cgroup.c 124.9 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
I
Ingo Molnar 已提交
30
#include <linux/module.h>
31
#include <linux/ctype.h>
32 33 34 35 36 37 38 39
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
40
#include <linux/proc_fs.h>
41 42
#include <linux/rcupdate.h>
#include <linux/sched.h>
43
#include <linux/backing-dev.h>
44 45 46 47 48
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
49
#include <linux/sort.h>
50
#include <linux/kmod.h>
51
#include <linux/module.h>
B
Balbir Singh 已提交
52 53
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
54
#include <linux/hash.h>
55
#include <linux/namei.h>
56
#include <linux/smp_lock.h>
L
Li Zefan 已提交
57
#include <linux/pid_namespace.h>
58
#include <linux/idr.h>
59
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 61
#include <linux/eventfd.h>
#include <linux/poll.h>
B
Balbir Singh 已提交
62

63 64
#include <asm/atomic.h>

65 66
static DEFINE_MUTEX(cgroup_mutex);

B
Ben Blum 已提交
67 68 69 70 71 72
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
73
#define SUBSYS(_x) &_x ## _subsys,
B
Ben Blum 已提交
74
static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
75 76 77
#include <linux/cgroup_subsys.h>
};

78 79
#define MAX_CGROUP_ROOT_NAMELEN 64

80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

94 95 96
	/* Unique id for this hierarchy. */
	int hierarchy_id;

97 98 99 100 101 102 103 104 105 106 107 108
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

109
	/* A list running through the active hierarchies */
110 111 112 113
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
114

115
	/* The path to use for release notifications. */
116
	char release_agent_path[PATH_MAX];
117 118 119

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
120 121 122 123 124 125 126 127 128
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * cgroup_event represents events which userspace want to recieve.
 */
struct cgroup_event {
	/*
	 * Cgroup which the event belongs to.
	 */
	struct cgroup *cgrp;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};
K
KAMEZAWA Hiroyuki 已提交
190

191 192 193
/* The list of hierarchy roots */

static LIST_HEAD(roots);
194
static int root_count;
195

196 197 198 199
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

200 201 202 203
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
204 205 206
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
207
 */
208
static int need_forkexit_callback __read_mostly;
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223
#ifdef CONFIG_PROVE_LOCKING
int cgroup_lock_is_held(void)
{
	return lockdep_is_held(&cgroup_mutex);
}
#else /* #ifdef CONFIG_PROVE_LOCKING */
int cgroup_lock_is_held(void)
{
	return mutex_is_locked(&cgroup_mutex);
}
#endif /* #else #ifdef CONFIG_PROVE_LOCKING */

EXPORT_SYMBOL_GPL(cgroup_lock_is_held);

224
/* convenient tests for these bits */
225
inline int cgroup_is_removed(const struct cgroup *cgrp)
226
{
227
	return test_bit(CGRP_REMOVED, &cgrp->flags);
228 229 230 231 232 233 234
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

235
static int cgroup_is_releasable(const struct cgroup *cgrp)
236 237
{
	const int bits =
238 239 240
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
241 242
}

243
static int notify_on_release(const struct cgroup *cgrp)
244
{
245
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
246 247
}

248 249 250 251 252 253 254
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

255 256
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
257 258
list_for_each_entry(_root, &roots, root_list)

259 260 261 262 263 264
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
265
static void check_for_release(struct cgroup *cgrp);
266

267 268 269 270 271 272
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
273
	struct list_head cgrp_link_list;
274
	struct cgroup *cgrp;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

293 294
static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);
K
KAMEZAWA Hiroyuki 已提交
295

296 297 298 299 300 301
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

302 303 304 305 306
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

326 327 328 329 330 331
static void free_css_set_rcu(struct rcu_head *obj)
{
	struct css_set *cg = container_of(obj, struct css_set, rcu_head);
	kfree(cg);
}

332 333 334 335
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
336
static int use_task_css_set_links __read_mostly;
337

338
static void __put_css_set(struct css_set *cg, int taskexit)
339
{
K
KOSAKI Motohiro 已提交
340 341
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
342 343 344 345 346 347 348 349 350 351 352 353
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
354

355 356 357 358 359 360 361 362 363
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
364 365
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
366
			if (taskexit)
367 368
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
369
		}
370 371

		kfree(link);
372
	}
373 374

	write_unlock(&css_set_lock);
375
	call_rcu(&cg->rcu_head, free_css_set_rcu);
376 377
}

378 379 380 381 382
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
383
	atomic_inc(&cg->refcount);
384 385 386 387
}

static inline void put_css_set(struct css_set *cg)
{
388
	__put_css_set(cg, 0);
389 390
}

391 392
static inline void put_css_set_taskexit(struct css_set *cg)
{
393
	__put_css_set(cg, 1);
394 395
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

468 469 470
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
471
 * css_set is suitable.
472 473 474 475
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
476
 * cgrp: the cgroup that we're moving into
477 478 479 480 481 482
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
483
	struct cgroup *cgrp,
484
	struct cgroup_subsys_state *template[])
485 486
{
	int i;
487
	struct cgroupfs_root *root = cgrp->root;
488 489 490
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
491

B
Ben Blum 已提交
492 493 494 495 496
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
497
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
498
		if (root->subsys_bits & (1UL << i)) {
499 500 501
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
502
			template[i] = cgrp->subsys[i];
503 504 505 506 507 508 509
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

510 511
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
512 513 514 515 516
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
517
	}
518 519 520 521 522

	/* No existing cgroup group matched */
	return NULL;
}

523 524 525 526 527 528 529 530 531 532 533
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

534 535
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
536
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
537 538 539 540 541 542 543 544 545 546
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
547
			free_cg_links(tmp);
548 549
			return -ENOMEM;
		}
550
		list_add(&link->cgrp_link_list, tmp);
551 552 553 554
	}
	return 0;
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
570
	link->cgrp = cgrp;
571
	atomic_inc(&cgrp->count);
572
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
573 574 575 576 577
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
578 579
}

580 581 582 583 584 585 586 587
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
588
	struct css_set *oldcg, struct cgroup *cgrp)
589 590 591 592 593 594
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

595
	struct hlist_head *hhead;
596
	struct cg_cgroup_link *link;
597

598 599
	/* First see if we already have a cgroup group that matches
	 * the desired set */
600
	read_lock(&css_set_lock);
601
	res = find_existing_css_set(oldcg, cgrp, template);
602 603
	if (res)
		get_css_set(res);
604
	read_unlock(&css_set_lock);
605 606 607 608 609 610 611 612 613 614 615 616 617 618

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

619
	atomic_set(&res->refcount, 1);
620 621
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
622
	INIT_HLIST_NODE(&res->hlist);
623 624 625 626 627 628 629

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
630 631 632 633 634 635
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
636 637 638 639

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
640 641 642 643 644

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

645 646 647
	write_unlock(&css_set_lock);

	return res;
648 649
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

685 686 687 688 689 690 691 692 693 694
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
695
 * cgroup_attach_task() can increment it again.  Because a count of zero
696 697 698 699 700 701 702 703 704 705 706 707 708
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
709 710
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
711 712 713 714 715 716 717 718 719 720 721
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
722
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
723
 * another.  It does so using cgroup_mutex, however there are
724 725 726
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
727
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
728 729 730 731
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
732
 * update of a tasks cgroup pointer by cgroup_attach_task()
733 734 735 736 737 738 739 740 741 742
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}
B
Ben Blum 已提交
743
EXPORT_SYMBOL_GPL(cgroup_lock);
744 745 746 747 748 749 750 751 752 753

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}
B
Ben Blum 已提交
754
EXPORT_SYMBOL_GPL(cgroup_unlock);
755 756 757 758 759 760 761 762 763 764

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
765
static int cgroup_populate_dir(struct cgroup *cgrp);
766
static const struct inode_operations cgroup_dir_inode_operations;
767
static const struct file_operations proc_cgroupstats_operations;
768 769

static struct backing_dev_info cgroup_backing_dev_info = {
770
	.name		= "cgroup",
771
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
772
};
773

K
KAMEZAWA Hiroyuki 已提交
774 775 776
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

777 778 779 780 781 782
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
783 784
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
785 786 787 788 789 790
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

791 792 793 794
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
795
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
796 797
{
	struct cgroup_subsys *ss;
798 799
	int ret = 0;

800
	for_each_subsys(cgrp->root, ss)
801 802 803
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
804
				break;
805
		}
806

807
	return ret;
808 809
}

810 811 812 813 814 815 816
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

817 818 819 820
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
821
		struct cgroup *cgrp = dentry->d_fsdata;
822
		struct cgroup_subsys *ss;
823
		BUG_ON(!(cgroup_is_removed(cgrp)));
824 825 826 827 828 829 830
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
831 832 833 834 835

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
836 837
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
838 839 840 841

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

842 843 844 845
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
846 847
		deactivate_super(cgrp->root->sb);

848 849 850 851 852 853
		/*
		 * if we're getting rid of the cgroup, refcount should ensure
		 * that there are no pidlists left.
		 */
		BUG_ON(!list_empty(&cgrp->pidlists));

854
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

907 908 909 910 911 912
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
913
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
914 915 916
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

917
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
918
{
919
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
920 921 922
		wake_up_all(&cgroup_rmdir_waitq);
}

923 924 925 926 927 928 929 930 931 932 933
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}

B
Ben Blum 已提交
934
/*
B
Ben Blum 已提交
935 936 937
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
938
 */
939 940 941 942
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
943
	struct cgroup *cgrp = &root->top_cgroup;
944 945
	int i;

B
Ben Blum 已提交
946 947
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

948 949 950 951
	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
952
		unsigned long bit = 1UL << i;
953 954 955
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
B
Ben Blum 已提交
956 957 958 959 960 961
		/*
		 * Nobody should tell us to do a subsys that doesn't exist:
		 * parse_cgroupfs_options should catch that case and refcounts
		 * ensure that subsystems won't disappear once selected.
		 */
		BUG_ON(ss == NULL);
962 963 964 965 966 967 968 969 970 971
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
972
	if (root->number_of_cgroups > 1)
973 974 975 976 977 978 979 980
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
B
Ben Blum 已提交
981
			BUG_ON(ss == NULL);
982
			BUG_ON(cgrp->subsys[i]);
983 984
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
985
			mutex_lock(&ss->hierarchy_mutex);
986 987
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
988
			list_move(&ss->sibling, &root->subsys_list);
989
			ss->root = root;
990
			if (ss->bind)
991
				ss->bind(ss, cgrp);
992
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
993
			/* refcount was already taken, and we're keeping it */
994 995
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
B
Ben Blum 已提交
996
			BUG_ON(ss == NULL);
997 998
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999
			mutex_lock(&ss->hierarchy_mutex);
1000 1001 1002
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
1003
			cgrp->subsys[i] = NULL;
1004
			subsys[i]->root = &rootnode;
1005
			list_move(&ss->sibling, &rootnode.subsys_list);
1006
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1007 1008
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1009 1010
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
B
Ben Blum 已提交
1011
			BUG_ON(ss == NULL);
1012
			BUG_ON(!cgrp->subsys[i]);
B
Ben Blum 已提交
1013 1014 1015 1016 1017 1018 1019 1020
			/*
			 * a refcount was taken, but we already had one, so
			 * drop the extra reference.
			 */
			module_put(ss->module);
#ifdef CONFIG_MODULE_UNLOAD
			BUG_ON(ss->module && !module_refcount(ss->module));
#endif
1021 1022
		} else {
			/* Subsystem state shouldn't exist */
1023
			BUG_ON(cgrp->subsys[i]);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
1042 1043
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1044 1045
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
1046 1047 1048 1049 1050 1051 1052
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
1053
	char *release_agent;
1054
	char *name;
1055 1056
	/* User explicitly requested empty subsystem */
	bool none;
1057 1058

	struct cgroupfs_root *new_root;
1059

1060 1061
};

B
Ben Blum 已提交
1062 1063
/*
 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
B
Ben Blum 已提交
1064 1065 1066
 * with cgroup_mutex held to protect the subsys[] array. This function takes
 * refcounts on subsystems to be used, unless it returns error, in which case
 * no refcounts are taken.
B
Ben Blum 已提交
1067
 */
B
Ben Blum 已提交
1068
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1069 1070
{
	char *token, *o = data ?: "all";
1071
	unsigned long mask = (unsigned long)-1;
B
Ben Blum 已提交
1072 1073
	int i;
	bool module_pin_failed = false;
1074

B
Ben Blum 已提交
1075 1076
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1077 1078 1079
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1080

1081
	memset(opts, 0, sizeof(*opts));
1082 1083 1084 1085 1086

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
1087 1088 1089 1090
			/* Add all non-disabled subsystems */
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
1091 1092
				if (ss == NULL)
					continue;
1093 1094 1095
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
1096 1097 1098
		} else if (!strcmp(token, "none")) {
			/* Explicitly have no subsystems */
			opts->none = true;
1099 1100
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
1101 1102 1103 1104
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1105 1106
			opts->release_agent =
				kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
1107 1108
			if (!opts->release_agent)
				return -ENOMEM;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
		} else if (!strncmp(token, "name=", 5)) {
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
					      MAX_CGROUP_ROOT_NAMELEN,
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1131 1132 1133 1134
		} else {
			struct cgroup_subsys *ss;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
B
Ben Blum 已提交
1135 1136
				if (ss == NULL)
					continue;
1137
				if (!strcmp(token, ss->name)) {
1138 1139
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
1140 1141 1142 1143 1144 1145 1146 1147
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

1148 1149
	/* Consistency checks */

1150 1151 1152 1153 1154 1155 1156 1157 1158
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1159 1160 1161 1162 1163 1164 1165 1166 1167

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1168
	if (!opts->subsys_bits && !opts->name)
1169 1170
		return -EINVAL;

B
Ben Blum 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	/*
	 * Grab references on all the modules we'll need, so the subsystems
	 * don't dance around before rebind_subsystems attaches them. This may
	 * take duplicate reference counts on a subsystem that's already used,
	 * but rebind_subsystems handles this case.
	 */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & opts->subsys_bits))
			continue;
		if (!try_module_get(subsys[i]->module)) {
			module_pin_failed = true;
			break;
		}
	}
	if (module_pin_failed) {
		/*
		 * oops, one of the modules was going away. this means that we
		 * raced with a module_delete call, and to the user this is
		 * essentially a "subsystem doesn't exist" case.
		 */
		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
			/* drop refcounts only on the ones we took */
			unsigned long bit = 1UL << i;

			if (!(bit & opts->subsys_bits))
				continue;
			module_put(subsys[i]->module);
		}
		return -ENOENT;
	}

1204 1205 1206
	return 0;
}

B
Ben Blum 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
static void drop_parsed_module_refcounts(unsigned long subsys_bits)
{
	int i;
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & subsys_bits))
			continue;
		module_put(subsys[i]->module);
	}
}

1219 1220 1221 1222
static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1223
	struct cgroup *cgrp = &root->top_cgroup;
1224 1225
	struct cgroup_sb_opts opts;

1226
	lock_kernel();
1227
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1228 1229 1230 1231 1232 1233 1234
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

B
Ben Blum 已提交
1235 1236 1237
	/* Don't allow flags or name to change at remount */
	if (opts.flags != root->flags ||
	    (opts.name && strcmp(opts.name, root->name))) {
1238
		ret = -EINVAL;
B
Ben Blum 已提交
1239
		drop_parsed_module_refcounts(opts.subsys_bits);
1240 1241 1242
		goto out_unlock;
	}

1243
	ret = rebind_subsystems(root, opts.subsys_bits);
B
Ben Blum 已提交
1244 1245
	if (ret) {
		drop_parsed_module_refcounts(opts.subsys_bits);
1246
		goto out_unlock;
B
Ben Blum 已提交
1247
	}
1248 1249

	/* (re)populate subsystem files */
1250
	cgroup_populate_dir(cgrp);
1251

1252 1253
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1254
 out_unlock:
1255
	kfree(opts.release_agent);
1256
	kfree(opts.name);
1257
	mutex_unlock(&cgroup_mutex);
1258
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1259
	unlock_kernel();
1260 1261 1262
	return ret;
}

1263
static const struct super_operations cgroup_ops = {
1264 1265 1266 1267 1268 1269
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1270 1271 1272 1273 1274 1275
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
1276 1277
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1278 1279
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
1280
}
1281

1282 1283
static void init_cgroup_root(struct cgroupfs_root *root)
{
1284
	struct cgroup *cgrp = &root->top_cgroup;
1285 1286 1287
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1288 1289
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1290
	init_cgroup_housekeeping(cgrp);
1291 1292
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1318 1319
static int cgroup_test_super(struct super_block *sb, void *data)
{
1320
	struct cgroup_sb_opts *opts = data;
1321 1322
	struct cgroupfs_root *root = sb->s_fs_info;

1323 1324 1325
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1326

1327 1328 1329 1330 1331 1332
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1333 1334 1335 1336 1337
		return 0;

	return 1;
}

1338 1339 1340 1341
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1342
	if (!opts->subsys_bits && !opts->none)
1343 1344 1345 1346 1347 1348
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1349 1350 1351 1352
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1353
	init_cgroup_root(root);
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
	return root;
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1376 1377 1378
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1379 1380 1381 1382 1383 1384
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1385
	BUG_ON(!opts->subsys_bits && !opts->none);
1386 1387 1388 1389 1390

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1391 1392
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
1429
	struct cgroupfs_root *root;
1430 1431
	int ret = 0;
	struct super_block *sb;
1432
	struct cgroupfs_root *new_root;
1433 1434

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1435
	mutex_lock(&cgroup_mutex);
1436
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1437
	mutex_unlock(&cgroup_mutex);
1438 1439
	if (ret)
		goto out_err;
1440

1441 1442 1443 1444 1445 1446 1447
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
B
Ben Blum 已提交
1448
		goto drop_modules;
1449
	}
1450
	opts.new_root = new_root;
1451

1452 1453
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1454
	if (IS_ERR(sb)) {
1455
		ret = PTR_ERR(sb);
1456
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1457
		goto drop_modules;
1458 1459
	}

1460 1461 1462 1463 1464
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1465
		struct cgroup *root_cgrp = &root->top_cgroup;
1466
		struct inode *inode;
1467
		struct cgroupfs_root *existing_root;
1468
		int i;
1469 1470 1471 1472 1473 1474

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1475
		inode = sb->s_root->d_inode;
1476

1477
		mutex_lock(&inode->i_mutex);
1478 1479
		mutex_lock(&cgroup_mutex);

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
		if (strlen(root->name)) {
			/* Check for name clashes with existing mounts */
			for_each_active_root(existing_root) {
				if (!strcmp(existing_root->name, root->name)) {
					ret = -EBUSY;
					mutex_unlock(&cgroup_mutex);
					mutex_unlock(&inode->i_mutex);
					goto drop_new_super;
				}
			}
		}

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1506 1507 1508
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1509
			mutex_unlock(&inode->i_mutex);
1510 1511
			free_cg_links(&tmp_cg_links);
			goto drop_new_super;
1512
		}
B
Ben Blum 已提交
1513 1514 1515 1516 1517
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1518 1519 1520 1521 1522

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1523
		root_count++;
1524

1525
		sb->s_root->d_fsdata = root_cgrp;
1526 1527
		root->top_cgroup.dentry = sb->s_root;

1528 1529 1530
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1531 1532 1533
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1534
			struct css_set *cg;
1535

1536 1537
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1538
		}
1539 1540 1541 1542
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1543 1544
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1545 1546
		BUG_ON(root->number_of_cgroups != 1);

1547
		cgroup_populate_dir(root_cgrp);
1548
		mutex_unlock(&cgroup_mutex);
1549
		mutex_unlock(&inode->i_mutex);
1550 1551 1552 1553 1554
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1555
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1556 1557
		/* no subsys rebinding, so refcounts don't change */
		drop_parsed_module_refcounts(opts.subsys_bits);
1558 1559
	}

1560
	simple_set_mnt(mnt, sb);
1561 1562
	kfree(opts.release_agent);
	kfree(opts.name);
1563
	return 0;
1564 1565

 drop_new_super:
1566
	deactivate_locked_super(sb);
B
Ben Blum 已提交
1567 1568
 drop_modules:
	drop_parsed_module_refcounts(opts.subsys_bits);
1569 1570 1571 1572
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);

1573 1574 1575 1576 1577
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1578
	struct cgroup *cgrp = &root->top_cgroup;
1579
	int ret;
K
KOSAKI Motohiro 已提交
1580 1581
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1582 1583 1584 1585

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1586 1587
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1588 1589 1590 1591 1592 1593 1594 1595

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1596 1597 1598 1599 1600
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1601 1602 1603

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1604
		list_del(&link->cg_link_list);
1605
		list_del(&link->cgrp_link_list);
1606 1607 1608 1609
		kfree(link);
	}
	write_unlock(&css_set_lock);

1610 1611 1612 1613
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1614

1615 1616 1617
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1618
	cgroup_drop_root(root);
1619 1620 1621 1622 1623 1624 1625 1626
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1627
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1628 1629 1630 1631 1632 1633 1634 1635 1636
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1637 1638 1639 1640 1641 1642
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1643 1644 1645
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1646
 */
1647
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1648 1649
{
	char *start;
1650
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1651

1652
	if (!dentry || cgrp == dummytop) {
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1665
		int len = dentry->d_name.len;
1666 1667
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1668 1669 1670
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1671
			break;
1672
		dentry = rcu_dereference(cgrp->dentry);
1673
		if (!cgrp->parent)
1674 1675 1676 1677 1678 1679 1680 1681
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}
B
Ben Blum 已提交
1682
EXPORT_SYMBOL_GPL(cgroup_path);
1683

L
Li Zefan 已提交
1684 1685 1686 1687
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1688
 *
L
Li Zefan 已提交
1689 1690
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1691
 */
1692
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1693 1694
{
	int retval = 0;
1695
	struct cgroup_subsys *ss, *failed_ss = NULL;
1696
	struct cgroup *oldcgrp;
1697
	struct css_set *cg;
1698
	struct css_set *newcg;
1699
	struct cgroupfs_root *root = cgrp->root;
1700 1701

	/* Nothing to do if the task is already in that cgroup */
1702
	oldcgrp = task_cgroup_from_root(tsk, root);
1703
	if (cgrp == oldcgrp)
1704 1705 1706 1707
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1708
			retval = ss->can_attach(ss, cgrp, tsk, false);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
			if (retval) {
				/*
				 * Remember on which subsystem the can_attach()
				 * failed, so that we only call cancel_attach()
				 * against the subsystems whose can_attach()
				 * succeeded. (See below)
				 */
				failed_ss = ss;
				goto out;
			}
1719 1720 1721
		}
	}

1722 1723 1724 1725
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1726 1727 1728 1729
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1730
	newcg = find_css_set(cg, cgrp);
1731
	put_css_set(cg);
1732 1733 1734 1735
	if (!newcg) {
		retval = -ENOMEM;
		goto out;
	}
1736

1737 1738 1739
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1740
		put_css_set(newcg);
1741 1742
		retval = -ESRCH;
		goto out;
1743
	}
1744
	rcu_assign_pointer(tsk->cgroups, newcg);
1745 1746
	task_unlock(tsk);

1747 1748 1749 1750 1751 1752 1753 1754
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1755
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1756
		if (ss->attach)
1757
			ss->attach(ss, cgrp, oldcgrp, tsk, false);
1758
	}
1759
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1760
	synchronize_rcu();
1761
	put_css_set(cg);
1762 1763 1764 1765 1766

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1767
	cgroup_wakeup_rmdir_waiter(cgrp);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
out:
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss)
				/*
				 * This subsystem was the one that failed the
				 * can_attach() check earlier, so we don't need
				 * to call cancel_attach() against it or any
				 * remaining subsystems.
				 */
				break;
			if (ss->cancel_attach)
				ss->cancel_attach(ss, cgrp, tsk, false);
		}
	}
	return retval;
1784 1785 1786
}

/*
1787 1788
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1789
 */
1790
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1791 1792
{
	struct task_struct *tsk;
1793
	const struct cred *cred = current_cred(), *tcred;
1794 1795 1796 1797
	int ret;

	if (pid) {
		rcu_read_lock();
1798
		tsk = find_task_by_vpid(pid);
1799 1800 1801 1802 1803
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1804 1805 1806 1807 1808
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1809 1810
			return -EACCES;
		}
1811 1812
		get_task_struct(tsk);
		rcu_read_unlock();
1813 1814 1815 1816 1817
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1818
	ret = cgroup_attach_task(cgrp, tsk);
1819 1820 1821 1822
	put_task_struct(tsk);
	return ret;
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1833 1834 1835 1836
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1837 1838
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1839
 */
1840
bool cgroup_lock_live_group(struct cgroup *cgrp)
1841 1842 1843 1844 1845 1846 1847 1848
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}
B
Ben Blum 已提交
1849
EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1850 1851 1852 1853 1854 1855 1856 1857

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1858
	cgroup_unlock();
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1869
	cgroup_unlock();
1870 1871 1872
	return 0;
}

1873 1874 1875
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1876
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1877 1878 1879
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1880
{
1881
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1893
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
1894
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1895 1896 1897 1898
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
1899
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1900 1901 1902 1903
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1904 1905 1906 1907 1908
	if (!retval)
		retval = nbytes;
	return retval;
}

1909 1910 1911 1912 1913
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1914
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1929 1930 1931 1932
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1933 1934

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
1935
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
1936 1937
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1938
out:
1939 1940 1941 1942 1943
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1944 1945 1946 1947
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1948
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1949

1950
	if (cgroup_is_removed(cgrp))
1951
		return -ENODEV;
1952
	if (cft->write)
1953
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1954 1955
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1956 1957
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1958 1959 1960 1961
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1962
	return -EINVAL;
1963 1964
}

1965 1966 1967 1968
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1969
{
1970
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1971
	u64 val = cft->read_u64(cgrp, cft);
1972 1973 1974 1975 1976
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1977 1978 1979 1980 1981
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1982
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1983 1984 1985 1986 1987 1988
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1989 1990 1991 1992
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1993
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1994

1995
	if (cgroup_is_removed(cgrp))
1996 1997 1998
		return -ENODEV;

	if (cft->read)
1999
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2000 2001
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2002 2003
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2004 2005 2006
	return -EINVAL;
}

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
2027 2028 2029 2030 2031 2032 2033 2034
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
2035 2036
}

2037
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2038 2039 2040 2041 2042 2043
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

2044
static const struct file_operations cgroup_seqfile_operations = {
2045
	.read = seq_read,
2046
	.write = cgroup_file_write,
2047 2048 2049 2050
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

2051 2052 2053 2054 2055 2056 2057 2058 2059
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
2060

2061
	if (cft->read_map || cft->read_seq_string) {
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

2103
static const struct file_operations cgroup_file_operations = {
2104 2105 2106 2107 2108 2109 2110
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

2111
static const struct inode_operations cgroup_dir_inode_operations = {
2112 2113 2114 2115 2116 2117
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

L
Li Zefan 已提交
2128
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2129 2130
				struct super_block *sb)
{
A
Al Viro 已提交
2131
	static const struct dentry_operations cgroup_dops = {
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
2155
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
2167 2168 2169 2170 2171
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
2172
 */
2173
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
2174
				mode_t mode)
2175 2176 2177 2178
{
	struct dentry *parent;
	int error = 0;

2179 2180
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2181
	if (!error) {
2182
		dentry->d_fsdata = cgrp;
2183
		inc_nlink(parent->d_inode);
2184
		rcu_assign_pointer(cgrp->dentry, dentry);
2185 2186 2187 2188 2189 2190 2191
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

2219
int cgroup_add_file(struct cgroup *cgrp,
2220 2221 2222
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
2223
	struct dentry *dir = cgrp->dentry;
2224 2225
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
2226
	mode_t mode;
2227 2228

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2229
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2230 2231 2232 2233 2234 2235 2236
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
2237 2238
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
2239
						cgrp->root->sb);
2240 2241 2242 2243 2244 2245 2246
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}
2247
EXPORT_SYMBOL_GPL(cgroup_add_file);
2248

2249
int cgroup_add_files(struct cgroup *cgrp,
2250 2251 2252 2253 2254 2255
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
2256
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2257 2258 2259 2260 2261
		if (err)
			return err;
	}
	return 0;
}
2262
EXPORT_SYMBOL_GPL(cgroup_add_files);
2263

L
Li Zefan 已提交
2264 2265 2266 2267 2268 2269
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2270
int cgroup_task_count(const struct cgroup *cgrp)
2271 2272
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2273
	struct cg_cgroup_link *link;
2274 2275

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2276
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2277
		count += atomic_read(&link->cg->refcount);
2278 2279
	}
	read_unlock(&css_set_lock);
2280 2281 2282
	return count;
}

2283 2284 2285 2286
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2287
static void cgroup_advance_iter(struct cgroup *cgrp,
2288
				struct cgroup_iter *it)
2289 2290 2291 2292 2293 2294 2295 2296
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2297
		if (l == &cgrp->css_sets) {
2298 2299 2300
			it->cg_link = NULL;
			return;
		}
2301
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2302 2303 2304 2305 2306 2307
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2308 2309 2310 2311 2312 2313 2314 2315 2316
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
2317
static void cgroup_enable_task_cg_lists(void)
2318 2319 2320 2321 2322 2323
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
2324 2325 2326 2327 2328 2329
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2330 2331 2332 2333 2334 2335
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

2336
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2337 2338 2339 2340 2341 2342
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2343 2344 2345
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2346
	read_lock(&css_set_lock);
2347 2348
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2349 2350
}

2351
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2352 2353 2354 2355
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2356
	struct cg_cgroup_link *link;
2357 2358 2359 2360 2361 2362 2363

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2364 2365
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2366 2367
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2368
		cgroup_advance_iter(cgrp, it);
2369 2370 2371 2372 2373 2374
	} else {
		it->task = l;
	}
	return res;
}

2375
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2376 2377 2378 2379
{
	read_unlock(&css_set_lock);
}

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2517
			struct task_struct *q = heap->ptrs[i];
2518
			if (i == 0) {
2519 2520
				latest_time = q->start_time;
				latest_task = q;
2521 2522
			}
			/* Process the task per the caller's callback */
2523 2524
			scan->process_task(q, scan);
			put_task_struct(q);
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2540
/*
2541
 * Stuff for reading the 'tasks'/'procs' files.
2542 2543 2544 2545 2546 2547 2548 2549
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}
static void *pidlist_resize(void *p, int newcount)
{
	void *newlist;
	/* note: if new alloc fails, old p will still be valid either way */
	if (is_vmalloc_addr(p)) {
		newlist = vmalloc(newcount * sizeof(pid_t));
		if (!newlist)
			return NULL;
		memcpy(newlist, p, newcount * sizeof(pid_t));
		vfree(p);
	} else {
		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
	}
	return newlist;
}

2586
/*
2587 2588 2589 2590
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * If the new stripped list is sufficiently smaller and there's enough memory
 * to allocate a new buffer, will let go of the unneeded memory. Returns the
 * number of unique elements.
2591
 */
2592 2593 2594
/* is the size difference enough that we should re-allocate the array? */
#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
static int pidlist_uniq(pid_t **p, int length)
2595
{
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	int src, dest = 1;
	pid_t *list = *p;
	pid_t *newlist;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	/*
	 * if the length difference is large enough, we want to allocate a
	 * smaller buffer to save memory. if this fails due to out of memory,
	 * we'll just stay with what we've got.
	 */
	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2625
		newlist = pidlist_resize(list, dest);
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
		if (newlist)
			*p = newlist;
	}
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
2648 2649
	struct pid_namespace *ns = current->nsproxy->pid_ns;

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
2674
	l->key.ns = get_pid_ns(ns);
2675 2676 2677 2678 2679 2680 2681 2682
	l->use_count = 0; /* don't increment here */
	l->list = NULL;
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

2683 2684 2685
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
2686 2687
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
2688 2689 2690 2691
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
2692 2693
	struct cgroup_iter it;
	struct task_struct *tsk;
2694 2695 2696 2697 2698 2699 2700 2701 2702
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
2703
	array = pidlist_allocate(length);
2704 2705 2706
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
2707 2708
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2709
		if (unlikely(n == length))
2710
			break;
2711
		/* get tgid or pid for procs or tasks file respectively */
2712 2713 2714 2715
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
2716 2717
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
2718
	}
2719
	cgroup_iter_end(cgrp, &it);
2720 2721 2722
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
2723
	if (type == CGROUP_FILE_PROCS)
2724
		length = pidlist_uniq(&array, length);
2725 2726
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
2727
		pidlist_free(array);
2728
		return -ENOMEM;
2729
	}
2730
	/* store array, freeing old if necessary - lock already held */
2731
	pidlist_free(l->list);
2732 2733 2734 2735
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
2736
	*lp = l;
2737
	return 0;
2738 2739
}

B
Balbir Singh 已提交
2740
/**
L
Li Zefan 已提交
2741
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2742 2743 2744
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2745 2746 2747
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2748 2749 2750 2751
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2752
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2753 2754
	struct cgroup_iter it;
	struct task_struct *tsk;
2755

B
Balbir Singh 已提交
2756
	/*
2757 2758
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2759
	 */
2760 2761
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2762 2763 2764
		 goto err;

	ret = 0;
2765
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2766

2767 2768
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2788
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2789 2790 2791 2792 2793

err:
	return ret;
}

2794

2795
/*
2796
 * seq_file methods for the tasks/procs files. The seq_file position is the
2797
 * next pid to display; the seq_file iterator is a pointer to the pid
2798
 * in the cgroup->l->list array.
2799
 */
2800

2801
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2802
{
2803 2804 2805 2806 2807 2808
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
2809
	struct cgroup_pidlist *l = s->private;
2810 2811 2812
	int index = 0, pid = *pos;
	int *iter;

2813
	down_read(&l->mutex);
2814
	if (pid) {
2815
		int end = l->length;
S
Stephen Rothwell 已提交
2816

2817 2818
		while (index < end) {
			int mid = (index + end) / 2;
2819
			if (l->list[mid] == pid) {
2820 2821
				index = mid;
				break;
2822
			} else if (l->list[mid] <= pid)
2823 2824 2825 2826 2827 2828
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
2829
	if (index >= l->length)
2830 2831
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
2832
	iter = l->list + index;
2833 2834 2835 2836
	*pos = *iter;
	return iter;
}

2837
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2838
{
2839 2840
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
2841 2842
}

2843
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2844
{
2845 2846 2847
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

2861
static int cgroup_pidlist_show(struct seq_file *s, void *v)
2862 2863 2864
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2865

2866 2867 2868 2869 2870 2871 2872 2873 2874
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
2875 2876
};

2877
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2878
{
2879 2880 2881 2882 2883 2884 2885
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
2886 2887 2888
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
2889 2890 2891
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
2892
		pidlist_free(l->list);
2893 2894 2895 2896
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
2897
	}
2898
	mutex_unlock(&l->owner->pidlist_mutex);
2899
	up_write(&l->mutex);
2900 2901
}

2902
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2903
{
2904
	struct cgroup_pidlist *l;
2905 2906
	if (!(file->f_mode & FMODE_READ))
		return 0;
2907 2908 2909 2910 2911 2912
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
2913 2914 2915
	return seq_release(inode, file);
}

2916
static const struct file_operations cgroup_pidlist_operations = {
2917 2918 2919
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
2920
	.release = cgroup_pidlist_release,
2921 2922
};

2923
/*
2924 2925 2926
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
2927
 */
2928
/* helper function for the two below it */
2929
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
2930
{
2931
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2932
	struct cgroup_pidlist *l;
2933
	int retval;
2934

2935
	/* Nothing to do for write-only files */
2936 2937 2938
	if (!(file->f_mode & FMODE_READ))
		return 0;

2939
	/* have the array populated */
2940
	retval = pidlist_array_load(cgrp, type, &l);
2941 2942 2943 2944
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
2945

2946
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
2947
	if (retval) {
2948
		cgroup_release_pid_array(l);
2949
		return retval;
2950
	}
2951
	((struct seq_file *)file->private_data)->private = l;
2952 2953
	return 0;
}
2954 2955
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2956
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
2957 2958 2959
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
2960
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
2961
}
2962

2963
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2964 2965
					    struct cftype *cft)
{
2966
	return notify_on_release(cgrp);
2967 2968
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup *cgrp = event->cgrp;

	/* TODO: check return code */
	event->cft->unregister_event(cgrp, event->cft, event->eventfd);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->cgrp;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
3013
		remove_wait_queue_locked(event->wqh, &event->wait);
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
		spin_lock(&cgrp->event_list_lock);
		list_del(&event->list);
		spin_unlock(&cgrp->event_list_lock);
		/*
		 * We are in atomic context, but cgroup_event_remove() may
		 * sleep, so we have to call it in workqueue.
		 */
		schedule_work(&event->remove);
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	struct cgroup_event *event = NULL;
	unsigned int efd, cfd;
	struct file *efile = NULL;
	struct file *cfile = NULL;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
	event->cgrp = cgrp;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = eventfd_fget(efd);
	if (IS_ERR(efile)) {
		ret = PTR_ERR(efile);
		goto fail;
	}

	event->eventfd = eventfd_ctx_fileget(efile);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto fail;
	}

	cfile = fget(cfd);
	if (!cfile) {
		ret = -EBADF;
		goto fail;
	}

	/* the process need read permission on control file */
	ret = file_permission(cfile, MAY_READ);
	if (ret < 0)
		goto fail;

	event->cft = __file_cft(cfile);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto fail;
	}

	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto fail;
	}

	ret = event->cft->register_event(cgrp, event->cft,
			event->eventfd, buffer);
	if (ret)
		goto fail;

	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
		ret = 0;
		goto fail;
	}

	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fput(cfile);
	fput(efile);

	return 0;

fail:
	if (cfile)
		fput(cfile);

	if (event && event->eventfd && !IS_ERR(event->eventfd))
		eventfd_ctx_put(event->eventfd);

	if (!IS_ERR_OR_NULL(efile))
		fput(efile);

	kfree(event);

	return ret;
}

3141 3142 3143
/*
 * for the common functions, 'private' gives the type of file
 */
3144 3145
/* for hysterical raisins, we can't put this on the older files */
#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3146 3147 3148 3149
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
3150
		.write_u64 = cgroup_tasks_write,
3151
		.release = cgroup_pidlist_release,
L
Li Zefan 已提交
3152
		.mode = S_IRUGO | S_IWUSR,
3153
	},
3154 3155 3156 3157 3158 3159 3160
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
		.open = cgroup_procs_open,
		/* .write_u64 = cgroup_procs_write, TODO */
		.release = cgroup_pidlist_release,
		.mode = S_IRUGO,
	},
3161 3162
	{
		.name = "notify_on_release",
3163
		.read_u64 = cgroup_read_notify_on_release,
3164
		.write_u64 = cgroup_write_notify_on_release,
3165
	},
3166 3167 3168 3169 3170
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
3171 3172 3173 3174
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
3175 3176 3177
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
3178 3179
};

3180
static int cgroup_populate_dir(struct cgroup *cgrp)
3181 3182 3183 3184 3185
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
3186
	cgroup_clear_directory(cgrp->dentry);
3187

3188
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3189 3190 3191
	if (err < 0)
		return err;

3192 3193
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3194 3195 3196
			return err;
	}

3197 3198
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3199 3200
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
3212 3213 3214 3215 3216 3217

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
3218
			       struct cgroup *cgrp)
3219
{
3220
	css->cgroup = cgrp;
P
Paul Menage 已提交
3221
	atomic_set(&css->refcnt, 1);
3222
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
3223
	css->id = NULL;
3224
	if (cgrp == dummytop)
3225
		set_bit(CSS_ROOT, &css->flags);
3226 3227
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
3228 3229
}

3230 3231 3232 3233 3234
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

B
Ben Blum 已提交
3235 3236 3237 3238
	/*
	 * No worry about a race with rebind_subsystems that might mess up the
	 * locking order, since both parties are under cgroup_mutex.
	 */
3239 3240
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3241 3242
		if (ss == NULL)
			continue;
3243
		if (ss->root == root)
3244
			mutex_lock(&ss->hierarchy_mutex);
3245 3246 3247 3248 3249 3250 3251 3252 3253
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3254 3255
		if (ss == NULL)
			continue;
3256 3257 3258 3259 3260
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

3261
/*
L
Li Zefan 已提交
3262 3263 3264 3265
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
3266
 *
L
Li Zefan 已提交
3267
 * Must be called with the mutex on the parent inode held
3268 3269
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
3270
			     mode_t mode)
3271
{
3272
	struct cgroup *cgrp;
3273 3274 3275 3276 3277
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

3278 3279
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

3291
	init_cgroup_housekeeping(cgrp);
3292

3293 3294 3295
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
3296

3297 3298 3299
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

3300
	for_each_subsys(root, ss) {
3301
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3302

3303 3304 3305 3306
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
3307
		init_cgroup_css(css, ss, cgrp);
3308 3309 3310
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
K
KAMEZAWA Hiroyuki 已提交
3311
				goto err_destroy;
3312
		}
K
KAMEZAWA Hiroyuki 已提交
3313
		/* At error, ->destroy() callback has to free assigned ID. */
3314 3315
	}

3316
	cgroup_lock_hierarchy(root);
3317
	list_add(&cgrp->sibling, &cgrp->parent->children);
3318
	cgroup_unlock_hierarchy(root);
3319 3320
	root->number_of_cgroups++;

3321
	err = cgroup_create_dir(cgrp, dentry, mode);
3322 3323 3324 3325
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
3326
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3327

3328
	err = cgroup_populate_dir(cgrp);
3329 3330 3331
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
3332
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3333 3334 3335 3336 3337

	return 0;

 err_remove:

3338
	cgroup_lock_hierarchy(root);
3339
	list_del(&cgrp->sibling);
3340
	cgroup_unlock_hierarchy(root);
3341 3342 3343 3344 3345
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
3346 3347
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
3348 3349 3350 3351 3352 3353 3354
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

3355
	kfree(cgrp);
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

3367
static int cgroup_has_css_refs(struct cgroup *cgrp)
3368 3369 3370
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
3371
	 * cgroup, if the css refcount is also 1, then there should
3372 3373 3374 3375 3376 3377 3378
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
B
Ben Blum 已提交
3379 3380 3381 3382 3383
	/*
	 * We won't need to lock the subsys array, because the subsystems
	 * we're concerned about aren't going anywhere since our cgroup root
	 * has a reference on them.
	 */
3384 3385 3386
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
B
Ben Blum 已提交
3387 3388
		/* Skip subsystems not present or not in this hierarchy */
		if (ss == NULL || ss->root != cgrp->root)
3389
			continue;
3390
		css = cgrp->subsys[ss->subsys_id];
3391 3392 3393 3394 3395 3396
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
3397
		if (css && (atomic_read(&css->refcnt) > 1))
3398 3399 3400 3401 3402
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
3418
		while (1) {
P
Paul Menage 已提交
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
3432 3433 3434 3435
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

3456 3457
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
3458
	struct cgroup *cgrp = dentry->d_fsdata;
3459 3460
	struct dentry *d;
	struct cgroup *parent;
3461
	DEFINE_WAIT(wait);
3462
	struct cgroup_event *event, *tmp;
3463
	int ret;
3464 3465

	/* the vfs holds both inode->i_mutex already */
3466
again:
3467
	mutex_lock(&cgroup_mutex);
3468
	if (atomic_read(&cgrp->count) != 0) {
3469 3470 3471
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3472
	if (!list_empty(&cgrp->children)) {
3473 3474 3475
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3476
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
3477

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

3489
	/*
L
Li Zefan 已提交
3490 3491
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
3492
	 */
3493
	ret = cgroup_call_pre_destroy(cgrp);
3494 3495
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3496
		return ret;
3497
	}
3498

3499 3500
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
3501
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3502
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3503 3504 3505
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3506 3507 3508
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
3509 3510 3511 3512 3513 3514
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
3515 3516 3517 3518 3519 3520 3521 3522 3523
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3524

3525
	spin_lock(&release_list_lock);
3526 3527 3528
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
3529
	spin_unlock(&release_list_lock);
3530 3531 3532

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
3533
	list_del(&cgrp->sibling);
3534 3535
	cgroup_unlock_hierarchy(cgrp->root);

3536 3537
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
3538 3539 3540 3541 3542
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

3543
	set_bit(CGRP_RELEASABLE, &parent->flags);
3544 3545
	check_for_release(parent);

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del(&event->list);
		remove_wait_queue(event->wqh, &event->wait);
		eventfd_signal(event->eventfd, 1);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

3560 3561 3562 3563
	mutex_unlock(&cgroup_mutex);
	return 0;
}

3564
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3565 3566
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
3567 3568

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3569 3570

	/* Create the top cgroup state for this subsystem */
3571
	list_add(&ss->sibling, &rootnode.subsys_list);
3572 3573 3574 3575 3576 3577
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
3578
	/* Update the init_css_set to contain a subsys
3579
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
3580 3581 3582
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3583 3584 3585

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
3586 3587 3588 3589 3590
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

3591
	mutex_init(&ss->hierarchy_mutex);
3592
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3593
	ss->active = 1;
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722

	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
 * subsytem is built as a module, it will be assigned a new subsys_id and set
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	int i;
	struct cgroup_subsys_state *css;

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
	    ss->create == NULL || ss->destroy == NULL)
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
		/* a few sanity checks */
		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
		BUG_ON(subsys[ss->subsys_id] != ss);
		return 0;
	}

	/*
	 * need to register a subsys id before anything else - for example,
	 * init_cgroup_css needs it.
	 */
	mutex_lock(&cgroup_mutex);
	/* find the first empty slot in the array */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		if (subsys[i] == NULL)
			break;
	}
	if (i == CGROUP_SUBSYS_COUNT) {
		/* maximum number of subsystems already registered! */
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
	/* assign ourselves the subsys_id */
	ss->subsys_id = i;
	subsys[i] = ss;

	/*
	 * no ss->create seems to need anything important in the ss struct, so
	 * this can happen first (i.e. before the rootnode attachment).
	 */
	css = ss->create(ss, dummytop);
	if (IS_ERR(css)) {
		/* failure case - need to deassign the subsys[] slot. */
		subsys[i] = NULL;
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

	list_add(&ss->sibling, &rootnode.subsys_list);
	ss->root = &rootnode;

	/* our new subsystem will be attached to the dummy hierarchy. */
	init_cgroup_css(css, ss, dummytop);
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
		int ret = cgroup_init_idr(ss, css);
		if (ret) {
			dummytop->subsys[ss->subsys_id] = NULL;
			ss->destroy(ss, dummytop);
			subsys[i] = NULL;
			mutex_unlock(&cgroup_mutex);
			return ret;
		}
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
		struct css_set *cg;
		struct hlist_node *node, *tmp;
		struct hlist_head *bucket = &css_set_table[i], *new_bucket;

		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
			/* skip entries that we already rehashed */
			if (cg->subsys[ss->subsys_id])
				continue;
			/* remove existing entry */
			hlist_del(&cg->hlist);
			/* set new value */
			cg->subsys[ss->subsys_id] = css;
			/* recompute hash and restore entry */
			new_bucket = css_set_hash(cg->subsys);
			hlist_add_head(&cg->hlist, new_bucket);
		}
	}
	write_unlock(&css_set_lock);

	mutex_init(&ss->hierarchy_mutex);
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
	ss->active = 1;

	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
3723
}
3724
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3725

B
Ben Blum 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
	struct cg_cgroup_link *link;
	struct hlist_head *hhead;

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
	 * try_module_get in parse_cgroupfs_options should ensure that it
	 * doesn't start being used while we're killing it off.
	 */
	BUG_ON(ss->root != &rootnode);

	mutex_lock(&cgroup_mutex);
	/* deassign the subsys_id */
	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
	subsys[ss->subsys_id] = NULL;

	/* remove subsystem from rootnode's list of subsystems */
	list_del(&ss->sibling);

	/*
	 * disentangle the css from all css_sets attached to the dummytop. as
	 * in loading, we need to pay our respects to the hashtable gods.
	 */
	write_lock(&css_set_lock);
	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;

		hlist_del(&cg->hlist);
		BUG_ON(!cg->subsys[ss->subsys_id]);
		cg->subsys[ss->subsys_id] = NULL;
		hhead = css_set_hash(cg->subsys);
		hlist_add_head(&cg->hlist, hhead);
	}
	write_unlock(&css_set_lock);

	/*
	 * remove subsystem's css from the dummytop and free it - need to free
	 * before marking as null because ss->destroy needs the cgrp->subsys
	 * pointer to find their state. note that this also takes care of
	 * freeing the css_id.
	 */
	ss->destroy(ss, dummytop);
	dummytop->subsys[ss->subsys_id] = NULL;

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

3785
/**
L
Li Zefan 已提交
3786 3787 3788 3789
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
3790 3791 3792 3793
 */
int __init cgroup_init_early(void)
{
	int i;
3794
	atomic_set(&init_css_set.refcount, 1);
3795 3796
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
3797
	INIT_HLIST_NODE(&init_css_set.hlist);
3798
	css_set_count = 1;
3799
	init_cgroup_root(&rootnode);
3800 3801 3802 3803
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
3804
	init_css_set_link.cgrp = dummytop;
3805
	list_add(&init_css_set_link.cgrp_link_list,
3806 3807 3808
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
3809

3810 3811 3812
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

B
Ben Blum 已提交
3813 3814
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3815 3816 3817 3818 3819 3820 3821
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
3822
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
3834 3835 3836 3837
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
3838 3839 3840 3841 3842
 */
int __init cgroup_init(void)
{
	int err;
	int i;
3843
	struct hlist_head *hhead;
3844 3845 3846 3847

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
3848

B
Ben Blum 已提交
3849 3850
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3851 3852 3853
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
3854
		if (ss->use_id)
3855
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3856 3857
	}

3858 3859 3860
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
3861
	BUG_ON(!init_root_id(&rootnode));
3862 3863 3864 3865
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
3866
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3867

3868
out:
3869 3870 3871
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

3872 3873
	return err;
}
3874

3875 3876 3877 3878 3879 3880
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
3881
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

3911
	for_each_active_root(root) {
3912
		struct cgroup_subsys *ss;
3913
		struct cgroup *cgrp;
3914 3915
		int count = 0;

3916
		seq_printf(m, "%d:", root->hierarchy_id);
3917 3918
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3919 3920 3921
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
3922
		seq_putc(m, ':');
3923
		cgrp = task_cgroup_from_root(tsk, root);
3924
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

3946
const struct file_operations proc_cgroup_operations = {
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

3958
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
3959 3960 3961 3962 3963
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
3964 3965 3966
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3967 3968
		if (ss == NULL)
			continue;
3969 3970
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
3971
			   ss->root->number_of_cgroups, !ss->disabled);
3972 3973 3974 3975 3976 3977 3978
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
3979
	return single_open(file, proc_cgroupstats_show, NULL);
3980 3981
}

3982
static const struct file_operations proc_cgroupstats_operations = {
3983 3984 3985 3986 3987 3988
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

3989 3990
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
3991
 * @child: pointer to task_struct of forking parent process.
3992 3993 3994 3995 3996 3997
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
3998
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
3999 4000
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
4001 4002 4003 4004 4005 4006
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
4007 4008 4009 4010 4011
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
4012 4013 4014
}

/**
L
Li Zefan 已提交
4015 4016 4017 4018 4019 4020
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
4021 4022 4023 4024 4025
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
B
Ben Blum 已提交
4026 4027 4028 4029 4030 4031
		/*
		 * forkexit callbacks are only supported for builtin
		 * subsystems, and the builtin section of the subsys array is
		 * immutable, so we don't need to lock the subsys array here.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4032 4033 4034 4035 4036 4037 4038
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

4039
/**
L
Li Zefan 已提交
4040 4041 4042 4043 4044 4045 4046 4047
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
4048 4049 4050 4051
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
4052
		task_lock(child);
4053 4054
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
4055
		task_unlock(child);
4056 4057 4058
		write_unlock(&css_set_lock);
	}
}
4059 4060 4061
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
4062
 * @run_callback: run exit callbacks?
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4091 4092
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
4093 4094 4095 4096
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
4097
	struct css_set *cg;
4098 4099

	if (run_callbacks && need_forkexit_callback) {
B
Ben Blum 已提交
4100 4101 4102 4103 4104
		/*
		 * modular subsystems can't use callbacks, so no need to lock
		 * the subsys array
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4105 4106 4107 4108 4109
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

4123 4124
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
4125 4126
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
4127
	task_unlock(tsk);
4128
	if (cg)
4129
		put_css_set_taskexit(cg);
4130
}
4131 4132

/**
L
Li Zefan 已提交
4133 4134 4135
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
4136
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
4137 4138 4139 4140
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
4141
 */
4142 4143
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
4167
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
4168 4169 4170 4171
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
4172

4173
	/* Keep the cgroup alive */
4174 4175 4176
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
4177
	get_css_set(cg);
4178
	task_unlock(tsk);
4179

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
4191
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4192 4193 4194 4195 4196 4197
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
4198
	ret = vfs_mkdir(inode, dentry, 0755);
4199
	child = __d_cgrp(dentry);
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
4216
		put_css_set(cg);
4217

4218
		deactivate_super(root->sb);
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
4235
	ret = cgroup_attach_task(child, tsk);
4236 4237 4238 4239
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
4240 4241

	mutex_lock(&cgroup_mutex);
4242
	put_css_set(cg);
4243
	mutex_unlock(&cgroup_mutex);
4244
	deactivate_super(root->sb);
4245 4246 4247
	return ret;
}

L
Li Zefan 已提交
4248
/**
4249
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
4250
 * @cgrp: the cgroup in question
4251
 * @task: the task in question
L
Li Zefan 已提交
4252
 *
4253 4254
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
4255 4256 4257 4258 4259 4260
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
4261
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4262 4263 4264 4265
{
	int ret;
	struct cgroup *target;

4266
	if (cgrp == dummytop)
4267 4268
		return 1;

4269
	target = task_cgroup_from_root(task, cgrp->root);
4270 4271 4272
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
4273 4274
	return ret;
}
4275

4276
static void check_for_release(struct cgroup *cgrp)
4277 4278 4279
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
4280 4281
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4282 4283 4284 4285 4286
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
4287 4288 4289
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
4290 4291 4292 4293 4294 4295 4296 4297
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

4298 4299
/* Caller must verify that the css is not for root cgroup */
void __css_put(struct cgroup_subsys_state *css, int count)
4300
{
4301
	struct cgroup *cgrp = css->cgroup;
4302
	int val;
4303
	rcu_read_lock();
4304
	val = atomic_sub_return(count, &css->refcnt);
4305
	if (val == 1) {
4306 4307 4308 4309
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
4310
		cgroup_wakeup_rmdir_waiter(cgrp);
4311 4312
	}
	rcu_read_unlock();
4313
	WARN_ON_ONCE(val < 1);
4314
}
B
Ben Blum 已提交
4315
EXPORT_SYMBOL_GPL(__css_put);
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
4348
		char *pathbuf = NULL, *agentbuf = NULL;
4349
		struct cgroup *cgrp = list_entry(release_list.next,
4350 4351
						    struct cgroup,
						    release_list);
4352
		list_del_init(&cgrp->release_list);
4353 4354
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4355 4356 4357 4358 4359 4360 4361
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
4362 4363

		i = 0;
4364 4365
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
4380 4381 4382
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
4383 4384 4385 4386 4387
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
4388 4389 4390 4391 4392 4393 4394 4395 4396

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
B
Ben Blum 已提交
4397 4398 4399 4400 4401
		/*
		 * cgroup_disable, being at boot time, can't know about module
		 * subsystems, so we don't worry about them.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}
B
Ben Blum 已提交
4431
EXPORT_SYMBOL_GPL(css_id);
K
KAMEZAWA Hiroyuki 已提交
4432 4433 4434 4435 4436 4437 4438 4439 4440

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}
B
Ben Blum 已提交
4441
EXPORT_SYMBOL_GPL(css_depth);
K
KAMEZAWA Hiroyuki 已提交
4442 4443

bool css_is_ancestor(struct cgroup_subsys_state *child,
4444
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}
B
Ben Blum 已提交
4478
EXPORT_SYMBOL_GPL(free_css_id);
K
KAMEZAWA Hiroyuki 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

4528 4529
static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
K
KAMEZAWA Hiroyuki 已提交
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
{
	struct css_id *newid;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}
B
Ben Blum 已提交
4595
EXPORT_SYMBOL_GPL(css_lookup);
K
KAMEZAWA Hiroyuki 已提交
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
						   struct cgroup *cont)
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
4708 4709
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */