posix-timers.c 35.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * linux/kernel/posix-timers.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *
 * 2002-10-15  Posix Clocks & timers
 *                           by George Anzinger george@mvista.com
 *
 *			     Copyright (C) 2002 2003 by MontaVista Software.
 *
 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 *			     Copyright (C) 2004 Boris Hu
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
 */

/* These are all the functions necessary to implement
 * POSIX clocks & timers
 */
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
A
Arjan van de Ven 已提交
37
#include <linux/mutex.h>
38
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
39

40
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
41 42 43
#include <linux/list.h>
#include <linux/init.h>
#include <linux/compiler.h>
44
#include <linux/hash.h>
45
#include <linux/posix-clock.h>
L
Linus Torvalds 已提交
46 47 48 49
#include <linux/posix-timers.h>
#include <linux/syscalls.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
50
#include <linux/export.h>
51
#include <linux/hashtable.h>
52
#include <linux/compat.h>
53
#include <linux/nospec.h>
L
Linus Torvalds 已提交
54

55
#include "timekeeping.h"
56
#include "posix-timers.h"
57

L
Linus Torvalds 已提交
58
/*
59 60 61 62 63 64
 * Management arrays for POSIX timers. Timers are now kept in static hash table
 * with 512 entries.
 * Timer ids are allocated by local routine, which selects proper hash head by
 * key, constructed from current->signal address and per signal struct counter.
 * This keeps timer ids unique per process, but now they can intersect between
 * processes.
L
Linus Torvalds 已提交
65 66 67 68 69
 */

/*
 * Lets keep our timers in a slab cache :-)
 */
70
static struct kmem_cache *posix_timers_cache;
71 72 73

static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
static DEFINE_SPINLOCK(hash_lock);
L
Linus Torvalds 已提交
74

75 76
static const struct k_clock * const posix_clocks[];
static const struct k_clock *clockid_to_kclock(const clockid_t id);
77
static const struct k_clock clock_realtime, clock_monotonic;
78

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87
/*
 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
 * SIGEV values.  Here we put out an error if this assumption fails.
 */
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
#endif

88 89 90 91 92 93 94 95
/*
 * parisc wants ENOTSUP instead of EOPNOTSUPP
 */
#ifndef ENOTSUP
# define ENANOSLEEP_NOTSUP EOPNOTSUPP
#else
# define ENANOSLEEP_NOTSUP ENOTSUP
#endif
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108

/*
 * The timer ID is turned into a timer address by idr_find().
 * Verifying a valid ID consists of:
 *
 * a) checking that idr_find() returns other than -1.
 * b) checking that the timer id matches the one in the timer itself.
 * c) that the timer owner is in the callers thread group.
 */

/*
 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 *	    to implement others.  This structure defines the various
R
Richard Cochran 已提交
109
 *	    clocks.
L
Linus Torvalds 已提交
110 111 112 113 114 115 116 117 118
 *
 * RESOLUTION: Clock resolution is used to round up timer and interval
 *	    times, NOT to report clock times, which are reported with as
 *	    much resolution as the system can muster.  In some cases this
 *	    resolution may depend on the underlying clock hardware and
 *	    may not be quantifiable until run time, and only then is the
 *	    necessary code is written.	The standard says we should say
 *	    something about this issue in the documentation...
 *
R
Richard Cochran 已提交
119 120
 * FUNCTIONS: The CLOCKs structure defines possible functions to
 *	    handle various clock functions.
L
Linus Torvalds 已提交
121
 *
R
Richard Cochran 已提交
122 123 124 125
 *	    The standard POSIX timer management code assumes the
 *	    following: 1.) The k_itimer struct (sched.h) is used for
 *	    the timer.  2.) The list, it_lock, it_clock, it_id and
 *	    it_pid fields are not modified by timer code.
L
Linus Torvalds 已提交
126 127 128 129 130 131 132 133
 *
 * Permissions: It is assumed that the clock_settime() function defined
 *	    for each clock will take care of permission checks.	 Some
 *	    clocks may be set able by any user (i.e. local process
 *	    clocks) others not.	 Currently the only set able clock we
 *	    have is CLOCK_REALTIME and its high res counter part, both of
 *	    which we beg off on and pass to do_sys_settimeofday().
 */
N
Namhyung Kim 已提交
134 135 136 137 138 139 140
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);

#define lock_timer(tid, flags)						   \
({	struct k_itimer *__timr;					   \
	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
	__timr;								   \
})
L
Linus Torvalds 已提交
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static int hash(struct signal_struct *sig, unsigned int nr)
{
	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
}

static struct k_itimer *__posix_timers_find(struct hlist_head *head,
					    struct signal_struct *sig,
					    timer_t id)
{
	struct k_itimer *timer;

	hlist_for_each_entry_rcu(timer, head, t_hash) {
		if ((timer->it_signal == sig) && (timer->it_id == id))
			return timer;
	}
	return NULL;
}

static struct k_itimer *posix_timer_by_id(timer_t id)
{
	struct signal_struct *sig = current->signal;
	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];

	return __posix_timers_find(head, sig, id);
}

static int posix_timer_add(struct k_itimer *timer)
{
	struct signal_struct *sig = current->signal;
	int first_free_id = sig->posix_timer_id;
	struct hlist_head *head;
	int ret = -ENOENT;

	do {
		spin_lock(&hash_lock);
		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
			hlist_add_head_rcu(&timer->t_hash, head);
			ret = sig->posix_timer_id;
		}
		if (++sig->posix_timer_id < 0)
			sig->posix_timer_id = 0;
		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
			/* Loop over all possible ids completed */
			ret = -EAGAIN;
		spin_unlock(&hash_lock);
	} while (ret == -ENOENT);
	return ret;
}

L
Linus Torvalds 已提交
192 193 194 195 196
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
	spin_unlock_irqrestore(&timr->it_lock, flags);
}

197
/* Get clock_realtime */
198
static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
199
{
200
	ktime_get_real_ts64(tp);
201 202 203
	return 0;
}

204 205
/* Set clock_realtime */
static int posix_clock_realtime_set(const clockid_t which_clock,
206
				    const struct timespec64 *tp)
207
{
208
	return do_sys_settimeofday64(tp, NULL);
209 210
}

211 212 213 214 215 216
static int posix_clock_realtime_adj(const clockid_t which_clock,
				    struct timex *t)
{
	return do_adjtimex(t);
}

217 218 219
/*
 * Get monotonic time for posix timers
 */
220
static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
221
{
222
	ktime_get_ts64(tp);
223 224
	return 0;
}
L
Linus Torvalds 已提交
225

226
/*
227
 * Get monotonic-raw time for posix timers
228
 */
229
static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
230
{
231
	getrawmonotonic64(tp);
232 233 234
	return 0;
}

235

236
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
237
{
238
	*tp = current_kernel_time64();
239 240 241 242
	return 0;
}

static int posix_get_monotonic_coarse(clockid_t which_clock,
243
						struct timespec64 *tp)
244
{
245
	*tp = get_monotonic_coarse64();
246 247 248
	return 0;
}

249
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
250
{
251
	*tp = ktime_to_timespec64(KTIME_LOW_RES);
252 253
	return 0;
}
254

255
static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
256
{
257
	timekeeping_clocktai64(tp);
258 259 260
	return 0;
}

261 262
static int posix_get_monotonic_active(clockid_t which_clock,
				      struct timespec64 *tp)
J
John Stultz 已提交
263
{
264
	ktime_get_active_ts64(tp);
J
John Stultz 已提交
265 266
	return 0;
}
267

268
static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
269 270 271 272 273 274
{
	tp->tv_sec = 0;
	tp->tv_nsec = hrtimer_resolution;
	return 0;
}

L
Linus Torvalds 已提交
275 276 277 278 279 280
/*
 * Initialize everything, well, just everything in Posix clocks/timers ;)
 */
static __init int init_posix_timers(void)
{
	posix_timers_cache = kmem_cache_create("posix_timers_cache",
281 282
					sizeof (struct k_itimer), 0, SLAB_PANIC,
					NULL);
L
Linus Torvalds 已提交
283 284 285 286
	return 0;
}
__initcall(init_posix_timers);

287
static void common_hrtimer_rearm(struct k_itimer *timr)
L
Linus Torvalds 已提交
288
{
289 290
	struct hrtimer *timer = &timr->it.real.timer;

291
	if (!timr->it_interval)
L
Linus Torvalds 已提交
292 293
		return;

D
Davide Libenzi 已提交
294 295
	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
						timer->base->get_time(),
296
						timr->it_interval);
297
	hrtimer_restart(timer);
L
Linus Torvalds 已提交
298 299 300 301 302 303 304 305 306 307
}

/*
 * This function is exported for use by the signal deliver code.  It is
 * called just prior to the info block being released and passes that
 * block to us.  It's function is to update the overrun entry AND to
 * restart the timer.  It should only be called if the timer is to be
 * restarted (i.e. we have flagged this in the sys_private entry of the
 * info block).
 *
L
Lucas De Marchi 已提交
308
 * To protect against the timer going away while the interrupt is queued,
L
Linus Torvalds 已提交
309 310
 * we require that the it_requeue_pending flag be set.
 */
311
void posixtimer_rearm(struct siginfo *info)
L
Linus Torvalds 已提交
312 313 314 315 316
{
	struct k_itimer *timr;
	unsigned long flags;

	timr = lock_timer(info->si_tid, &flags);
317 318
	if (!timr)
		return;
L
Linus Torvalds 已提交
319

320
	if (timr->it_requeue_pending == info->si_sys_private) {
321
		timr->kclock->timer_rearm(timr);
L
Linus Torvalds 已提交
322

323
		timr->it_active = 1;
324 325 326 327
		timr->it_overrun_last = timr->it_overrun;
		timr->it_overrun = -1;
		++timr->it_requeue_pending;

328
		info->si_overrun += timr->it_overrun_last;
329 330
	}

331
	unlock_timer(timr, flags);
L
Linus Torvalds 已提交
332 333
}

334
int posix_timer_event(struct k_itimer *timr, int si_private)
L
Linus Torvalds 已提交
335
{
336 337
	struct task_struct *task;
	int shared, ret = -1;
338 339
	/*
	 * FIXME: if ->sigq is queued we can race with
340
	 * dequeue_signal()->posixtimer_rearm().
341 342
	 *
	 * If dequeue_signal() sees the "right" value of
343
	 * si_sys_private it calls posixtimer_rearm().
344
	 * We re-queue ->sigq and drop ->it_lock().
345
	 * posixtimer_rearm() locks the timer
346 347 348
	 * and re-schedules it while ->sigq is pending.
	 * Not really bad, but not that we want.
	 */
L
Linus Torvalds 已提交
349 350
	timr->sigq->info.si_sys_private = si_private;

351 352 353 354 355 356 357
	rcu_read_lock();
	task = pid_task(timr->it_pid, PIDTYPE_PID);
	if (task) {
		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
		ret = send_sigqueue(timr->sigq, task, shared);
	}
	rcu_read_unlock();
358 359
	/* If we failed to send the signal the timer stops. */
	return ret > 0;
L
Linus Torvalds 已提交
360 361 362 363 364 365 366 367 368
}

/*
 * This function gets called when a POSIX.1b interval timer expires.  It
 * is used as a callback from the kernel internal timer.  The
 * run_timer_list code ALWAYS calls with interrupts on.

 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 */
369
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
L
Linus Torvalds 已提交
370
{
371
	struct k_itimer *timr;
L
Linus Torvalds 已提交
372
	unsigned long flags;
373
	int si_private = 0;
374
	enum hrtimer_restart ret = HRTIMER_NORESTART;
L
Linus Torvalds 已提交
375

376
	timr = container_of(timer, struct k_itimer, it.real.timer);
L
Linus Torvalds 已提交
377 378
	spin_lock_irqsave(&timr->it_lock, flags);

379
	timr->it_active = 0;
380
	if (timr->it_interval != 0)
381
		si_private = ++timr->it_requeue_pending;
L
Linus Torvalds 已提交
382

383 384 385 386 387 388
	if (posix_timer_event(timr, si_private)) {
		/*
		 * signal was not sent because of sig_ignor
		 * we will not get a call back to restart it AND
		 * it should be restarted.
		 */
389
		if (timr->it_interval != 0) {
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
			ktime_t now = hrtimer_cb_get_time(timer);

			/*
			 * FIXME: What we really want, is to stop this
			 * timer completely and restart it in case the
			 * SIG_IGN is removed. This is a non trivial
			 * change which involves sighand locking
			 * (sigh !), which we don't want to do late in
			 * the release cycle.
			 *
			 * For now we just let timers with an interval
			 * less than a jiffie expire every jiffie to
			 * avoid softirq starvation in case of SIG_IGN
			 * and a very small interval, which would put
			 * the timer right back on the softirq pending
			 * list. By moving now ahead of time we trick
			 * hrtimer_forward() to expire the timer
			 * later, while we still maintain the overrun
			 * accuracy, but have some inconsistency in
			 * the timer_gettime() case. This is at least
			 * better than a starved softirq. A more
			 * complex fix which solves also another related
			 * inconsistency is already in the pipeline.
			 */
#ifdef CONFIG_HIGH_RES_TIMERS
			{
T
Thomas Gleixner 已提交
416
				ktime_t kj = NSEC_PER_SEC / HZ;
417

418
				if (timr->it_interval < kj)
419 420 421
					now = ktime_add(now, kj);
			}
#endif
D
Davide Libenzi 已提交
422
			timr->it_overrun += (unsigned int)
423
				hrtimer_forward(timer, now,
424
						timr->it_interval);
425
			ret = HRTIMER_RESTART;
426
			++timr->it_requeue_pending;
427
			timr->it_active = 1;
L
Linus Torvalds 已提交
428 429 430
		}
	}

431 432 433
	unlock_timer(timr, flags);
	return ret;
}
L
Linus Torvalds 已提交
434

435
static struct pid *good_sigevent(sigevent_t * event)
L
Linus Torvalds 已提交
436 437 438
{
	struct task_struct *rtn = current->group_leader;

439 440 441 442 443 444 445 446 447 448 449 450 451 452
	switch (event->sigev_notify) {
	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
		rtn = find_task_by_vpid(event->sigev_notify_thread_id);
		if (!rtn || !same_thread_group(rtn, current))
			return NULL;
		/* FALLTHRU */
	case SIGEV_SIGNAL:
	case SIGEV_THREAD:
		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
			return NULL;
		/* FALLTHRU */
	case SIGEV_NONE:
		return task_pid(rtn);
	default:
L
Linus Torvalds 已提交
453
		return NULL;
454
	}
L
Linus Torvalds 已提交
455 456 457 458 459
}

static struct k_itimer * alloc_posix_timer(void)
{
	struct k_itimer *tmr;
460
	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
461 462 463 464
	if (!tmr)
		return tmr;
	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
		kmem_cache_free(posix_timers_cache, tmr);
465
		return NULL;
L
Linus Torvalds 已提交
466
	}
467
	clear_siginfo(&tmr->sigq->info);
L
Linus Torvalds 已提交
468 469 470
	return tmr;
}

E
Eric Dumazet 已提交
471 472 473 474 475 476 477
static void k_itimer_rcu_free(struct rcu_head *head)
{
	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);

	kmem_cache_free(posix_timers_cache, tmr);
}

L
Linus Torvalds 已提交
478 479 480 481 482 483
#define IT_ID_SET	1
#define IT_ID_NOT_SET	0
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
{
	if (it_id_set) {
		unsigned long flags;
484 485 486
		spin_lock_irqsave(&hash_lock, flags);
		hlist_del_rcu(&tmr->t_hash);
		spin_unlock_irqrestore(&hash_lock, flags);
L
Linus Torvalds 已提交
487
	}
488
	put_pid(tmr->it_pid);
L
Linus Torvalds 已提交
489
	sigqueue_free(tmr->sigq);
E
Eric Dumazet 已提交
490
	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
L
Linus Torvalds 已提交
491 492
}

493 494 495 496 497 498
static int common_timer_create(struct k_itimer *new_timer)
{
	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
	return 0;
}

L
Linus Torvalds 已提交
499
/* Create a POSIX.1b interval timer. */
500 501
static int do_timer_create(clockid_t which_clock, struct sigevent *event,
			   timer_t __user *created_timer_id)
L
Linus Torvalds 已提交
502
{
503
	const struct k_clock *kc = clockid_to_kclock(which_clock);
504
	struct k_itimer *new_timer;
505
	int error, new_timer_id;
L
Linus Torvalds 已提交
506 507
	int it_id_set = IT_ID_NOT_SET;

508
	if (!kc)
L
Linus Torvalds 已提交
509
		return -EINVAL;
510 511
	if (!kc->timer_create)
		return -EOPNOTSUPP;
L
Linus Torvalds 已提交
512 513 514 515 516 517

	new_timer = alloc_posix_timer();
	if (unlikely(!new_timer))
		return -EAGAIN;

	spin_lock_init(&new_timer->it_lock);
518 519 520
	new_timer_id = posix_timer_add(new_timer);
	if (new_timer_id < 0) {
		error = new_timer_id;
L
Linus Torvalds 已提交
521 522 523 524 525 526
		goto out;
	}

	it_id_set = IT_ID_SET;
	new_timer->it_id = (timer_t) new_timer_id;
	new_timer->it_clock = which_clock;
527
	new_timer->kclock = kc;
L
Linus Torvalds 已提交
528 529
	new_timer->it_overrun = -1;

530
	if (event) {
531
		rcu_read_lock();
532
		new_timer->it_pid = get_pid(good_sigevent(event));
533
		rcu_read_unlock();
534
		if (!new_timer->it_pid) {
L
Linus Torvalds 已提交
535 536 537
			error = -EINVAL;
			goto out;
		}
538 539 540
		new_timer->it_sigev_notify     = event->sigev_notify;
		new_timer->sigq->info.si_signo = event->sigev_signo;
		new_timer->sigq->info.si_value = event->sigev_value;
L
Linus Torvalds 已提交
541
	} else {
542 543 544 545
		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
		new_timer->sigq->info.si_signo = SIGALRM;
		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
546
		new_timer->it_pid = get_pid(task_tgid(current));
L
Linus Torvalds 已提交
547 548
	}

549
	new_timer->sigq->info.si_tid   = new_timer->it_id;
550
	new_timer->sigq->info.si_code  = SI_TIMER;
551

552 553 554 555 556 557
	if (copy_to_user(created_timer_id,
			 &new_timer_id, sizeof (new_timer_id))) {
		error = -EFAULT;
		goto out;
	}

558
	error = kc->timer_create(new_timer);
559 560 561
	if (error)
		goto out;

562
	spin_lock_irq(&current->sighand->siglock);
563
	new_timer->it_signal = current->signal;
564 565
	list_add(&new_timer->list, &current->signal->posix_timers);
	spin_unlock_irq(&current->sighand->siglock);
566 567

	return 0;
568
	/*
L
Linus Torvalds 已提交
569 570 571 572 573 574
	 * In the case of the timer belonging to another task, after
	 * the task is unlocked, the timer is owned by the other task
	 * and may cease to exist at any time.  Don't use or modify
	 * new_timer after the unlock call.
	 */
out:
575
	release_posix_timer(new_timer, it_id_set);
L
Linus Torvalds 已提交
576 577 578
	return error;
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
		struct sigevent __user *, timer_event_spec,
		timer_t __user *, created_timer_id)
{
	if (timer_event_spec) {
		sigevent_t event;

		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
			return -EFAULT;
		return do_timer_create(which_clock, &event, created_timer_id);
	}
	return do_timer_create(which_clock, NULL, created_timer_id);
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
		       struct compat_sigevent __user *, timer_event_spec,
		       timer_t __user *, created_timer_id)
{
	if (timer_event_spec) {
		sigevent_t event;

		if (get_compat_sigevent(&event, timer_event_spec))
			return -EFAULT;
		return do_timer_create(which_clock, &event, created_timer_id);
	}
	return do_timer_create(which_clock, NULL, created_timer_id);
}
#endif

L
Linus Torvalds 已提交
609 610 611 612 613 614 615
/*
 * Locking issues: We need to protect the result of the id look up until
 * we get the timer locked down so it is not deleted under us.  The
 * removal is done under the idr spinlock so we use that here to bridge
 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 * be release with out holding the timer lock.
 */
N
Namhyung Kim 已提交
616
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
L
Linus Torvalds 已提交
617 618
{
	struct k_itimer *timr;
E
Eric Dumazet 已提交
619

620 621 622 623 624 625 626
	/*
	 * timer_t could be any type >= int and we want to make sure any
	 * @timer_id outside positive int range fails lookup.
	 */
	if ((unsigned long long)timer_id > INT_MAX)
		return NULL;

E
Eric Dumazet 已提交
627
	rcu_read_lock();
628
	timr = posix_timer_by_id(timer_id);
L
Linus Torvalds 已提交
629
	if (timr) {
E
Eric Dumazet 已提交
630
		spin_lock_irqsave(&timr->it_lock, *flags);
631
		if (timr->it_signal == current->signal) {
E
Eric Dumazet 已提交
632
			rcu_read_unlock();
633 634
			return timr;
		}
E
Eric Dumazet 已提交
635
		spin_unlock_irqrestore(&timr->it_lock, *flags);
636
	}
E
Eric Dumazet 已提交
637
	rcu_read_unlock();
L
Linus Torvalds 已提交
638

639
	return NULL;
L
Linus Torvalds 已提交
640 641
}

642 643 644 645 646 647 648 649 650 651 652 653 654 655
static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return __hrtimer_expires_remaining_adjusted(timer, now);
}

static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return (int)hrtimer_forward(timer, now, timr->it_interval);
}

L
Linus Torvalds 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
/*
 * Get the time remaining on a POSIX.1b interval timer.  This function
 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 * mess with irq.
 *
 * We have a couple of messes to clean up here.  First there is the case
 * of a timer that has a requeue pending.  These timers should appear to
 * be in the timer list with an expiry as if we were to requeue them
 * now.
 *
 * The second issue is the SIGEV_NONE timer which may be active but is
 * not really ever put in the timer list (to save system resources).
 * This timer may be expired, and if so, we will do it here.  Otherwise
 * it is the same as a requeue pending timer WRT to what we should
 * report.
 */
672
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
L
Linus Torvalds 已提交
673
{
674
	const struct k_clock *kc = timr->kclock;
675
	ktime_t now, remaining, iv;
676 677
	struct timespec64 ts64;
	bool sig_none;
L
Linus Torvalds 已提交
678

679
	sig_none = timr->it_sigev_notify == SIGEV_NONE;
680
	iv = timr->it_interval;
681

682
	/* interval timer ? */
683
	if (iv) {
684
		cur_setting->it_interval = ktime_to_timespec64(iv);
685 686 687 688 689 690 691 692
	} else if (!timr->it_active) {
		/*
		 * SIGEV_NONE oneshot timers are never queued. Check them
		 * below.
		 */
		if (!sig_none)
			return;
	}
693

694 695 696 697 698 699
	/*
	 * The timespec64 based conversion is suboptimal, but it's not
	 * worth to implement yet another callback.
	 */
	kc->clock_get(timr->it_clock, &ts64);
	now = timespec64_to_ktime(ts64);
700

701
	/*
702 703
	 * When a requeue is pending or this is a SIGEV_NONE timer move the
	 * expiry time forward by intervals, so expiry is > now.
704
	 */
705 706
	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
		timr->it_overrun += kc->timer_forward(timr, now);
707

708
	remaining = kc->timer_remaining(timr, now);
709
	/* Return 0 only, when the timer is expired and not pending */
T
Thomas Gleixner 已提交
710
	if (remaining <= 0) {
711 712 713 714
		/*
		 * A single shot SIGEV_NONE timer must return 0, when
		 * it is expired !
		 */
715
		if (!sig_none)
716
			cur_setting->it_value.tv_nsec = 1;
717
	} else {
718
		cur_setting->it_value = ktime_to_timespec64(remaining);
719
	}
L
Linus Torvalds 已提交
720 721 722
}

/* Get the time remaining on a POSIX.1b interval timer. */
723
static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
L
Linus Torvalds 已提交
724
{
725
	struct k_itimer *timr;
726
	const struct k_clock *kc;
L
Linus Torvalds 已提交
727
	unsigned long flags;
728
	int ret = 0;
L
Linus Torvalds 已提交
729 730 731 732 733

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

734
	memset(setting, 0, sizeof(*setting));
735
	kc = timr->kclock;
736 737 738
	if (WARN_ON_ONCE(!kc || !kc->timer_get))
		ret = -EINVAL;
	else
739
		kc->timer_get(timr, setting);
L
Linus Torvalds 已提交
740 741

	unlock_timer(timr, flags);
742 743
	return ret;
}
L
Linus Torvalds 已提交
744

745 746 747 748
/* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
		struct itimerspec __user *, setting)
{
749
	struct itimerspec64 cur_setting;
L
Linus Torvalds 已提交
750

751
	int ret = do_timer_gettime(timer_id, &cur_setting);
752
	if (!ret) {
753
		if (put_itimerspec64(&cur_setting, setting))
754 755
			ret = -EFAULT;
	}
756
	return ret;
L
Linus Torvalds 已提交
757
}
758

759 760 761 762
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
		       struct compat_itimerspec __user *, setting)
{
763
	struct itimerspec64 cur_setting;
764

765
	int ret = do_timer_gettime(timer_id, &cur_setting);
766
	if (!ret) {
767
		if (put_compat_itimerspec64(&cur_setting, setting))
768 769 770 771 772 773
			ret = -EFAULT;
	}
	return ret;
}
#endif

L
Linus Torvalds 已提交
774 775 776 777 778 779
/*
 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 * be the overrun of the timer last delivered.  At the same time we are
 * accumulating overruns on the next timer.  The overrun is frozen when
 * the signal is delivered, either at the notify time (if the info block
 * is not queued) or at the actual delivery time (as we are informed by
780
 * the call back to posixtimer_rearm().  So all we need to do is
L
Linus Torvalds 已提交
781 782
 * to pick up the frozen overrun.
 */
783
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
L
Linus Torvalds 已提交
784 785 786
{
	struct k_itimer *timr;
	int overrun;
787
	unsigned long flags;
L
Linus Torvalds 已提交
788 789 790 791 792 793 794 795 796 797 798

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

	overrun = timr->it_overrun_last;
	unlock_timer(timr, flags);

	return overrun;
}

799 800 801 802 803 804 805
static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
			       bool absolute, bool sigev_none)
{
	struct hrtimer *timer = &timr->it.real.timer;
	enum hrtimer_mode mode;

	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
806 807 808 809 810 811 812 813 814 815 816 817
	/*
	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they become CLOCK_MONOTONIC based under the
	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
	 * functions which use timr->kclock->clock_get() work.
	 *
	 * Note: it_clock stays unmodified, because the next timer_set() might
	 * use ABSTIME, so it needs to switch back.
	 */
	if (timr->it_clock == CLOCK_REALTIME)
		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
	timr->it.real.timer.function = posix_timer_fn;

	if (!absolute)
		expires = ktime_add_safe(expires, timer->base->get_time());
	hrtimer_set_expires(timer, expires);

	if (!sigev_none)
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}

static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
{
	return hrtimer_try_to_cancel(&timr->it.real.timer);
}

L
Linus Torvalds 已提交
834
/* Set a POSIX.1b interval timer. */
835 836 837
int common_timer_set(struct k_itimer *timr, int flags,
		     struct itimerspec64 *new_setting,
		     struct itimerspec64 *old_setting)
L
Linus Torvalds 已提交
838
{
839 840 841
	const struct k_clock *kc = timr->kclock;
	bool sigev_none;
	ktime_t expires;
L
Linus Torvalds 已提交
842 843 844 845

	if (old_setting)
		common_timer_get(timr, old_setting);

846
	/* Prevent rearming by clearing the interval */
847
	timr->it_interval = 0;
L
Linus Torvalds 已提交
848
	/*
849 850
	 * Careful here. On SMP systems the timer expiry function could be
	 * active and spinning on timr->it_lock.
L
Linus Torvalds 已提交
851
	 */
852
	if (kc->timer_try_to_cancel(timr) < 0)
L
Linus Torvalds 已提交
853 854
		return TIMER_RETRY;

855 856
	timr->it_active = 0;
	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
L
Linus Torvalds 已提交
857 858 859
		~REQUEUE_PENDING;
	timr->it_overrun_last = 0;

860
	/* Switch off the timer when it_value is zero */
861 862
	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
		return 0;
L
Linus Torvalds 已提交
863

864
	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
865
	expires = timespec64_to_ktime(new_setting->it_value);
866
	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
867

868 869
	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
	timr->it_active = !sigev_none;
L
Linus Torvalds 已提交
870 871 872
	return 0;
}

873 874 875
static int do_timer_settime(timer_t timer_id, int flags,
			    struct itimerspec64 *new_spec64,
			    struct itimerspec64 *old_spec64)
L
Linus Torvalds 已提交
876
{
877
	const struct k_clock *kc;
878
	struct k_itimer *timr;
879
	unsigned long flag;
880
	int error = 0;
L
Linus Torvalds 已提交
881

882 883
	if (!timespec64_valid(&new_spec64->it_interval) ||
	    !timespec64_valid(&new_spec64->it_value))
L
Linus Torvalds 已提交
884 885
		return -EINVAL;

886 887
	if (old_spec64)
		memset(old_spec64, 0, sizeof(*old_spec64));
L
Linus Torvalds 已提交
888 889 890 891 892
retry:
	timr = lock_timer(timer_id, &flag);
	if (!timr)
		return -EINVAL;

893
	kc = timr->kclock;
894 895 896
	if (WARN_ON_ONCE(!kc || !kc->timer_set))
		error = -EINVAL;
	else
897
		error = kc->timer_set(timr, flags, new_spec64, old_spec64);
L
Linus Torvalds 已提交
898 899 900

	unlock_timer(timr, flag);
	if (error == TIMER_RETRY) {
901
		old_spec64 = NULL;	// We already got the old time...
L
Linus Torvalds 已提交
902 903 904
		goto retry;
	}

905 906
	return error;
}
L
Linus Torvalds 已提交
907

908 909 910 911 912
/* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
		const struct itimerspec __user *, new_setting,
		struct itimerspec __user *, old_setting)
{
913 914
	struct itimerspec64 new_spec, old_spec;
	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
915 916 917 918 919
	int error = 0;

	if (!new_setting)
		return -EINVAL;

920
	if (get_itimerspec64(&new_spec, new_setting))
921 922
		return -EFAULT;

923
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
924
	if (!error && old_setting) {
925
		if (put_itimerspec64(&old_spec, old_setting))
926 927 928 929 930 931 932 933 934 935
			error = -EFAULT;
	}
	return error;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
		       struct compat_itimerspec __user *, new,
		       struct compat_itimerspec __user *, old)
{
936 937
	struct itimerspec64 new_spec, old_spec;
	struct itimerspec64 *rtn = old ? &old_spec : NULL;
938 939 940 941
	int error = 0;

	if (!new)
		return -EINVAL;
942
	if (get_compat_itimerspec64(&new_spec, new))
943 944
		return -EFAULT;

945
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
946
	if (!error && old) {
947
		if (put_compat_itimerspec64(&old_spec, old))
948 949
			error = -EFAULT;
	}
L
Linus Torvalds 已提交
950 951
	return error;
}
952
#endif
L
Linus Torvalds 已提交
953

954
int common_timer_del(struct k_itimer *timer)
L
Linus Torvalds 已提交
955
{
956
	const struct k_clock *kc = timer->kclock;
957

958 959
	timer->it_interval = 0;
	if (kc->timer_try_to_cancel(timer) < 0)
L
Linus Torvalds 已提交
960
		return TIMER_RETRY;
961
	timer->it_active = 0;
L
Linus Torvalds 已提交
962 963 964 965 966
	return 0;
}

static inline int timer_delete_hook(struct k_itimer *timer)
{
967
	const struct k_clock *kc = timer->kclock;
968 969 970 971

	if (WARN_ON_ONCE(!kc || !kc->timer_del))
		return -EINVAL;
	return kc->timer_del(timer);
L
Linus Torvalds 已提交
972 973 974
}

/* Delete a POSIX.1b interval timer. */
975
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
L
Linus Torvalds 已提交
976 977
{
	struct k_itimer *timer;
978
	unsigned long flags;
L
Linus Torvalds 已提交
979 980 981 982 983 984

retry_delete:
	timer = lock_timer(timer_id, &flags);
	if (!timer)
		return -EINVAL;

985
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
986 987 988
		unlock_timer(timer, flags);
		goto retry_delete;
	}
989

L
Linus Torvalds 已提交
990 991 992 993 994 995 996
	spin_lock(&current->sighand->siglock);
	list_del(&timer->list);
	spin_unlock(&current->sighand->siglock);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
997
	timer->it_signal = NULL;
998

L
Linus Torvalds 已提交
999 1000 1001 1002
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
	return 0;
}
1003

L
Linus Torvalds 已提交
1004 1005 1006
/*
 * return timer owned by the process, used by exit_itimers
 */
1007
static void itimer_delete(struct k_itimer *timer)
L
Linus Torvalds 已提交
1008 1009 1010 1011 1012 1013
{
	unsigned long flags;

retry_delete:
	spin_lock_irqsave(&timer->it_lock, flags);

1014
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
1015 1016 1017 1018 1019 1020 1021 1022
		unlock_timer(timer, flags);
		goto retry_delete;
	}
	list_del(&timer->list);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
1023
	timer->it_signal = NULL;
1024

L
Linus Torvalds 已提交
1025 1026 1027 1028 1029
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
}

/*
1030
 * This is called by do_exit or de_thread, only when there are no more
L
Linus Torvalds 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
 * references to the shared signal_struct.
 */
void exit_itimers(struct signal_struct *sig)
{
	struct k_itimer *tmr;

	while (!list_empty(&sig->posix_timers)) {
		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
		itimer_delete(tmr);
	}
}

1043 1044
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
		const struct timespec __user *, tp)
L
Linus Torvalds 已提交
1045
{
1046
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1047
	struct timespec64 new_tp;
L
Linus Torvalds 已提交
1048

1049
	if (!kc || !kc->clock_set)
L
Linus Torvalds 已提交
1050
		return -EINVAL;
1051

1052
	if (get_timespec64(&new_tp, tp))
L
Linus Torvalds 已提交
1053 1054
		return -EFAULT;

1055
	return kc->clock_set(which_clock, &new_tp);
L
Linus Torvalds 已提交
1056 1057
}

1058 1059
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
		struct timespec __user *,tp)
L
Linus Torvalds 已提交
1060
{
1061
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1062
	struct timespec64 kernel_tp;
L
Linus Torvalds 已提交
1063 1064
	int error;

1065
	if (!kc)
L
Linus Torvalds 已提交
1066
		return -EINVAL;
1067

1068
	error = kc->clock_get(which_clock, &kernel_tp);
1069

1070
	if (!error && put_timespec64(&kernel_tp, tp))
L
Linus Torvalds 已提交
1071 1072 1073 1074 1075
		error = -EFAULT;

	return error;
}

1076 1077 1078
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
		struct timex __user *, utx)
{
1079
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	struct timex ktx;
	int err;

	if (!kc)
		return -EINVAL;
	if (!kc->clock_adj)
		return -EOPNOTSUPP;

	if (copy_from_user(&ktx, utx, sizeof(ktx)))
		return -EFAULT;

	err = kc->clock_adj(which_clock, &ktx);

1093
	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1094 1095 1096 1097 1098
		return -EFAULT;

	return err;
}

1099 1100 1101 1102
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
		struct timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1103
	struct timespec64 rtn_tp;
1104 1105 1106 1107 1108
	int error;

	if (!kc)
		return -EINVAL;

1109
	error = kc->clock_getres(which_clock, &rtn_tp);
1110

1111
	if (!error && tp && put_timespec64(&rtn_tp, tp))
1112 1113 1114 1115 1116
		error = -EFAULT;

	return error;
}

1117
#ifdef CONFIG_COMPAT_32BIT_TIME
1118

1119 1120 1121 1122
COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1123
	struct timespec64 ts;
1124 1125 1126 1127

	if (!kc || !kc->clock_set)
		return -EINVAL;

1128
	if (compat_get_timespec64(&ts, tp))
1129 1130
		return -EFAULT;

1131
	return kc->clock_set(which_clock, &ts);
1132 1133 1134 1135 1136 1137
}

COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1138 1139
	struct timespec64 ts;
	int err;
1140 1141 1142 1143

	if (!kc)
		return -EINVAL;

1144
	err = kc->clock_get(which_clock, &ts);
1145

1146 1147
	if (!err && compat_put_timespec64(&ts, tp))
		err = -EFAULT;
1148

1149
	return err;
1150 1151
}

1152 1153 1154 1155
#endif

#ifdef CONFIG_COMPAT

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
		       struct compat_timex __user *, utp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
	struct timex ktx;
	int err;

	if (!kc)
		return -EINVAL;
	if (!kc->clock_adj)
		return -EOPNOTSUPP;

	err = compat_get_timex(&ktx, utp);
	if (err)
		return err;

	err = kc->clock_adj(which_clock, &ktx);

	if (err >= 0)
		err = compat_put_timex(utp, &ktx);

	return err;
}

1180 1181 1182 1183
#endif

#ifdef CONFIG_COMPAT_32BIT_TIME

1184 1185
COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
L
Linus Torvalds 已提交
1186
{
1187
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1188 1189
	struct timespec64 ts;
	int err;
L
Linus Torvalds 已提交
1190

1191
	if (!kc)
L
Linus Torvalds 已提交
1192 1193
		return -EINVAL;

1194 1195 1196
	err = kc->clock_getres(which_clock, &ts);
	if (!err && tp && compat_put_timespec64(&ts, tp))
		return -EFAULT;
L
Linus Torvalds 已提交
1197

1198
	return err;
L
Linus Torvalds 已提交
1199
}
1200

1201
#endif
L
Linus Torvalds 已提交
1202

1203 1204 1205 1206
/*
 * nanosleep for monotonic and realtime clocks
 */
static int common_nsleep(const clockid_t which_clock, int flags,
1207
			 const struct timespec64 *rqtp)
1208
{
1209
	return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1210 1211
				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
				 which_clock);
1212
}
L
Linus Torvalds 已提交
1213

1214 1215 1216
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
		const struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
L
Linus Torvalds 已提交
1217
{
1218
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1219
	struct timespec64 t;
L
Linus Torvalds 已提交
1220

1221
	if (!kc)
L
Linus Torvalds 已提交
1222
		return -EINVAL;
1223 1224
	if (!kc->nsleep)
		return -ENANOSLEEP_NOTSUP;
L
Linus Torvalds 已提交
1225

1226
	if (get_timespec64(&t, rqtp))
L
Linus Torvalds 已提交
1227 1228
		return -EFAULT;

1229
	if (!timespec64_valid(&t))
L
Linus Torvalds 已提交
1230
		return -EINVAL;
1231 1232
	if (flags & TIMER_ABSTIME)
		rmtp = NULL;
1233
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1234
	current->restart_block.nanosleep.rmtp = rmtp;
L
Linus Torvalds 已提交
1235

1236
	return kc->nsleep(which_clock, flags, &t);
L
Linus Torvalds 已提交
1237
}
1238

1239 1240
#ifdef CONFIG_COMPAT_32BIT_TIME

1241 1242 1243
COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
		       struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
1244
{
1245
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1246
	struct timespec64 t;
1247

1248
	if (!kc)
1249
		return -EINVAL;
1250 1251 1252
	if (!kc->nsleep)
		return -ENANOSLEEP_NOTSUP;

1253
	if (compat_get_timespec64(&t, rqtp))
1254
		return -EFAULT;
1255

1256
	if (!timespec64_valid(&t))
1257 1258 1259 1260 1261 1262
		return -EINVAL;
	if (flags & TIMER_ABSTIME)
		rmtp = NULL;
	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;

1263
	return kc->nsleep(which_clock, flags, &t);
1264
}
1265

1266
#endif
1267 1268

static const struct k_clock clock_realtime = {
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_clock_realtime_get,
	.clock_set		= posix_clock_realtime_set,
	.clock_adj		= posix_clock_realtime_adj,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1283 1284 1285
};

static const struct k_clock clock_monotonic = {
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_ktime_get_ts,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1298 1299 1300
};

static const struct k_clock clock_monotonic_raw = {
1301 1302
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_monotonic_raw,
1303 1304 1305
};

static const struct k_clock clock_realtime_coarse = {
1306 1307
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_realtime_coarse,
1308 1309 1310
};

static const struct k_clock clock_monotonic_coarse = {
1311 1312
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_monotonic_coarse,
1313 1314 1315
};

static const struct k_clock clock_tai = {
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_tai,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1328 1329
};

1330
static const struct k_clock clock_monotonic_active = {
1331
	.clock_getres		= posix_get_hrtimer_res,
1332
	.clock_get		= posix_get_monotonic_active,
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
};

static const struct k_clock * const posix_clocks[] = {
	[CLOCK_REALTIME]		= &clock_realtime,
	[CLOCK_MONOTONIC]		= &clock_monotonic,
	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1343
	[CLOCK_BOOTTIME]		= &clock_monotonic,
1344 1345 1346
	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
	[CLOCK_TAI]			= &clock_tai,
1347
	[CLOCK_MONOTONIC_ACTIVE]	= &clock_monotonic_active,
1348 1349 1350 1351
};

static const struct k_clock *clockid_to_kclock(const clockid_t id)
{
1352 1353 1354
	clockid_t idx = id;

	if (id < 0) {
1355 1356
		return (id & CLOCKFD_MASK) == CLOCKFD ?
			&clock_posix_dynamic : &clock_posix_cpu;
1357
	}
1358

1359
	if (id >= ARRAY_SIZE(posix_clocks))
1360
		return NULL;
1361 1362

	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1363
}