workqueue.c 102.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44 45

#include "workqueue_sched.h"
L
Linus Torvalds 已提交
46

T
Tejun Heo 已提交
47
enum {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	/*
	 * global_cwq flags
	 *
	 * A bound gcwq is either associated or disassociated with its CPU.
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
	 * be executing on any CPU.  The gcwq behaves as an unbound one.
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
	 * managership of all pools on the gcwq to avoid changing binding
	 * state while create_worker() is in progress.
	 */
64 65 66 67 68
	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */

	/* pool flags */
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74 75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79 80
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
				  WORKER_CPU_INTENSIVE,
81

82
	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
83

T
Tejun Heo 已提交
84 85 86
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
87

88 89 90
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

91 92 93
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
94 95 96 97 98 99 100 101
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
102
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
103
};
L
Linus Torvalds 已提交
104 105

/*
T
Tejun Heo 已提交
106 107
 * Structure fields follow one of the following exclusion rules.
 *
108 109
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
110
 *
111 112 113
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
114
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
115
 *
116 117 118
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
119
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
120
 *
121 122
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
123
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
124 125
 */

126
struct global_cwq;
127
struct worker_pool;
128
struct idle_rebind;
L
Linus Torvalds 已提交
129

130 131 132 133
/*
 * The poor guys doing the actual heavy lifting.  All on-duty workers
 * are either serving the manager role, on idle list or on busy hash.
 */
T
Tejun Heo 已提交
134
struct worker {
T
Tejun Heo 已提交
135 136 137 138 139
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};
L
Linus Torvalds 已提交
140

T
Tejun Heo 已提交
141
	struct work_struct	*current_work;	/* L: work being processed */
142
	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
143
	struct list_head	scheduled;	/* L: scheduled works */
T
Tejun Heo 已提交
144
	struct task_struct	*task;		/* I: worker task */
145
	struct worker_pool	*pool;		/* I: the associated pool */
146 147 148
	/* 64 bytes boundary on 64bit, 32 on 32bit */
	unsigned long		last_active;	/* L: last active timestamp */
	unsigned int		flags;		/* X: flags */
T
Tejun Heo 已提交
149
	int			id;		/* I: worker id */
150 151 152 153

	/* for rebinding worker to CPU */
	struct idle_rebind	*idle_rebind;	/* L: for idle worker */
	struct work_struct	rebind_work;	/* L: for busy worker */
T
Tejun Heo 已提交
154 155
};

156 157
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
158
	unsigned int		flags;		/* X: flags */
159 160 161 162 163 164 165 166 167

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

168
	struct mutex		manager_mutex;	/* mutex manager should hold */
169 170 171
	struct ida		worker_ida;	/* L: for worker IDs */
};

172
/*
173 174 175
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
176 177 178 179
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
180
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
181

182
	/* workers are chained either in busy_hash or pool idle_list */
T
Tejun Heo 已提交
183 184 185
	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
						/* L: hash of busy workers */

186
	struct worker_pool	pools[2];	/* normal and highpri pools */
187

188
	wait_queue_head_t	rebind_hold;	/* rebind hold wait */
189 190
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
191
/*
192
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
193 194
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
195 196
 */
struct cpu_workqueue_struct {
197
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
198
	struct workqueue_struct *wq;		/* I: the owning workqueue */
199 200 201 202
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
203
	int			nr_active;	/* L: nr of active works */
204
	int			max_active;	/* L: max active works */
205
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
206
};
L
Linus Torvalds 已提交
207

208 209 210 211 212 213 214 215 216
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

217 218 219 220 221 222 223 224 225 226
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
227
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
228 229 230 231 232 233 234 235 236
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
237 238 239 240 241 242

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
243
	unsigned int		flags;		/* W: WQ_* flags */
244 245 246 247 248
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
249
	struct list_head	list;		/* W: list of all workqueues */
250 251 252 253 254 255 256 257 258

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

259
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
260 261
	struct worker		*rescuer;	/* I: rescue worker */

262
	int			nr_drainers;	/* W: drain in progress */
263
	int			saved_max_active; /* W: saved cwq max_active */
264
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
265
	struct lockdep_map	lockdep_map;
266
#endif
267
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
268 269
};

270 271 272
struct workqueue_struct *system_wq __read_mostly;
struct workqueue_struct *system_long_wq __read_mostly;
struct workqueue_struct *system_nrt_wq __read_mostly;
273
struct workqueue_struct *system_unbound_wq __read_mostly;
274
struct workqueue_struct *system_freezable_wq __read_mostly;
275
struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
276 277 278
EXPORT_SYMBOL_GPL(system_wq);
EXPORT_SYMBOL_GPL(system_long_wq);
EXPORT_SYMBOL_GPL(system_nrt_wq);
279
EXPORT_SYMBOL_GPL(system_unbound_wq);
280
EXPORT_SYMBOL_GPL(system_freezable_wq);
281
EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
282

283 284 285
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

286
#define for_each_worker_pool(pool, gcwq)				\
287 288
	for ((pool) = &(gcwq)->pools[0];				\
	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
289

290 291 292 293
#define for_each_busy_worker(worker, i, pos, gcwq)			\
	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

343 344 345 346
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

347 348 349 350 351
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
387
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
423
	.debug_hint	= work_debug_hint,
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

459 460
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
461
static LIST_HEAD(workqueues);
462
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
463

464 465 466 467 468
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
469
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
470
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
471

472 473 474 475 476 477
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
478 479 480
static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
};
481

T
Tejun Heo 已提交
482
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
483

484 485 486 487 488
static int worker_pool_pri(struct worker_pool *pool)
{
	return pool - pool->gcwq->pools;
}

489 490
static struct global_cwq *get_gcwq(unsigned int cpu)
{
491 492 493 494
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
495 496
}

497
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
498
{
499
	int cpu = pool->gcwq->cpu;
500
	int idx = worker_pool_pri(pool);
501

502
	if (cpu != WORK_CPU_UNBOUND)
503
		return &per_cpu(pool_nr_running, cpu)[idx];
504
	else
505
		return &unbound_pool_nr_running[idx];
506 507
}

T
Tejun Heo 已提交
508 509
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
510
{
511
	if (!(wq->flags & WQ_UNBOUND)) {
512
		if (likely(cpu < nr_cpu_ids))
513 514 515 516
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
517 518
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
534

535
/*
536 537 538
 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
 * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
 * cleared and the work data contains the cpu number it was last on.
539 540 541 542 543 544 545 546 547
 *
 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
 * cwq, cpu or clear work->data.  These functions should only be
 * called while the work is owned - ie. while the PENDING bit is set.
 *
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
 * corresponding to a work.  gcwq is available once the work has been
 * queued anywhere after initialization.  cwq is available only from
 * queueing until execution starts.
548
 */
549 550
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
551
{
552
	BUG_ON(!work_pending(work));
553 554
	atomic_long_set(&work->data, data | flags | work_static(work));
}
555

556 557 558 559 560
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
561
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
562 563
}

564 565 566 567
static void set_work_cpu(struct work_struct *work, unsigned int cpu)
{
	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
}
568

569
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
570
{
571
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
572 573
}

574
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
575
{
576
	unsigned long data = atomic_long_read(&work->data);
577

578 579 580 581
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
582 583
}

584
static struct global_cwq *get_work_gcwq(struct work_struct *work)
585
{
586
	unsigned long data = atomic_long_read(&work->data);
587 588
	unsigned int cpu;

589 590
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
591
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
592 593

	cpu = data >> WORK_STRUCT_FLAG_BITS;
594
	if (cpu == WORK_CPU_NONE)
595 596
		return NULL;

597
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
598
	return get_gcwq(cpu);
599 600
}

601
/*
602 603 604
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
605 606
 */

607
static bool __need_more_worker(struct worker_pool *pool)
608
{
609
	return !atomic_read(get_pool_nr_running(pool));
610 611
}

612
/*
613 614
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
615 616 617 618
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
619
 */
620
static bool need_more_worker(struct worker_pool *pool)
621
{
622
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
623
}
624

625
/* Can I start working?  Called from busy but !running workers. */
626
static bool may_start_working(struct worker_pool *pool)
627
{
628
	return pool->nr_idle;
629 630 631
}

/* Do I need to keep working?  Called from currently running workers. */
632
static bool keep_working(struct worker_pool *pool)
633
{
634
	atomic_t *nr_running = get_pool_nr_running(pool);
635

636
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
637 638 639
}

/* Do we need a new worker?  Called from manager. */
640
static bool need_to_create_worker(struct worker_pool *pool)
641
{
642
	return need_more_worker(pool) && !may_start_working(pool);
643
}
644

645
/* Do I need to be the manager? */
646
static bool need_to_manage_workers(struct worker_pool *pool)
647
{
648
	return need_to_create_worker(pool) ||
649
		(pool->flags & POOL_MANAGE_WORKERS);
650 651 652
}

/* Do we have too many workers and should some go away? */
653
static bool too_many_workers(struct worker_pool *pool)
654
{
655
	bool managing = mutex_is_locked(&pool->manager_mutex);
656 657
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
658 659

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
660 661
}

662
/*
663 664 665
 * Wake up functions.
 */

666
/* Return the first worker.  Safe with preemption disabled */
667
static struct worker *first_worker(struct worker_pool *pool)
668
{
669
	if (unlikely(list_empty(&pool->idle_list)))
670 671
		return NULL;

672
	return list_first_entry(&pool->idle_list, struct worker, entry);
673 674 675 676
}

/**
 * wake_up_worker - wake up an idle worker
677
 * @pool: worker pool to wake worker from
678
 *
679
 * Wake up the first idle worker of @pool.
680 681 682 683
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
684
static void wake_up_worker(struct worker_pool *pool)
685
{
686
	struct worker *worker = first_worker(pool);
687 688 689 690 691

	if (likely(worker))
		wake_up_process(worker->task);
}

692
/**
693 694 695 696 697 698 699 700 701 702 703 704 705 706
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

707
	if (!(worker->flags & WORKER_NOT_RUNNING))
708
		atomic_inc(get_pool_nr_running(worker->pool));
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
730
	struct worker_pool *pool = worker->pool;
731
	atomic_t *nr_running = get_pool_nr_running(pool);
732

733
	if (worker->flags & WORKER_NOT_RUNNING)
734 735 736 737 738 739 740 741 742 743
		return NULL;

	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
744 745 746 747 748
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
749
	 */
750
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
751
		to_wakeup = first_worker(pool);
752 753 754 755 756
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
757
 * @worker: self
758 759 760
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
761 762 763
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
764
 *
765 766
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
767 768 769 770
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
771
	struct worker_pool *pool = worker->pool;
772

773 774
	WARN_ON_ONCE(worker->task != current);

775 776 777 778 779 780 781
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
782
		atomic_t *nr_running = get_pool_nr_running(pool);
783 784 785

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
786
			    !list_empty(&pool->worklist))
787
				wake_up_worker(pool);
788 789 790 791
		} else
			atomic_dec(nr_running);
	}

792 793 794 795
	worker->flags |= flags;
}

/**
796
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
797
 * @worker: self
798 799
 * @flags: flags to clear
 *
800
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
801
 *
802 803
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
804 805 806
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
807
	struct worker_pool *pool = worker->pool;
808 809
	unsigned int oflags = worker->flags;

810 811
	WARN_ON_ONCE(worker->task != current);

812
	worker->flags &= ~flags;
813

814 815 816 817 818
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
819 820
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
821
			atomic_inc(get_pool_nr_running(pool));
822 823
}

T
Tejun Heo 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/**
 * busy_worker_head - return the busy hash head for a work
 * @gcwq: gcwq of interest
 * @work: work to be hashed
 *
 * Return hash head of @gcwq for @work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to the hash head.
 */
static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
					   struct work_struct *work)
{
	const int base_shift = ilog2(sizeof(struct work_struct));
	unsigned long v = (unsigned long)work;

	/* simple shift and fold hash, do we need something better? */
	v >>= base_shift;
	v += v >> BUSY_WORKER_HASH_ORDER;
	v &= BUSY_WORKER_HASH_MASK;

	return &gcwq->busy_hash[v];
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/**
 * __find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @bwh: hash head as returned by busy_worker_head()
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  @bwh should be
 * the hash head obtained by calling busy_worker_head() with the same
 * work.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
 */
static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
						   struct hlist_head *bwh,
						   struct work_struct *work)
{
	struct worker *worker;
	struct hlist_node *tmp;

	hlist_for_each_entry(worker, tmp, bwh, hentry)
		if (worker->current_work == work)
			return worker;
	return NULL;
}

/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
 * Find a worker which is executing @work on @gcwq.  This function is
 * identical to __find_worker_executing_work() except that this
 * function calculates @bwh itself.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
896
 */
897 898
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
899
{
900 901
	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
					    work);
902 903
}

T
Tejun Heo 已提交
904
/**
905
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
906 907 908 909 910
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
911 912
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
913 914
 *
 * CONTEXT:
915
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
916
 */
O
Oleg Nesterov 已提交
917
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
918 919
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
920
{
921
	struct worker_pool *pool = cwq->pool;
922

T
Tejun Heo 已提交
923
	/* we own @work, set data and link */
924
	set_work_cwq(work, cwq, extra_flags);
925

926 927 928 929 930
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
931

932
	list_add_tail(&work->entry, head);
933 934 935 936 937 938 939 940

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

941 942
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
943 944
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
977
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
978 979
			 struct work_struct *work)
{
980 981
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
982
	struct list_head *worklist;
983
	unsigned int work_flags;
L
Linus Torvalds 已提交
984 985
	unsigned long flags;

986
	debug_work_activate(work);
987

988
	/* if dying, only works from the same workqueue are allowed */
989
	if (unlikely(wq->flags & WQ_DRAINING) &&
990
	    WARN_ON_ONCE(!is_chained_work(wq)))
991 992
		return;

993 994
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
995 996
		struct global_cwq *last_gcwq;

997 998 999
		if (unlikely(cpu == WORK_CPU_UNBOUND))
			cpu = raw_smp_processor_id();

1000 1001 1002 1003 1004 1005
		/*
		 * It's multi cpu.  If @wq is non-reentrant and @work
		 * was previously on a different cpu, it might still
		 * be running there, in which case the work needs to
		 * be queued on that cpu to guarantee non-reentrance.
		 */
1006
		gcwq = get_gcwq(cpu);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		if (wq->flags & WQ_NON_REENTRANT &&
		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
			struct worker *worker;

			spin_lock_irqsave(&last_gcwq->lock, flags);

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
				spin_unlock_irqrestore(&last_gcwq->lock, flags);
				spin_lock_irqsave(&gcwq->lock, flags);
			}
		} else
			spin_lock_irqsave(&gcwq->lock, flags);
1024 1025 1026
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
		spin_lock_irqsave(&gcwq->lock, flags);
1027 1028 1029 1030
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1031
	trace_workqueue_queue_work(cpu, cwq, work);
1032

1033 1034 1035 1036
	if (WARN_ON(!list_empty(&work->entry))) {
		spin_unlock_irqrestore(&gcwq->lock, flags);
		return;
	}
1037

1038
	cwq->nr_in_flight[cwq->work_color]++;
1039
	work_flags = work_color_to_flags(cwq->work_color);
1040 1041

	if (likely(cwq->nr_active < cwq->max_active)) {
1042
		trace_workqueue_activate_work(work);
1043
		cwq->nr_active++;
1044
		worklist = &cwq->pool->worklist;
1045 1046
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1047
		worklist = &cwq->delayed_works;
1048
	}
1049

1050
	insert_work(cwq, work, worklist, work_flags);
1051

1052
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
1053 1054
}

1055 1056 1057 1058 1059 1060
/**
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @work: work to queue
 *
1061
 * Returns %false if @work was already on a queue, %true otherwise.
1062 1063 1064 1065
 *
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
 */
1066 1067
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
1068
{
1069
	bool ret = false;
1070

1071
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1072
		__queue_work(cpu, wq, work);
1073
		ret = true;
1074 1075 1076 1077 1078
	}
	return ret;
}
EXPORT_SYMBOL_GPL(queue_work_on);

1079
/**
1080
 * queue_work - queue work on a workqueue
1081
 * @wq: workqueue to use
1082
 * @work: work to queue
1083
 *
1084
 * Returns %false if @work was already on a queue, %true otherwise.
1085 1086 1087
 *
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1088
 */
1089
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
L
Linus Torvalds 已提交
1090
{
1091
	bool ret;
L
Linus Torvalds 已提交
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	ret = queue_work_on(get_cpu(), wq, work);
	put_cpu();

	return ret;
}
EXPORT_SYMBOL_GPL(queue_work);

static void delayed_work_timer_fn(unsigned long __data)
{
	struct delayed_work *dwork = (struct delayed_work *)__data;
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);

	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1106 1107
}

1108 1109 1110 1111
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1112
 * @dwork: work to queue
1113 1114
 * @delay: number of jiffies to wait before queueing
 *
1115
 * Returns %false if @work was already on a queue, %true otherwise.
1116
 */
1117 1118
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1119
{
1120 1121
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
1122
	bool ret = false;
1123

1124
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1125
		unsigned int lcpu;
1126

1127 1128 1129
		BUG_ON(timer_pending(timer));
		BUG_ON(!list_empty(&work->entry));

1130 1131
		timer_stats_timer_set_start_info(&dwork->timer);

1132 1133 1134 1135 1136
		/*
		 * This stores cwq for the moment, for the timer_fn.
		 * Note that the work's gcwq is preserved to allow
		 * reentrance detection for delayed works.
		 */
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		if (!(wq->flags & WQ_UNBOUND)) {
			struct global_cwq *gcwq = get_work_gcwq(work);

			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
				lcpu = gcwq->cpu;
			else
				lcpu = raw_smp_processor_id();
		} else
			lcpu = WORK_CPU_UNBOUND;

1147
		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1148

1149
		timer->expires = jiffies + delay;
1150
		timer->data = (unsigned long)dwork;
1151
		timer->function = delayed_work_timer_fn;
1152 1153 1154 1155 1156

		if (unlikely(cpu >= 0))
			add_timer_on(timer, cpu);
		else
			add_timer(timer);
1157
		ret = true;
1158 1159 1160
	}
	return ret;
}
1161
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
L
Linus Torvalds 已提交
1162

1163 1164 1165 1166 1167 1168
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1169
 * Returns %false if @work was already on a queue, %true otherwise.
1170
 */
1171
bool queue_delayed_work(struct workqueue_struct *wq,
1172 1173 1174 1175 1176 1177 1178 1179 1180
			struct delayed_work *dwork, unsigned long delay)
{
	if (delay == 0)
		return queue_work(wq, &dwork->work);

	return queue_delayed_work_on(-1, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(queue_delayed_work);

T
Tejun Heo 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1192
{
1193 1194
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1195 1196 1197 1198 1199

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1200 1201
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1202
	pool->nr_idle++;
1203
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1204 1205

	/* idle_list is LIFO */
1206
	list_add(&worker->entry, &pool->idle_list);
1207

1208 1209
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1210

1211
	/*
1212 1213 1214 1215
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1216
	 */
1217
	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1218
		     pool->nr_workers == pool->nr_idle &&
1219
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1233
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1234 1235

	BUG_ON(!(worker->flags & WORKER_IDLE));
1236
	worker_clr_flags(worker, WORKER_IDLE);
1237
	pool->nr_idle--;
T
Tejun Heo 已提交
1238 1239 1240
	list_del_init(&worker->entry);
}

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1257 1258 1259 1260 1261
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
 * binding against %GCWQ_DISASSOCIATED which is set during
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1272
__acquires(&gcwq->lock)
1273
{
1274
	struct global_cwq *gcwq = worker->pool->gcwq;
1275 1276 1277
	struct task_struct *task = worker->task;

	while (true) {
1278
		/*
1279 1280 1281 1282
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
1283
		 */
1284 1285
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1296 1297 1298 1299 1300 1301
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1302
		cpu_relax();
1303
		cond_resched();
1304 1305 1306
	}
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
struct idle_rebind {
	int			cnt;		/* # workers to be rebound */
	struct completion	done;		/* all workers rebound */
};

/*
 * Rebind an idle @worker to its CPU.  During CPU onlining, this has to
 * happen synchronously for idle workers.  worker_thread() will test
 * %WORKER_REBIND before leaving idle and call this function.
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

	/* CPU must be online at this point */
	WARN_ON(!worker_maybe_bind_and_lock(worker));
	if (!--worker->idle_rebind->cnt)
		complete(&worker->idle_rebind->done);
	spin_unlock_irq(&worker->pool->gcwq->lock);

	/* we did our part, wait for rebind_workers() to finish up */
	wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
}

1331
/*
1332
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1333 1334 1335
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1336
 */
1337
static void busy_worker_rebind_fn(struct work_struct *work)
1338 1339
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1340
	struct global_cwq *gcwq = worker->pool->gcwq;
1341 1342 1343 1344 1345 1346 1347

	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_REBIND);

	spin_unlock_irq(&gcwq->lock);
}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
 * The idle ones should be rebound synchronously and idle rebinding should
 * be complete before any worker starts executing work items with
 * concurrency management enabled; otherwise, scheduler may oops trying to
 * wake up non-local idle worker from wq_worker_sleeping().
 *
 * This is achieved by repeatedly requesting rebinding until all idle
 * workers are known to have been rebound under @gcwq->lock and holding all
 * idle workers from becoming busy until idle rebinding is complete.
 *
 * Once idle workers are rebound, busy workers can be rebound as they
 * finish executing their current work items.  Queueing the rebind work at
 * the head of their scheduled lists is enough.  Note that nr_running will
 * be properbly bumped as busy workers rebind.
 *
 * On return, all workers are guaranteed to either be bound or have rebind
 * work item scheduled.
 */
static void rebind_workers(struct global_cwq *gcwq)
	__releases(&gcwq->lock) __acquires(&gcwq->lock)
{
	struct idle_rebind idle_rebind;
	struct worker_pool *pool;
	struct worker *worker;
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
		lockdep_assert_held(&pool->manager_mutex);

	/*
	 * Rebind idle workers.  Interlocked both ways.  We wait for
	 * workers to rebind via @idle_rebind.done.  Workers will wait for
	 * us to finish up by watching %WORKER_REBIND.
	 */
	init_completion(&idle_rebind.done);
retry:
	idle_rebind.cnt = 1;
	INIT_COMPLETION(idle_rebind.done);

	/* set REBIND and kick idle ones, we'll wait for these later */
	for_each_worker_pool(pool, gcwq) {
		list_for_each_entry(worker, &pool->idle_list, entry) {
			if (worker->flags & WORKER_REBIND)
				continue;

			/* morph UNBOUND to REBIND */
			worker->flags &= ~WORKER_UNBOUND;
			worker->flags |= WORKER_REBIND;

			idle_rebind.cnt++;
			worker->idle_rebind = &idle_rebind;

			/* worker_thread() will call idle_worker_rebind() */
			wake_up_process(worker->task);
		}
	}

	if (--idle_rebind.cnt) {
		spin_unlock_irq(&gcwq->lock);
		wait_for_completion(&idle_rebind.done);
		spin_lock_irq(&gcwq->lock);
		/* busy ones might have become idle while waiting, retry */
		goto retry;
	}

	/*
	 * All idle workers are rebound and waiting for %WORKER_REBIND to
	 * be cleared inside idle_worker_rebind().  Clear and release.
	 * Clearing %WORKER_REBIND from this foreign context is safe
	 * because these workers are still guaranteed to be idle.
	 */
	for_each_worker_pool(pool, gcwq)
		list_for_each_entry(worker, &pool->idle_list, entry)
			worker->flags &= ~WORKER_REBIND;

	wake_up_all(&gcwq->rebind_hold);

	/* rebind busy workers */
	for_each_busy_worker(worker, i, pos, gcwq) {
		struct work_struct *rebind_work = &worker->rebind_work;

		/* morph UNBOUND to REBIND */
		worker->flags &= ~WORKER_UNBOUND;
		worker->flags |= WORKER_REBIND;

		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		/* wq doesn't matter, use the default one */
		debug_work_activate(rebind_work);
		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
	}
}

T
Tejun Heo 已提交
1454 1455 1456 1457 1458
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1459 1460
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1461
		INIT_LIST_HEAD(&worker->scheduled);
1462
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1463 1464
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1465
	}
T
Tejun Heo 已提交
1466 1467 1468 1469 1470
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1471
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1472
 *
1473
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1483
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1484
{
1485
	struct global_cwq *gcwq = pool->gcwq;
1486
	const char *pri = worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1487
	struct worker *worker = NULL;
1488
	int id = -1;
T
Tejun Heo 已提交
1489

1490
	spin_lock_irq(&gcwq->lock);
1491
	while (ida_get_new(&pool->worker_ida, &id)) {
1492
		spin_unlock_irq(&gcwq->lock);
1493
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1494
			goto fail;
1495
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1496
	}
1497
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1498 1499 1500 1501 1502

	worker = alloc_worker();
	if (!worker)
		goto fail;

1503
	worker->pool = pool;
T
Tejun Heo 已提交
1504 1505
	worker->id = id;

1506
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1507
		worker->task = kthread_create_on_node(worker_thread,
1508 1509
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1510 1511
	else
		worker->task = kthread_create(worker_thread, worker,
1512
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1513 1514 1515
	if (IS_ERR(worker->task))
		goto fail;

1516 1517 1518
	if (worker_pool_pri(pool))
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1519
	/*
1520 1521 1522 1523 1524 1525 1526
	 * Determine CPU binding of the new worker depending on
	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1527
	 */
1528
	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1529
		kthread_bind(worker->task, gcwq->cpu);
1530
	} else {
1531
		worker->task->flags |= PF_THREAD_BOUND;
1532
		worker->flags |= WORKER_UNBOUND;
1533
	}
T
Tejun Heo 已提交
1534 1535 1536 1537

	return worker;
fail:
	if (id >= 0) {
1538
		spin_lock_irq(&gcwq->lock);
1539
		ida_remove(&pool->worker_ida, id);
1540
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1550
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1551 1552
 *
 * CONTEXT:
1553
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1554 1555 1556
 */
static void start_worker(struct worker *worker)
{
1557
	worker->flags |= WORKER_STARTED;
1558
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1559
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1560 1561 1562 1563 1564 1565 1566
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1567 1568 1569 1570
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1571 1572 1573
 */
static void destroy_worker(struct worker *worker)
{
1574 1575
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1576 1577 1578 1579
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1580
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1581

T
Tejun Heo 已提交
1582
	if (worker->flags & WORKER_STARTED)
1583
		pool->nr_workers--;
T
Tejun Heo 已提交
1584
	if (worker->flags & WORKER_IDLE)
1585
		pool->nr_idle--;
T
Tejun Heo 已提交
1586 1587

	list_del_init(&worker->entry);
1588
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1589 1590 1591

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1592 1593 1594
	kthread_stop(worker->task);
	kfree(worker);

1595
	spin_lock_irq(&gcwq->lock);
1596
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1597 1598
}

1599
static void idle_worker_timeout(unsigned long __pool)
1600
{
1601 1602
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1603 1604 1605

	spin_lock_irq(&gcwq->lock);

1606
	if (too_many_workers(pool)) {
1607 1608 1609 1610
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1611
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1612 1613 1614
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1615
			mod_timer(&pool->idle_timer, expires);
1616 1617
		else {
			/* it's been idle for too long, wake up manager */
1618
			pool->flags |= POOL_MANAGE_WORKERS;
1619
			wake_up_worker(pool);
1620
		}
1621 1622 1623 1624
	}

	spin_unlock_irq(&gcwq->lock);
}
1625

1626 1627 1628 1629
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1630
	unsigned int cpu;
1631 1632 1633 1634 1635

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1636
	cpu = cwq->pool->gcwq->cpu;
1637 1638 1639
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1640
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1641 1642 1643 1644
		wake_up_process(wq->rescuer->task);
	return true;
}

1645
static void gcwq_mayday_timeout(unsigned long __pool)
1646
{
1647 1648
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1649 1650 1651 1652
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1653
	if (need_to_create_worker(pool)) {
1654 1655 1656 1657 1658 1659
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1660
		list_for_each_entry(work, &pool->worklist, entry)
1661
			send_mayday(work);
L
Linus Torvalds 已提交
1662
	}
1663 1664 1665

	spin_unlock_irq(&gcwq->lock);

1666
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1667 1668
}

1669 1670
/**
 * maybe_create_worker - create a new worker if necessary
1671
 * @pool: pool to create a new worker for
1672
 *
1673
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1674 1675
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1676
 * sent to all rescuers with works scheduled on @pool to resolve
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1691
static bool maybe_create_worker(struct worker_pool *pool)
1692 1693
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
1694
{
1695 1696 1697
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
1698 1699
		return false;
restart:
1700 1701
	spin_unlock_irq(&gcwq->lock);

1702
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1703
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1704 1705 1706 1707

	while (true) {
		struct worker *worker;

1708
		worker = create_worker(pool);
1709
		if (worker) {
1710
			del_timer_sync(&pool->mayday_timer);
1711 1712
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
1713
			BUG_ON(need_to_create_worker(pool));
1714 1715 1716
			return true;
		}

1717
		if (!need_to_create_worker(pool))
1718
			break;
L
Linus Torvalds 已提交
1719

1720 1721
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1722

1723
		if (!need_to_create_worker(pool))
1724 1725 1726
			break;
	}

1727
	del_timer_sync(&pool->mayday_timer);
1728
	spin_lock_irq(&gcwq->lock);
1729
	if (need_to_create_worker(pool))
1730 1731 1732 1733 1734 1735
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1736
 * @pool: pool to destroy workers for
1737
 *
1738
 * Destroy @pool workers which have been idle for longer than
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1749
static bool maybe_destroy_workers(struct worker_pool *pool)
1750 1751
{
	bool ret = false;
L
Linus Torvalds 已提交
1752

1753
	while (too_many_workers(pool)) {
1754 1755
		struct worker *worker;
		unsigned long expires;
1756

1757
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1758
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1759

1760
		if (time_before(jiffies, expires)) {
1761
			mod_timer(&pool->idle_timer, expires);
1762
			break;
1763
		}
L
Linus Torvalds 已提交
1764

1765 1766
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1767
	}
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	return ret;
}

/**
 * manage_workers - manage worker pool
 * @worker: self
 *
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
 */
static bool manage_workers(struct worker *worker)
{
1794
	struct worker_pool *pool = worker->pool;
1795 1796
	bool ret = false;

1797
	if (!mutex_trylock(&pool->manager_mutex))
1798 1799
		return ret;

1800
	pool->flags &= ~POOL_MANAGE_WORKERS;
1801 1802 1803 1804 1805

	/*
	 * Destroy and then create so that may_start_working() is true
	 * on return.
	 */
1806 1807
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
1808

1809
	mutex_unlock(&pool->manager_mutex);
1810 1811 1812
	return ret;
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1828
 * spin_lock_irq(gcwq->lock).
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

1854 1855 1856 1857 1858
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

1859
	trace_workqueue_activate_work(work);
1860
	move_linked_works(work, &cwq->pool->worklist, NULL);
1861
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1862 1863 1864
	cwq->nr_active++;
}

1865 1866 1867 1868
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
1869
 * @delayed: for a delayed work
1870 1871 1872 1873 1874
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
1875
 * spin_lock_irq(gcwq->lock).
1876
 */
1877 1878
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
				 bool delayed)
1879 1880 1881 1882 1883 1884
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;
1885

1886 1887 1888 1889 1890 1891 1892
	if (!delayed) {
		cwq->nr_active--;
		if (!list_empty(&cwq->delayed_works)) {
			/* one down, submit a delayed one */
			if (cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
1893
	}
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1914 1915
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1916
 * @worker: self
1917 1918 1919 1920 1921 1922 1923 1924 1925
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1926
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1927
 */
T
Tejun Heo 已提交
1928
static void process_one_work(struct worker *worker, struct work_struct *work)
1929 1930
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
1931
{
1932
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1933 1934
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1935
	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1936
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1937
	work_func_t f = work->func;
1938
	int work_color;
1939
	struct worker *collision;
1940 1941 1942 1943 1944 1945 1946 1947
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1948 1949 1950
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1951
#endif
1952 1953 1954 1955 1956
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
	 * unbound or a disassociated gcwq.
	 */
1957
	WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
1958
		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
1959 1960
		     raw_smp_processor_id() != gcwq->cpu);

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
	collision = __find_worker_executing_work(gcwq, bwh, work);
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1973 1974
	/* claim and process */
	debug_work_deactivate(work);
T
Tejun Heo 已提交
1975
	hlist_add_head(&worker->hentry, bwh);
T
Tejun Heo 已提交
1976
	worker->current_work = work;
1977
	worker->current_cwq = cwq;
1978
	work_color = get_work_color(work);
1979 1980 1981

	/* record the current cpu number in the work data and dequeue */
	set_work_cpu(work, gcwq->cpu);
1982 1983
	list_del_init(&work->entry);

1984 1985 1986 1987 1988 1989 1990
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

1991 1992 1993 1994
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
1995 1996
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
1997

1998
	spin_unlock_irq(&gcwq->lock);
1999

2000
	smp_wmb();	/* paired with test_and_set_bit(PENDING) */
2001
	work_clear_pending(work);
2002

2003
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2004
	lock_map_acquire(&lockdep_map);
2005
	trace_workqueue_execute_start(work);
2006
	f(work);
2007 2008 2009 2010 2011
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
		       "%s/0x%08x/%d\n",
		       current->comm, preempt_count(), task_pid_nr(current));
		printk(KERN_ERR "    last function: ");
		print_symbol("%s\n", (unsigned long)f);
		debug_show_held_locks(current);
		dump_stack();
	}

2025
	spin_lock_irq(&gcwq->lock);
2026

2027 2028 2029 2030
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2031
	/* we're done with it, release */
T
Tejun Heo 已提交
2032
	hlist_del_init(&worker->hentry);
T
Tejun Heo 已提交
2033
	worker->current_work = NULL;
2034
	worker->current_cwq = NULL;
2035
	cwq_dec_nr_in_flight(cwq, work_color, false);
2036 2037
}

2038 2039 2040 2041 2042 2043 2044 2045 2046
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2047
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2048 2049 2050
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2051
{
2052 2053
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2054
						struct work_struct, entry);
T
Tejun Heo 已提交
2055
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2056 2057 2058
	}
}

T
Tejun Heo 已提交
2059 2060
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2061
 * @__worker: self
T
Tejun Heo 已提交
2062
 *
2063 2064 2065 2066 2067
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2068
 */
T
Tejun Heo 已提交
2069
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2070
{
T
Tejun Heo 已提交
2071
	struct worker *worker = __worker;
2072 2073
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2074

2075 2076
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2077 2078
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2079

2080 2081 2082 2083 2084
	/*
	 * DIE can be set only while idle and REBIND set while busy has
	 * @worker->rebind_work scheduled.  Checking here is enough.
	 */
	if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
T
Tejun Heo 已提交
2085
		spin_unlock_irq(&gcwq->lock);
2086 2087 2088 2089 2090 2091 2092 2093

		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2094
	}
2095

T
Tejun Heo 已提交
2096
	worker_leave_idle(worker);
2097
recheck:
2098
	/* no more worker necessary? */
2099
	if (!need_more_worker(pool))
2100 2101 2102
		goto sleep;

	/* do we need to manage? */
2103
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2104 2105
		goto recheck;

T
Tejun Heo 已提交
2106 2107 2108 2109 2110 2111 2112
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2113 2114 2115 2116 2117 2118 2119 2120
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2121
		struct work_struct *work =
2122
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2123 2124 2125 2126 2127 2128
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2129
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2130 2131 2132
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2133
		}
2134
	} while (keep_working(pool));
2135 2136

	worker_set_flags(worker, WORKER_PREP, false);
2137
sleep:
2138
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2139
		goto recheck;
2140

T
Tejun Heo 已提交
2141
	/*
2142 2143 2144 2145 2146
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2147 2148 2149 2150 2151 2152
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2153 2154
}

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
/**
 * rescuer_thread - the rescuer thread function
 * @__wq: the associated workqueue
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
static int rescuer_thread(void *__wq)
{
	struct workqueue_struct *wq = __wq;
	struct worker *rescuer = wq->rescuer;
	struct list_head *scheduled = &rescuer->scheduled;
2179
	bool is_unbound = wq->flags & WQ_UNBOUND;
2180 2181 2182 2183 2184 2185 2186 2187 2188
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

	if (kthread_should_stop())
		return 0;

2189 2190 2191 2192
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2193
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2194 2195
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2196 2197
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2198 2199 2200
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2201
		mayday_clear_cpu(cpu, wq->mayday_mask);
2202 2203

		/* migrate to the target cpu if possible */
2204
		rescuer->pool = pool;
2205 2206 2207 2208 2209 2210 2211
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2212
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2213 2214 2215 2216
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2217 2218 2219 2220 2221 2222

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2223 2224
		if (keep_working(pool))
			wake_up_worker(pool);
2225

2226 2227 2228 2229 2230
		spin_unlock_irq(&gcwq->lock);
	}

	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2231 2232
}

O
Oleg Nesterov 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2244 2245 2246 2247
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2248 2249
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2250
 *
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2264 2265
 *
 * CONTEXT:
2266
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2267
 */
2268
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2269 2270
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2271
{
2272 2273 2274
	struct list_head *head;
	unsigned int linked = 0;

2275
	/*
2276
	 * debugobject calls are safe here even with gcwq->lock locked
2277 2278 2279 2280
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2281
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2282
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2283
	init_completion(&barr->done);
2284

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2300
	debug_work_activate(&barr->work);
2301 2302
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2303 2304
}

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2338
{
2339 2340
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2341

2342 2343 2344
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2345
	}
2346

2347
	for_each_cwq_cpu(cpu, wq) {
2348
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2349
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2350

2351
		spin_lock_irq(&gcwq->lock);
2352

2353 2354
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2355

2356 2357 2358 2359 2360 2361
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2362

2363 2364 2365 2366
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2367

2368
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2369
	}
2370

2371 2372
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2373

2374
	return wait;
L
Linus Torvalds 已提交
2375 2376
}

2377
/**
L
Linus Torvalds 已提交
2378
 * flush_workqueue - ensure that any scheduled work has run to completion.
2379
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2380 2381 2382 2383
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2384 2385
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2386
 */
2387
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2388
{
2389 2390 2391 2392 2393 2394
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2395

2396 2397
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2459 2460 2461 2462
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2530
}
2531
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2532

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2563
		bool drained;
2564

2565
		spin_lock_irq(&cwq->pool->gcwq->lock);
2566
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2567
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2568 2569

		if (drained)
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
			pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
				   wq->name, flush_cnt);
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2586 2587
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
			     bool wait_executing)
2588
{
2589
	struct worker *worker = NULL;
2590
	struct global_cwq *gcwq;
2591 2592 2593
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2594 2595
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2596
		return false;
2597

2598
	spin_lock_irq(&gcwq->lock);
2599 2600 2601
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2602 2603
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2604 2605
		 */
		smp_rmb();
2606
		cwq = get_work_cwq(work);
2607
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2608
			goto already_gone;
2609
	} else if (wait_executing) {
2610
		worker = find_worker_executing_work(gcwq, work);
2611
		if (!worker)
T
Tejun Heo 已提交
2612
			goto already_gone;
2613
		cwq = worker->current_cwq;
2614 2615
	} else
		goto already_gone;
2616

2617
	insert_wq_barrier(cwq, barr, work, worker);
2618
	spin_unlock_irq(&gcwq->lock);
2619

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2630
	lock_map_release(&cwq->wq->lockdep_map);
2631

2632
	return true;
T
Tejun Heo 已提交
2633
already_gone:
2634
	spin_unlock_irq(&gcwq->lock);
2635
	return false;
2636
}
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
 * Wait until @work has finished execution.  This function considers
 * only the last queueing instance of @work.  If @work has been
 * enqueued across different CPUs on a non-reentrant workqueue or on
 * multiple workqueues, @work might still be executing on return on
 * some of the CPUs from earlier queueing.
 *
 * If @work was queued only on a non-reentrant, ordered or unbound
 * workqueue, @work is guaranteed to be idle on return if it hasn't
 * been requeued since flush started.
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2660 2661 2662
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2663 2664 2665 2666 2667 2668 2669
	if (start_flush_work(work, &barr, true)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else
		return false;
}
2670 2671
EXPORT_SYMBOL_GPL(flush_work);

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
{
	struct wq_barrier barr;
	struct worker *worker;

	spin_lock_irq(&gcwq->lock);

	worker = find_worker_executing_work(gcwq, work);
	if (unlikely(worker))
		insert_wq_barrier(worker->current_cwq, &barr, work, worker);

	spin_unlock_irq(&gcwq->lock);

	if (unlikely(worker)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else
		return false;
}

static bool wait_on_work(struct work_struct *work)
{
	bool ret = false;
	int cpu;

	might_sleep();

	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

	for_each_gcwq_cpu(cpu)
		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
	return ret;
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
/**
 * flush_work_sync - wait until a work has finished execution
 * @work: the work to flush
 *
 * Wait until @work has finished execution.  On return, it's
 * guaranteed that all queueing instances of @work which happened
 * before this function is called are finished.  In other words, if
 * @work hasn't been requeued since this function was called, @work is
 * guaranteed to be idle on return.
 *
 * RETURNS:
 * %true if flush_work_sync() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work_sync(struct work_struct *work)
{
	struct wq_barrier barr;
	bool pending, waited;

	/* we'll wait for executions separately, queue barr only if pending */
	pending = start_flush_work(work, &barr, false);

	/* wait for executions to finish */
	waited = wait_on_work(work);

	/* wait for the pending one */
	if (pending) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
	}

	return pending || waited;
}
EXPORT_SYMBOL_GPL(flush_work_sync);

2743
/*
2744
 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2745 2746 2747 2748
 * so this work can't be re-armed in any way.
 */
static int try_to_grab_pending(struct work_struct *work)
{
2749
	struct global_cwq *gcwq;
2750
	int ret = -1;
2751

2752
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2753
		return 0;
2754 2755 2756 2757 2758

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
2759 2760
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2761 2762
		return ret;

2763
	spin_lock_irq(&gcwq->lock);
2764 2765
	if (!list_empty(&work->entry)) {
		/*
2766
		 * This work is queued, but perhaps we locked the wrong gcwq.
2767 2768 2769 2770
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
2771
		if (gcwq == get_work_gcwq(work)) {
2772
			debug_work_deactivate(work);
2773
			list_del_init(&work->entry);
2774
			cwq_dec_nr_in_flight(get_work_cwq(work),
2775 2776
				get_work_color(work),
				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2777 2778 2779
			ret = 1;
		}
	}
2780
	spin_unlock_irq(&gcwq->lock);
2781 2782 2783 2784

	return ret;
}

2785
static bool __cancel_work_timer(struct work_struct *work,
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
				struct timer_list* timer)
{
	int ret;

	do {
		ret = (timer && likely(del_timer(timer)));
		if (!ret)
			ret = try_to_grab_pending(work);
		wait_on_work(work);
	} while (unlikely(ret < 0));

2797
	clear_work_data(work);
2798 2799 2800
	return ret;
}

2801
/**
2802 2803
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2804
 *
2805 2806 2807 2808
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2809
 *
2810 2811
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2812
 *
2813
 * The caller must ensure that the workqueue on which @work was last
2814
 * queued can't be destroyed before this function returns.
2815 2816 2817
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2818
 */
2819
bool cancel_work_sync(struct work_struct *work)
2820
{
2821
	return __cancel_work_timer(work, NULL);
O
Oleg Nesterov 已提交
2822
}
2823
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2824

2825
/**
2826 2827
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2828
 *
2829 2830 2831
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2832
 *
2833 2834 2835
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2836
 */
2837 2838 2839 2840 2841 2842 2843 2844 2845
bool flush_delayed_work(struct delayed_work *dwork)
{
	if (del_timer_sync(&dwork->timer))
		__queue_work(raw_smp_processor_id(),
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
/**
 * flush_delayed_work_sync - wait for a dwork to finish
 * @dwork: the delayed work to flush
 *
 * Delayed timer is cancelled and the pending work is queued for
 * execution immediately.  Other than timer handling, its behavior
 * is identical to flush_work_sync().
 *
 * RETURNS:
 * %true if flush_work_sync() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_delayed_work_sync(struct delayed_work *dwork)
{
	if (del_timer_sync(&dwork->timer))
		__queue_work(raw_smp_processor_id(),
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
	return flush_work_sync(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work_sync);

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2877
{
2878
	return __cancel_work_timer(&dwork->work, &dwork->timer);
2879
}
2880
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2881

2882
/**
2883 2884 2885 2886 2887 2888
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2889
bool schedule_work_on(int cpu, struct work_struct *work)
2890 2891 2892 2893 2894
{
	return queue_work_on(cpu, system_wq, work);
}
EXPORT_SYMBOL(schedule_work_on);

2895 2896 2897 2898
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2899 2900
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2901 2902 2903 2904
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2905
 */
2906
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2907
{
2908
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2909
}
2910
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2911

2912 2913 2914 2915 2916
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
 * @dwork: job to be done
 * @delay: number of jiffies to wait
2917
 *
2918 2919
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
2920
 */
2921 2922
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
2923
{
2924
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2925
}
2926
EXPORT_SYMBOL(schedule_delayed_work_on);
2927

2928 2929
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2930 2931
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2932 2933 2934 2935
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2936
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2937
{
2938
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2939
}
2940
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
2941

2942
/**
2943
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2944 2945
 * @func: the function to call
 *
2946 2947
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2948
 * schedule_on_each_cpu() is very slow.
2949 2950 2951
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2952
 */
2953
int schedule_on_each_cpu(work_func_t func)
2954 2955
{
	int cpu;
2956
	struct work_struct __percpu *works;
2957

2958 2959
	works = alloc_percpu(struct work_struct);
	if (!works)
2960
		return -ENOMEM;
2961

2962 2963
	get_online_cpus();

2964
	for_each_online_cpu(cpu) {
2965 2966 2967
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2968
		schedule_work_on(cpu, work);
2969
	}
2970 2971 2972 2973

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2974
	put_online_cpus();
2975
	free_percpu(works);
2976 2977 2978
	return 0;
}

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3003 3004
void flush_scheduled_work(void)
{
3005
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3006
}
3007
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3021
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3022 3023
{
	if (!in_interrupt()) {
3024
		fn(&ew->work);
3025 3026 3027
		return 0;
	}

3028
	INIT_WORK(&ew->work, fn);
3029 3030 3031 3032 3033 3034
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3035 3036
int keventd_up(void)
{
3037
	return system_wq != NULL;
L
Linus Torvalds 已提交
3038 3039
}

3040
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3041
{
3042
	/*
T
Tejun Heo 已提交
3043 3044 3045
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3046
	 */
T
Tejun Heo 已提交
3047 3048 3049
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3050

3051
	if (!(wq->flags & WQ_UNBOUND))
3052
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3053
	else {
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3066
	}
3067

3068
	/* just in case, make sure it's actually aligned */
3069 3070
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3071 3072
}

3073
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3074
{
3075
	if (!(wq->flags & WQ_UNBOUND))
3076 3077 3078
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3079
		kfree(*(void **)(wq->cpu_wq.single + 1));
3080
	}
T
Tejun Heo 已提交
3081 3082
}

3083 3084
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3085
{
3086 3087 3088
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
3089 3090
		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
		       "is out of range, clamping between %d and %d\n",
3091
		       max_active, name, 1, lim);
3092

3093
	return clamp_val(max_active, 1, lim);
3094 3095
}

3096
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3097 3098 3099
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3100
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3101
{
3102
	va_list args, args1;
L
Linus Torvalds 已提交
3103
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3104
	unsigned int cpu;
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3119

3120 3121 3122 3123 3124 3125 3126
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3127
	max_active = max_active ?: WQ_DFL_ACTIVE;
3128
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3129

3130
	/* init wq */
3131
	wq->flags = flags;
3132
	wq->saved_max_active = max_active;
3133 3134 3135 3136
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3137

3138
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3139
	INIT_LIST_HEAD(&wq->list);
3140

3141 3142 3143
	if (alloc_cwqs(wq) < 0)
		goto err;

3144
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3145
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3146
		struct global_cwq *gcwq = get_gcwq(cpu);
3147
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3148

T
Tejun Heo 已提交
3149
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3150
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3151
		cwq->wq = wq;
3152
		cwq->flush_color = -1;
3153 3154
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3155
	}
T
Tejun Heo 已提交
3156

3157 3158 3159
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3160
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3161 3162 3163 3164 3165 3166
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3167 3168
		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
					       wq->name);
3169 3170 3171 3172 3173
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3174 3175
	}

3176 3177 3178 3179 3180
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3181
	spin_lock(&workqueue_lock);
3182

3183
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3184
		for_each_cwq_cpu(cpu, wq)
3185 3186
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3187
	list_add(&wq->list, &workqueues);
3188

T
Tejun Heo 已提交
3189 3190
	spin_unlock(&workqueue_lock);

3191
	return wq;
T
Tejun Heo 已提交
3192 3193
err:
	if (wq) {
3194
		free_cwqs(wq);
3195
		free_mayday_mask(wq->mayday_mask);
3196
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3197 3198 3199
		kfree(wq);
	}
	return NULL;
3200
}
3201
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3202

3203 3204 3205 3206 3207 3208 3209 3210
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3211
	unsigned int cpu;
3212

3213 3214
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3215

3216 3217 3218 3219
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3220
	spin_lock(&workqueue_lock);
3221
	list_del(&wq->list);
3222
	spin_unlock(&workqueue_lock);
3223

3224
	/* sanity check */
3225
	for_each_cwq_cpu(cpu, wq) {
3226 3227 3228 3229 3230
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3231 3232
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3233
	}
3234

3235 3236
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3237
		free_mayday_mask(wq->mayday_mask);
3238
		kfree(wq->rescuer);
3239 3240
	}

3241
	free_cwqs(wq);
3242 3243 3244 3245
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3260
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3261 3262 3263 3264 3265

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3266
	for_each_cwq_cpu(cpu, wq) {
3267 3268 3269 3270
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

3271
		if (!(wq->flags & WQ_FREEZABLE) ||
3272 3273
		    !(gcwq->flags & GCWQ_FREEZING))
			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3274

3275
		spin_unlock_irq(&gcwq->lock);
3276
	}
3277

3278
	spin_unlock(&workqueue_lock);
3279
}
3280
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3281

3282
/**
3283 3284 3285
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3286
 *
3287 3288 3289
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3290
 *
3291 3292
 * RETURNS:
 * %true if congested, %false otherwise.
3293
 */
3294
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3295
{
3296 3297 3298
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3299
}
3300
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3301

3302
/**
3303 3304
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3305
 *
3306
 * RETURNS:
3307
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3308
 */
3309
unsigned int work_cpu(struct work_struct *work)
3310
{
3311
	struct global_cwq *gcwq = get_work_gcwq(work);
3312

3313
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3314
}
3315
EXPORT_SYMBOL_GPL(work_cpu);
3316

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3331
{
3332 3333 3334
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3335

3336 3337
	if (!gcwq)
		return false;
L
Linus Torvalds 已提交
3338

3339
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3340

3341 3342 3343 3344
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3345

3346
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3347

3348
	return ret;
L
Linus Torvalds 已提交
3349
}
3350
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3351

3352 3353 3354
/*
 * CPU hotplug.
 *
3355 3356 3357 3358 3359 3360 3361
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3362 3363 3364
 * This is solved by allowing a gcwq to be disassociated from the CPU
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3365
 */
L
Linus Torvalds 已提交
3366

3367
/* claim manager positions of all pools */
T
Tejun Heo 已提交
3368
static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3369 3370 3371 3372 3373
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
		mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3374
	spin_lock_irq(&gcwq->lock);
3375 3376 3377
}

/* release manager positions */
T
Tejun Heo 已提交
3378
static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3379 3380 3381
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3382
	spin_unlock_irq(&gcwq->lock);
3383 3384 3385 3386
	for_each_worker_pool(pool, gcwq)
		mutex_unlock(&pool->manager_mutex);
}

3387
static void gcwq_unbind_fn(struct work_struct *work)
3388
{
3389
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3390
	struct worker_pool *pool;
3391 3392 3393
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3394

3395 3396
	BUG_ON(gcwq->cpu != smp_processor_id());

T
Tejun Heo 已提交
3397
	gcwq_claim_management_and_lock(gcwq);
3398

3399 3400 3401 3402 3403 3404
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3405
	for_each_worker_pool(pool, gcwq)
3406
		list_for_each_entry(worker, &pool->idle_list, entry)
3407
			worker->flags |= WORKER_UNBOUND;
3408

3409
	for_each_busy_worker(worker, i, pos, gcwq)
3410
		worker->flags |= WORKER_UNBOUND;
3411

3412 3413
	gcwq->flags |= GCWQ_DISASSOCIATED;

T
Tejun Heo 已提交
3414
	gcwq_release_management_and_unlock(gcwq);
3415

3416
	/*
3417
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3418 3419
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3420 3421
	 */
	schedule();
3422

3423
	/*
3424 3425 3426 3427 3428 3429 3430 3431 3432
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3433
	 */
3434 3435
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3436 3437
}

T
Tejun Heo 已提交
3438 3439 3440 3441 3442 3443 3444
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
					       unsigned long action,
					       void *hcpu)
3445 3446
{
	unsigned int cpu = (unsigned long)hcpu;
3447
	struct global_cwq *gcwq = get_gcwq(cpu);
3448
	struct worker_pool *pool;
3449

T
Tejun Heo 已提交
3450
	switch (action & ~CPU_TASKS_FROZEN) {
3451
	case CPU_UP_PREPARE:
3452
		for_each_worker_pool(pool, gcwq) {
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3465
		}
T
Tejun Heo 已提交
3466
		break;
3467

3468 3469
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
T
Tejun Heo 已提交
3470
		gcwq_claim_management_and_lock(gcwq);
3471
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3472
		rebind_workers(gcwq);
T
Tejun Heo 已提交
3473
		gcwq_release_management_and_unlock(gcwq);
3474
		break;
3475
	}
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3487 3488 3489
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3490 3491
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3492 3493 3494 3495 3496
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
		schedule_work_on(cpu, &unbind_work);
		flush_work(&unbind_work);
		break;
3497 3498 3499 3500
	}
	return NOTIFY_OK;
}

3501
#ifdef CONFIG_SMP
3502

3503
struct work_for_cpu {
3504
	struct completion completion;
3505 3506 3507 3508 3509
	long (*fn)(void *);
	void *arg;
	long ret;
};

3510
static int do_work_for_cpu(void *_wfc)
3511
{
3512
	struct work_for_cpu *wfc = _wfc;
3513
	wfc->ret = wfc->fn(wfc->arg);
3514 3515
	complete(&wfc->completion);
	return 0;
3516 3517 3518 3519 3520 3521 3522 3523
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3524 3525
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3526
 * The caller must not hold any locks which would prevent @fn from completing.
3527 3528 3529
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
	struct task_struct *sub_thread;
	struct work_for_cpu wfc = {
		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
		.fn = fn,
		.arg = arg,
	};

	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
	if (IS_ERR(sub_thread))
		return PTR_ERR(sub_thread);
	kthread_bind(sub_thread, cpu);
	wake_up_process(sub_thread);
	wait_for_completion(&wfc.completion);
3543 3544 3545 3546 3547
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3548 3549 3550 3551 3552
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3553 3554 3555
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3556 3557
 *
 * CONTEXT:
3558
 * Grabs and releases workqueue_lock and gcwq->lock's.
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3569
	for_each_gcwq_cpu(cpu) {
3570
		struct global_cwq *gcwq = get_gcwq(cpu);
3571
		struct workqueue_struct *wq;
3572 3573 3574

		spin_lock_irq(&gcwq->lock);

3575 3576 3577
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3578 3579 3580
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3581
			if (cwq && wq->flags & WQ_FREEZABLE)
3582 3583
				cwq->max_active = 0;
		}
3584 3585

		spin_unlock_irq(&gcwq->lock);
3586 3587 3588 3589 3590 3591
	}

	spin_unlock(&workqueue_lock);
}

/**
3592
 * freeze_workqueues_busy - are freezable workqueues still busy?
3593 3594 3595 3596 3597 3598 3599 3600
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3601 3602
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3613
	for_each_gcwq_cpu(cpu) {
3614
		struct workqueue_struct *wq;
3615 3616 3617 3618 3619 3620 3621
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3622
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3641
 * frozen works are transferred to their respective gcwq worklists.
3642 3643
 *
 * CONTEXT:
3644
 * Grabs and releases workqueue_lock and gcwq->lock's.
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3655
	for_each_gcwq_cpu(cpu) {
3656
		struct global_cwq *gcwq = get_gcwq(cpu);
3657
		struct worker_pool *pool;
3658
		struct workqueue_struct *wq;
3659 3660 3661

		spin_lock_irq(&gcwq->lock);

3662 3663 3664
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3665 3666 3667
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3668
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3669 3670 3671 3672 3673 3674 3675 3676 3677
				continue;

			/* restore max_active and repopulate worklist */
			cwq->max_active = wq->saved_max_active;

			while (!list_empty(&cwq->delayed_works) &&
			       cwq->nr_active < cwq->max_active)
				cwq_activate_first_delayed(cwq);
		}
3678

3679 3680
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3681

3682
		spin_unlock_irq(&gcwq->lock);
3683 3684 3685 3686 3687 3688 3689 3690
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3691
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3692
{
T
Tejun Heo 已提交
3693
	unsigned int cpu;
T
Tejun Heo 已提交
3694
	int i;
T
Tejun Heo 已提交
3695

3696 3697
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
	cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3698 3699

	/* initialize gcwqs */
3700
	for_each_gcwq_cpu(cpu) {
3701
		struct global_cwq *gcwq = get_gcwq(cpu);
3702
		struct worker_pool *pool;
3703 3704 3705

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;
3706
		gcwq->flags |= GCWQ_DISASSOCIATED;
3707

T
Tejun Heo 已提交
3708 3709 3710
		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);

3711 3712 3713 3714
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3715

3716 3717 3718
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3719

3720 3721 3722
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3723
			mutex_init(&pool->manager_mutex);
3724 3725
			ida_init(&pool->worker_ida);
		}
3726

3727
		init_waitqueue_head(&gcwq->rebind_hold);
3728 3729
	}

3730
	/* create the initial worker */
3731
	for_each_online_gcwq_cpu(cpu) {
3732
		struct global_cwq *gcwq = get_gcwq(cpu);
3733
		struct worker_pool *pool;
3734

3735 3736
		if (cpu != WORK_CPU_UNBOUND)
			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3737 3738 3739 3740

		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3741
			worker = create_worker(pool);
3742 3743 3744 3745 3746
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3747 3748
	}

3749 3750 3751
	system_wq = alloc_workqueue("events", 0, 0);
	system_long_wq = alloc_workqueue("events_long", 0, 0);
	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3752 3753
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3754 3755
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3756 3757
	system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
			WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3758
	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3759 3760
	       !system_unbound_wq || !system_freezable_wq ||
		!system_nrt_freezable_wq);
3761
	return 0;
L
Linus Torvalds 已提交
3762
}
3763
early_initcall(init_workqueues);