setup.c 48.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/node.h>
#include <linux/cpu.h>
#include <linux/ioport.h>
23
#include <linux/irq.h>
24 25
#include <linux/kexec.h>
#include <linux/pci.h>
26
#include <linux/swiotlb.h>
27 28 29 30 31
#include <linux/initrd.h>
#include <linux/io.h>
#include <linux/highmem.h>
#include <linux/smp.h>
#include <linux/timex.h>
32
#include <linux/hugetlb.h>
33
#include <linux/start_kernel.h>
34
#include <linux/screen_info.h>
35
#include <linux/tick.h>
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#include <asm/setup.h>
#include <asm/sections.h>
#include <asm/cacheflush.h>
#include <asm/pgalloc.h>
#include <asm/mmu_context.h>
#include <hv/hypervisor.h>
#include <arch/interrupts.h>

/* <linux/smp.h> doesn't provide this definition. */
#ifndef CONFIG_SMP
#define setup_max_cpus 1
#endif

static inline int ABS(int x) { return x >= 0 ? x : -x; }

/* Chip information */
52
char chip_model[64] __ro_after_init;
53

54 55 56 57
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif

58 59 60 61
struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);

/* Information on the NUMA nodes that we compute early */
62 63
unsigned long node_start_pfn[MAX_NUMNODES];
unsigned long node_end_pfn[MAX_NUMNODES];
64 65 66 67
unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
unsigned long __initdata node_free_pfn[MAX_NUMNODES];

68 69
static unsigned long __initdata node_percpu[MAX_NUMNODES];

T
Thomas Gleixner 已提交
70 71 72 73
/*
 * per-CPU stack and boot info.
 */
DEFINE_PER_CPU(unsigned long, boot_sp) =
74
	(unsigned long)init_stack + THREAD_SIZE - STACK_TOP_DELTA;
T
Thomas Gleixner 已提交
75 76 77 78 79 80 81 82 83 84 85

#ifdef CONFIG_SMP
DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
#else
/*
 * The variable must be __initdata since it references __init code.
 * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
 */
unsigned long __initdata boot_pc = (unsigned long)start_kernel;
#endif

86 87
#ifdef CONFIG_HIGHMEM
/* Page frame index of end of lowmem on each controller. */
88
unsigned long node_lowmem_end_pfn[MAX_NUMNODES];
89 90 91 92 93 94 95 96 97 98 99

/* Number of pages that can be mapped into lowmem. */
static unsigned long __initdata mappable_physpages;
#endif

/* Data on which physical memory controller corresponds to which NUMA node */
int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };

#ifdef CONFIG_HIGHMEM
/* Map information from VAs to PAs */
unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
100
  __ro_after_init __attribute__((aligned(L2_CACHE_BYTES)));
101 102 103 104
EXPORT_SYMBOL(pbase_map);

/* Map information from PAs to VAs */
void *vbase_map[NR_PA_HIGHBIT_VALUES]
105
  __ro_after_init __attribute__((aligned(L2_CACHE_BYTES)));
106 107 108 109
EXPORT_SYMBOL(vbase_map);
#endif

/* Node number as a function of the high PA bits */
110
int highbits_to_node[NR_PA_HIGHBIT_VALUES] __ro_after_init;
111 112 113 114 115 116 117 118
EXPORT_SYMBOL(highbits_to_node);

static unsigned int __initdata maxmem_pfn = -1U;
static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
	[0 ... MAX_NUMNODES-1] = -1U
};
static nodemask_t __initdata isolnodes;

119
#if defined(CONFIG_PCI) && !defined(__tilegx__)
120 121 122 123 124 125 126 127
enum { DEFAULT_PCI_RESERVE_MB = 64 };
static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
unsigned long __initdata pci_reserve_start_pfn = -1U;
unsigned long __initdata pci_reserve_end_pfn = -1U;
#endif

static int __init setup_maxmem(char *str)
{
128 129
	unsigned long long maxmem;
	if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
130 131
		return -EINVAL;

132
	maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
133
	pr_info("Forcing RAM used to no more than %dMB\n",
134
		maxmem_pfn >> (20 - PAGE_SHIFT));
135 136 137 138 139 140 141
	return 0;
}
early_param("maxmem", setup_maxmem);

static int __init setup_maxnodemem(char *str)
{
	char *endp;
142
	unsigned long long maxnodemem;
143
	unsigned long node;
144 145

	node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
146
	if (node >= MAX_NUMNODES || *endp != ':')
147 148
		return -EINVAL;

149 150
	maxnodemem = memparse(endp+1, NULL);
	maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
151
		(HPAGE_SHIFT - PAGE_SHIFT);
152
	pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
153
		node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
154 155 156 157
	return 0;
}
early_param("maxnodemem", setup_maxnodemem);

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
struct memmap_entry {
	u64 addr;	/* start of memory segment */
	u64 size;	/* size of memory segment */
};
static struct memmap_entry memmap_map[64];
static int memmap_nr;

static void add_memmap_region(u64 addr, u64 size)
{
	if (memmap_nr >= ARRAY_SIZE(memmap_map)) {
		pr_err("Ooops! Too many entries in the memory map!\n");
		return;
	}
	memmap_map[memmap_nr].addr = addr;
	memmap_map[memmap_nr].size = size;
	memmap_nr++;
}

static int __init setup_memmap(char *p)
{
	char *oldp;
	u64 start_at, mem_size;

	if (!p)
		return -EINVAL;

	if (!strncmp(p, "exactmap", 8)) {
		pr_err("\"memmap=exactmap\" not valid on tile\n");
		return 0;
	}

	oldp = p;
	mem_size = memparse(p, &p);
	if (p == oldp)
		return -EINVAL;

	if (*p == '@') {
		pr_err("\"memmap=nn@ss\" (force RAM) invalid on tile\n");
	} else if (*p == '#') {
		pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on tile\n");
	} else if (*p == '$') {
		start_at = memparse(p+1, &p);
		add_memmap_region(start_at, mem_size);
	} else {
		if (mem_size == 0)
			return -EINVAL;
		maxmem_pfn = (mem_size >> HPAGE_SHIFT) <<
			(HPAGE_SHIFT - PAGE_SHIFT);
	}
	return *p == '\0' ? 0 : -EINVAL;
}
early_param("memmap", setup_memmap);

static int __init setup_mem(char *str)
{
	return setup_maxmem(str);
}
early_param("mem", setup_mem);  /* compatibility with x86 */

217 218 219 220 221
static int __init setup_isolnodes(char *str)
{
	if (str == NULL || nodelist_parse(str, isolnodes) != 0)
		return -EINVAL;

222 223
	pr_info("Set isolnodes value to '%*pbl'\n",
		nodemask_pr_args(&isolnodes));
224 225 226 227
	return 0;
}
early_param("isolnodes", setup_isolnodes);

228
#if defined(CONFIG_PCI) && !defined(__tilegx__)
229 230
static int __init setup_pci_reserve(char* str)
{
231 232
	if (str == NULL || kstrtouint(str, 0, &pci_reserve_mb) != 0 ||
	    pci_reserve_mb > 3 * 1024)
233 234
		return -EINVAL;

235
	pr_info("Reserving %dMB for PCIE root complex mappings\n",
236
		pci_reserve_mb);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	return 0;
}
early_param("pci_reserve", setup_pci_reserve);
#endif

#ifndef __tilegx__
/*
 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
 * This can be used to increase (or decrease) the vmalloc area.
 */
static int __init parse_vmalloc(char *arg)
{
	if (!arg)
		return -EINVAL;

	VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;

	/* See validate_va() for more on this test. */
	if ((long)_VMALLOC_START >= 0)
		early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
			    VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);

	return 0;
}
early_param("vmalloc", parse_vmalloc);
#endif

#ifdef CONFIG_HIGHMEM
/*
266 267
 * Determine for each controller where its lowmem is mapped and how much of
 * it is mapped there.  On controller zero, the first few megabytes are
268
 * already mapped in as code at MEM_SV_START, so in principle we could
269 270
 * start our data mappings higher up, but for now we don't bother, to avoid
 * additional confusion.
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
 *
 * One question is whether, on systems with more than 768 Mb and
 * controllers of different sizes, to map in a proportionate amount of
 * each one, or to try to map the same amount from each controller.
 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
 * respectively, do we map 256MB from each, or do we map 128 MB, 512
 * MB, and 128 MB respectively?)  For now we use a proportionate
 * solution like the latter.
 *
 * The VA/PA mapping demands that we align our decisions at 16 MB
 * boundaries so that we can rapidly convert VA to PA.
 */
static void *__init setup_pa_va_mapping(void)
{
	unsigned long curr_pages = 0;
	unsigned long vaddr = PAGE_OFFSET;
	nodemask_t highonlynodes = isolnodes;
	int i, j;

	memset(pbase_map, -1, sizeof(pbase_map));
	memset(vbase_map, -1, sizeof(vbase_map));

	/* Node zero cannot be isolated for LOWMEM purposes. */
	node_clear(0, highonlynodes);

	/* Count up the number of pages on non-highonlynodes controllers. */
	mappable_physpages = 0;
	for_each_online_node(i) {
		if (!node_isset(i, highonlynodes))
			mappable_physpages +=
				node_end_pfn[i] - node_start_pfn[i];
	}

	for_each_online_node(i) {
		unsigned long start = node_start_pfn[i];
		unsigned long end = node_end_pfn[i];
		unsigned long size = end - start;
		unsigned long vaddr_end;

		if (node_isset(i, highonlynodes)) {
			/* Mark this controller as having no lowmem. */
			node_lowmem_end_pfn[i] = start;
			continue;
		}

		curr_pages += size;
		if (mappable_physpages > MAXMEM_PFN) {
			vaddr_end = PAGE_OFFSET +
				(((u64)curr_pages * MAXMEM_PFN /
				  mappable_physpages)
				 << PAGE_SHIFT);
		} else {
			vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
		}
		for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
			unsigned long this_pfn =
				start + (j << HUGETLB_PAGE_ORDER);
			pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
			if (vbase_map[__pfn_to_highbits(this_pfn)] ==
			    (void *)-1)
				vbase_map[__pfn_to_highbits(this_pfn)] =
					(void *)(vaddr & HPAGE_MASK);
		}
		node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
		BUG_ON(node_lowmem_end_pfn[i] > end);
	}

	/* Return highest address of any mapped memory. */
	return (void *)vaddr;
}
#endif /* CONFIG_HIGHMEM */

/*
 * Register our most important memory mappings with the debug stub.
 *
 * This is up to 4 mappings for lowmem, one mapping per memory
 * controller, plus one for our text segment.
 */
349
static void store_permanent_mappings(void)
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
{
	int i;

	for_each_online_node(i) {
		HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
#ifdef CONFIG_HIGHMEM
		HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
#else
		HV_PhysAddr high_mapped_pa = node_end_pfn[i];
#endif

		unsigned long pages = high_mapped_pa - node_start_pfn[i];
		HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
		hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
	}

366 367
	hv_store_mapping((HV_VirtAddr)_text,
			 (uint32_t)(_einittext - _text), 0);
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
}

/*
 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
 * and node_online_map, doing suitable sanity-checking.
 * Also set min_low_pfn, max_low_pfn, and max_pfn.
 */
static void __init setup_memory(void)
{
	int i, j;
	int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
#ifdef CONFIG_HIGHMEM
	long highmem_pages;
#endif
#ifndef __tilegx__
	int cap;
#endif
#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
	long lowmem_pages;
#endif
388
	unsigned long physpages = 0;
389 390

	/* We are using a char to hold the cpu_2_node[] mapping */
391
	BUILD_BUG_ON(MAX_NUMNODES > 127);
392 393 394 395 396 397 398 399 400

	/* Discover the ranges of memory available to us */
	for (i = 0; ; ++i) {
		unsigned long start, size, end, highbits;
		HV_PhysAddrRange range = hv_inquire_physical(i);
		if (range.size == 0)
			break;
#ifdef CONFIG_FLATMEM
		if (i > 0) {
401
			pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
402 403 404 405 406 407
			       range.size, range.start + range.size);
			continue;
		}
#endif
#ifndef __tilegx__
		if ((unsigned long)range.start) {
408
			pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
409 410 411 412 413 414 415
			       range.start, range.start + range.size);
			continue;
		}
#endif
		if ((range.start & (HPAGE_SIZE-1)) != 0 ||
		    (range.size & (HPAGE_SIZE-1)) != 0) {
			unsigned long long start_pa = range.start;
416
			unsigned long long orig_size = range.size;
417 418 419
			range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
			range.size -= (range.start - start_pa);
			range.size &= HPAGE_MASK;
420
			pr_err("Range not hugepage-aligned: %#llx..%#llx: now %#llx-%#llx\n",
421
			       start_pa, start_pa + orig_size,
422 423 424 425
			       range.start, range.start + range.size);
		}
		highbits = __pa_to_highbits(range.start);
		if (highbits >= NR_PA_HIGHBIT_VALUES) {
426
			pr_err("PA high bits too high: %#llx..%#llx\n",
427 428 429 430
			       range.start, range.start + range.size);
			continue;
		}
		if (highbits_seen[highbits]) {
431
			pr_err("Range overlaps in high bits: %#llx..%#llx\n",
432 433 434 435 436
			       range.start, range.start + range.size);
			continue;
		}
		highbits_seen[highbits] = 1;
		if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
437 438
			int max_size = maxnodemem_pfn[i];
			if (max_size > 0) {
439 440
				pr_err("Maxnodemem reduced node %d to %d pages\n",
				       i, max_size);
441
				range.size = PFN_PHYS(max_size);
442
			} else {
443
				pr_err("Maxnodemem disabled node %d\n", i);
444 445 446
				continue;
			}
		}
447 448
		if (physpages + PFN_DOWN(range.size) > maxmem_pfn) {
			int max_size = maxmem_pfn - physpages;
449 450 451 452
			if (max_size > 0) {
				pr_err("Maxmem reduced node %d to %d pages\n",
				       i, max_size);
				range.size = PFN_PHYS(max_size);
453
			} else {
454
				pr_err("Maxmem disabled node %d\n", i);
455 456 457 458
				continue;
			}
		}
		if (i >= MAX_NUMNODES) {
459
			pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
460 461 462 463 464 465 466 467 468 469 470
			       i, range.size, range.size + range.start);
			continue;
		}

		start = range.start >> PAGE_SHIFT;
		size = range.size >> PAGE_SHIFT;
		end = start + size;

#ifndef __tilegx__
		if (((HV_PhysAddr)end << PAGE_SHIFT) !=
		    (range.start + range.size)) {
471
			pr_err("PAs too high to represent: %#llx..%#llx\n",
472 473 474 475
			       range.start, range.start + range.size);
			continue;
		}
#endif
476
#if defined(CONFIG_PCI) && !defined(__tilegx__)
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		/*
		 * Blocks that overlap the pci reserved region must
		 * have enough space to hold the maximum percpu data
		 * region at the top of the range.  If there isn't
		 * enough space above the reserved region, just
		 * truncate the node.
		 */
		if (start <= pci_reserve_start_pfn &&
		    end > pci_reserve_start_pfn) {
			unsigned int per_cpu_size =
				__per_cpu_end - __per_cpu_start;
			unsigned int percpu_pages =
				NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
			if (end < pci_reserve_end_pfn + percpu_pages) {
				end = pci_reserve_start_pfn;
492 493
				pr_err("PCI mapping region reduced node %d to %ld pages\n",
				       i, end - start);
494 495 496 497 498 499 500 501 502 503 504
			}
		}
#endif

		for (j = __pfn_to_highbits(start);
		     j <= __pfn_to_highbits(end - 1); j++)
			highbits_to_node[j] = i;

		node_start_pfn[i] = start;
		node_end_pfn[i] = end;
		node_controller[i] = range.controller;
505
		physpages += size;
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
		max_pfn = end;

		/* Mark node as online */
		node_set(i, node_online_map);
		node_set(i, node_possible_map);
	}

#ifndef __tilegx__
	/*
	 * For 4KB pages, mem_map "struct page" data is 1% of the size
	 * of the physical memory, so can be quite big (640 MB for
	 * four 16G zones).  These structures must be mapped in
	 * lowmem, and since we currently cap out at about 768 MB,
	 * it's impractical to try to use this much address space.
	 * For now, arbitrarily cap the amount of physical memory
	 * we're willing to use at 8 million pages (32GB of 4KB pages).
	 */
	cap = 8 * 1024 * 1024;  /* 8 million pages */
524
	if (physpages > cap) {
525 526 527 528 529 530 531 532 533 534
		int num_nodes = num_online_nodes();
		int cap_each = cap / num_nodes;
		unsigned long dropped_pages = 0;
		for (i = 0; i < num_nodes; ++i) {
			int size = node_end_pfn[i] - node_start_pfn[i];
			if (size > cap_each) {
				dropped_pages += (size - cap_each);
				node_end_pfn[i] = node_start_pfn[i] + cap_each;
			}
		}
535
		physpages -= dropped_pages;
536 537 538 539
		pr_warn("Only using %ldMB memory - ignoring %ldMB\n",
			physpages >> (20 - PAGE_SHIFT),
			dropped_pages >> (20 - PAGE_SHIFT));
		pr_warn("Consider using a larger page size\n");
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	}
#endif

	/* Heap starts just above the last loaded address. */
	min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);

#ifdef CONFIG_HIGHMEM
	/* Find where we map lowmem from each controller. */
	high_memory = setup_pa_va_mapping();

	/* Set max_low_pfn based on what node 0 can directly address. */
	max_low_pfn = node_lowmem_end_pfn[0];

	lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
		MAXMEM_PFN : mappable_physpages;
555
	highmem_pages = (long) (physpages - lowmem_pages);
556

557 558 559
	pr_notice("%ldMB HIGHMEM available\n",
		  pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
	pr_notice("%ldMB LOWMEM available\n", pages_to_mb(lowmem_pages));
560 561 562 563 564 565
#else
	/* Set max_low_pfn based on what node 0 can directly address. */
	max_low_pfn = node_end_pfn[0];

#ifndef __tilegx__
	if (node_end_pfn[0] > MAXMEM_PFN) {
566 567
		pr_warn("Only using %ldMB LOWMEM\n", MAXMEM >> 20);
		pr_warn("Use a HIGHMEM enabled kernel\n");
568 569 570 571
		max_low_pfn = MAXMEM_PFN;
		max_pfn = MAXMEM_PFN;
		node_end_pfn[0] = MAXMEM_PFN;
	} else {
572 573
		pr_notice("%ldMB memory available\n",
			  pages_to_mb(node_end_pfn[0]));
574 575 576 577 578 579 580 581 582 583 584 585 586 587
	}
	for (i = 1; i < MAX_NUMNODES; ++i) {
		node_start_pfn[i] = 0;
		node_end_pfn[i] = 0;
	}
	high_memory = __va(node_end_pfn[0]);
#else
	lowmem_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i) {
		int pages = node_end_pfn[i] - node_start_pfn[i];
		lowmem_pages += pages;
		if (pages)
			high_memory = pfn_to_kaddr(node_end_pfn[i]);
	}
588
	pr_notice("%ldMB memory available\n", pages_to_mb(lowmem_pages));
589 590 591 592
#endif
#endif
}

593 594 595 596 597 598 599 600 601
/*
 * On 32-bit machines, we only put bootmem on the low controller,
 * since PAs > 4GB can't be used in bootmem.  In principle one could
 * imagine, e.g., multiple 1 GB controllers all of which could support
 * bootmem, but in practice using controllers this small isn't a
 * particularly interesting scenario, so we just keep it simple and
 * use only the first controller for bootmem on 32-bit machines.
 */
static inline int node_has_bootmem(int nid)
602
{
603 604 605 606 607 608
#ifdef CONFIG_64BIT
	return 1;
#else
	return nid == 0;
#endif
}
609

610 611 612 613 614 615 616 617 618 619
static inline unsigned long alloc_bootmem_pfn(int nid,
					      unsigned long size,
					      unsigned long goal)
{
	void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
					 PAGE_SIZE, goal);
	unsigned long pfn = kaddr_to_pfn(kva);
	BUG_ON(goal && PFN_PHYS(pfn) != goal);
	return pfn;
}
620

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static void __init setup_bootmem_allocator_node(int i)
{
	unsigned long start, end, mapsize, mapstart;

	if (node_has_bootmem(i)) {
		NODE_DATA(i)->bdata = &bootmem_node_data[i];
	} else {
		/* Share controller zero's bdata for now. */
		NODE_DATA(i)->bdata = &bootmem_node_data[0];
		return;
	}

	/* Skip up to after the bss in node 0. */
	start = (i == 0) ? min_low_pfn : node_start_pfn[i];

	/* Only lowmem, if we're a HIGHMEM build. */
#ifdef CONFIG_HIGHMEM
	end = node_lowmem_end_pfn[i];
639
#else
640
	end = node_end_pfn[i];
641 642
#endif

643 644 645 646 647 648 649 650 651 652 653 654 655 656
	/* No memory here. */
	if (end == start)
		return;

	/* Figure out where the bootmem bitmap is located. */
	mapsize = bootmem_bootmap_pages(end - start);
	if (i == 0) {
		/* Use some space right before the heap on node 0. */
		mapstart = start;
		start += mapsize;
	} else {
		/* Allocate bitmap on node 0 to avoid page table issues. */
		mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
	}
657

658 659
	/* Initialize a node. */
	init_bootmem_node(NODE_DATA(i), mapstart, start, end);
660

661 662 663
	/* Free all the space back into the allocator. */
	free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));

664
#if defined(CONFIG_PCI) && !defined(__tilegx__)
665
	/*
666
	 * Throw away any memory aliased by the PCI region.
667
	 */
668 669 670 671
	if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start) {
		start = max(pci_reserve_start_pfn, start);
		end = min(pci_reserve_end_pfn, end);
		reserve_bootmem(PFN_PHYS(start), PFN_PHYS(end - start),
672
				BOOTMEM_EXCLUSIVE);
673
	}
674 675
#endif
}
676

677 678 679 680 681
static void __init setup_bootmem_allocator(void)
{
	int i;
	for (i = 0; i < MAX_NUMNODES; ++i)
		setup_bootmem_allocator_node(i);
682

683 684 685
	/* Reserve any memory excluded by "memmap" arguments. */
	for (i = 0; i < memmap_nr; ++i) {
		struct memmap_entry *m = &memmap_map[i];
686
		reserve_bootmem(m->addr, m->size, BOOTMEM_DEFAULT);
687 688
	}

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
#ifdef CONFIG_BLK_DEV_INITRD
	if (initrd_start) {
		/* Make sure the initrd memory region is not modified. */
		if (reserve_bootmem(initrd_start, initrd_end - initrd_start,
				    BOOTMEM_EXCLUSIVE)) {
			pr_crit("The initrd memory region has been polluted. Disabling it.\n");
			initrd_start = 0;
			initrd_end = 0;
		} else {
			/*
			 * Translate initrd_start & initrd_end from PA to VA for
			 * future access.
			 */
			initrd_start += PAGE_OFFSET;
			initrd_end += PAGE_OFFSET;
		}
	}
#endif

708 709
#ifdef CONFIG_KEXEC
	if (crashk_res.start != crashk_res.end)
710 711
		reserve_bootmem(crashk_res.start, resource_size(&crashk_res),
				BOOTMEM_DEFAULT);
712 713 714 715 716 717 718 719 720 721 722 723 724 725
#endif
}

void *__init alloc_remap(int nid, unsigned long size)
{
	int pages = node_end_pfn[nid] - node_start_pfn[nid];
	void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
	BUG_ON(size != pages * sizeof(struct page));
	memset(map, 0, size);
	return map;
}

static int __init percpu_size(void)
{
726 727 728 729 730 731 732
	int size = __per_cpu_end - __per_cpu_start;
	size += PERCPU_MODULE_RESERVE;
	size += PERCPU_DYNAMIC_EARLY_SIZE;
	if (size < PCPU_MIN_UNIT_SIZE)
		size = PCPU_MIN_UNIT_SIZE;
	size = roundup(size, PAGE_SIZE);

733 734 735 736 737 738 739 740 741 742
	/* In several places we assume the per-cpu data fits on a huge page. */
	BUG_ON(kdata_huge && size > HPAGE_SIZE);
	return size;
}

static void __init zone_sizes_init(void)
{
	unsigned long zones_size[MAX_NR_ZONES] = { 0 };
	int size = percpu_size();
	int num_cpus = smp_height * smp_width;
743 744
	const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	int i;

	for (i = 0; i < num_cpus; ++i)
		node_percpu[cpu_to_node(i)] += size;

	for_each_online_node(i) {
		unsigned long start = node_start_pfn[i];
		unsigned long end = node_end_pfn[i];
#ifdef CONFIG_HIGHMEM
		unsigned long lowmem_end = node_lowmem_end_pfn[i];
#else
		unsigned long lowmem_end = end;
#endif
		int memmap_size = (end - start) * sizeof(struct page);
		node_free_pfn[i] = start;

		/*
		 * Set aside pages for per-cpu data and the mem_map array.
		 *
		 * Since the per-cpu data requires special homecaching,
		 * if we are in kdata_huge mode, we put it at the end of
		 * the lowmem region.  If we're not in kdata_huge mode,
		 * we take the per-cpu pages from the bottom of the
		 * controller, since that avoids fragmenting a huge page
		 * that users might want.  We always take the memmap
		 * from the bottom of the controller, since with
		 * kdata_huge that lets it be under a huge TLB entry.
		 *
		 * If the user has requested isolnodes for a controller,
		 * though, there'll be no lowmem, so we just alloc_bootmem
		 * the memmap.  There will be no percpu memory either.
		 */
777
		if (i != 0 && node_isset(i, isolnodes)) {
778 779 780 781
			node_memmap_pfn[i] =
				alloc_bootmem_pfn(0, memmap_size, 0);
			BUG_ON(node_percpu[i] != 0);
		} else if (node_has_bootmem(start)) {
782 783
			unsigned long goal = 0;
			node_memmap_pfn[i] =
784
				alloc_bootmem_pfn(i, memmap_size, 0);
785 786 787 788
			if (kdata_huge)
				goal = PFN_PHYS(lowmem_end) - node_percpu[i];
			if (node_percpu[i])
				node_percpu_pfn[i] =
789 790
					alloc_bootmem_pfn(i, node_percpu[i],
							  goal);
791
		} else {
792
			/* In non-bootmem zones, just reserve some pages. */
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
			node_memmap_pfn[i] = node_free_pfn[i];
			node_free_pfn[i] += PFN_UP(memmap_size);
			if (!kdata_huge) {
				node_percpu_pfn[i] = node_free_pfn[i];
				node_free_pfn[i] += PFN_UP(node_percpu[i]);
			} else {
				node_percpu_pfn[i] =
					lowmem_end - PFN_UP(node_percpu[i]);
			}
		}

#ifdef CONFIG_HIGHMEM
		if (start > lowmem_end) {
			zones_size[ZONE_NORMAL] = 0;
			zones_size[ZONE_HIGHMEM] = end - start;
		} else {
			zones_size[ZONE_NORMAL] = lowmem_end - start;
			zones_size[ZONE_HIGHMEM] = end - lowmem_end;
		}
#else
		zones_size[ZONE_NORMAL] = end - start;
#endif

816
		if (start < dma_end) {
817
			zones_size[ZONE_DMA32] = min(zones_size[ZONE_NORMAL],
818
						   dma_end - start);
819
			zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA32];
820
		} else {
821
			zones_size[ZONE_DMA32] = 0;
822 823
		}

824 825 826
		/* Take zone metadata from controller 0 if we're isolnode. */
		if (node_isset(i, isolnodes))
			NODE_DATA(i)->bdata = &bootmem_node_data[0];
827 828

		free_area_init_node(i, zones_size, start, NULL);
829
		printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
830 831 832
		       PFN_UP(node_percpu[i]));

		/* Track the type of memory on each node */
833
		if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA32])
834 835 836 837 838 839 840 841 842 843 844 845 846
			node_set_state(i, N_NORMAL_MEMORY);
#ifdef CONFIG_HIGHMEM
		if (end != start)
			node_set_state(i, N_HIGH_MEMORY);
#endif

		node_set_online(i);
	}
}

#ifdef CONFIG_NUMA

/* which logical CPUs are on which nodes */
847
struct cpumask node_2_cpu_mask[MAX_NUMNODES] __ro_after_init;
848 849 850
EXPORT_SYMBOL(node_2_cpu_mask);

/* which node each logical CPU is on */
851
char cpu_2_node[NR_CPUS] __ro_after_init __attribute__((aligned(L2_CACHE_BYTES)));
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
EXPORT_SYMBOL(cpu_2_node);

/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
{
	if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
		return -1;
	else
		return cpu_to_node(cpu);
}

/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
static int __init node_neighbors(int node, int cpu,
				 struct cpumask *unbound_cpus)
{
	int neighbors = 0;
	int w = smp_width;
	int h = smp_height;
	int x = cpu % w;
	int y = cpu / w;
	if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
		++neighbors;
	if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
		++neighbors;
	if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
		++neighbors;
	if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
		++neighbors;
	return neighbors;
}

static void __init setup_numa_mapping(void)
{
885
	u8 distance[MAX_NUMNODES][NR_CPUS];
886 887 888 889 890 891 892 893 894 895 896 897
	HV_Coord coord;
	int cpu, node, cpus, i, x, y;
	int num_nodes = num_online_nodes();
	struct cpumask unbound_cpus;
	nodemask_t default_nodes;

	cpumask_clear(&unbound_cpus);

	/* Get set of nodes we will use for defaults */
	nodes_andnot(default_nodes, node_online_map, isolnodes);
	if (nodes_empty(default_nodes)) {
		BUG_ON(!node_isset(0, node_online_map));
898
		pr_err("Forcing NUMA node zero available as a default node\n");
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
		node_set(0, default_nodes);
	}

	/* Populate the distance[] array */
	memset(distance, -1, sizeof(distance));
	cpu = 0;
	for (coord.y = 0; coord.y < smp_height; ++coord.y) {
		for (coord.x = 0; coord.x < smp_width;
		     ++coord.x, ++cpu) {
			BUG_ON(cpu >= nr_cpu_ids);
			if (!cpu_possible(cpu)) {
				cpu_2_node[cpu] = -1;
				continue;
			}
			for_each_node_mask(node, default_nodes) {
				HV_MemoryControllerInfo info =
					hv_inquire_memory_controller(
						coord, node_controller[node]);
				distance[node][cpu] =
					ABS(info.coord.x) + ABS(info.coord.y);
			}
			cpumask_set_cpu(cpu, &unbound_cpus);
		}
	}
	cpus = cpu;

	/*
	 * Round-robin through the NUMA nodes until all the cpus are
	 * assigned.  We could be more clever here (e.g. create four
	 * sorted linked lists on the same set of cpu nodes, and pull
	 * off them in round-robin sequence, removing from all four
	 * lists each time) but given the relatively small numbers
	 * involved, O(n^2) seem OK for a one-time cost.
	 */
	node = first_node(default_nodes);
	while (!cpumask_empty(&unbound_cpus)) {
		int best_cpu = -1;
		int best_distance = INT_MAX;
		for (cpu = 0; cpu < cpus; ++cpu) {
			if (cpumask_test_cpu(cpu, &unbound_cpus)) {
				/*
				 * Compute metric, which is how much
				 * closer the cpu is to this memory
				 * controller than the others, shifted
				 * up, and then the number of
				 * neighbors already in the node as an
				 * epsilon adjustment to try to keep
				 * the nodes compact.
				 */
				int d = distance[node][cpu] * num_nodes;
				for_each_node_mask(i, default_nodes) {
					if (i != node)
						d -= distance[i][cpu];
				}
				d *= 8;  /* allow space for epsilon */
				d -= node_neighbors(node, cpu, &unbound_cpus);
				if (d < best_distance) {
					best_cpu = cpu;
					best_distance = d;
				}
			}
		}
		BUG_ON(best_cpu < 0);
		cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
		cpu_2_node[best_cpu] = node;
		cpumask_clear_cpu(best_cpu, &unbound_cpus);
965
		node = next_node_in(node, default_nodes);
966 967 968 969 970 971 972 973
	}

	/* Print out node assignments and set defaults for disabled cpus */
	cpu = 0;
	for (y = 0; y < smp_height; ++y) {
		printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
		for (x = 0; x < smp_width; ++x, ++cpu) {
			if (cpu_to_node(cpu) < 0) {
974
				pr_cont(" -");
975 976
				cpu_2_node[cpu] = first_node(default_nodes);
			} else {
977
				pr_cont(" %d", cpu_to_node(cpu));
978 979
			}
		}
980
		pr_cont("\n");
981 982 983 984 985 986 987 988 989 990 991 992
	}
}

static struct cpu cpu_devices[NR_CPUS];

static int __init topology_init(void)
{
	int i;

	for_each_online_node(i)
		register_one_node(i);

993
	for (i = 0; i < smp_height * smp_width; ++i)
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
		register_cpu(&cpu_devices[i], i);

	return 0;
}

subsys_initcall(topology_init);

#else /* !CONFIG_NUMA */

#define setup_numa_mapping() do { } while (0)

#endif /* CONFIG_NUMA */

1007 1008 1009 1010 1011 1012 1013
/*
 * Initialize hugepage support on this cpu.  We do this on all cores
 * early in boot: before argument parsing for the boot cpu, and after
 * argument parsing but before the init functions run on the secondaries.
 * So the values we set up here in the hypervisor may be overridden on
 * the boot cpu as arguments are parsed.
 */
1014
static void init_super_pages(void)
1015 1016 1017 1018 1019 1020 1021 1022
{
#ifdef CONFIG_HUGETLB_SUPER_PAGES
	int i;
	for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
		hv_set_pte_super_shift(i, huge_shift[i]);
#endif
}

1023
/**
1024 1025
 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
 * @boot: Is this the boot cpu?
1026
 *
1027
 * Called from setup_arch() on the boot cpu, or online_secondary().
1028
 */
1029
void setup_cpu(int boot)
1030
{
1031 1032 1033 1034
	/* The boot cpu sets up its permanent mappings much earlier. */
	if (!boot)
		store_permanent_mappings();

1035 1036
	/* Allow asynchronous TLB interrupts. */
#if CHIP_HAS_TILE_DMA()
1037 1038
	arch_local_irq_unmask(INT_DMATLB_MISS);
	arch_local_irq_unmask(INT_DMATLB_ACCESS);
1039
#endif
1040
#ifdef __tilegx__
1041
	arch_local_irq_unmask(INT_SINGLE_STEP_K);
1042
#endif
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	/*
	 * Allow user access to many generic SPRs, like the cycle
	 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
	 */
	__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);

#if CHIP_HAS_SN()
	/* Static network is not restricted. */
	__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
#endif

	/*
1056 1057 1058
	 * Set the MPL for interrupt control 0 & 1 to the corresponding
	 * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
	 * SPRs, as well as the interrupt mask.
1059 1060
	 */
	__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
1061
	__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
1062 1063 1064 1065 1066 1067 1068 1069

	/* Initialize IRQ support for this cpu. */
	setup_irq_regs();

#ifdef CONFIG_HARDWALL
	/* Reset the network state on this cpu. */
	reset_network_state();
#endif
1070 1071

	init_super_pages();
1072 1073
}

1074 1075
#ifdef CONFIG_BLK_DEV_INITRD

1076
static int __initdata set_initramfs_file;
1077
static char __initdata initramfs_file[128] = "initramfs";
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

static int __init setup_initramfs_file(char *str)
{
	if (str == NULL)
		return -EINVAL;
	strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
	set_initramfs_file = 1;

	return 0;
}
early_param("initramfs_file", setup_initramfs_file);

/*
1091 1092 1093
 * We look for a file called "initramfs" in the hvfs.  If there is one, we
 * allocate some memory for it and it will be unpacked to the initramfs.
 * If it's compressed, the initd code will uncompress it first.
1094 1095 1096 1097 1098 1099 1100
 */
static void __init load_hv_initrd(void)
{
	HV_FS_StatInfo stat;
	int fd, rc;
	void *initrd;

1101 1102 1103 1104
	/* If initrd has already been set, skip initramfs file in hvfs. */
	if (initrd_start)
		return;

1105 1106
	fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
	if (fd == HV_ENOENT) {
1107
		if (set_initramfs_file) {
1108 1109
			pr_warn("No such hvfs initramfs file '%s'\n",
				initramfs_file);
1110 1111 1112 1113 1114 1115 1116
			return;
		} else {
			/* Try old backwards-compatible name. */
			fd = hv_fs_findfile((HV_VirtAddr)"initramfs.cpio.gz");
			if (fd == HV_ENOENT)
				return;
		}
1117 1118 1119 1120 1121
	}
	BUG_ON(fd < 0);
	stat = hv_fs_fstat(fd);
	BUG_ON(stat.size < 0);
	if (stat.flags & HV_FS_ISDIR) {
1122 1123
		pr_warn("Ignoring hvfs file '%s': it's a directory\n",
			initramfs_file);
1124 1125 1126 1127 1128
		return;
	}
	initrd = alloc_bootmem_pages(stat.size);
	rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
	if (rc != stat.size) {
1129
		pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
1130
		       stat.size, initramfs_file, rc);
1131
		free_initrd_mem((unsigned long) initrd, stat.size);
1132 1133 1134 1135 1136 1137 1138 1139
		return;
	}
	initrd_start = (unsigned long) initrd;
	initrd_end = initrd_start + stat.size;
}

void __init free_initrd_mem(unsigned long begin, unsigned long end)
{
1140
	free_bootmem_late(__pa(begin), end - begin);
1141 1142
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static int __init setup_initrd(char *str)
{
	char *endp;
	unsigned long initrd_size;

	initrd_size = str ? simple_strtoul(str, &endp, 0) : 0;
	if (initrd_size == 0 || *endp != '@')
		return -EINVAL;

	initrd_start = simple_strtoul(endp+1, &endp, 0);
	if (initrd_start == 0)
		return -EINVAL;

	initrd_end = initrd_start + initrd_size;

	return 0;
}
early_param("initrd", setup_initrd);

1162 1163 1164 1165
#else
static inline void load_hv_initrd(void) {}
#endif /* CONFIG_BLK_DEV_INITRD */

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
static void __init validate_hv(void)
{
	/*
	 * It may already be too late, but let's check our built-in
	 * configuration against what the hypervisor is providing.
	 */
	unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
	int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
	int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
	HV_ASIDRange asid_range;

#ifndef CONFIG_SMP
	HV_Topology topology = hv_inquire_topology();
	BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
	if (topology.width != 1 || topology.height != 1) {
1181 1182
		pr_warn("Warning: booting UP kernel on %dx%d grid; will ignore all but first tile\n",
			topology.width, topology.height);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	}
#endif

	if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
		early_panic("Hypervisor glue size %ld is too big!\n",
			    glue_size);
	if (hv_page_size != PAGE_SIZE)
		early_panic("Hypervisor page size %#x != our %#lx\n",
			    hv_page_size, PAGE_SIZE);
	if (hv_hpage_size != HPAGE_SIZE)
		early_panic("Hypervisor huge page size %#x != our %#lx\n",
			    hv_hpage_size, HPAGE_SIZE);

#ifdef CONFIG_SMP
	/*
	 * Some hypervisor APIs take a pointer to a bitmap array
	 * whose size is at least the number of cpus on the chip.
	 * We use a struct cpumask for this, so it must be big enough.
	 */
	if ((smp_height * smp_width) > nr_cpu_ids)
1203
		early_panic("Hypervisor %d x %d grid too big for Linux NR_CPUS %u\n",
J
Joe Perches 已提交
1204
			    smp_height, smp_width, nr_cpu_ids);
1205 1206 1207 1208 1209 1210 1211
#endif

	/*
	 * Check that we're using allowed ASIDs, and initialize the
	 * various asid variables to their appropriate initial states.
	 */
	asid_range = hv_inquire_asid(0);
1212 1213
	min_asid = asid_range.start;
	__this_cpu_write(current_asid, min_asid);
1214 1215 1216 1217
	max_asid = asid_range.start + asid_range.size - 1;

	if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
		       sizeof(chip_model)) < 0) {
1218
		pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1219 1220 1221 1222 1223 1224 1225 1226 1227
		strlcpy(chip_model, "unknown", sizeof(chip_model));
	}
}

static void __init validate_va(void)
{
#ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
	/*
	 * Similarly, make sure we're only using allowed VAs.
1228
	 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_START,
1229 1230 1231 1232
	 * and 0 .. KERNEL_HIGH_VADDR.
	 * In addition, make sure we CAN'T use the end of memory, since
	 * we use the last chunk of each pgd for the pgd_list.
	 */
1233
	int i, user_kernel_ok = 0;
1234 1235 1236 1237 1238 1239 1240 1241 1242
	unsigned long max_va = 0;
	unsigned long list_va =
		((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);

	for (i = 0; ; ++i) {
		HV_VirtAddrRange range = hv_inquire_virtual(i);
		if (range.size == 0)
			break;
		if (range.start <= MEM_USER_INTRPT &&
1243
		    range.start + range.size >= MEM_HV_START)
1244
			user_kernel_ok = 1;
1245 1246 1247 1248
		if (range.start == 0)
			max_va = range.size;
		BUG_ON(range.start + range.size > list_va);
	}
1249 1250
	if (!user_kernel_ok)
		early_panic("Hypervisor not configured for user/kernel VAs\n");
1251 1252 1253 1254 1255 1256 1257 1258
	if (max_va == 0)
		early_panic("Hypervisor not configured for low VAs\n");
	if (max_va < KERNEL_HIGH_VADDR)
		early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
			    max_va, KERNEL_HIGH_VADDR);

	/* Kernel PCs must have their high bit set; see intvec.S. */
	if ((long)VMALLOC_START >= 0)
J
Joe Perches 已提交
1259 1260 1261
		early_panic("Linux VMALLOC region below the 2GB line (%#lx)!\n"
			    "Reconfigure the kernel with smaller VMALLOC_RESERVE\n",
			    VMALLOC_START);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
#endif
}

/*
 * cpu_lotar_map lists all the cpus that are valid for the supervisor
 * to cache data on at a page level, i.e. what cpus can be placed in
 * the LOTAR field of a PTE.  It is equivalent to the set of possible
 * cpus plus any other cpus that are willing to share their cache.
 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
 */
1272
struct cpumask __ro_after_init cpu_lotar_map;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
EXPORT_SYMBOL(cpu_lotar_map);

/*
 * hash_for_home_map lists all the tiles that hash-for-home data
 * will be cached on.  Note that this may includes tiles that are not
 * valid for this supervisor to use otherwise (e.g. if a hypervisor
 * device is being shared between multiple supervisors).
 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
 */
struct cpumask hash_for_home_map;
EXPORT_SYMBOL(hash_for_home_map);

/*
 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1287
 * flush on our behalf.  It is set to cpu_possible_mask OR'ed with
1288 1289 1290 1291 1292 1293
 * hash_for_home_map, and it is what should be passed to
 * hv_flush_remote() to flush all caches.  Note that if there are
 * dedicated hypervisor driver tiles that have authorized use of their
 * cache, those tiles will only appear in cpu_lotar_map, NOT in
 * cpu_cacheable_map, as they are a special case.
 */
1294
struct cpumask __ro_after_init cpu_cacheable_map;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
EXPORT_SYMBOL(cpu_cacheable_map);

static __initdata struct cpumask disabled_map;

static int __init disabled_cpus(char *str)
{
	int boot_cpu = smp_processor_id();

	if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
		return -EINVAL;
	if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1306
		pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1307 1308 1309 1310 1311 1312 1313
		cpumask_clear_cpu(boot_cpu, &disabled_map);
	}
	return 0;
}

early_param("disabled_cpus", disabled_cpus);

1314
void __init print_disabled_cpus(void)
1315
{
1316 1317 1318
	if (!cpumask_empty(&disabled_map))
		pr_info("CPUs not available for Linux: %*pbl\n",
			cpumask_pr_args(&disabled_map));
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
}

static void __init setup_cpu_maps(void)
{
	struct cpumask hv_disabled_map, cpu_possible_init;
	int boot_cpu = smp_processor_id();
	int cpus, i, rc;

	/* Learn which cpus are allowed by the hypervisor. */
	rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
			      (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
			      sizeof(cpu_cacheable_map));
	if (rc < 0)
		early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
	if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
		early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);

	/* Compute the cpus disabled by the hvconfig file. */
	cpumask_complement(&hv_disabled_map, &cpu_possible_init);

	/* Include them with the cpus disabled by "disabled_cpus". */
	cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);

	/*
	 * Disable every cpu after "setup_max_cpus".  But don't mark
	 * as disabled the cpus that are outside of our initial rectangle,
	 * since that turns out to be confusing.
	 */
	cpus = 1;                          /* this cpu */
	cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
	for (i = 0; cpus < setup_max_cpus; ++i)
		if (!cpumask_test_cpu(i, &disabled_map))
			++cpus;
	for (; i < smp_height * smp_width; ++i)
		cpumask_set_cpu(i, &disabled_map);
	cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
	for (i = smp_height * smp_width; i < NR_CPUS; ++i)
		cpumask_clear_cpu(i, &disabled_map);

	/*
	 * Setup cpu_possible map as every cpu allocated to us, minus
	 * the results of any "disabled_cpus" settings.
	 */
	cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
	init_cpu_possible(&cpu_possible_init);

	/* Learn which cpus are valid for LOTAR caching. */
	rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
			      (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
			      sizeof(cpu_lotar_map));
	if (rc < 0) {
1370
		pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1371
		cpu_lotar_map = *cpu_possible_mask;
1372 1373 1374 1375 1376 1377 1378 1379
	}

	/* Retrieve set of CPUs used for hash-for-home caching */
	rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
			      (HV_VirtAddr) hash_for_home_map.bits,
			      sizeof(hash_for_home_map));
	if (rc < 0)
		early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1380
	cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1381 1382 1383 1384 1385
}


static int __init dataplane(char *str)
{
1386
	pr_warn("WARNING: dataplane support disabled in this kernel\n");
1387 1388 1389 1390 1391
	return 0;
}

early_param("dataplane", dataplane);

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
#ifdef CONFIG_NO_HZ_FULL
/* Warn if hypervisor shared cpus are marked as nohz_full. */
static int __init check_nohz_full_cpus(void)
{
	struct cpumask shared;
	int cpu;

	if (hv_inquire_tiles(HV_INQ_TILES_SHARED,
			     (HV_VirtAddr) shared.bits, sizeof(shared)) < 0) {
		pr_warn("WARNING: No support for inquiring hv shared tiles\n");
		return 0;
	}
	for_each_cpu(cpu, &shared) {
		if (tick_nohz_full_cpu(cpu))
			pr_warn("WARNING: nohz_full cpu %d receives hypervisor interrupts!\n",
			       cpu);
	}
	return 0;
}
arch_initcall(check_nohz_full_cpus);
#endif

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
#ifdef CONFIG_CMDLINE_BOOL
static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
#endif

void __init setup_arch(char **cmdline_p)
{
	int len;

#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
	len = hv_get_command_line((HV_VirtAddr) boot_command_line,
				  COMMAND_LINE_SIZE);
	if (boot_command_line[0])
1426 1427
		pr_warn("WARNING: ignoring dynamic command line \"%s\"\n",
			boot_command_line);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
#else
	char *hv_cmdline;
#if defined(CONFIG_CMDLINE_BOOL)
	if (builtin_cmdline[0]) {
		int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
					  COMMAND_LINE_SIZE);
		if (builtin_len < COMMAND_LINE_SIZE-1)
			boot_command_line[builtin_len++] = ' ';
		hv_cmdline = &boot_command_line[builtin_len];
		len = COMMAND_LINE_SIZE - builtin_len;
	} else
#endif
	{
		hv_cmdline = boot_command_line;
		len = COMMAND_LINE_SIZE;
	}
	len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
	if (len < 0 || len > COMMAND_LINE_SIZE)
		early_panic("hv_get_command_line failed: %d\n", len);
#endif

	*cmdline_p = boot_command_line;

	/* Set disabled_map and setup_max_cpus very early */
	parse_early_param();

	/* Make sure the kernel is compatible with the hypervisor. */
	validate_hv();
	validate_va();

	setup_cpu_maps();


1462
#if defined(CONFIG_PCI) && !defined(__tilegx__)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	/*
	 * Initialize the PCI structures.  This is done before memory
	 * setup so that we know whether or not a pci_reserve region
	 * is necessary.
	 */
	if (tile_pci_init() == 0)
		pci_reserve_mb = 0;

	/* PCI systems reserve a region just below 4GB for mapping iomem. */
	pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
	pci_reserve_start_pfn = pci_reserve_end_pfn -
		(pci_reserve_mb << (20 - PAGE_SHIFT));
#endif

	init_mm.start_code = (unsigned long) _text;
	init_mm.end_code = (unsigned long) _etext;
	init_mm.end_data = (unsigned long) _edata;
	init_mm.brk = (unsigned long) _end;

	setup_memory();
	store_permanent_mappings();
	setup_bootmem_allocator();

	/*
	 * NOTE: before this point _nobody_ is allowed to allocate
	 * any memory using the bootmem allocator.
	 */

1491 1492 1493 1494
#ifdef CONFIG_SWIOTLB
	swiotlb_init(0);
#endif

1495 1496 1497 1498
	paging_init();
	setup_numa_mapping();
	zone_sizes_init();
	set_page_homes();
1499
	setup_cpu(1);
1500 1501 1502 1503 1504 1505 1506 1507 1508
	setup_clock();
	load_hv_initrd();
}


/*
 * Set up per-cpu memory.
 */

1509
unsigned long __per_cpu_offset[NR_CPUS] __ro_after_init;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
EXPORT_SYMBOL(__per_cpu_offset);

static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };

/*
 * As the percpu code allocates pages, we return the pages from the
 * end of the node for the specified cpu.
 */
static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
{
	int nid = cpu_to_node(cpu);
	unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];

	BUG_ON(size % PAGE_SIZE != 0);
	pfn_offset[nid] += size / PAGE_SIZE;
1526 1527
	BUG_ON(node_percpu[nid] < size);
	node_percpu[nid] -= size;
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	if (percpu_pfn[cpu] == 0)
		percpu_pfn[cpu] = pfn;
	return pfn_to_kaddr(pfn);
}

/*
 * Pages reserved for percpu memory are not freeable, and in any case we are
 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
 */
static void __init pcpu_fc_free(void *ptr, size_t size)
{
}

/*
 * Set up vmalloc page tables using bootmem for the percpu code.
 */
static void __init pcpu_fc_populate_pte(unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	BUG_ON(pgd_addr_invalid(addr));
1552
	if (addr < VMALLOC_START || addr >= VMALLOC_END)
1553
		panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx; try increasing CONFIG_VMALLOC_RESERVE\n",
1554
		      addr, VMALLOC_START, VMALLOC_END);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

	pgd = swapper_pg_dir + pgd_index(addr);
	pud = pud_offset(pgd, addr);
	BUG_ON(!pud_present(*pud));
	pmd = pmd_offset(pud, addr);
	if (pmd_present(*pmd)) {
		BUG_ON(pmd_huge_page(*pmd));
	} else {
		pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
				      HV_PAGE_TABLE_ALIGN, 0);
		pmd_populate_kernel(&init_mm, pmd, pte);
	}
}

void __init setup_per_cpu_areas(void)
{
	struct page *pg;
	unsigned long delta, pfn, lowmem_va;
	unsigned long size = percpu_size();
	char *ptr;
	int rc, cpu, i;

	rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
				   pcpu_fc_free, pcpu_fc_populate_pte);
	if (rc < 0)
		panic("Cannot initialize percpu area (err=%d)", rc);

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu) {
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];

		/* finv the copy out of cache so we can change homecache */
		ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
		__finv_buffer(ptr, size);
		pfn = percpu_pfn[cpu];

		/* Rewrite the page tables to cache on that cpu */
		pg = pfn_to_page(pfn);
		for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {

			/* Update the vmalloc mapping and page home. */
1596
			unsigned long addr = (unsigned long)ptr + i;
1597
			pte_t *ptep = virt_to_kpte(addr);
1598 1599 1600 1601
			pte_t pte = *ptep;
			BUG_ON(pfn != pte_pfn(pte));
			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
			pte = set_remote_cache_cpu(pte, cpu);
1602
			set_pte_at(&init_mm, addr, ptep, pte);
1603 1604 1605

			/* Update the lowmem mapping for consistency. */
			lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1606
			ptep = virt_to_kpte(lowmem_va);
1607
			if (pte_huge(*ptep)) {
1608 1609
				printk(KERN_DEBUG "early shatter of huge page at %#lx\n",
				       lowmem_va);
1610
				shatter_pmd((pmd_t *)ptep);
1611
				ptep = virt_to_kpte(lowmem_va);
1612 1613 1614
				BUG_ON(pte_huge(*ptep));
			}
			BUG_ON(pfn != pte_pfn(*ptep));
1615
			set_pte_at(&init_mm, lowmem_va, ptep, pte);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
		}
	}

	/* Set our thread pointer appropriately. */
	set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);

	/* Make sure the finv's have completed. */
	mb_incoherent();

	/* Flush the TLB so we reference it properly from here on out. */
	local_flush_tlb_all();
}

static struct resource data_resource = {
	.name	= "Kernel data",
	.start	= 0,
	.end	= 0,
1633
	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
1634 1635 1636 1637 1638 1639
};

static struct resource code_resource = {
	.name	= "Kernel code",
	.start	= 0,
	.end	= 0,
1640
	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
1641 1642 1643
};

/*
1644
 * On Pro, we reserve all resources above 4GB so that PCI won't try to put
1645
 * mappings above 4GB.
1646
 */
1647
#if defined(CONFIG_PCI) && !defined(__tilegx__)
1648 1649 1650 1651 1652
static struct resource* __init
insert_non_bus_resource(void)
{
	struct resource *res =
		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1653 1654
	if (!res)
		return NULL;
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	res->name = "Non-Bus Physical Address Space";
	res->start = (1ULL << 32);
	res->end = -1LL;
	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
	if (insert_resource(&iomem_resource, res)) {
		kfree(res);
		return NULL;
	}
	return res;
}
#endif

static struct resource* __init
1668
insert_ram_resource(u64 start_pfn, u64 end_pfn, bool reserved)
1669 1670 1671
{
	struct resource *res =
		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1672 1673
	if (!res)
		return NULL;
1674 1675 1676
	res->start = start_pfn << PAGE_SHIFT;
	res->end = (end_pfn << PAGE_SHIFT) - 1;
	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1677 1678 1679 1680 1681 1682
	if (reserved) {
		res->name = "Reserved";
	} else {
		res->name = "System RAM";
		res->flags |= IORESOURCE_SYSRAM;
	}
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	if (insert_resource(&iomem_resource, res)) {
		kfree(res);
		return NULL;
	}
	return res;
}

/*
 * Request address space for all standard resources
 *
 * If the system includes PCI root complex drivers, we need to create
 * a window just below 4GB where PCI BARs can be mapped.
 */
static int __init request_standard_resources(void)
{
	int i;
1699
	enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
1700

1701
#if defined(CONFIG_PCI) && !defined(__tilegx__)
1702 1703 1704 1705 1706 1707 1708
	insert_non_bus_resource();
#endif

	for_each_online_node(i) {
		u64 start_pfn = node_start_pfn[i];
		u64 end_pfn = node_end_pfn[i];

1709
#if defined(CONFIG_PCI) && !defined(__tilegx__)
1710 1711 1712 1713
		if (start_pfn <= pci_reserve_start_pfn &&
		    end_pfn > pci_reserve_start_pfn) {
			if (end_pfn > pci_reserve_end_pfn)
				insert_ram_resource(pci_reserve_end_pfn,
1714
						    end_pfn, 0);
1715 1716 1717
			end_pfn = pci_reserve_start_pfn;
		}
#endif
1718
		insert_ram_resource(start_pfn, end_pfn, 0);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	}

	code_resource.start = __pa(_text - CODE_DELTA);
	code_resource.end = __pa(_etext - CODE_DELTA)-1;
	data_resource.start = __pa(_sdata);
	data_resource.end = __pa(_end)-1;

	insert_resource(&iomem_resource, &code_resource);
	insert_resource(&iomem_resource, &data_resource);

1729 1730 1731 1732 1733 1734 1735
	/* Mark any "memmap" regions busy for the resource manager. */
	for (i = 0; i < memmap_nr; ++i) {
		struct memmap_entry *m = &memmap_map[i];
		insert_ram_resource(PFN_DOWN(m->addr),
				    PFN_UP(m->addr + m->size - 1), 1);
	}

1736 1737 1738 1739 1740 1741 1742 1743
#ifdef CONFIG_KEXEC
	insert_resource(&iomem_resource, &crashk_res);
#endif

	return 0;
}

subsys_initcall(request_standard_resources);