workqueue.c 103.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44 45

#include "workqueue_sched.h"
L
Linus Torvalds 已提交
46

T
Tejun Heo 已提交
47
enum {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	/*
	 * global_cwq flags
	 *
	 * A bound gcwq is either associated or disassociated with its CPU.
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
	 * be executing on any CPU.  The gcwq behaves as an unbound one.
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
	 * managership of all pools on the gcwq to avoid changing binding
	 * state while create_worker() is in progress.
	 */
64 65 66 67 68
	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */

	/* pool flags */
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74 75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79 80
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
				  WORKER_CPU_INTENSIVE,
81

82
	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
83

T
Tejun Heo 已提交
84 85 86
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
87

88 89 90
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

91 92 93
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
94 95 96 97 98 99 100 101
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
102
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
103
};
L
Linus Torvalds 已提交
104 105

/*
T
Tejun Heo 已提交
106 107
 * Structure fields follow one of the following exclusion rules.
 *
108 109
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
110
 *
111 112 113
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
114
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
115
 *
116 117 118
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
119
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
120
 *
121 122
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
123
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
124 125
 */

126
struct global_cwq;
127
struct worker_pool;
128
struct idle_rebind;
L
Linus Torvalds 已提交
129

130 131 132 133
/*
 * The poor guys doing the actual heavy lifting.  All on-duty workers
 * are either serving the manager role, on idle list or on busy hash.
 */
T
Tejun Heo 已提交
134
struct worker {
T
Tejun Heo 已提交
135 136 137 138 139
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};
L
Linus Torvalds 已提交
140

T
Tejun Heo 已提交
141
	struct work_struct	*current_work;	/* L: work being processed */
142
	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
143
	struct list_head	scheduled;	/* L: scheduled works */
T
Tejun Heo 已提交
144
	struct task_struct	*task;		/* I: worker task */
145
	struct worker_pool	*pool;		/* I: the associated pool */
146 147 148
	/* 64 bytes boundary on 64bit, 32 on 32bit */
	unsigned long		last_active;	/* L: last active timestamp */
	unsigned int		flags;		/* X: flags */
T
Tejun Heo 已提交
149
	int			id;		/* I: worker id */
150 151 152 153

	/* for rebinding worker to CPU */
	struct idle_rebind	*idle_rebind;	/* L: for idle worker */
	struct work_struct	rebind_work;	/* L: for busy worker */
T
Tejun Heo 已提交
154 155
};

156 157
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
158
	unsigned int		flags;		/* X: flags */
159 160 161 162 163 164 165 166 167

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

168
	struct mutex		manager_mutex;	/* mutex manager should hold */
169 170 171
	struct ida		worker_ida;	/* L: for worker IDs */
};

172
/*
173 174 175
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
176 177 178 179
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
180
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
181

182
	/* workers are chained either in busy_hash or pool idle_list */
T
Tejun Heo 已提交
183 184 185
	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
						/* L: hash of busy workers */

186
	struct worker_pool	pools[2];	/* normal and highpri pools */
187

188
	wait_queue_head_t	rebind_hold;	/* rebind hold wait */
189 190
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
191
/*
192
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
193 194
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
195 196
 */
struct cpu_workqueue_struct {
197
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
198
	struct workqueue_struct *wq;		/* I: the owning workqueue */
199 200 201 202
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
203
	int			nr_active;	/* L: nr of active works */
204
	int			max_active;	/* L: max active works */
205
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
206
};
L
Linus Torvalds 已提交
207

208 209 210 211 212 213 214 215 216
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

217 218 219 220 221 222 223 224 225 226
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
227
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
228 229 230 231 232 233 234 235 236
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
237 238 239 240 241 242

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
243
	unsigned int		flags;		/* W: WQ_* flags */
244 245 246 247 248
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
249
	struct list_head	list;		/* W: list of all workqueues */
250 251 252 253 254 255 256 257 258

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

259
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
260 261
	struct worker		*rescuer;	/* I: rescue worker */

262
	int			nr_drainers;	/* W: drain in progress */
263
	int			saved_max_active; /* W: saved cwq max_active */
264
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
265
	struct lockdep_map	lockdep_map;
266
#endif
267
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
268 269
};

270 271 272
struct workqueue_struct *system_wq __read_mostly;
struct workqueue_struct *system_long_wq __read_mostly;
struct workqueue_struct *system_nrt_wq __read_mostly;
273
struct workqueue_struct *system_unbound_wq __read_mostly;
274
struct workqueue_struct *system_freezable_wq __read_mostly;
275
struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
276 277 278
EXPORT_SYMBOL_GPL(system_wq);
EXPORT_SYMBOL_GPL(system_long_wq);
EXPORT_SYMBOL_GPL(system_nrt_wq);
279
EXPORT_SYMBOL_GPL(system_unbound_wq);
280
EXPORT_SYMBOL_GPL(system_freezable_wq);
281
EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
282

283 284 285
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

286
#define for_each_worker_pool(pool, gcwq)				\
287 288
	for ((pool) = &(gcwq)->pools[0];				\
	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
289

290 291 292 293
#define for_each_busy_worker(worker, i, pos, gcwq)			\
	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

343 344 345 346
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

347 348 349 350 351
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
387
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
423
	.debug_hint	= work_debug_hint,
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

459 460
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
461
static LIST_HEAD(workqueues);
462
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
463

464 465 466 467 468
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
469
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
470
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
471

472 473 474 475 476 477
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
478 479 480
static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
};
481

T
Tejun Heo 已提交
482
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
483

484 485 486 487 488
static int worker_pool_pri(struct worker_pool *pool)
{
	return pool - pool->gcwq->pools;
}

489 490
static struct global_cwq *get_gcwq(unsigned int cpu)
{
491 492 493 494
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
495 496
}

497
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
498
{
499
	int cpu = pool->gcwq->cpu;
500
	int idx = worker_pool_pri(pool);
501

502
	if (cpu != WORK_CPU_UNBOUND)
503
		return &per_cpu(pool_nr_running, cpu)[idx];
504
	else
505
		return &unbound_pool_nr_running[idx];
506 507
}

T
Tejun Heo 已提交
508 509
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
510
{
511
	if (!(wq->flags & WQ_UNBOUND)) {
512
		if (likely(cpu < nr_cpu_ids))
513 514 515 516
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
517 518
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
534

535
/*
536 537 538
 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
 * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
 * cleared and the work data contains the cpu number it was last on.
539
 *
540 541 542 543
 * set_work_cwq(), set_work_cpu_and_clear_pending() and clear_work_data()
 * can be used to set the cwq, cpu or clear work->data.  These functions
 * should only be called while the work is owned - ie. while the PENDING
 * bit is set.
544 545 546 547 548
 *
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
 * corresponding to a work.  gcwq is available once the work has been
 * queued anywhere after initialization.  cwq is available only from
 * queueing until execution starts.
549
 */
550 551
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
552
{
553
	BUG_ON(!work_pending(work));
554 555
	atomic_long_set(&work->data, data | flags | work_static(work));
}
556

557 558 559 560 561
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
562
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
563 564
}

565 566
static void set_work_cpu_and_clear_pending(struct work_struct *work,
					   unsigned int cpu)
567
{
568
	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, 0);
569
}
570

571
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
572
{
573
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
574 575
}

576
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
577
{
578
	unsigned long data = atomic_long_read(&work->data);
579

580 581 582 583
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
584 585
}

586
static struct global_cwq *get_work_gcwq(struct work_struct *work)
587
{
588
	unsigned long data = atomic_long_read(&work->data);
589 590
	unsigned int cpu;

591 592
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
593
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
594 595

	cpu = data >> WORK_STRUCT_FLAG_BITS;
596
	if (cpu == WORK_CPU_NONE)
597 598
		return NULL;

599
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
600
	return get_gcwq(cpu);
601 602
}

603
/*
604 605 606
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
607 608
 */

609
static bool __need_more_worker(struct worker_pool *pool)
610
{
611
	return !atomic_read(get_pool_nr_running(pool));
612 613
}

614
/*
615 616
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
617 618 619 620
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
621
 */
622
static bool need_more_worker(struct worker_pool *pool)
623
{
624
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
625
}
626

627
/* Can I start working?  Called from busy but !running workers. */
628
static bool may_start_working(struct worker_pool *pool)
629
{
630
	return pool->nr_idle;
631 632 633
}

/* Do I need to keep working?  Called from currently running workers. */
634
static bool keep_working(struct worker_pool *pool)
635
{
636
	atomic_t *nr_running = get_pool_nr_running(pool);
637

638
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
639 640 641
}

/* Do we need a new worker?  Called from manager. */
642
static bool need_to_create_worker(struct worker_pool *pool)
643
{
644
	return need_more_worker(pool) && !may_start_working(pool);
645
}
646

647
/* Do I need to be the manager? */
648
static bool need_to_manage_workers(struct worker_pool *pool)
649
{
650
	return need_to_create_worker(pool) ||
651
		(pool->flags & POOL_MANAGE_WORKERS);
652 653 654
}

/* Do we have too many workers and should some go away? */
655
static bool too_many_workers(struct worker_pool *pool)
656
{
657
	bool managing = mutex_is_locked(&pool->manager_mutex);
658 659
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
660 661

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
662 663
}

664
/*
665 666 667
 * Wake up functions.
 */

668
/* Return the first worker.  Safe with preemption disabled */
669
static struct worker *first_worker(struct worker_pool *pool)
670
{
671
	if (unlikely(list_empty(&pool->idle_list)))
672 673
		return NULL;

674
	return list_first_entry(&pool->idle_list, struct worker, entry);
675 676 677 678
}

/**
 * wake_up_worker - wake up an idle worker
679
 * @pool: worker pool to wake worker from
680
 *
681
 * Wake up the first idle worker of @pool.
682 683 684 685
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
686
static void wake_up_worker(struct worker_pool *pool)
687
{
688
	struct worker *worker = first_worker(pool);
689 690 691 692 693

	if (likely(worker))
		wake_up_process(worker->task);
}

694
/**
695 696 697 698 699 700 701 702 703 704 705 706 707 708
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

709
	if (!(worker->flags & WORKER_NOT_RUNNING))
710
		atomic_inc(get_pool_nr_running(worker->pool));
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
732
	struct worker_pool *pool = worker->pool;
733
	atomic_t *nr_running = get_pool_nr_running(pool);
734

735
	if (worker->flags & WORKER_NOT_RUNNING)
736 737 738 739 740 741 742 743 744 745
		return NULL;

	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
746 747 748 749 750
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
751
	 */
752
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
753
		to_wakeup = first_worker(pool);
754 755 756 757 758
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
759
 * @worker: self
760 761 762
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
763 764 765
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
766
 *
767 768
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
769 770 771 772
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
773
	struct worker_pool *pool = worker->pool;
774

775 776
	WARN_ON_ONCE(worker->task != current);

777 778 779 780 781 782 783
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
784
		atomic_t *nr_running = get_pool_nr_running(pool);
785 786 787

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
788
			    !list_empty(&pool->worklist))
789
				wake_up_worker(pool);
790 791 792 793
		} else
			atomic_dec(nr_running);
	}

794 795 796 797
	worker->flags |= flags;
}

/**
798
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
799
 * @worker: self
800 801
 * @flags: flags to clear
 *
802
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
803
 *
804 805
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
806 807 808
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
809
	struct worker_pool *pool = worker->pool;
810 811
	unsigned int oflags = worker->flags;

812 813
	WARN_ON_ONCE(worker->task != current);

814
	worker->flags &= ~flags;
815

816 817 818 819 820
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
821 822
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
823
			atomic_inc(get_pool_nr_running(pool));
824 825
}

T
Tejun Heo 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
/**
 * busy_worker_head - return the busy hash head for a work
 * @gcwq: gcwq of interest
 * @work: work to be hashed
 *
 * Return hash head of @gcwq for @work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to the hash head.
 */
static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
					   struct work_struct *work)
{
	const int base_shift = ilog2(sizeof(struct work_struct));
	unsigned long v = (unsigned long)work;

	/* simple shift and fold hash, do we need something better? */
	v >>= base_shift;
	v += v >> BUSY_WORKER_HASH_ORDER;
	v &= BUSY_WORKER_HASH_MASK;

	return &gcwq->busy_hash[v];
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
/**
 * __find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @bwh: hash head as returned by busy_worker_head()
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  @bwh should be
 * the hash head obtained by calling busy_worker_head() with the same
 * work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
 */
static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
						   struct hlist_head *bwh,
						   struct work_struct *work)
{
	struct worker *worker;
	struct hlist_node *tmp;

	hlist_for_each_entry(worker, tmp, bwh, hentry)
		if (worker->current_work == work)
			return worker;
	return NULL;
}

/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  This function is
 * identical to __find_worker_executing_work() except that this
 * function calculates @bwh itself.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
898
 */
899 900
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
901
{
902 903
	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
					    work);
904 905
}

T
Tejun Heo 已提交
906
/**
907
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
908 909 910 911 912
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
913 914
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
915 916
 *
 * CONTEXT:
917
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
918
 */
O
Oleg Nesterov 已提交
919
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
920 921
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
922
{
923
	struct worker_pool *pool = cwq->pool;
924

T
Tejun Heo 已提交
925
	/* we own @work, set data and link */
926
	set_work_cwq(work, cwq, extra_flags);
927

928 929 930 931 932
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
933

934
	list_add_tail(&work->entry, head);
935 936 937 938 939 940 941 942

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

943 944
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
945 946
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
979
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
980 981
			 struct work_struct *work)
{
982 983
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
984
	struct list_head *worklist;
985
	unsigned int work_flags;
986 987 988 989 990 991 992 993

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
994

995
	debug_work_activate(work);
996

997
	/* if dying, only works from the same workqueue are allowed */
998
	if (unlikely(wq->flags & WQ_DRAINING) &&
999
	    WARN_ON_ONCE(!is_chained_work(wq)))
1000 1001
		return;

1002 1003
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
1004 1005
		struct global_cwq *last_gcwq;

1006
		if (cpu == WORK_CPU_UNBOUND)
1007 1008
			cpu = raw_smp_processor_id();

1009 1010 1011 1012 1013 1014
		/*
		 * It's multi cpu.  If @wq is non-reentrant and @work
		 * was previously on a different cpu, it might still
		 * be running there, in which case the work needs to
		 * be queued on that cpu to guarantee non-reentrance.
		 */
1015
		gcwq = get_gcwq(cpu);
1016 1017 1018 1019
		if (wq->flags & WQ_NON_REENTRANT &&
		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
			struct worker *worker;

1020
			spin_lock(&last_gcwq->lock);
1021 1022 1023 1024 1025 1026 1027

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
1028 1029
				spin_unlock(&last_gcwq->lock);
				spin_lock(&gcwq->lock);
1030
			}
1031 1032 1033
		} else {
			spin_lock(&gcwq->lock);
		}
1034 1035
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1036
		spin_lock(&gcwq->lock);
1037 1038 1039 1040
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1041
	trace_workqueue_queue_work(cpu, cwq, work);
1042

1043
	if (WARN_ON(!list_empty(&work->entry))) {
1044
		spin_unlock(&gcwq->lock);
1045 1046
		return;
	}
1047

1048
	cwq->nr_in_flight[cwq->work_color]++;
1049
	work_flags = work_color_to_flags(cwq->work_color);
1050 1051

	if (likely(cwq->nr_active < cwq->max_active)) {
1052
		trace_workqueue_activate_work(work);
1053
		cwq->nr_active++;
1054
		worklist = &cwq->pool->worklist;
1055 1056
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1057
		worklist = &cwq->delayed_works;
1058
	}
1059

1060
	insert_work(cwq, work, worklist, work_flags);
1061

1062
	spin_unlock(&gcwq->lock);
L
Linus Torvalds 已提交
1063 1064
}

1065 1066 1067 1068 1069 1070
/**
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @work: work to queue
 *
1071
 * Returns %false if @work was already on a queue, %true otherwise.
1072 1073 1074 1075
 *
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
 */
1076 1077
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
1078
{
1079
	bool ret = false;
1080 1081 1082
	unsigned long flags;

	local_irq_save(flags);
1083

1084
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1085
		__queue_work(cpu, wq, work);
1086
		ret = true;
1087
	}
1088 1089

	local_irq_restore(flags);
1090 1091 1092 1093
	return ret;
}
EXPORT_SYMBOL_GPL(queue_work_on);

1094
/**
1095
 * queue_work - queue work on a workqueue
1096
 * @wq: workqueue to use
1097
 * @work: work to queue
1098
 *
1099
 * Returns %false if @work was already on a queue, %true otherwise.
1100 1101 1102
 *
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1103
 */
1104
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
L
Linus Torvalds 已提交
1105
{
1106
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1107 1108 1109
}
EXPORT_SYMBOL_GPL(queue_work);

1110
void delayed_work_timer_fn(unsigned long __data)
1111 1112 1113 1114
{
	struct delayed_work *dwork = (struct delayed_work *)__data;
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);

1115
	local_irq_disable();
1116
	__queue_work(WORK_CPU_UNBOUND, cwq->wq, &dwork->work);
1117
	local_irq_enable();
L
Linus Torvalds 已提交
1118
}
1119
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1120

1121 1122 1123 1124
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1125
 * @dwork: work to queue
1126 1127
 * @delay: number of jiffies to wait before queueing
 *
1128
 * Returns %false if @work was already on a queue, %true otherwise.
1129
 */
1130 1131
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1132
{
1133 1134
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
1135
	bool ret = false;
1136 1137 1138 1139
	unsigned long flags;

	/* read the comment in __queue_work() */
	local_irq_save(flags);
1140

1141
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1142
		unsigned int lcpu;
1143

1144 1145
		WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
			     timer->data != (unsigned long)dwork);
1146 1147 1148
		BUG_ON(timer_pending(timer));
		BUG_ON(!list_empty(&work->entry));

1149 1150
		timer_stats_timer_set_start_info(&dwork->timer);

1151 1152 1153 1154 1155
		/*
		 * This stores cwq for the moment, for the timer_fn.
		 * Note that the work's gcwq is preserved to allow
		 * reentrance detection for delayed works.
		 */
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		if (!(wq->flags & WQ_UNBOUND)) {
			struct global_cwq *gcwq = get_work_gcwq(work);

			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
				lcpu = gcwq->cpu;
			else
				lcpu = raw_smp_processor_id();
		} else
			lcpu = WORK_CPU_UNBOUND;

1166
		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1167

1168
		timer->expires = jiffies + delay;
1169

1170
		if (unlikely(cpu != WORK_CPU_UNBOUND))
1171 1172 1173
			add_timer_on(timer, cpu);
		else
			add_timer(timer);
1174
		ret = true;
1175
	}
1176 1177

	local_irq_restore(flags);
1178 1179
	return ret;
}
1180
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
L
Linus Torvalds 已提交
1181

1182 1183 1184 1185 1186 1187
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1188
 * Returns %false if @work was already on a queue, %true otherwise.
1189
 */
1190
bool queue_delayed_work(struct workqueue_struct *wq,
1191 1192 1193 1194 1195
			struct delayed_work *dwork, unsigned long delay)
{
	if (delay == 0)
		return queue_work(wq, &dwork->work);

1196
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1197 1198 1199
}
EXPORT_SYMBOL_GPL(queue_delayed_work);

T
Tejun Heo 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1211
{
1212 1213
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1214 1215 1216 1217 1218

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1219 1220
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1221
	pool->nr_idle++;
1222
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1223 1224

	/* idle_list is LIFO */
1225
	list_add(&worker->entry, &pool->idle_list);
1226

1227 1228
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1229

1230
	/*
1231 1232 1233 1234
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1235
	 */
1236
	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1237
		     pool->nr_workers == pool->nr_idle &&
1238
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1252
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1253 1254

	BUG_ON(!(worker->flags & WORKER_IDLE));
1255
	worker_clr_flags(worker, WORKER_IDLE);
1256
	pool->nr_idle--;
T
Tejun Heo 已提交
1257 1258 1259
	list_del_init(&worker->entry);
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1276 1277 1278 1279 1280
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
 * binding against %GCWQ_DISASSOCIATED which is set during
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1291
__acquires(&gcwq->lock)
1292
{
1293
	struct global_cwq *gcwq = worker->pool->gcwq;
1294 1295 1296
	struct task_struct *task = worker->task;

	while (true) {
1297
		/*
1298 1299 1300 1301
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
1302
		 */
1303 1304
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1315 1316 1317 1318 1319 1320
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1321
		cpu_relax();
1322
		cond_resched();
1323 1324 1325
	}
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
struct idle_rebind {
	int			cnt;		/* # workers to be rebound */
	struct completion	done;		/* all workers rebound */
};

/*
 * Rebind an idle @worker to its CPU.  During CPU onlining, this has to
 * happen synchronously for idle workers.  worker_thread() will test
 * %WORKER_REBIND before leaving idle and call this function.
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

	/* CPU must be online at this point */
	WARN_ON(!worker_maybe_bind_and_lock(worker));
	if (!--worker->idle_rebind->cnt)
		complete(&worker->idle_rebind->done);
	spin_unlock_irq(&worker->pool->gcwq->lock);

	/* we did our part, wait for rebind_workers() to finish up */
	wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
}

1350
/*
1351
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1352 1353 1354
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1355
 */
1356
static void busy_worker_rebind_fn(struct work_struct *work)
1357 1358
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1359
	struct global_cwq *gcwq = worker->pool->gcwq;
1360 1361 1362 1363 1364 1365 1366

	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_REBIND);

	spin_unlock_irq(&gcwq->lock);
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
 * The idle ones should be rebound synchronously and idle rebinding should
 * be complete before any worker starts executing work items with
 * concurrency management enabled; otherwise, scheduler may oops trying to
 * wake up non-local idle worker from wq_worker_sleeping().
 *
 * This is achieved by repeatedly requesting rebinding until all idle
 * workers are known to have been rebound under @gcwq->lock and holding all
 * idle workers from becoming busy until idle rebinding is complete.
 *
 * Once idle workers are rebound, busy workers can be rebound as they
 * finish executing their current work items.  Queueing the rebind work at
 * the head of their scheduled lists is enough.  Note that nr_running will
 * be properbly bumped as busy workers rebind.
 *
 * On return, all workers are guaranteed to either be bound or have rebind
 * work item scheduled.
 */
static void rebind_workers(struct global_cwq *gcwq)
	__releases(&gcwq->lock) __acquires(&gcwq->lock)
{
	struct idle_rebind idle_rebind;
	struct worker_pool *pool;
	struct worker *worker;
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
		lockdep_assert_held(&pool->manager_mutex);

	/*
	 * Rebind idle workers.  Interlocked both ways.  We wait for
	 * workers to rebind via @idle_rebind.done.  Workers will wait for
	 * us to finish up by watching %WORKER_REBIND.
	 */
	init_completion(&idle_rebind.done);
retry:
	idle_rebind.cnt = 1;
	INIT_COMPLETION(idle_rebind.done);

	/* set REBIND and kick idle ones, we'll wait for these later */
	for_each_worker_pool(pool, gcwq) {
		list_for_each_entry(worker, &pool->idle_list, entry) {
			if (worker->flags & WORKER_REBIND)
				continue;

			/* morph UNBOUND to REBIND */
			worker->flags &= ~WORKER_UNBOUND;
			worker->flags |= WORKER_REBIND;

			idle_rebind.cnt++;
			worker->idle_rebind = &idle_rebind;

			/* worker_thread() will call idle_worker_rebind() */
			wake_up_process(worker->task);
		}
	}

	if (--idle_rebind.cnt) {
		spin_unlock_irq(&gcwq->lock);
		wait_for_completion(&idle_rebind.done);
		spin_lock_irq(&gcwq->lock);
		/* busy ones might have become idle while waiting, retry */
		goto retry;
	}

	/*
	 * All idle workers are rebound and waiting for %WORKER_REBIND to
	 * be cleared inside idle_worker_rebind().  Clear and release.
	 * Clearing %WORKER_REBIND from this foreign context is safe
	 * because these workers are still guaranteed to be idle.
	 */
	for_each_worker_pool(pool, gcwq)
		list_for_each_entry(worker, &pool->idle_list, entry)
			worker->flags &= ~WORKER_REBIND;

	wake_up_all(&gcwq->rebind_hold);

	/* rebind busy workers */
	for_each_busy_worker(worker, i, pos, gcwq) {
		struct work_struct *rebind_work = &worker->rebind_work;

		/* morph UNBOUND to REBIND */
		worker->flags &= ~WORKER_UNBOUND;
		worker->flags |= WORKER_REBIND;

		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		/* wq doesn't matter, use the default one */
		debug_work_activate(rebind_work);
		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
	}
}

T
Tejun Heo 已提交
1473 1474 1475 1476 1477
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1478 1479
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1480
		INIT_LIST_HEAD(&worker->scheduled);
1481
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1482 1483
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1484
	}
T
Tejun Heo 已提交
1485 1486 1487 1488 1489
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1490
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1491
 *
1492
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1502
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1503
{
1504
	struct global_cwq *gcwq = pool->gcwq;
1505
	const char *pri = worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1506
	struct worker *worker = NULL;
1507
	int id = -1;
T
Tejun Heo 已提交
1508

1509
	spin_lock_irq(&gcwq->lock);
1510
	while (ida_get_new(&pool->worker_ida, &id)) {
1511
		spin_unlock_irq(&gcwq->lock);
1512
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1513
			goto fail;
1514
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1515
	}
1516
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1517 1518 1519 1520 1521

	worker = alloc_worker();
	if (!worker)
		goto fail;

1522
	worker->pool = pool;
T
Tejun Heo 已提交
1523 1524
	worker->id = id;

1525
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1526
		worker->task = kthread_create_on_node(worker_thread,
1527 1528
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1529 1530
	else
		worker->task = kthread_create(worker_thread, worker,
1531
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1532 1533 1534
	if (IS_ERR(worker->task))
		goto fail;

1535 1536 1537
	if (worker_pool_pri(pool))
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1538
	/*
1539 1540 1541 1542 1543 1544 1545
	 * Determine CPU binding of the new worker depending on
	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1546
	 */
1547
	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1548
		kthread_bind(worker->task, gcwq->cpu);
1549
	} else {
1550
		worker->task->flags |= PF_THREAD_BOUND;
1551
		worker->flags |= WORKER_UNBOUND;
1552
	}
T
Tejun Heo 已提交
1553 1554 1555 1556

	return worker;
fail:
	if (id >= 0) {
1557
		spin_lock_irq(&gcwq->lock);
1558
		ida_remove(&pool->worker_ida, id);
1559
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1569
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1570 1571
 *
 * CONTEXT:
1572
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1573 1574 1575
 */
static void start_worker(struct worker *worker)
{
1576
	worker->flags |= WORKER_STARTED;
1577
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1578
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1579 1580 1581 1582 1583 1584 1585
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1586 1587 1588 1589
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1590 1591 1592
 */
static void destroy_worker(struct worker *worker)
{
1593 1594
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1595 1596 1597 1598
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1599
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1600

T
Tejun Heo 已提交
1601
	if (worker->flags & WORKER_STARTED)
1602
		pool->nr_workers--;
T
Tejun Heo 已提交
1603
	if (worker->flags & WORKER_IDLE)
1604
		pool->nr_idle--;
T
Tejun Heo 已提交
1605 1606

	list_del_init(&worker->entry);
1607
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1608 1609 1610

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1611 1612 1613
	kthread_stop(worker->task);
	kfree(worker);

1614
	spin_lock_irq(&gcwq->lock);
1615
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1616 1617
}

1618
static void idle_worker_timeout(unsigned long __pool)
1619
{
1620 1621
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1622 1623 1624

	spin_lock_irq(&gcwq->lock);

1625
	if (too_many_workers(pool)) {
1626 1627 1628 1629
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1630
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1631 1632 1633
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1634
			mod_timer(&pool->idle_timer, expires);
1635 1636
		else {
			/* it's been idle for too long, wake up manager */
1637
			pool->flags |= POOL_MANAGE_WORKERS;
1638
			wake_up_worker(pool);
1639
		}
1640 1641 1642 1643
	}

	spin_unlock_irq(&gcwq->lock);
}
1644

1645 1646 1647 1648
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1649
	unsigned int cpu;
1650 1651 1652 1653 1654

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1655
	cpu = cwq->pool->gcwq->cpu;
1656 1657 1658
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1659
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1660 1661 1662 1663
		wake_up_process(wq->rescuer->task);
	return true;
}

1664
static void gcwq_mayday_timeout(unsigned long __pool)
1665
{
1666 1667
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1668 1669 1670 1671
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1672
	if (need_to_create_worker(pool)) {
1673 1674 1675 1676 1677 1678
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1679
		list_for_each_entry(work, &pool->worklist, entry)
1680
			send_mayday(work);
L
Linus Torvalds 已提交
1681
	}
1682 1683 1684

	spin_unlock_irq(&gcwq->lock);

1685
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1686 1687
}

1688 1689
/**
 * maybe_create_worker - create a new worker if necessary
1690
 * @pool: pool to create a new worker for
1691
 *
1692
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1693 1694
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1695
 * sent to all rescuers with works scheduled on @pool to resolve
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1710
static bool maybe_create_worker(struct worker_pool *pool)
1711 1712
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
1713
{
1714 1715 1716
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
1717 1718
		return false;
restart:
1719 1720
	spin_unlock_irq(&gcwq->lock);

1721
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1722
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1723 1724 1725 1726

	while (true) {
		struct worker *worker;

1727
		worker = create_worker(pool);
1728
		if (worker) {
1729
			del_timer_sync(&pool->mayday_timer);
1730 1731
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
1732
			BUG_ON(need_to_create_worker(pool));
1733 1734 1735
			return true;
		}

1736
		if (!need_to_create_worker(pool))
1737
			break;
L
Linus Torvalds 已提交
1738

1739 1740
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1741

1742
		if (!need_to_create_worker(pool))
1743 1744 1745
			break;
	}

1746
	del_timer_sync(&pool->mayday_timer);
1747
	spin_lock_irq(&gcwq->lock);
1748
	if (need_to_create_worker(pool))
1749 1750 1751 1752 1753 1754
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1755
 * @pool: pool to destroy workers for
1756
 *
1757
 * Destroy @pool workers which have been idle for longer than
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1768
static bool maybe_destroy_workers(struct worker_pool *pool)
1769 1770
{
	bool ret = false;
L
Linus Torvalds 已提交
1771

1772
	while (too_many_workers(pool)) {
1773 1774
		struct worker *worker;
		unsigned long expires;
1775

1776
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1777
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1778

1779
		if (time_before(jiffies, expires)) {
1780
			mod_timer(&pool->idle_timer, expires);
1781
			break;
1782
		}
L
Linus Torvalds 已提交
1783

1784 1785
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1786
	}
1787

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	return ret;
}

/**
 * manage_workers - manage worker pool
 * @worker: self
 *
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
 */
static bool manage_workers(struct worker *worker)
{
1813
	struct worker_pool *pool = worker->pool;
1814 1815
	bool ret = false;

1816
	if (!mutex_trylock(&pool->manager_mutex))
1817 1818
		return ret;

1819
	pool->flags &= ~POOL_MANAGE_WORKERS;
1820 1821 1822 1823 1824

	/*
	 * Destroy and then create so that may_start_working() is true
	 * on return.
	 */
1825 1826
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
1827

1828
	mutex_unlock(&pool->manager_mutex);
1829 1830 1831
	return ret;
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1847
 * spin_lock_irq(gcwq->lock).
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

1873 1874 1875 1876 1877
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

1878
	trace_workqueue_activate_work(work);
1879
	move_linked_works(work, &cwq->pool->worklist, NULL);
1880
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1881 1882 1883
	cwq->nr_active++;
}

1884 1885 1886 1887
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
1888
 * @delayed: for a delayed work
1889 1890 1891 1892 1893
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
1894
 * spin_lock_irq(gcwq->lock).
1895
 */
1896 1897
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
				 bool delayed)
1898 1899 1900 1901 1902 1903
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;
1904

1905 1906 1907 1908 1909 1910 1911
	if (!delayed) {
		cwq->nr_active--;
		if (!list_empty(&cwq->delayed_works)) {
			/* one down, submit a delayed one */
			if (cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
1912
	}
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1933 1934
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1935
 * @worker: self
1936 1937 1938 1939 1940 1941 1942 1943 1944
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1945
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1946
 */
T
Tejun Heo 已提交
1947
static void process_one_work(struct worker *worker, struct work_struct *work)
1948 1949
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
1950
{
1951
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1952 1953
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1954
	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1955
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1956
	work_func_t f = work->func;
1957
	int work_color;
1958
	struct worker *collision;
1959 1960 1961 1962 1963 1964 1965 1966
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1967 1968 1969
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1970
#endif
1971 1972 1973 1974 1975
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
	 * unbound or a disassociated gcwq.
	 */
1976
	WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
1977
		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
1978 1979
		     raw_smp_processor_id() != gcwq->cpu);

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
	collision = __find_worker_executing_work(gcwq, bwh, work);
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1992
	/* claim and dequeue */
1993
	debug_work_deactivate(work);
T
Tejun Heo 已提交
1994
	hlist_add_head(&worker->hentry, bwh);
T
Tejun Heo 已提交
1995
	worker->current_work = work;
1996
	worker->current_cwq = cwq;
1997
	work_color = get_work_color(work);
1998

1999 2000
	list_del_init(&work->entry);

2001 2002 2003 2004 2005 2006 2007
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2008 2009 2010 2011
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2012 2013
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2014

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	/*
	 * Record the last CPU and clear PENDING.  The following wmb is
	 * paired with the implied mb in test_and_set_bit(PENDING) and
	 * ensures all updates to @work made here are visible to and
	 * precede any updates by the next PENDING owner.  Also, clear
	 * PENDING inside @gcwq->lock so that PENDING and queued state
	 * changes happen together while IRQ is disabled.
	 */
	smp_wmb();
	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2025

2026
	spin_unlock_irq(&gcwq->lock);
2027

2028
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2029
	lock_map_acquire(&lockdep_map);
2030
	trace_workqueue_execute_start(work);
2031
	f(work);
2032 2033 2034 2035 2036
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
		       "%s/0x%08x/%d\n",
		       current->comm, preempt_count(), task_pid_nr(current));
		printk(KERN_ERR "    last function: ");
		print_symbol("%s\n", (unsigned long)f);
		debug_show_held_locks(current);
		dump_stack();
	}

2050
	spin_lock_irq(&gcwq->lock);
2051

2052 2053 2054 2055
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2056
	/* we're done with it, release */
T
Tejun Heo 已提交
2057
	hlist_del_init(&worker->hentry);
T
Tejun Heo 已提交
2058
	worker->current_work = NULL;
2059
	worker->current_cwq = NULL;
2060
	cwq_dec_nr_in_flight(cwq, work_color, false);
2061 2062
}

2063 2064 2065 2066 2067 2068 2069 2070 2071
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2072
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2073 2074 2075
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2076
{
2077 2078
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2079
						struct work_struct, entry);
T
Tejun Heo 已提交
2080
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2081 2082 2083
	}
}

T
Tejun Heo 已提交
2084 2085
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2086
 * @__worker: self
T
Tejun Heo 已提交
2087
 *
2088 2089 2090 2091 2092
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2093
 */
T
Tejun Heo 已提交
2094
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2095
{
T
Tejun Heo 已提交
2096
	struct worker *worker = __worker;
2097 2098
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2099

2100 2101
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2102 2103
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2104

2105 2106 2107 2108 2109
	/*
	 * DIE can be set only while idle and REBIND set while busy has
	 * @worker->rebind_work scheduled.  Checking here is enough.
	 */
	if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
T
Tejun Heo 已提交
2110
		spin_unlock_irq(&gcwq->lock);
2111 2112 2113 2114 2115 2116 2117 2118

		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2119
	}
2120

T
Tejun Heo 已提交
2121
	worker_leave_idle(worker);
2122
recheck:
2123
	/* no more worker necessary? */
2124
	if (!need_more_worker(pool))
2125 2126 2127
		goto sleep;

	/* do we need to manage? */
2128
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2129 2130
		goto recheck;

T
Tejun Heo 已提交
2131 2132 2133 2134 2135 2136 2137
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2138 2139 2140 2141 2142 2143 2144 2145
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2146
		struct work_struct *work =
2147
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2148 2149 2150 2151 2152 2153
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2154
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2155 2156 2157
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2158
		}
2159
	} while (keep_working(pool));
2160 2161

	worker_set_flags(worker, WORKER_PREP, false);
2162
sleep:
2163
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2164
		goto recheck;
2165

T
Tejun Heo 已提交
2166
	/*
2167 2168 2169 2170 2171
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2172 2173 2174 2175 2176 2177
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2178 2179
}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
/**
 * rescuer_thread - the rescuer thread function
 * @__wq: the associated workqueue
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
static int rescuer_thread(void *__wq)
{
	struct workqueue_struct *wq = __wq;
	struct worker *rescuer = wq->rescuer;
	struct list_head *scheduled = &rescuer->scheduled;
2204
	bool is_unbound = wq->flags & WQ_UNBOUND;
2205 2206 2207 2208 2209 2210 2211 2212 2213
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

	if (kthread_should_stop())
		return 0;

2214 2215 2216 2217
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2218
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2219 2220
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2221 2222
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2223 2224 2225
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2226
		mayday_clear_cpu(cpu, wq->mayday_mask);
2227 2228

		/* migrate to the target cpu if possible */
2229
		rescuer->pool = pool;
2230 2231 2232 2233 2234 2235 2236
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2237
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2238 2239 2240 2241
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2242 2243 2244 2245 2246 2247

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2248 2249
		if (keep_working(pool))
			wake_up_worker(pool);
2250

2251 2252 2253 2254 2255
		spin_unlock_irq(&gcwq->lock);
	}

	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2256 2257
}

O
Oleg Nesterov 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2269 2270 2271 2272
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2273 2274
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2275
 *
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2289 2290
 *
 * CONTEXT:
2291
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2292
 */
2293
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2294 2295
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2296
{
2297 2298 2299
	struct list_head *head;
	unsigned int linked = 0;

2300
	/*
2301
	 * debugobject calls are safe here even with gcwq->lock locked
2302 2303 2304 2305
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2306
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2307
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2308
	init_completion(&barr->done);
2309

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2325
	debug_work_activate(&barr->work);
2326 2327
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2328 2329
}

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2363
{
2364 2365
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2366

2367 2368 2369
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2370
	}
2371

2372
	for_each_cwq_cpu(cpu, wq) {
2373
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2374
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2375

2376
		spin_lock_irq(&gcwq->lock);
2377

2378 2379
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2380

2381 2382 2383 2384 2385 2386
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2387

2388 2389 2390 2391
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2392

2393
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2394
	}
2395

2396 2397
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2398

2399
	return wait;
L
Linus Torvalds 已提交
2400 2401
}

2402
/**
L
Linus Torvalds 已提交
2403
 * flush_workqueue - ensure that any scheduled work has run to completion.
2404
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2405 2406 2407 2408
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2409 2410
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2411
 */
2412
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2413
{
2414 2415 2416 2417 2418 2419
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2420

2421 2422
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2484 2485 2486 2487
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2555
}
2556
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2557

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2588
		bool drained;
2589

2590
		spin_lock_irq(&cwq->pool->gcwq->lock);
2591
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2592
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2593 2594

		if (drained)
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
			pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
				   wq->name, flush_cnt);
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2611 2612
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
			     bool wait_executing)
2613
{
2614
	struct worker *worker = NULL;
2615
	struct global_cwq *gcwq;
2616 2617 2618
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2619 2620
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2621
		return false;
2622

2623
	spin_lock_irq(&gcwq->lock);
2624 2625 2626
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2627 2628
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2629 2630
		 */
		smp_rmb();
2631
		cwq = get_work_cwq(work);
2632
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2633
			goto already_gone;
2634
	} else if (wait_executing) {
2635
		worker = find_worker_executing_work(gcwq, work);
2636
		if (!worker)
T
Tejun Heo 已提交
2637
			goto already_gone;
2638
		cwq = worker->current_cwq;
2639 2640
	} else
		goto already_gone;
2641

2642
	insert_wq_barrier(cwq, barr, work, worker);
2643
	spin_unlock_irq(&gcwq->lock);
2644

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2655
	lock_map_release(&cwq->wq->lockdep_map);
2656

2657
	return true;
T
Tejun Heo 已提交
2658
already_gone:
2659
	spin_unlock_irq(&gcwq->lock);
2660
	return false;
2661
}
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
 * Wait until @work has finished execution.  This function considers
 * only the last queueing instance of @work.  If @work has been
 * enqueued across different CPUs on a non-reentrant workqueue or on
 * multiple workqueues, @work might still be executing on return on
 * some of the CPUs from earlier queueing.
 *
 * If @work was queued only on a non-reentrant, ordered or unbound
 * workqueue, @work is guaranteed to be idle on return if it hasn't
 * been requeued since flush started.
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2685 2686 2687
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2688 2689 2690 2691 2692 2693 2694
	if (start_flush_work(work, &barr, true)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else
		return false;
}
2695 2696
EXPORT_SYMBOL_GPL(flush_work);

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
{
	struct wq_barrier barr;
	struct worker *worker;

	spin_lock_irq(&gcwq->lock);

	worker = find_worker_executing_work(gcwq, work);
	if (unlikely(worker))
		insert_wq_barrier(worker->current_cwq, &barr, work, worker);

	spin_unlock_irq(&gcwq->lock);

	if (unlikely(worker)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else
		return false;
}

static bool wait_on_work(struct work_struct *work)
{
	bool ret = false;
	int cpu;

	might_sleep();

	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

	for_each_gcwq_cpu(cpu)
		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
	return ret;
}

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
/**
 * flush_work_sync - wait until a work has finished execution
 * @work: the work to flush
 *
 * Wait until @work has finished execution.  On return, it's
 * guaranteed that all queueing instances of @work which happened
 * before this function is called are finished.  In other words, if
 * @work hasn't been requeued since this function was called, @work is
 * guaranteed to be idle on return.
 *
 * RETURNS:
 * %true if flush_work_sync() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work_sync(struct work_struct *work)
{
	struct wq_barrier barr;
	bool pending, waited;

	/* we'll wait for executions separately, queue barr only if pending */
	pending = start_flush_work(work, &barr, false);

	/* wait for executions to finish */
	waited = wait_on_work(work);

	/* wait for the pending one */
	if (pending) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
	}

	return pending || waited;
}
EXPORT_SYMBOL_GPL(flush_work_sync);

2768
/*
2769
 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2770 2771 2772 2773
 * so this work can't be re-armed in any way.
 */
static int try_to_grab_pending(struct work_struct *work)
{
2774
	struct global_cwq *gcwq;
2775
	int ret = -1;
2776

2777
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2778
		return 0;
2779 2780 2781 2782 2783

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
2784 2785
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2786 2787
		return ret;

2788
	spin_lock_irq(&gcwq->lock);
2789 2790
	if (!list_empty(&work->entry)) {
		/*
2791
		 * This work is queued, but perhaps we locked the wrong gcwq.
2792 2793 2794 2795
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
2796
		if (gcwq == get_work_gcwq(work)) {
2797
			debug_work_deactivate(work);
2798
			list_del_init(&work->entry);
2799
			cwq_dec_nr_in_flight(get_work_cwq(work),
2800 2801
				get_work_color(work),
				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2802 2803 2804
			ret = 1;
		}
	}
2805
	spin_unlock_irq(&gcwq->lock);
2806 2807 2808 2809

	return ret;
}

2810
static bool __cancel_work_timer(struct work_struct *work,
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
				struct timer_list* timer)
{
	int ret;

	do {
		ret = (timer && likely(del_timer(timer)));
		if (!ret)
			ret = try_to_grab_pending(work);
		wait_on_work(work);
	} while (unlikely(ret < 0));

2822
	clear_work_data(work);
2823 2824 2825
	return ret;
}

2826
/**
2827 2828
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2829
 *
2830 2831 2832 2833
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2834
 *
2835 2836
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2837
 *
2838
 * The caller must ensure that the workqueue on which @work was last
2839
 * queued can't be destroyed before this function returns.
2840 2841 2842
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2843
 */
2844
bool cancel_work_sync(struct work_struct *work)
2845
{
2846
	return __cancel_work_timer(work, NULL);
O
Oleg Nesterov 已提交
2847
}
2848
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2849

2850
/**
2851 2852
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2853
 *
2854 2855 2856
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2857
 *
2858 2859 2860
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2861
 */
2862 2863
bool flush_delayed_work(struct delayed_work *dwork)
{
2864
	local_irq_disable();
2865
	if (del_timer_sync(&dwork->timer))
2866
		__queue_work(WORK_CPU_UNBOUND,
2867
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2868
	local_irq_enable();
2869 2870 2871 2872
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
/**
 * flush_delayed_work_sync - wait for a dwork to finish
 * @dwork: the delayed work to flush
 *
 * Delayed timer is cancelled and the pending work is queued for
 * execution immediately.  Other than timer handling, its behavior
 * is identical to flush_work_sync().
 *
 * RETURNS:
 * %true if flush_work_sync() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_delayed_work_sync(struct delayed_work *dwork)
{
2887
	local_irq_disable();
2888
	if (del_timer_sync(&dwork->timer))
2889
		__queue_work(WORK_CPU_UNBOUND,
2890
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2891
	local_irq_enable();
2892 2893 2894 2895
	return flush_work_sync(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work_sync);

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2906
{
2907
	return __cancel_work_timer(&dwork->work, &dwork->timer);
2908
}
2909
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2910

2911
/**
2912 2913 2914 2915 2916 2917
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2918
bool schedule_work_on(int cpu, struct work_struct *work)
2919 2920 2921 2922 2923
{
	return queue_work_on(cpu, system_wq, work);
}
EXPORT_SYMBOL(schedule_work_on);

2924 2925 2926 2927
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2928 2929
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2930 2931 2932 2933
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2934
 */
2935
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2936
{
2937
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2938
}
2939
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2940

2941 2942 2943 2944 2945
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
 * @dwork: job to be done
 * @delay: number of jiffies to wait
2946
 *
2947 2948
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
2949
 */
2950 2951
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
2952
{
2953
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2954
}
2955
EXPORT_SYMBOL(schedule_delayed_work_on);
2956

2957 2958
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2959 2960
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2961 2962 2963 2964
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2965
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2966
{
2967
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2968
}
2969
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
2970

2971
/**
2972
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2973 2974
 * @func: the function to call
 *
2975 2976
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2977
 * schedule_on_each_cpu() is very slow.
2978 2979 2980
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2981
 */
2982
int schedule_on_each_cpu(work_func_t func)
2983 2984
{
	int cpu;
2985
	struct work_struct __percpu *works;
2986

2987 2988
	works = alloc_percpu(struct work_struct);
	if (!works)
2989
		return -ENOMEM;
2990

2991 2992
	get_online_cpus();

2993
	for_each_online_cpu(cpu) {
2994 2995 2996
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2997
		schedule_work_on(cpu, work);
2998
	}
2999 3000 3001 3002

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3003
	put_online_cpus();
3004
	free_percpu(works);
3005 3006 3007
	return 0;
}

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3032 3033
void flush_scheduled_work(void)
{
3034
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3035
}
3036
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3037

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3050
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3051 3052
{
	if (!in_interrupt()) {
3053
		fn(&ew->work);
3054 3055 3056
		return 0;
	}

3057
	INIT_WORK(&ew->work, fn);
3058 3059 3060 3061 3062 3063
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3064 3065
int keventd_up(void)
{
3066
	return system_wq != NULL;
L
Linus Torvalds 已提交
3067 3068
}

3069
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3070
{
3071
	/*
T
Tejun Heo 已提交
3072 3073 3074
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3075
	 */
T
Tejun Heo 已提交
3076 3077 3078
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3079

3080
	if (!(wq->flags & WQ_UNBOUND))
3081
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3082
	else {
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3095
	}
3096

3097
	/* just in case, make sure it's actually aligned */
3098 3099
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3100 3101
}

3102
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3103
{
3104
	if (!(wq->flags & WQ_UNBOUND))
3105 3106 3107
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3108
		kfree(*(void **)(wq->cpu_wq.single + 1));
3109
	}
T
Tejun Heo 已提交
3110 3111
}

3112 3113
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3114
{
3115 3116 3117
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
3118 3119
		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
		       "is out of range, clamping between %d and %d\n",
3120
		       max_active, name, 1, lim);
3121

3122
	return clamp_val(max_active, 1, lim);
3123 3124
}

3125
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3126 3127 3128
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3129
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3130
{
3131
	va_list args, args1;
L
Linus Torvalds 已提交
3132
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3133
	unsigned int cpu;
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3148

3149 3150 3151 3152 3153 3154 3155
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3156
	max_active = max_active ?: WQ_DFL_ACTIVE;
3157
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3158

3159
	/* init wq */
3160
	wq->flags = flags;
3161
	wq->saved_max_active = max_active;
3162 3163 3164 3165
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3166

3167
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3168
	INIT_LIST_HEAD(&wq->list);
3169

3170 3171 3172
	if (alloc_cwqs(wq) < 0)
		goto err;

3173
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3174
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3175
		struct global_cwq *gcwq = get_gcwq(cpu);
3176
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3177

T
Tejun Heo 已提交
3178
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3179
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3180
		cwq->wq = wq;
3181
		cwq->flush_color = -1;
3182 3183
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3184
	}
T
Tejun Heo 已提交
3185

3186 3187 3188
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3189
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3190 3191 3192 3193 3194 3195
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3196 3197
		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
					       wq->name);
3198 3199 3200 3201 3202
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3203 3204
	}

3205 3206 3207 3208 3209
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3210
	spin_lock(&workqueue_lock);
3211

3212
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3213
		for_each_cwq_cpu(cpu, wq)
3214 3215
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3216
	list_add(&wq->list, &workqueues);
3217

T
Tejun Heo 已提交
3218 3219
	spin_unlock(&workqueue_lock);

3220
	return wq;
T
Tejun Heo 已提交
3221 3222
err:
	if (wq) {
3223
		free_cwqs(wq);
3224
		free_mayday_mask(wq->mayday_mask);
3225
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3226 3227 3228
		kfree(wq);
	}
	return NULL;
3229
}
3230
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3231

3232 3233 3234 3235 3236 3237 3238 3239
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3240
	unsigned int cpu;
3241

3242 3243
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3244

3245 3246 3247 3248
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3249
	spin_lock(&workqueue_lock);
3250
	list_del(&wq->list);
3251
	spin_unlock(&workqueue_lock);
3252

3253
	/* sanity check */
3254
	for_each_cwq_cpu(cpu, wq) {
3255 3256 3257 3258 3259
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3260 3261
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3262
	}
3263

3264 3265
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3266
		free_mayday_mask(wq->mayday_mask);
3267
		kfree(wq->rescuer);
3268 3269
	}

3270
	free_cwqs(wq);
3271 3272 3273 3274
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3289
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3290 3291 3292 3293 3294

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3295
	for_each_cwq_cpu(cpu, wq) {
3296 3297 3298 3299
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

3300
		if (!(wq->flags & WQ_FREEZABLE) ||
3301 3302
		    !(gcwq->flags & GCWQ_FREEZING))
			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3303

3304
		spin_unlock_irq(&gcwq->lock);
3305
	}
3306

3307
	spin_unlock(&workqueue_lock);
3308
}
3309
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3310

3311
/**
3312 3313 3314
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3315
 *
3316 3317 3318
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3319
 *
3320 3321
 * RETURNS:
 * %true if congested, %false otherwise.
3322
 */
3323
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3324
{
3325 3326 3327
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3328
}
3329
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3330

3331
/**
3332 3333
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3334
 *
3335
 * RETURNS:
3336
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3337
 */
3338
unsigned int work_cpu(struct work_struct *work)
3339
{
3340
	struct global_cwq *gcwq = get_work_gcwq(work);
3341

3342
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3343
}
3344
EXPORT_SYMBOL_GPL(work_cpu);
3345

3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3360
{
3361 3362 3363
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3364

3365 3366
	if (!gcwq)
		return false;
L
Linus Torvalds 已提交
3367

3368
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3369

3370 3371 3372 3373
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3374

3375
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3376

3377
	return ret;
L
Linus Torvalds 已提交
3378
}
3379
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3380

3381 3382 3383
/*
 * CPU hotplug.
 *
3384 3385 3386 3387 3388 3389 3390
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3391 3392 3393
 * This is solved by allowing a gcwq to be disassociated from the CPU
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3394
 */
L
Linus Torvalds 已提交
3395

3396
/* claim manager positions of all pools */
T
Tejun Heo 已提交
3397
static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3398 3399 3400 3401 3402
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
		mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3403
	spin_lock_irq(&gcwq->lock);
3404 3405 3406
}

/* release manager positions */
T
Tejun Heo 已提交
3407
static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3408 3409 3410
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3411
	spin_unlock_irq(&gcwq->lock);
3412 3413 3414 3415
	for_each_worker_pool(pool, gcwq)
		mutex_unlock(&pool->manager_mutex);
}

3416
static void gcwq_unbind_fn(struct work_struct *work)
3417
{
3418
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3419
	struct worker_pool *pool;
3420 3421 3422
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3423

3424 3425
	BUG_ON(gcwq->cpu != smp_processor_id());

T
Tejun Heo 已提交
3426
	gcwq_claim_management_and_lock(gcwq);
3427

3428 3429 3430 3431 3432 3433
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3434
	for_each_worker_pool(pool, gcwq)
3435
		list_for_each_entry(worker, &pool->idle_list, entry)
3436
			worker->flags |= WORKER_UNBOUND;
3437

3438
	for_each_busy_worker(worker, i, pos, gcwq)
3439
		worker->flags |= WORKER_UNBOUND;
3440

3441 3442
	gcwq->flags |= GCWQ_DISASSOCIATED;

T
Tejun Heo 已提交
3443
	gcwq_release_management_and_unlock(gcwq);
3444

3445
	/*
3446
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3447 3448
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3449 3450
	 */
	schedule();
3451

3452
	/*
3453 3454 3455 3456 3457 3458 3459 3460 3461
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3462
	 */
3463 3464
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3465 3466
}

T
Tejun Heo 已提交
3467 3468 3469 3470 3471 3472 3473
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
					       unsigned long action,
					       void *hcpu)
3474 3475
{
	unsigned int cpu = (unsigned long)hcpu;
3476
	struct global_cwq *gcwq = get_gcwq(cpu);
3477
	struct worker_pool *pool;
3478

T
Tejun Heo 已提交
3479
	switch (action & ~CPU_TASKS_FROZEN) {
3480
	case CPU_UP_PREPARE:
3481
		for_each_worker_pool(pool, gcwq) {
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3494
		}
T
Tejun Heo 已提交
3495
		break;
3496

3497 3498
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
T
Tejun Heo 已提交
3499
		gcwq_claim_management_and_lock(gcwq);
3500
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3501
		rebind_workers(gcwq);
T
Tejun Heo 已提交
3502
		gcwq_release_management_and_unlock(gcwq);
3503
		break;
3504
	}
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3516 3517 3518
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3519 3520
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3521 3522 3523 3524 3525
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
		schedule_work_on(cpu, &unbind_work);
		flush_work(&unbind_work);
		break;
3526 3527 3528 3529
	}
	return NOTIFY_OK;
}

3530
#ifdef CONFIG_SMP
3531

3532
struct work_for_cpu {
3533
	struct completion completion;
3534 3535 3536 3537 3538
	long (*fn)(void *);
	void *arg;
	long ret;
};

3539
static int do_work_for_cpu(void *_wfc)
3540
{
3541
	struct work_for_cpu *wfc = _wfc;
3542
	wfc->ret = wfc->fn(wfc->arg);
3543 3544
	complete(&wfc->completion);
	return 0;
3545 3546 3547 3548 3549 3550 3551 3552
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3553 3554
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3555
 * The caller must not hold any locks which would prevent @fn from completing.
3556 3557 3558
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	struct task_struct *sub_thread;
	struct work_for_cpu wfc = {
		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
		.fn = fn,
		.arg = arg,
	};

	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
	if (IS_ERR(sub_thread))
		return PTR_ERR(sub_thread);
	kthread_bind(sub_thread, cpu);
	wake_up_process(sub_thread);
	wait_for_completion(&wfc.completion);
3572 3573 3574 3575 3576
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3577 3578 3579 3580 3581
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3582 3583 3584
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3585 3586
 *
 * CONTEXT:
3587
 * Grabs and releases workqueue_lock and gcwq->lock's.
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3598
	for_each_gcwq_cpu(cpu) {
3599
		struct global_cwq *gcwq = get_gcwq(cpu);
3600
		struct workqueue_struct *wq;
3601 3602 3603

		spin_lock_irq(&gcwq->lock);

3604 3605 3606
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3607 3608 3609
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3610
			if (cwq && wq->flags & WQ_FREEZABLE)
3611 3612
				cwq->max_active = 0;
		}
3613 3614

		spin_unlock_irq(&gcwq->lock);
3615 3616 3617 3618 3619 3620
	}

	spin_unlock(&workqueue_lock);
}

/**
3621
 * freeze_workqueues_busy - are freezable workqueues still busy?
3622 3623 3624 3625 3626 3627 3628 3629
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3630 3631
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3642
	for_each_gcwq_cpu(cpu) {
3643
		struct workqueue_struct *wq;
3644 3645 3646 3647 3648 3649 3650
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3651
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3670
 * frozen works are transferred to their respective gcwq worklists.
3671 3672
 *
 * CONTEXT:
3673
 * Grabs and releases workqueue_lock and gcwq->lock's.
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3684
	for_each_gcwq_cpu(cpu) {
3685
		struct global_cwq *gcwq = get_gcwq(cpu);
3686
		struct worker_pool *pool;
3687
		struct workqueue_struct *wq;
3688 3689 3690

		spin_lock_irq(&gcwq->lock);

3691 3692 3693
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3694 3695 3696
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3697
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3698 3699 3700 3701 3702 3703 3704 3705 3706
				continue;

			/* restore max_active and repopulate worklist */
			cwq->max_active = wq->saved_max_active;

			while (!list_empty(&cwq->delayed_works) &&
			       cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
3707

3708 3709
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3710

3711
		spin_unlock_irq(&gcwq->lock);
3712 3713 3714 3715 3716 3717 3718 3719
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3720
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3721
{
T
Tejun Heo 已提交
3722
	unsigned int cpu;
T
Tejun Heo 已提交
3723
	int i;
T
Tejun Heo 已提交
3724

3725 3726
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
	cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3727 3728

	/* initialize gcwqs */
3729
	for_each_gcwq_cpu(cpu) {
3730
		struct global_cwq *gcwq = get_gcwq(cpu);
3731
		struct worker_pool *pool;
3732 3733 3734

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;
3735
		gcwq->flags |= GCWQ_DISASSOCIATED;
3736

T
Tejun Heo 已提交
3737 3738 3739
		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);

3740 3741 3742 3743
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3744

3745 3746 3747
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3748

3749 3750 3751
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3752
			mutex_init(&pool->manager_mutex);
3753 3754
			ida_init(&pool->worker_ida);
		}
3755

3756
		init_waitqueue_head(&gcwq->rebind_hold);
3757 3758
	}

3759
	/* create the initial worker */
3760
	for_each_online_gcwq_cpu(cpu) {
3761
		struct global_cwq *gcwq = get_gcwq(cpu);
3762
		struct worker_pool *pool;
3763

3764 3765
		if (cpu != WORK_CPU_UNBOUND)
			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3766 3767 3768 3769

		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3770
			worker = create_worker(pool);
3771 3772 3773 3774 3775
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3776 3777
	}

3778 3779 3780
	system_wq = alloc_workqueue("events", 0, 0);
	system_long_wq = alloc_workqueue("events_long", 0, 0);
	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3781 3782
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3783 3784
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3785 3786
	system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
			WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3787
	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3788 3789
	       !system_unbound_wq || !system_freezable_wq ||
		!system_nrt_freezable_wq);
3790
	return 0;
L
Linus Torvalds 已提交
3791
}
3792
early_initcall(init_workqueues);