least
			 * better than a starved softirq. A more
			 * complex fix which solves also another related
			 * inconsistency is already in the pipeline.
			 */
#ifdef CONFIG_HIGH_RES_TIMERS
			{
T
Thomas Gleixner 已提交
415
				ktime_t kj = NSEC_PER_SEC / HZ;
416

417
				if (timr->it_interval < kj)
418 419 420
					now = ktime_add(now, kj);
			}
#endif
D
Davide Libenzi 已提交
421
			timr->it_overrun += (unsigned int)
422
				hrtimer_forward(timer, now,
423
						timr->it_interval);
424
			ret = HRTIMER_RESTART;
425
			++timr->it_requeue_pending;
426
			timr->it_active = 1;
L
Linus Torvalds 已提交
427 428 429
		}
	}

430 431 432
	unlock_timer(timr, flags);
	return ret;
}
L
Linus Torvalds 已提交
433

434
static struct pid *good_sigevent(sigevent_t * event)
L
Linus Torvalds 已提交
435 436 437
{
	struct task_struct *rtn = current->group_leader;

438 439 440 441 442 443 444 445 446 447 448 449 450 451
	switch (event->sigev_notify) {
	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
		rtn = find_task_by_vpid(event->sigev_notify_thread_id);
		if (!rtn || !same_thread_group(rtn, current))
			return NULL;
		/* FALLTHRU */
	case SIGEV_SIGNAL:
	case SIGEV_THREAD:
		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
			return NULL;
		/* FALLTHRU */
	case SIGEV_NONE:
		return task_pid(rtn);
	default:
L
Linus Torvalds 已提交
452
		return NULL;
453
	}
L
Linus Torvalds 已提交
454 455 456 457 458
}

static struct k_itimer * alloc_posix_timer(void)
{
	struct k_itimer *tmr;
459
	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
460 461 462 463
	if (!tmr)
		return tmr;
	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
		kmem_cache_free(posix_timers_cache, tmr);
464
		return NULL;
L
Linus Torvalds 已提交
465
	}
466
	clear_siginfo(&tmr->sigq->info);
L
Linus Torvalds 已提交
467 468 469
	return tmr;
}

E
Eric Dumazet 已提交
470 471 472 473 474 475 476
static void k_itimer_rcu_free(struct rcu_head *head)
{
	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);

	kmem_cache_free(posix_timers_cache, tmr);
}

L
Linus Torvalds 已提交
477 478 479 480 481 482
#define IT_ID_SET	1
#define IT_ID_NOT_SET	0
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
{
	if (it_id_set) {
		unsigned long flags;
483 484 485
		spin_lock_irqsave(&hash_lock, flags);
		hlist_del_rcu(&tmr->t_hash);
		spin_unlock_irqrestore(&hash_lock, flags);
L
Linus Torvalds 已提交
486
	}
487
	put_pid(tmr->it_pid);
L
Linus Torvalds 已提交
488
	sigqueue_free(tmr->sigq);
E
Eric Dumazet 已提交
489
	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
L
Linus Torvalds 已提交
490 491
}

492 493 494 495 496 497
static int common_timer_create(struct k_itimer *new_timer)
{
	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
	return 0;
}

L
Linus Torvalds 已提交
498
/* Create a POSIX.1b interval timer. */
499 500
static int do_timer_create(clockid_t which_clock, struct sigevent *event,
			   timer_t __user *created_timer_id)
L
Linus Torvalds 已提交
501
{
502
	const struct k_clock *kc = clockid_to_kclock(which_clock);
503
	struct k_itimer *new_timer;
504
	int error, new_timer_id;
L
Linus Torvalds 已提交
505 506
	int it_id_set = IT_ID_NOT_SET;

507
	if (!kc)
L
Linus Torvalds 已提交
508
		return -EINVAL;
509 510
	if (!kc->timer_create)
		return -EOPNOTSUPP;
L
Linus Torvalds 已提交
511 512 513 514 515 516

	new_timer = alloc_posix_timer();
	if (unlikely(!new_timer))
		return -EAGAIN;

	spin_lock_init(&new_timer->it_lock);
517 518 519
	new_timer_id = posix_timer_add(new_timer);
	if (new_timer_id < 0) {
		error = new_timer_id;
L
Linus Torvalds 已提交
520 521 522 523 524 525
		goto out;
	}

	it_id_set = IT_ID_SET;
	new_timer->it_id = (timer_t) new_timer_id;
	new_timer->it_clock = which_clock;
526
	new_timer->kclock = kc;
L
Linus Torvalds 已提交
527 528
	new_timer->it_overrun = -1;

529
	if (event) {
530
		rcu_read_lock();
531
		new_timer->it_pid = get_pid(good_sigevent(event));
532
		rcu_read_unlock();
533
		if (!new_timer->it_pid) {
L
Linus Torvalds 已提交
534 535 536
			error = -EINVAL;
			goto out;
		}
537 538 539
		new_timer->it_sigev_notify     = event->sigev_notify;
		new_timer->sigq->info.si_signo = event->sigev_signo;
		new_timer->sigq->info.si_value = event->sigev_value;
L
Linus Torvalds 已提交
540
	} else {
541 542 543 544
		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
		new_timer->sigq->info.si_signo = SIGALRM;
		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
545
		new_timer->it_pid = get_pid(task_tgid(current));
L
Linus Torvalds 已提交
546 547
	}

548
	new_timer->sigq->info.si_tid   = new_timer->it_id;
549
	new_timer->sigq->info.si_code  = SI_TIMER;
550

551 552 553 554 555 556
	if (copy_to_user(created_timer_id,
			 &new_timer_id, sizeof (new_timer_id))) {
		error = -EFAULT;
		goto out;
	}

557
	error = kc->timer_create(new_timer);
558 559 560
	if (error)
		goto out;

561
	spin_lock_irq(&current->sighand->siglock);
562
	new_timer->it_signal = current->signal;
563 564
	list_add(&new_timer->list, &current->signal->posix_timers);
	spin_unlock_irq(&current->sighand->siglock);
565 566

	return 0;
567
	/*
L
Linus Torvalds 已提交
568 569 570 571 572 573
	 * In the case of the timer belonging to another task, after
	 * the task is unlocked, the timer is owned by the other task
	 * and may cease to exist at any time.  Don't use or modify
	 * new_timer after the unlock call.
	 */
out:
574
	release_posix_timer(new_timer, it_id_set);
L
Linus Torvalds 已提交
575 576 577
	return error;
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
		struct sigevent __user *, timer_event_spec,
		timer_t __user *, created_timer_id)
{
	if (timer_event_spec) {
		sigevent_t event;

		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
			return -EFAULT;
		return do_timer_create(which_clock, &event, created_timer_id);
	}
	return do_timer_create(which_clock, NULL, created_timer_id);
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
		       struct compat_sigevent __user *, timer_event_spec,
		       timer_t __user *, created_timer_id)
{
	if (timer_event_spec) {
		sigevent_t event;

		if (get_compat_sigevent(&event, timer_event_spec))
			return -EFAULT;
		return do_timer_create(which_clock, &event, created_timer_id);
	}
	return do_timer_create(which_clock, NULL, created_timer_id);
}
#endif

L
Linus Torvalds 已提交
608 609 610 611 612 613 614
/*
 * Locking issues: We need to protect the result of the id look up until
 * we get the timer locked down so it is not deleted under us.  The
 * removal is done under the idr spinlock so we use that here to bridge
 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 * be release with out holding the timer lock.
 */
N
Namhyung Kim 已提交
615
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
L
Linus Torvalds 已提交
616 617
{
	struct k_itimer *timr;
E
Eric Dumazet 已提交
618

619 620 621 622 623 624 625
	/*
	 * timer_t could be any type >= int and we want to make sure any
	 * @timer_id outside positive int range fails lookup.
	 */
	if ((unsigned long long)timer_id > INT_MAX)
		return NULL;

E
Eric Dumazet 已提交
626
	rcu_read_lock();
627
	timr = posix_timer_by_id(timer_id);
L
Linus Torvalds 已提交
628
	if (timr) {
E
Eric Dumazet 已提交
629
		spin_lock_irqsave(&timr->it_lock, *flags);
630
		if (timr->it_signal == current->signal) {
E
Eric Dumazet 已提交
631
			rcu_read_unlock();
632 633
			return timr;
		}
E
Eric Dumazet 已提交
634
		spin_unlock_irqrestore(&timr->it_lock, *flags);
635
	}
E
Eric Dumazet 已提交
636
	rcu_read_unlock();
L
Linus Torvalds 已提交
637

638
	return NULL;
L
Linus Torvalds 已提交
639 640
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654
static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return __hrtimer_expires_remaining_adjusted(timer, now);
}

static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return (int)hrtimer_forward(timer, now, timr->it_interval);
}

L
Linus Torvalds 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
/*
 * Get the time remaining on a POSIX.1b interval timer.  This function
 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 * mess with irq.
 *
 * We have a couple of messes to clean up here.  First there is the case
 * of a timer that has a requeue pending.  These timers should appear to
 * be in the timer list with an expiry as if we were to requeue them
 * now.
 *
 * The second issue is the SIGEV_NONE timer which may be active but is
 * not really ever put in the timer list (to save system resources).
 * This timer may be expired, and if so, we will do it here.  Otherwise
 * it is the same as a requeue pending timer WRT to what we should
 * report.
 */
671
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
L
Linus Torvalds 已提交
672
{
673
	const struct k_clock *kc = timr->kclock;
674
	ktime_t now, remaining, iv;
675 676
	struct timespec64 ts64;
	bool sig_none;
L
Linus Torvalds 已提交
677

678
	sig_none = timr->it_sigev_notify == SIGEV_NONE;
679
	iv = timr->it_interval;
680

681
	/* interval timer ? */
682
	if (iv) {
683
		cur_setting->it_interval = ktime_to_timespec64(iv);
684 685 686 687 688 689 690 691
	} else if (!timr->it_active) {
		/*
		 * SIGEV_NONE oneshot timers are never queued. Check them
		 * below.
		 */
		if (!sig_none)
			return;
	}
692

693 694 695 696 697 698
	/*
	 * The timespec64 based conversion is suboptimal, but it's not
	 * worth to implement yet another callback.
	 */
	kc->clock_get(timr->it_clock, &ts64);
	now = timespec64_to_ktime(ts64);
699

700
	/*
701 702
	 * When a requeue is pending or this is a SIGEV_NONE timer move the
	 * expiry time forward by intervals, so expiry is > now.
703
	 */
704 705
	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
		timr->it_overrun += kc->timer_forward(timr, now);
706

707
	remaining = kc->timer_remaining(timr, now);
708
	/* Return 0 only, when the timer is expired and not pending */
T
Thomas Gleixner 已提交
709
	if (remaining <= 0) {
710 711 712 713
		/*
		 * A single shot SIGEV_NONE timer must return 0, when
		 * it is expired !
		 */
714
		if (!sig_none)
715
			cur_setting->it_value.tv_nsec = 1;
716
	} else {
717
		cur_setting->it_value = ktime_to_timespec64(remaining);
718
	}
L
Linus Torvalds 已提交
719 720 721
}

/* Get the time remaining on a POSIX.1b interval timer. */
722
static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
L
Linus Torvalds 已提交
723
{
724
	struct k_itimer *timr;
725
	const struct k_clock *kc;
L
Linus Torvalds 已提交
726
	unsigned long flags;
727
	int ret = 0;
L
Linus Torvalds 已提交
728 729 730 731 732

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

733
	memset(setting, 0, sizeof(*setting));
734
	kc = timr->kclock;
735 736 737
	if (WARN_ON_ONCE(!kc || !kc->timer_get))
		ret = -EINVAL;
	else
738
		kc->timer_get(timr, setting);
L
Linus Torvalds 已提交
739 740

	unlock_timer(timr, flags);
741 742
	return ret;
}
L
Linus Torvalds 已提交
743

744 745
/* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
746
		struct __kernel_itimerspec __user *, setting)
747
{
748
	struct itimerspec64 cur_setting;
L
Linus Torvalds 已提交
749

750
	int ret = do_timer_gettime(timer_id, &cur_setting);
751
	if (!ret) {
752
		if (put_itimerspec64(&cur_setting, setting))
753 754
			ret = -EFAULT;
	}
755
	return ret;
L
Linus Torvalds 已提交
756
}
757

758 759
#ifdef CONFIG_COMPAT_32BIT_TIME

760 761 762
COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
		       struct compat_itimerspec __user *, setting)
{
763
	struct itimerspec64 cur_setting;
764

765
	int ret = do_timer_gettime(timer_id, &cur_setting);
766
	if (!ret) {
767
		if (put_compat_itimerspec64(&cur_setting, setting))
768 769 770 771
			ret = -EFAULT;
	}
	return ret;
}
772

773 774
#endif

L
Linus Torvalds 已提交
775 776 777 778 779 780
/*
 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 * be the overrun of the timer last delivered.  At the same time we are
 * accumulating overruns on the next timer.  The overrun is frozen when
 * the signal is delivered, either at the notify time (if the info block
 * is not queued) or at the actual delivery time (as we are informed by
781
 * the call back to posixtimer_rearm().  So all we need to do is
L
Linus Torvalds 已提交
782 783
 * to pick up the frozen overrun.
 */
784
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
L
Linus Torvalds 已提交
785 786 787
{
	struct k_itimer *timr;
	int overrun;
788
	unsigned long flags;
L
Linus Torvalds 已提交
789 790 791 792 793 794 795 796 797 798 799

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

	overrun = timr->it_overrun_last;
	unlock_timer(timr, flags);

	return overrun;
}

800 801 802 803 804 805 806
static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
			       bool absolute, bool sigev_none)
{
	struct hrtimer *timer = &timr->it.real.timer;
	enum hrtimer_mode mode;

	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
807 808 809 810 811 812 813 814 815 816 817 818
	/*
	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they become CLOCK_MONOTONIC based under the
	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
	 * functions which use timr->kclock->clock_get() work.
	 *
	 * Note: it_clock stays unmodified, because the next timer_set() might
	 * use ABSTIME, so it needs to switch back.
	 */
	if (timr->it_clock == CLOCK_REALTIME)
		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
	timr->it.real.timer.function = posix_timer_fn;

	if (!absolute)
		expires = ktime_add_safe(expires, timer->base->get_time());
	hrtimer_set_expires(timer, expires);

	if (!sigev_none)
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}

static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
{
	return hrtimer_try_to_cancel(&timr->it.real.timer);
}

L
Linus Torvalds 已提交
835
/* Set a POSIX.1b interval timer. */
836 837 838
int common_timer_set(struct k_itimer *timr, int flags,
		     struct itimerspec64 *new_setting,
		     struct itimerspec64 *old_setting)
L
Linus Torvalds 已提交
839
{
840 841 842
	const struct k_clock *kc = timr->kclock;
	bool sigev_none;
	ktime_t expires;
L
Linus Torvalds 已提交
843 844 845 846

	if (old_setting)
		common_timer_get(timr, old_setting);

847
	/* Prevent rearming by clearing the interval */
848
	timr->it_interval = 0;
L
Linus Torvalds 已提交
849
	/*
850 851
	 * Careful here. On SMP systems the timer expiry function could be
	 * active and spinning on timr->it_lock.
L
Linus Torvalds 已提交
852
	 */
853
	if (kc->timer_try_to_cancel(timr) < 0)
L
Linus Torvalds 已提交
854 855
		return TIMER_RETRY;

856 857
	timr->it_active = 0;
	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
L
Linus Torvalds 已提交
858 859 860
		~REQUEUE_PENDING;
	timr->it_overrun_last = 0;

861
	/* Switch off the timer when it_value is zero */
862 863
	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
		return 0;
L
Linus Torvalds 已提交
864

865
	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
866
	expires = timespec64_to_ktime(new_setting->it_value);
867
	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
868

869 870
	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
	timr->it_active = !sigev_none;
L
Linus Torvalds 已提交
871 872 873
	return 0;
}

874 875 876
static int do_timer_settime(timer_t timer_id, int flags,
			    struct itimerspec64 *new_spec64,
			    struct itimerspec64 *old_spec64)
L
Linus Torvalds 已提交
877
{
878
	const struct k_clock *kc;
879
	struct k_itimer *timr;
880
	unsigned long flag;
881
	int error = 0;
L
Linus Torvalds 已提交
882

883 884
	if (!timespec64_valid(&new_spec64->it_interval) ||
	    !timespec64_valid(&new_spec64->it_value))
L
Linus Torvalds 已提交
885 886
		return -EINVAL;

887 888
	if (old_spec64)
		memset(old_spec64, 0, sizeof(*old_spec64));
L
Linus Torvalds 已提交
889 890 891 892 893
retry:
	timr = lock_timer(timer_id, &flag);
	if (!timr)
		return -EINVAL;

894
	kc = timr->kclock;
895 896 897
	if (WARN_ON_ONCE(!kc || !kc->timer_set))
		error = -EINVAL;
	else
898
		error = kc->timer_set(timr, flags, new_spec64, old_spec64);
L
Linus Torvalds 已提交
899 900 901

	unlock_timer(timr, flag);
	if (error == TIMER_RETRY) {
902
		old_spec64 = NULL;	// We already got the old time...
L
Linus Torvalds 已提交
903 904 905
		goto retry;
	}

906 907
	return error;
}
L
Linus Torvalds 已提交
908

909 910
/* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
911 912
		const struct __kernel_itimerspec __user *, new_setting,
		struct __kernel_itimerspec __user *, old_setting)
913
{
914 915
	struct itimerspec64 new_spec, old_spec;
	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
916 917 918 919 920
	int error = 0;

	if (!new_setting)
		return -EINVAL;

921
	if (get_itimerspec64(&new_spec, new_setting))
922 923
		return -EFAULT;

924
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
925
	if (!error && old_setting) {
926
		if (put_itimerspec64(&old_spec, old_setting))
927 928 929 930 931
			error = -EFAULT;
	}
	return error;
}

932
#ifdef CONFIG_COMPAT_32BIT_TIME
933 934 935 936
COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
		       struct compat_itimerspec __user *, new,
		       struct compat_itimerspec __user *, old)
{
937 938
	struct itimerspec64 new_spec, old_spec;
	struct itimerspec64 *rtn = old ? &old_spec : NULL;
939 940 941 942
	int error = 0;

	if (!new)
		return -EINVAL;
943
	if (get_compat_itimerspec64(&new_spec, new))
944 945
		return -EFAULT;

946
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
947
	if (!error && old) {
948
		if (put_compat_itimerspec64(&old_spec, old))
949 950
			error = -EFAULT;
	}
L
Linus Torvalds 已提交
951 952
	return error;
}
953
#endif
L
Linus Torvalds 已提交
954

955
int common_timer_del(struct k_itimer *timer)
L
Linus Torvalds 已提交
956
{
957
	const struct k_clock *kc = timer->kclock;
958

959 960
	timer->it_interval = 0;
	if (kc->timer_try_to_cancel(timer) < 0)
L
Linus Torvalds 已提交
961
		return TIMER_RETRY;
962
	timer->it_active = 0;
L
Linus Torvalds 已提交
963 964 965 966 967
	return 0;
}

static inline int timer_delete_hook(struct k_itimer *timer)
{
968
	const struct k_clock *kc = timer->kclock;
969 970 971 972

	if (WARN_ON_ONCE(!kc || !kc->timer_del))
		return -EINVAL;
	return kc->timer_del(timer);
L
Linus Torvalds 已提交
973 974 975
}

/* Delete a POSIX.1b interval timer. */
976
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
L
Linus Torvalds 已提交
977 978
{
	struct k_itimer *timer;
979
	unsigned long flags;
L
Linus Torvalds 已提交
980 981 982 983 984 985

retry_delete:
	timer = lock_timer(timer_id, &flags);
	if (!timer)
		return -EINVAL;

986
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
987 988 989
		unlock_timer(timer, flags);
		goto retry_delete;
	}
990

L
Linus Torvalds 已提交
991 992 993 994 995 996 997
	spin_lock(&current->sighand->siglock);
	list_del(&timer->list);
	spin_unlock(&current->sighand->siglock);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
998
	timer->it_signal = NULL;
999

L
Linus Torvalds 已提交
1000 1001 1002 1003
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
	return 0;
}
1004

L
Linus Torvalds 已提交
1005 1006 1007
/*
 * return timer owned by the process, used by exit_itimers
 */
1008
static void itimer_delete(struct k_itimer *timer)
L
Linus Torvalds 已提交
1009 1010 1011 1012 1013 1014
{
	unsigned long flags;

retry_delete:
	spin_lock_irqsave(&timer->it_lock, flags);

1015
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
1016 1017 1018 1019 1020 1021 1022 1023
		unlock_timer(timer, flags);
		goto retry_delete;
	}
	list_del(&timer->list);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
1024
	timer->it_signal = NULL;
1025

L
Linus Torvalds 已提交
1026 1027 1028 1029 1030
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
}

/*
1031
 * This is called by do_exit or de_thread, only when there are no more
L
Linus Torvalds 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
 * references to the shared signal_struct.
 */
void exit_itimers(struct signal_struct *sig)
{
	struct k_itimer *tmr;

	while (!list_empty(&sig->posix_timers)) {
		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
		itimer_delete(tmr);
	}
}

1044
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1045
		const struct __kernel_timespec __user *, tp)
L
Linus Torvalds 已提交
1046
{
1047
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1048
	struct timespec64 new_tp;
L
Linus Torvalds 已提交
1049

1050
	if (!kc || !kc->clock_set)
L
Linus Torvalds 已提交
1051
		return -EINVAL;
1052

1053
	if (get_timespec64(&new_tp, tp))
L
Linus Torvalds 已提交
1054 1055
		return -EFAULT;

1056
	return kc->clock_set(which_clock, &new_tp);
L
Linus Torvalds 已提交
1057 1058
}

1059
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1060
		struct __kernel_timespec __user *, tp)
L
Linus Torvalds 已提交
1061
{
1062
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1063
	struct timespec64 kernel_tp;
L
Linus Torvalds 已提交
1064 1065
	int error;

1066
	if (!kc)
L
Linus Torvalds 已提交
1067
		return -EINVAL;
1068

1069
	error = kc->clock_get(which_clock, &kernel_tp);
1070

1071
	if (!error && put_timespec64(&kernel_tp, tp))
L
Linus Torvalds 已提交
1072 1073 1074 1075 1076
		error = -EFAULT;

	return error;
}

1077 1078 1079
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
		struct timex __user *, utx)
{
1080
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	struct timex ktx;
	int err;

	if (!kc)
		return -EINVAL;
	if (!kc->clock_adj)
		return -EOPNOTSUPP;

	if (copy_from_user(&ktx, utx, sizeof(ktx)))
		return -EFAULT;

	err = kc->clock_adj(which_clock, &ktx);

1094
	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1095 1096 1097 1098 1099
		return -EFAULT;

	return err;
}

1100
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1101
		struct __kernel_timespec __user *, tp)
1102 1103
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1104
	struct timespec64 rtn_tp;
1105 1106 1107 1108 1109
	int error;

	if (!kc)
		return -EINVAL;

1110
	error = kc->clock_getres(which_clock, &rtn_tp);
1111

1112
	if (!error && tp && put_timespec64(&rtn_tp, tp))
1113 1114 1115 1116 1117
		error = -EFAULT;

	return error;
}

1118
#ifdef CONFIG_COMPAT_32BIT_TIME
1119

1120 1121 1122 1123
COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1124
	struct timespec64 ts;
1125 1126 1127 1128

	if (!kc || !kc->clock_set)
		return -EINVAL;

1129
	if (compat_get_timespec64(&ts, tp))
1130 1131
		return -EFAULT;

1132
	return kc->clock_set(which_clock, &ts);
1133 1134 1135 1136 1137 1138
}

COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1139 1140
	struct timespec64 ts;
	int err;
1141 1142 1143 1144

	if (!kc)
		return -EINVAL;

1145
	err = kc->clock_get(which_clock, &ts);
1146

1147 1148
	if (!err && compat_put_timespec64(&ts, tp))
		err = -EFAULT;
1149

1150
	return err;
1151 1152
}

1153 1154 1155 1156
#endif

#ifdef CONFIG_COMPAT

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
		       struct compat_timex __user *, utp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
	struct timex ktx;
	int err;

	if (!kc)
		return -EINVAL;
	if (!kc->clock_adj)
		return -EOPNOTSUPP;

	err = compat_get_timex(&ktx, utp);
	if (err)
		return err;

	err = kc->clock_adj(which_clock, &ktx);

	if (err >= 0)
		err = compat_put_timex(utp, &ktx);

	return err;
}

1181 1182 1183 1184
#endif

#ifdef CONFIG_COMPAT_32BIT_TIME

1185 1186
COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
L
Linus Torvalds 已提交
1187
{
1188
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1189 1190
	struct timespec64 ts;
	int err;
L
Linus Torvalds 已提交
1191

1192
	if (!kc)
L
Linus Torvalds 已提交
1193 1194
		return -EINVAL;

1195 1196 1197
	err = kc->clock_getres(which_clock, &ts);
	if (!err && tp && compat_put_timespec64(&ts, tp))
		return -EFAULT;
L
Linus Torvalds 已提交
1198

1199
	return err;
L
Linus Torvalds 已提交
1200
}
1201

1202
#endif
L
Linus Torvalds 已提交
1203

1204 1205 1206 1207
/*
 * nanosleep for monotonic and realtime clocks
 */
static int common_nsleep(const clockid_t which_clock, int flags,
1208
			 const struct timespec64 *rqtp)
1209
{
1210
	return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1211 1212
				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
				 which_clock);
1213
}
L
Linus Torvalds 已提交
1214

1215
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1216 1217
		const struct __kernel_timespec __user *, rqtp,
		struct __kernel_timespec __user *, rmtp)
L
Linus Torvalds 已提交
1218
{
1219
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1220
	struct timespec64 t;
L
Linus Torvalds 已提交
1221

1222
	if (!kc)
L
Linus Torvalds 已提交
1223
		return -EINVAL;
1224 1225
	if (!kc->nsleep)
		return -ENANOSLEEP_NOTSUP;
L
Linus Torvalds 已提交
1226

1227
	if (get_timespec64(&t, rqtp))
L
Linus Torvalds 已提交
1228 1229
		return -EFAULT;

1230
	if (!timespec64_valid(&t))
L
Linus Torvalds 已提交
1231
		return -EINVAL;
1232 1233
	if (flags & TIMER_ABSTIME)
		rmtp = NULL;
1234
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1235
	current->restart_block.nanosleep.rmtp = rmtp;
L
Linus Torvalds 已提交
1236

1237
	return kc->nsleep(which_clock, flags, &t);
L
Linus Torvalds 已提交
1238
}
1239

1240 1241
#ifdef CONFIG_COMPAT_32BIT_TIME

1242 1243 1244
COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
		       struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
1245
{
1246
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1247
	struct timespec64 t;
1248

1249
	if (!kc)
1250
		return -EINVAL;
1251 1252 1253
	if (!kc->nsleep)
		return -ENANOSLEEP_NOTSUP;

1254
	if (compat_get_timespec64(&t, rqtp))
1255
		return -EFAULT;
1256

1257
	if (!timespec64_valid(&t))
1258 1259 1260 1261 1262 1263
		return -EINVAL;
	if (flags & TIMER_ABSTIME)
		rmtp = NULL;
	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;

1264
	return kc->nsleep(which_clock, flags, &t);
1265
}
1266

1267
#endif
1268 1269

static const struct k_clock clock_realtime = {
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_clock_realtime_get,
	.clock_set		= posix_clock_realtime_set,
	.clock_adj		= posix_clock_realtime_adj,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1284 1285 1286
};

static const struct k_clock clock_monotonic = {
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_ktime_get_ts,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1299 1300 1301
};

static const struct k_clock clock_monotonic_raw = {
1302 1303
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_monotonic_raw,
1304 1305 1306
};

static const struct k_clock clock_realtime_coarse = {
1307 1308
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_realtime_coarse,
1309 1310 1311
};

static const struct k_clock clock_monotonic_coarse = {
1312 1313
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_monotonic_coarse,
1314 1315 1316
};

static const struct k_clock clock_tai = {
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_tai,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1329 1330
};

1331
static const struct k_clock clock_boottime = {
1332
	.clock_getres		= posix_get_hrtimer_res,
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	.clock_get		= posix_get_boottime,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
};

static const struct k_clock * const posix_clocks[] = {
	[CLOCK_REALTIME]		= &clock_realtime,
	[CLOCK_MONOTONIC]		= &clock_monotonic,
	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1354
	[CLOCK_BOOTTIME]		= &clock_boottime,
1355 1356 1357 1358 1359 1360 1361
	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
	[CLOCK_TAI]			= &clock_tai,
};

static const struct k_clock *clockid_to_kclock(const clockid_t id)
{
1362 1363 1364
	clockid_t idx = id;

	if (id < 0) {
1365 1366
		return (id & CLOCKFD_MASK) == CLOCKFD ?
			&clock_posix_dynamic : &clock_posix_cpu;
1367
	}
1368

1369
	if (id >= ARRAY_SIZE(posix_clocks))
1370
		return NULL;
1371 1372

	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1373
}