cgroup.c 111.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
I
Ingo Molnar 已提交
26
#include <linux/module.h>
27
#include <linux/ctype.h>
28 29 30 31 32 33 34 35
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
36
#include <linux/proc_fs.h>
37 38
#include <linux/rcupdate.h>
#include <linux/sched.h>
39
#include <linux/backing-dev.h>
40 41 42 43 44
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
45
#include <linux/sort.h>
46
#include <linux/kmod.h>
B
Balbir Singh 已提交
47 48
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
49
#include <linux/hash.h>
50
#include <linux/namei.h>
51
#include <linux/smp_lock.h>
L
Li Zefan 已提交
52
#include <linux/pid_namespace.h>
53
#include <linux/idr.h>
54
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
B
Balbir Singh 已提交
55

56 57
#include <asm/atomic.h>

58 59
static DEFINE_MUTEX(cgroup_mutex);

B
Ben Blum 已提交
60 61 62 63 64 65
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
66
#define SUBSYS(_x) &_x ## _subsys,
B
Ben Blum 已提交
67
static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
68 69 70
#include <linux/cgroup_subsys.h>
};

71 72
#define MAX_CGROUP_ROOT_NAMELEN 64

73 74 75 76 77 78 79 80 81 82 83 84 85 86
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

87 88 89
	/* Unique id for this hierarchy. */
	int hierarchy_id;

90 91 92 93 94 95 96 97 98 99 100 101
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

102
	/* A list running through the active hierarchies */
103 104 105 106
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
107

108
	/* The path to use for release notifications. */
109
	char release_agent_path[PATH_MAX];
110 111 112

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
113 114 115 116 117 118 119 120 121
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};


155 156 157
/* The list of hierarchy roots */

static LIST_HEAD(roots);
158
static int root_count;
159

160 161 162 163
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

164 165 166 167
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
168 169 170
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
171
 */
172
static int need_forkexit_callback __read_mostly;
173

174 175 176 177 178 179 180 181 182 183 184 185 186 187
#ifdef CONFIG_PROVE_LOCKING
int cgroup_lock_is_held(void)
{
	return lockdep_is_held(&cgroup_mutex);
}
#else /* #ifdef CONFIG_PROVE_LOCKING */
int cgroup_lock_is_held(void)
{
	return mutex_is_locked(&cgroup_mutex);
}
#endif /* #else #ifdef CONFIG_PROVE_LOCKING */

EXPORT_SYMBOL_GPL(cgroup_lock_is_held);

188
/* convenient tests for these bits */
189
inline int cgroup_is_removed(const struct cgroup *cgrp)
190
{
191
	return test_bit(CGRP_REMOVED, &cgrp->flags);
192 193 194 195 196 197 198
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

199
static int cgroup_is_releasable(const struct cgroup *cgrp)
200 201
{
	const int bits =
202 203 204
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
205 206
}

207
static int notify_on_release(const struct cgroup *cgrp)
208
{
209
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
210 211
}

212 213 214 215 216 217 218
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

219 220
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
221 222
list_for_each_entry(_root, &roots, root_list)

223 224 225 226 227 228
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
229
static void check_for_release(struct cgroup *cgrp);
230

231 232 233 234 235 236
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
237
	struct list_head cgrp_link_list;
238
	struct cgroup *cgrp;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

K
KAMEZAWA Hiroyuki 已提交
257 258
static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);

259 260 261 262 263 264
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

265 266 267 268 269
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

289 290 291 292 293 294
static void free_css_set_rcu(struct rcu_head *obj)
{
	struct css_set *cg = container_of(obj, struct css_set, rcu_head);
	kfree(cg);
}

295 296 297 298
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
299
static int use_task_css_set_links __read_mostly;
300

301
static void __put_css_set(struct css_set *cg, int taskexit)
302
{
K
KOSAKI Motohiro 已提交
303 304
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
305 306 307 308 309 310 311 312 313 314 315 316
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
317

318 319 320 321 322 323 324 325 326
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
327 328
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
329
			if (taskexit)
330 331
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
332
		}
333 334

		kfree(link);
335
	}
336 337

	write_unlock(&css_set_lock);
338
	call_rcu(&cg->rcu_head, free_css_set_rcu);
339 340
}

341 342 343 344 345
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
346
	atomic_inc(&cg->refcount);
347 348 349 350
}

static inline void put_css_set(struct css_set *cg)
{
351
	__put_css_set(cg, 0);
352 353
}

354 355
static inline void put_css_set_taskexit(struct css_set *cg)
{
356
	__put_css_set(cg, 1);
357 358
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

431 432 433
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
434
 * css_set is suitable.
435 436 437 438
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
439
 * cgrp: the cgroup that we're moving into
440 441 442 443 444 445
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
446
	struct cgroup *cgrp,
447
	struct cgroup_subsys_state *template[])
448 449
{
	int i;
450
	struct cgroupfs_root *root = cgrp->root;
451 452 453
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
454

B
Ben Blum 已提交
455 456 457 458 459
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
460
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
461
		if (root->subsys_bits & (1UL << i)) {
462 463 464
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
465
			template[i] = cgrp->subsys[i];
466 467 468 469 470 471 472
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

473 474
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
475 476 477 478 479
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
480
	}
481 482 483 484 485

	/* No existing cgroup group matched */
	return NULL;
}

486 487 488 489 490 491 492 493 494 495 496
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

497 498
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
499
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
500 501 502 503 504 505 506 507 508 509
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
510
			free_cg_links(tmp);
511 512
			return -ENOMEM;
		}
513
		list_add(&link->cgrp_link_list, tmp);
514 515 516 517
	}
	return 0;
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
533
	link->cgrp = cgrp;
534
	atomic_inc(&cgrp->count);
535
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
536 537 538 539 540
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
541 542
}

543 544 545 546 547 548 549 550
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
551
	struct css_set *oldcg, struct cgroup *cgrp)
552 553 554 555 556 557
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

558
	struct hlist_head *hhead;
559
	struct cg_cgroup_link *link;
560

561 562
	/* First see if we already have a cgroup group that matches
	 * the desired set */
563
	read_lock(&css_set_lock);
564
	res = find_existing_css_set(oldcg, cgrp, template);
565 566
	if (res)
		get_css_set(res);
567
	read_unlock(&css_set_lock);
568 569 570 571 572 573 574 575 576 577 578 579 580 581

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

582
	atomic_set(&res->refcount, 1);
583 584
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
585
	INIT_HLIST_NODE(&res->hlist);
586 587 588 589 590 591 592

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
593 594 595 596 597 598
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
599 600 601 602

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
603 604 605 606 607

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

608 609 610
	write_unlock(&css_set_lock);

	return res;
611 612
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

648 649 650 651 652 653 654 655 656 657
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
658
 * cgroup_attach_task() can increment it again.  Because a count of zero
659 660 661 662 663 664 665 666 667 668 669 670 671
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
672 673
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
674 675 676 677 678 679 680 681 682 683 684
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
685
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
686
 * another.  It does so using cgroup_mutex, however there are
687 688 689
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
690
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
691 692 693 694
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
695
 * update of a tasks cgroup pointer by cgroup_attach_task()
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
726
static int cgroup_populate_dir(struct cgroup *cgrp);
727
static const struct inode_operations cgroup_dir_inode_operations;
728
static const struct file_operations proc_cgroupstats_operations;
729 730

static struct backing_dev_info cgroup_backing_dev_info = {
731
	.name		= "cgroup",
732
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
733
};
734

K
KAMEZAWA Hiroyuki 已提交
735 736 737
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

738 739 740 741 742 743
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
744 745
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
746 747 748 749 750 751
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

752 753 754 755
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
756
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
757 758
{
	struct cgroup_subsys *ss;
759 760
	int ret = 0;

761
	for_each_subsys(cgrp->root, ss)
762 763 764 765 766 767
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
				break;
		}
	return ret;
768 769
}

770 771 772 773 774 775 776
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

777 778 779 780
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
781
		struct cgroup *cgrp = dentry->d_fsdata;
782
		struct cgroup_subsys *ss;
783
		BUG_ON(!(cgroup_is_removed(cgrp)));
784 785 786 787 788 789 790
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
791 792 793 794 795

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
796 797
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
798 799 800 801

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

802 803 804 805
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
806 807
		deactivate_super(cgrp->root->sb);

808 809 810 811 812 813
		/*
		 * if we're getting rid of the cgroup, refcount should ensure
		 * that there are no pidlists left.
		 */
		BUG_ON(!list_empty(&cgrp->pidlists));

814
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

867 868 869 870 871 872
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
873
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
874 875 876
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

877
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
878
{
879
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
880 881 882
		wake_up_all(&cgroup_rmdir_waitq);
}

883 884 885 886 887 888 889 890 891 892 893
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}

B
Ben Blum 已提交
894 895 896
/*
 * Call with cgroup_mutex held.
 */
897 898 899 900
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
901
	struct cgroup *cgrp = &root->top_cgroup;
902 903
	int i;

B
Ben Blum 已提交
904 905
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

906 907 908 909
	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
910
		unsigned long bit = 1UL << i;
911 912 913
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
B
Ben Blum 已提交
914 915 916 917 918 919
		/*
		 * Nobody should tell us to do a subsys that doesn't exist:
		 * parse_cgroupfs_options should catch that case and refcounts
		 * ensure that subsystems won't disappear once selected.
		 */
		BUG_ON(ss == NULL);
920 921 922 923 924 925 926 927 928 929
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
930
	if (root->number_of_cgroups > 1)
931 932 933 934 935 936 937 938
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
B
Ben Blum 已提交
939
			BUG_ON(ss == NULL);
940
			BUG_ON(cgrp->subsys[i]);
941 942
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
943
			mutex_lock(&ss->hierarchy_mutex);
944 945
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
946
			list_move(&ss->sibling, &root->subsys_list);
947
			ss->root = root;
948
			if (ss->bind)
949
				ss->bind(ss, cgrp);
950
			mutex_unlock(&ss->hierarchy_mutex);
951 952
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
B
Ben Blum 已提交
953
			BUG_ON(ss == NULL);
954 955
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
956
			mutex_lock(&ss->hierarchy_mutex);
957 958 959
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
960
			cgrp->subsys[i] = NULL;
961
			subsys[i]->root = &rootnode;
962
			list_move(&ss->sibling, &rootnode.subsys_list);
963
			mutex_unlock(&ss->hierarchy_mutex);
964 965
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
B
Ben Blum 已提交
966
			BUG_ON(ss == NULL);
967
			BUG_ON(!cgrp->subsys[i]);
968 969
		} else {
			/* Subsystem state shouldn't exist */
970
			BUG_ON(cgrp->subsys[i]);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
989 990
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
991 992
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
993 994 995 996 997 998 999
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
1000
	char *release_agent;
1001
	char *name;
1002 1003
	/* User explicitly requested empty subsystem */
	bool none;
1004 1005

	struct cgroupfs_root *new_root;
1006

1007 1008
};

B
Ben Blum 已提交
1009 1010 1011 1012
/*
 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
 * with cgroup_mutex held to protect the subsys[] array.
 */
1013 1014 1015 1016
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";
1017 1018
	unsigned long mask = (unsigned long)-1;

B
Ben Blum 已提交
1019 1020
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1021 1022 1023
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1024

1025
	memset(opts, 0, sizeof(*opts));
1026 1027 1028 1029 1030

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
1031 1032 1033 1034 1035
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
1036 1037
				if (ss == NULL)
					continue;
1038 1039 1040
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
1041 1042 1043
		} else if (!strcmp(token, "none")) {
			/* Explicitly have no subsystems */
			opts->none = true;
1044 1045
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
1046 1047 1048 1049
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1050 1051
			opts->release_agent =
				kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
1052 1053
			if (!opts->release_agent)
				return -ENOMEM;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
		} else if (!strncmp(token, "name=", 5)) {
			int i;
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
					      MAX_CGROUP_ROOT_NAMELEN,
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1077 1078 1079 1080 1081
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
B
Ben Blum 已提交
1082 1083
				if (ss == NULL)
					continue;
1084
				if (!strcmp(token, ss->name)) {
1085 1086
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
1087 1088 1089 1090 1091 1092 1093 1094
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

1095 1096
	/* Consistency checks */

1097 1098 1099 1100 1101 1102 1103 1104 1105
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1106 1107 1108 1109 1110 1111 1112 1113 1114

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1115
	if (!opts->subsys_bits && !opts->name)
1116 1117 1118 1119 1120 1121 1122 1123 1124
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1125
	struct cgroup *cgrp = &root->top_cgroup;
1126 1127
	struct cgroup_sb_opts opts;

1128
	lock_kernel();
1129
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

1143 1144 1145 1146 1147 1148
	/* Don't allow name to change at remount */
	if (opts.name && strcmp(opts.name, root->name)) {
		ret = -EINVAL;
		goto out_unlock;
	}

1149
	ret = rebind_subsystems(root, opts.subsys_bits);
1150 1151
	if (ret)
		goto out_unlock;
1152 1153

	/* (re)populate subsystem files */
1154
	cgroup_populate_dir(cgrp);
1155

1156 1157
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1158
 out_unlock:
1159
	kfree(opts.release_agent);
1160
	kfree(opts.name);
1161
	mutex_unlock(&cgroup_mutex);
1162
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1163
	unlock_kernel();
1164 1165 1166
	return ret;
}

1167
static const struct super_operations cgroup_ops = {
1168 1169 1170 1171 1172 1173
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1174 1175 1176 1177 1178 1179
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
1180 1181
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1182
}
1183

1184 1185
static void init_cgroup_root(struct cgroupfs_root *root)
{
1186
	struct cgroup *cgrp = &root->top_cgroup;
1187 1188 1189
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1190 1191
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1192
	init_cgroup_housekeeping(cgrp);
1193 1194
}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1220 1221
static int cgroup_test_super(struct super_block *sb, void *data)
{
1222
	struct cgroup_sb_opts *opts = data;
1223 1224
	struct cgroupfs_root *root = sb->s_fs_info;

1225 1226 1227
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1228

1229 1230 1231 1232 1233 1234
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1235 1236 1237 1238 1239
		return 0;

	return 1;
}

1240 1241 1242 1243
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1244
	if (!opts->subsys_bits && !opts->none)
1245 1246 1247 1248 1249 1250
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1251 1252 1253 1254
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1255
	init_cgroup_root(root);
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
	return root;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1278 1279 1280
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1281 1282 1283 1284 1285 1286
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1287
	BUG_ON(!opts->subsys_bits && !opts->none);
1288 1289 1290 1291 1292

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1293 1294
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
1331
	struct cgroupfs_root *root;
1332 1333
	int ret = 0;
	struct super_block *sb;
1334
	struct cgroupfs_root *new_root;
1335 1336

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1337
	mutex_lock(&cgroup_mutex);
1338
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1339
	mutex_unlock(&cgroup_mutex);
1340 1341
	if (ret)
		goto out_err;
1342

1343 1344 1345 1346 1347 1348 1349 1350
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
		goto out_err;
1351
	}
1352
	opts.new_root = new_root;
1353

1354 1355
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1356
	if (IS_ERR(sb)) {
1357
		ret = PTR_ERR(sb);
1358
		cgroup_drop_root(opts.new_root);
1359
		goto out_err;
1360 1361
	}

1362 1363 1364 1365 1366
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1367
		struct cgroup *root_cgrp = &root->top_cgroup;
1368
		struct inode *inode;
1369
		struct cgroupfs_root *existing_root;
1370
		int i;
1371 1372 1373 1374 1375 1376

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1377
		inode = sb->s_root->d_inode;
1378

1379
		mutex_lock(&inode->i_mutex);
1380 1381
		mutex_lock(&cgroup_mutex);

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
		if (strlen(root->name)) {
			/* Check for name clashes with existing mounts */
			for_each_active_root(existing_root) {
				if (!strcmp(existing_root->name, root->name)) {
					ret = -EBUSY;
					mutex_unlock(&cgroup_mutex);
					mutex_unlock(&inode->i_mutex);
					goto drop_new_super;
				}
			}
		}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1408 1409 1410
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1411
			mutex_unlock(&inode->i_mutex);
1412 1413
			free_cg_links(&tmp_cg_links);
			goto drop_new_super;
1414 1415 1416 1417 1418 1419
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1420
		root_count++;
1421

1422
		sb->s_root->d_fsdata = root_cgrp;
1423 1424
		root->top_cgroup.dentry = sb->s_root;

1425 1426 1427
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1428 1429 1430
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1431
			struct css_set *cg;
1432

1433 1434
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1435
		}
1436 1437 1438 1439
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1440 1441
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1442 1443
		BUG_ON(root->number_of_cgroups != 1);

1444
		cgroup_populate_dir(root_cgrp);
1445
		mutex_unlock(&cgroup_mutex);
1446
		mutex_unlock(&inode->i_mutex);
1447 1448 1449 1450 1451
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1452
		cgroup_drop_root(opts.new_root);
1453 1454
	}

1455
	simple_set_mnt(mnt, sb);
1456 1457
	kfree(opts.release_agent);
	kfree(opts.name);
1458
	return 0;
1459 1460

 drop_new_super:
1461
	deactivate_locked_super(sb);
1462 1463 1464 1465
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);

1466 1467 1468 1469 1470
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1471
	struct cgroup *cgrp = &root->top_cgroup;
1472
	int ret;
K
KOSAKI Motohiro 已提交
1473 1474
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1475 1476 1477 1478

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1479 1480
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1481 1482 1483 1484 1485 1486 1487 1488

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1489 1490 1491 1492 1493
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1494 1495 1496

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1497
		list_del(&link->cg_link_list);
1498
		list_del(&link->cgrp_link_list);
1499 1500 1501 1502
		kfree(link);
	}
	write_unlock(&css_set_lock);

1503 1504 1505 1506
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1507

1508 1509 1510
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1511
	cgroup_drop_root(root);
1512 1513 1514 1515 1516 1517 1518 1519
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1520
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1521 1522 1523 1524 1525 1526 1527 1528 1529
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1530 1531 1532 1533 1534 1535
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1536 1537 1538
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1539
 */
1540
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1541 1542
{
	char *start;
1543
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1544

1545
	if (!dentry || cgrp == dummytop) {
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1558
		int len = dentry->d_name.len;
1559 1560
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1561 1562 1563
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1564
			break;
1565
		dentry = rcu_dereference(cgrp->dentry);
1566
		if (!cgrp->parent)
1567 1568 1569 1570 1571 1572 1573 1574 1575
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

L
Li Zefan 已提交
1576 1577 1578 1579
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1580
 *
L
Li Zefan 已提交
1581 1582
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1583
 */
1584
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1585 1586
{
	int retval = 0;
1587
	struct cgroup_subsys *ss, *failed_ss = NULL;
1588
	struct cgroup *oldcgrp;
1589
	struct css_set *cg;
1590
	struct css_set *newcg;
1591
	struct cgroupfs_root *root = cgrp->root;
1592 1593

	/* Nothing to do if the task is already in that cgroup */
1594
	oldcgrp = task_cgroup_from_root(tsk, root);
1595
	if (cgrp == oldcgrp)
1596 1597 1598 1599
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1600
			retval = ss->can_attach(ss, cgrp, tsk, false);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
			if (retval) {
				/*
				 * Remember on which subsystem the can_attach()
				 * failed, so that we only call cancel_attach()
				 * against the subsystems whose can_attach()
				 * succeeded. (See below)
				 */
				failed_ss = ss;
				goto out;
			}
1611 1612 1613
		}
	}

1614 1615 1616 1617
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1618 1619 1620 1621
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1622
	newcg = find_css_set(cg, cgrp);
1623
	put_css_set(cg);
1624 1625 1626 1627
	if (!newcg) {
		retval = -ENOMEM;
		goto out;
	}
1628

1629 1630 1631
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1632
		put_css_set(newcg);
1633 1634
		retval = -ESRCH;
		goto out;
1635
	}
1636
	rcu_assign_pointer(tsk->cgroups, newcg);
1637 1638
	task_unlock(tsk);

1639 1640 1641 1642 1643 1644 1645 1646
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1647
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1648
		if (ss->attach)
1649
			ss->attach(ss, cgrp, oldcgrp, tsk, false);
1650
	}
1651
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1652
	synchronize_rcu();
1653
	put_css_set(cg);
1654 1655 1656 1657 1658

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1659
	cgroup_wakeup_rmdir_waiter(cgrp);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
out:
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss)
				/*
				 * This subsystem was the one that failed the
				 * can_attach() check earlier, so we don't need
				 * to call cancel_attach() against it or any
				 * remaining subsystems.
				 */
				break;
			if (ss->cancel_attach)
				ss->cancel_attach(ss, cgrp, tsk, false);
		}
	}
	return retval;
1676 1677 1678
}

/*
1679 1680
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1681
 */
1682
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1683 1684
{
	struct task_struct *tsk;
1685
	const struct cred *cred = current_cred(), *tcred;
1686 1687 1688 1689
	int ret;

	if (pid) {
		rcu_read_lock();
1690
		tsk = find_task_by_vpid(pid);
1691 1692 1693 1694 1695
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1696 1697 1698 1699 1700
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1701 1702
			return -EACCES;
		}
1703 1704
		get_task_struct(tsk);
		rcu_read_unlock();
1705 1706 1707 1708 1709
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1710
	ret = cgroup_attach_task(cgrp, tsk);
1711 1712 1713 1714
	put_task_struct(tsk);
	return ret;
}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1725 1726 1727 1728
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1729 1730
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1731
 */
1732
bool cgroup_lock_live_group(struct cgroup *cgrp)
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1749
	cgroup_unlock();
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1760
	cgroup_unlock();
1761 1762 1763
	return 0;
}

1764 1765 1766
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1767
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1768 1769 1770
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1771
{
1772
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1784
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
1785
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1786 1787 1788 1789
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
1790
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1791 1792 1793 1794
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1795 1796 1797 1798 1799
	if (!retval)
		retval = nbytes;
	return retval;
}

1800 1801 1802 1803 1804
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1805
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1820 1821 1822 1823
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1824 1825

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
1826
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
1827 1828
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1829
out:
1830 1831 1832 1833 1834
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1835 1836 1837 1838
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1839
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1840

1841
	if (cgroup_is_removed(cgrp))
1842
		return -ENODEV;
1843
	if (cft->write)
1844
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1845 1846
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1847 1848
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1849 1850 1851 1852
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1853
	return -EINVAL;
1854 1855
}

1856 1857 1858 1859
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1860
{
1861
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1862
	u64 val = cft->read_u64(cgrp, cft);
1863 1864 1865 1866 1867
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1868 1869 1870 1871 1872
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1873
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1874 1875 1876 1877 1878 1879
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1880 1881 1882 1883
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1884
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1885

1886
	if (cgroup_is_removed(cgrp))
1887 1888 1889
		return -ENODEV;

	if (cft->read)
1890
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1891 1892
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1893 1894
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1895 1896 1897
	return -EINVAL;
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1918 1919 1920 1921 1922 1923 1924 1925
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1926 1927
}

1928
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1929 1930 1931 1932 1933 1934
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

1935
static const struct file_operations cgroup_seqfile_operations = {
1936
	.read = seq_read,
1937
	.write = cgroup_file_write,
1938 1939 1940 1941
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1942 1943 1944 1945 1946 1947 1948 1949 1950
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1951

1952
	if (cft->read_map || cft->read_seq_string) {
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

1994
static const struct file_operations cgroup_file_operations = {
1995 1996 1997 1998 1999 2000 2001
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

2002
static const struct inode_operations cgroup_dir_inode_operations = {
2003 2004 2005 2006 2007 2008
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

L
Li Zefan 已提交
2009
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2010 2011
				struct super_block *sb)
{
A
Al Viro 已提交
2012
	static const struct dentry_operations cgroup_dops = {
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
2036
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
2048 2049 2050 2051 2052
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
2053
 */
2054
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
2055
				mode_t mode)
2056 2057 2058 2059
{
	struct dentry *parent;
	int error = 0;

2060 2061
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2062
	if (!error) {
2063
		dentry->d_fsdata = cgrp;
2064
		inc_nlink(parent->d_inode);
2065
		rcu_assign_pointer(cgrp->dentry, dentry);
2066 2067 2068 2069 2070 2071 2072
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

2100
int cgroup_add_file(struct cgroup *cgrp,
2101 2102 2103
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
2104
	struct dentry *dir = cgrp->dentry;
2105 2106
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
2107
	mode_t mode;
2108 2109

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2110
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2111 2112 2113 2114 2115 2116 2117
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
2118 2119
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
2120
						cgrp->root->sb);
2121 2122 2123 2124 2125 2126 2127 2128
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

2129
int cgroup_add_files(struct cgroup *cgrp,
2130 2131 2132 2133 2134 2135
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
2136
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2137 2138 2139 2140 2141 2142
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
2143 2144 2145 2146 2147 2148
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2149
int cgroup_task_count(const struct cgroup *cgrp)
2150 2151
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2152
	struct cg_cgroup_link *link;
2153 2154

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2155
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2156
		count += atomic_read(&link->cg->refcount);
2157 2158
	}
	read_unlock(&css_set_lock);
2159 2160 2161
	return count;
}

2162 2163 2164 2165
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2166
static void cgroup_advance_iter(struct cgroup *cgrp,
2167
				struct cgroup_iter *it)
2168 2169 2170 2171 2172 2173 2174 2175
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2176
		if (l == &cgrp->css_sets) {
2177 2178 2179
			it->cg_link = NULL;
			return;
		}
2180
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2181 2182 2183 2184 2185 2186
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2187 2188 2189 2190 2191 2192 2193 2194 2195
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
2196
static void cgroup_enable_task_cg_lists(void)
2197 2198 2199 2200 2201 2202
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
2203 2204 2205 2206 2207 2208
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2209 2210 2211 2212 2213 2214
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

2215
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2216 2217 2218 2219 2220 2221
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2222 2223 2224
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2225
	read_lock(&css_set_lock);
2226 2227
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2228 2229
}

2230
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2231 2232 2233 2234
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2235
	struct cg_cgroup_link *link;
2236 2237 2238 2239 2240 2241 2242

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2243 2244
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2245 2246
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2247
		cgroup_advance_iter(cgrp, it);
2248 2249 2250 2251 2252 2253
	} else {
		it->task = l;
	}
	return res;
}

2254
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2255 2256 2257 2258
{
	read_unlock(&css_set_lock);
}

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2396
			struct task_struct *q = heap->ptrs[i];
2397
			if (i == 0) {
2398 2399
				latest_time = q->start_time;
				latest_task = q;
2400 2401
			}
			/* Process the task per the caller's callback */
2402 2403
			scan->process_task(q, scan);
			put_task_struct(q);
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2419
/*
2420
 * Stuff for reading the 'tasks'/'procs' files.
2421 2422 2423 2424 2425 2426 2427 2428
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}
static void *pidlist_resize(void *p, int newcount)
{
	void *newlist;
	/* note: if new alloc fails, old p will still be valid either way */
	if (is_vmalloc_addr(p)) {
		newlist = vmalloc(newcount * sizeof(pid_t));
		if (!newlist)
			return NULL;
		memcpy(newlist, p, newcount * sizeof(pid_t));
		vfree(p);
	} else {
		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
	}
	return newlist;
}

2465
/*
2466 2467 2468 2469
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * If the new stripped list is sufficiently smaller and there's enough memory
 * to allocate a new buffer, will let go of the unneeded memory. Returns the
 * number of unique elements.
2470
 */
2471 2472 2473
/* is the size difference enough that we should re-allocate the array? */
#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
static int pidlist_uniq(pid_t **p, int length)
2474
{
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	int src, dest = 1;
	pid_t *list = *p;
	pid_t *newlist;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	/*
	 * if the length difference is large enough, we want to allocate a
	 * smaller buffer to save memory. if this fails due to out of memory,
	 * we'll just stay with what we've got.
	 */
	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2504
		newlist = pidlist_resize(list, dest);
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
		if (newlist)
			*p = newlist;
	}
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
	struct pid_namespace *ns = get_pid_ns(current->nsproxy->pid_ns);
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* found a matching list - drop the extra refcount */
			put_pid_ns(ns);
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		put_pid_ns(ns);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
	l->key.ns = ns;
	l->use_count = 0; /* don't increment here */
	l->list = NULL;
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

2564 2565 2566
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
2567 2568
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
2569 2570 2571 2572
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
2573 2574
	struct cgroup_iter it;
	struct task_struct *tsk;
2575 2576 2577 2578 2579 2580 2581 2582 2583
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
2584
	array = pidlist_allocate(length);
2585 2586 2587
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
2588 2589
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2590
		if (unlikely(n == length))
2591
			break;
2592
		/* get tgid or pid for procs or tasks file respectively */
2593 2594 2595 2596
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
2597 2598
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
2599
	}
2600
	cgroup_iter_end(cgrp, &it);
2601 2602 2603
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
2604
	if (type == CGROUP_FILE_PROCS)
2605
		length = pidlist_uniq(&array, length);
2606 2607
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
2608
		pidlist_free(array);
2609
		return -ENOMEM;
2610
	}
2611
	/* store array, freeing old if necessary - lock already held */
2612
	pidlist_free(l->list);
2613 2614 2615 2616
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
2617
	*lp = l;
2618
	return 0;
2619 2620
}

B
Balbir Singh 已提交
2621
/**
L
Li Zefan 已提交
2622
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2623 2624 2625
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2626 2627 2628
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2629 2630 2631 2632
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2633
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2634 2635
	struct cgroup_iter it;
	struct task_struct *tsk;
2636

B
Balbir Singh 已提交
2637
	/*
2638 2639
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2640
	 */
2641 2642
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2643 2644 2645
		 goto err;

	ret = 0;
2646
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2647

2648 2649
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2669
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2670 2671 2672 2673 2674

err:
	return ret;
}

2675

2676
/*
2677
 * seq_file methods for the tasks/procs files. The seq_file position is the
2678
 * next pid to display; the seq_file iterator is a pointer to the pid
2679
 * in the cgroup->l->list array.
2680
 */
2681

2682
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2683
{
2684 2685 2686 2687 2688 2689
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
2690
	struct cgroup_pidlist *l = s->private;
2691 2692 2693
	int index = 0, pid = *pos;
	int *iter;

2694
	down_read(&l->mutex);
2695
	if (pid) {
2696
		int end = l->length;
S
Stephen Rothwell 已提交
2697

2698 2699
		while (index < end) {
			int mid = (index + end) / 2;
2700
			if (l->list[mid] == pid) {
2701 2702
				index = mid;
				break;
2703
			} else if (l->list[mid] <= pid)
2704 2705 2706 2707 2708 2709
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
2710
	if (index >= l->length)
2711 2712
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
2713
	iter = l->list + index;
2714 2715 2716 2717
	*pos = *iter;
	return iter;
}

2718
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2719
{
2720 2721
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
2722 2723
}

2724
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2725
{
2726 2727 2728
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

2742
static int cgroup_pidlist_show(struct seq_file *s, void *v)
2743 2744 2745
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2746

2747 2748 2749 2750 2751 2752 2753 2754 2755
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
2756 2757
};

2758
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2759
{
2760 2761 2762 2763 2764 2765 2766
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
2767 2768 2769
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
2770 2771 2772
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
2773
		pidlist_free(l->list);
2774 2775 2776 2777
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
2778
	}
2779
	mutex_unlock(&l->owner->pidlist_mutex);
2780
	up_write(&l->mutex);
2781 2782
}

2783
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2784
{
2785
	struct cgroup_pidlist *l;
2786 2787
	if (!(file->f_mode & FMODE_READ))
		return 0;
2788 2789 2790 2791 2792 2793
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
2794 2795 2796
	return seq_release(inode, file);
}

2797
static const struct file_operations cgroup_pidlist_operations = {
2798 2799 2800
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
2801
	.release = cgroup_pidlist_release,
2802 2803
};

2804
/*
2805 2806 2807
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
2808
 */
2809
/* helper function for the two below it */
2810
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
2811
{
2812
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2813
	struct cgroup_pidlist *l;
2814
	int retval;
2815

2816
	/* Nothing to do for write-only files */
2817 2818 2819
	if (!(file->f_mode & FMODE_READ))
		return 0;

2820
	/* have the array populated */
2821
	retval = pidlist_array_load(cgrp, type, &l);
2822 2823 2824 2825
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
2826

2827
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
2828
	if (retval) {
2829
		cgroup_release_pid_array(l);
2830
		return retval;
2831
	}
2832
	((struct seq_file *)file->private_data)->private = l;
2833 2834
	return 0;
}
2835 2836
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2837
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
2838 2839 2840
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
2841
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
2842
}
2843

2844
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2845 2846
					    struct cftype *cft)
{
2847
	return notify_on_release(cgrp);
2848 2849
}

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2862 2863 2864
/*
 * for the common functions, 'private' gives the type of file
 */
2865 2866
/* for hysterical raisins, we can't put this on the older files */
#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
2867 2868 2869 2870
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2871
		.write_u64 = cgroup_tasks_write,
2872
		.release = cgroup_pidlist_release,
L
Li Zefan 已提交
2873
		.mode = S_IRUGO | S_IWUSR,
2874
	},
2875 2876 2877 2878 2879 2880 2881
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
		.open = cgroup_procs_open,
		/* .write_u64 = cgroup_procs_write, TODO */
		.release = cgroup_pidlist_release,
		.mode = S_IRUGO,
	},
2882 2883
	{
		.name = "notify_on_release",
2884
		.read_u64 = cgroup_read_notify_on_release,
2885
		.write_u64 = cgroup_write_notify_on_release,
2886 2887 2888 2889 2890
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2891 2892 2893
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2894 2895
};

2896
static int cgroup_populate_dir(struct cgroup *cgrp)
2897 2898 2899 2900 2901
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2902
	cgroup_clear_directory(cgrp->dentry);
2903

2904
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2905 2906 2907
	if (err < 0)
		return err;

2908 2909
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2910 2911 2912
			return err;
	}

2913 2914
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2915 2916
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
2928 2929 2930 2931 2932 2933

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2934
			       struct cgroup *cgrp)
2935
{
2936
	css->cgroup = cgrp;
P
Paul Menage 已提交
2937
	atomic_set(&css->refcnt, 1);
2938
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
2939
	css->id = NULL;
2940
	if (cgrp == dummytop)
2941
		set_bit(CSS_ROOT, &css->flags);
2942 2943
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2944 2945
}

2946 2947 2948 2949 2950
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

B
Ben Blum 已提交
2951 2952 2953 2954
	/*
	 * No worry about a race with rebind_subsystems that might mess up the
	 * locking order, since both parties are under cgroup_mutex.
	 */
2955 2956
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
2957 2958
		if (ss == NULL)
			continue;
2959
		if (ss->root == root)
2960
			mutex_lock(&ss->hierarchy_mutex);
2961 2962 2963 2964 2965 2966 2967 2968 2969
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
2970 2971
		if (ss == NULL)
			continue;
2972 2973 2974 2975 2976
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2977
/*
L
Li Zefan 已提交
2978 2979 2980 2981
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2982
 *
L
Li Zefan 已提交
2983
 * Must be called with the mutex on the parent inode held
2984 2985
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
2986
			     mode_t mode)
2987
{
2988
	struct cgroup *cgrp;
2989 2990 2991 2992 2993
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2994 2995
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

3007
	init_cgroup_housekeeping(cgrp);
3008

3009 3010 3011
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
3012

3013 3014 3015
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

3016
	for_each_subsys(root, ss) {
3017
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3018

3019 3020 3021 3022
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
3023
		init_cgroup_css(css, ss, cgrp);
3024 3025 3026
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
K
KAMEZAWA Hiroyuki 已提交
3027
				goto err_destroy;
3028
		}
K
KAMEZAWA Hiroyuki 已提交
3029
		/* At error, ->destroy() callback has to free assigned ID. */
3030 3031
	}

3032
	cgroup_lock_hierarchy(root);
3033
	list_add(&cgrp->sibling, &cgrp->parent->children);
3034
	cgroup_unlock_hierarchy(root);
3035 3036
	root->number_of_cgroups++;

3037
	err = cgroup_create_dir(cgrp, dentry, mode);
3038 3039 3040 3041
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
3042
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3043

3044
	err = cgroup_populate_dir(cgrp);
3045 3046 3047
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
3048
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3049 3050 3051 3052 3053

	return 0;

 err_remove:

3054
	cgroup_lock_hierarchy(root);
3055
	list_del(&cgrp->sibling);
3056
	cgroup_unlock_hierarchy(root);
3057 3058 3059 3060 3061
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
3062 3063
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
3064 3065 3066 3067 3068 3069 3070
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

3071
	kfree(cgrp);
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

3083
static int cgroup_has_css_refs(struct cgroup *cgrp)
3084 3085 3086
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
3087
	 * cgroup, if the css refcount is also 1, then there should
3088 3089 3090 3091 3092 3093 3094
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
B
Ben Blum 已提交
3095 3096 3097 3098 3099
	/*
	 * We won't need to lock the subsys array, because the subsystems
	 * we're concerned about aren't going anywhere since our cgroup root
	 * has a reference on them.
	 */
3100 3101 3102
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
B
Ben Blum 已提交
3103 3104
		/* Skip subsystems not present or not in this hierarchy */
		if (ss == NULL || ss->root != cgrp->root)
3105
			continue;
3106
		css = cgrp->subsys[ss->subsys_id];
3107 3108 3109 3110 3111 3112
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
3113
		if (css && (atomic_read(&css->refcnt) > 1))
3114 3115 3116 3117 3118
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
3134
		while (1) {
P
Paul Menage 已提交
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
3148 3149 3150 3151
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

3172 3173
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
3174
	struct cgroup *cgrp = dentry->d_fsdata;
3175 3176
	struct dentry *d;
	struct cgroup *parent;
3177 3178
	DEFINE_WAIT(wait);
	int ret;
3179 3180

	/* the vfs holds both inode->i_mutex already */
3181
again:
3182
	mutex_lock(&cgroup_mutex);
3183
	if (atomic_read(&cgrp->count) != 0) {
3184 3185 3186
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3187
	if (!list_empty(&cgrp->children)) {
3188 3189 3190
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3191
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
3192

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

3204
	/*
L
Li Zefan 已提交
3205 3206
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
3207
	 */
3208
	ret = cgroup_call_pre_destroy(cgrp);
3209 3210
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3211
		return ret;
3212
	}
3213

3214 3215
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
3216
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3217
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3218 3219 3220
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3221 3222 3223
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
3224 3225 3226 3227 3228 3229
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
3230 3231 3232 3233 3234 3235 3236 3237 3238
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3239

3240
	spin_lock(&release_list_lock);
3241 3242 3243
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
3244
	spin_unlock(&release_list_lock);
3245 3246 3247

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
3248
	list_del(&cgrp->sibling);
3249 3250
	cgroup_unlock_hierarchy(cgrp->root);

3251 3252
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
3253 3254 3255 3256 3257
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

3258
	set_bit(CGRP_RELEASABLE, &parent->flags);
3259 3260
	check_for_release(parent);

3261 3262 3263 3264
	mutex_unlock(&cgroup_mutex);
	return 0;
}

3265
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3266 3267
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
3268 3269

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3270 3271

	/* Create the top cgroup state for this subsystem */
3272
	list_add(&ss->sibling, &rootnode.subsys_list);
3273 3274 3275 3276 3277 3278
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
3279
	/* Update the init_css_set to contain a subsys
3280
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
3281 3282 3283
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3284 3285 3286

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
3287 3288 3289 3290 3291
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

3292
	mutex_init(&ss->hierarchy_mutex);
3293
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3294 3295 3296 3297
	ss->active = 1;
}

/**
L
Li Zefan 已提交
3298 3299 3300 3301
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
3302 3303 3304 3305
 */
int __init cgroup_init_early(void)
{
	int i;
3306
	atomic_set(&init_css_set.refcount, 1);
3307 3308
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
3309
	INIT_HLIST_NODE(&init_css_set.hlist);
3310
	css_set_count = 1;
3311
	init_cgroup_root(&rootnode);
3312 3313 3314 3315
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
3316
	init_css_set_link.cgrp = dummytop;
3317
	list_add(&init_css_set_link.cgrp_link_list,
3318 3319 3320
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
3321

3322 3323 3324
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

B
Ben Blum 已提交
3325 3326
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3327 3328 3329 3330 3331 3332 3333
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
3334
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
3346 3347 3348 3349
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
3350 3351 3352 3353 3354
 */
int __init cgroup_init(void)
{
	int err;
	int i;
3355
	struct hlist_head *hhead;
3356 3357 3358 3359

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
3360

B
Ben Blum 已提交
3361 3362
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3363 3364 3365
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
3366 3367
		if (ss->use_id)
			cgroup_subsys_init_idr(ss);
3368 3369
	}

3370 3371 3372
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
3373
	BUG_ON(!init_root_id(&rootnode));
3374 3375 3376 3377
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
3378
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3379

3380
out:
3381 3382 3383
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

3384 3385
	return err;
}
3386

3387 3388 3389 3390 3391 3392
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
3393
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

3423
	for_each_active_root(root) {
3424
		struct cgroup_subsys *ss;
3425
		struct cgroup *cgrp;
3426 3427
		int count = 0;

3428
		seq_printf(m, "%d:", root->hierarchy_id);
3429 3430
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3431 3432 3433
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
3434
		seq_putc(m, ':');
3435
		cgrp = task_cgroup_from_root(tsk, root);
3436
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

3458
const struct file_operations proc_cgroup_operations = {
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

3470
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
3471 3472 3473 3474 3475
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
3476 3477 3478
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3479 3480
		if (ss == NULL)
			continue;
3481 3482
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
3483
			   ss->root->number_of_cgroups, !ss->disabled);
3484 3485 3486 3487 3488 3489 3490
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
3491
	return single_open(file, proc_cgroupstats_show, NULL);
3492 3493
}

3494
static const struct file_operations proc_cgroupstats_operations = {
3495 3496 3497 3498 3499 3500
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

3501 3502
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
3503
 * @child: pointer to task_struct of forking parent process.
3504 3505 3506 3507 3508 3509
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
3510
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
3511 3512
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
3513 3514 3515 3516 3517 3518
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
3519 3520 3521 3522 3523
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
3524 3525 3526
}

/**
L
Li Zefan 已提交
3527 3528 3529 3530 3531 3532
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
3533 3534 3535 3536 3537
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
B
Ben Blum 已提交
3538 3539 3540 3541 3542 3543
		/*
		 * forkexit callbacks are only supported for builtin
		 * subsystems, and the builtin section of the subsys array is
		 * immutable, so we don't need to lock the subsys array here.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3544 3545 3546 3547 3548 3549 3550
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

3551
/**
L
Li Zefan 已提交
3552 3553 3554 3555 3556 3557 3558 3559
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
3560 3561 3562 3563
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
3564
		task_lock(child);
3565 3566
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
3567
		task_unlock(child);
3568 3569 3570
		write_unlock(&css_set_lock);
	}
}
3571 3572 3573
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
3574
 * @run_callback: run exit callbacks?
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3603 3604
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
3605 3606 3607 3608
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
3609
	struct css_set *cg;
3610 3611

	if (run_callbacks && need_forkexit_callback) {
B
Ben Blum 已提交
3612 3613 3614 3615 3616
		/*
		 * modular subsystems can't use callbacks, so no need to lock
		 * the subsys array
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3617 3618 3619 3620 3621
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

3635 3636
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
3637 3638
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
3639
	task_unlock(tsk);
3640
	if (cg)
3641
		put_css_set_taskexit(cg);
3642
}
3643 3644

/**
L
Li Zefan 已提交
3645 3646 3647
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
3648
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
3649 3650 3651 3652
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
3653
 */
3654 3655
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
3679
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
3680 3681 3682 3683
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3684

3685
	/* Keep the cgroup alive */
3686 3687 3688
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
3689
	get_css_set(cg);
3690
	task_unlock(tsk);
3691

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3703
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3704 3705 3706 3707 3708 3709
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3710
	ret = vfs_mkdir(inode, dentry, 0755);
3711
	child = __d_cgrp(dentry);
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3728
		put_css_set(cg);
3729

3730
		deactivate_super(root->sb);
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3747
	ret = cgroup_attach_task(child, tsk);
3748 3749 3750 3751
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3752 3753

	mutex_lock(&cgroup_mutex);
3754
	put_css_set(cg);
3755
	mutex_unlock(&cgroup_mutex);
3756
	deactivate_super(root->sb);
3757 3758 3759
	return ret;
}

L
Li Zefan 已提交
3760
/**
3761
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
3762
 * @cgrp: the cgroup in question
3763
 * @task: the task in question
L
Li Zefan 已提交
3764
 *
3765 3766
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
3767 3768 3769 3770 3771 3772
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3773
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3774 3775 3776 3777
{
	int ret;
	struct cgroup *target;

3778
	if (cgrp == dummytop)
3779 3780
		return 1;

3781
	target = task_cgroup_from_root(task, cgrp->root);
3782 3783 3784
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3785 3786
	return ret;
}
3787

3788
static void check_for_release(struct cgroup *cgrp)
3789 3790 3791
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3792 3793
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3794 3795 3796 3797 3798
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3799 3800 3801
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3802 3803 3804 3805 3806 3807 3808 3809
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

3810 3811
/* Caller must verify that the css is not for root cgroup */
void __css_put(struct cgroup_subsys_state *css, int count)
3812
{
3813
	struct cgroup *cgrp = css->cgroup;
3814
	int val;
3815
	rcu_read_lock();
3816
	val = atomic_sub_return(count, &css->refcnt);
3817
	if (val == 1) {
3818 3819 3820 3821
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
3822
		cgroup_wakeup_rmdir_waiter(cgrp);
3823 3824
	}
	rcu_read_unlock();
3825
	WARN_ON_ONCE(val < 1);
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3859
		char *pathbuf = NULL, *agentbuf = NULL;
3860
		struct cgroup *cgrp = list_entry(release_list.next,
3861 3862
						    struct cgroup,
						    release_list);
3863
		list_del_init(&cgrp->release_list);
3864 3865
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3866 3867 3868 3869 3870 3871 3872
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3873 3874

		i = 0;
3875 3876
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3891 3892 3893
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3894 3895 3896 3897 3898
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3899 3900 3901 3902 3903 3904 3905 3906 3907

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
B
Ben Blum 已提交
3908 3909 3910 3911 3912
		/*
		 * cgroup_disable, being at boot time, can't know about module
		 * subsystems, so we don't worry about them.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}

bool css_is_ancestor(struct cgroup_subsys_state *child,
3953
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
{
	struct css_id *newid;
	struct cgroup_subsys_state *rootcss;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	rootcss = init_css_set.subsys[ss->subsys_id];
	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
						   struct cgroup *cont)
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
4216 4217
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */