setup_64.c 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * 
 * Common boot and setup code.
 *
 * Copyright (C) 2001 PPC64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#undef DEBUG

#include <linux/module.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/utsname.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
34
#include <linux/bootmem.h>
35
#include <linux/pci.h>
36
#include <linux/lockdep.h>
Y
Yinghai Lu 已提交
37
#include <linux/memblock.h>
38
#include <asm/io.h>
39
#include <asm/kdump.h>
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/time.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/system.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/firmware.h>
P
Paul Mackerras 已提交
61
#include <asm/xmon.h>
D
David Gibson 已提交
62
#include <asm/udbg.h>
63
#include <asm/kexec.h>
64
#include <asm/mmu_context.h>
65
#include <asm/code-patching.h>
66

S
Stephen Rothwell 已提交
67 68
#include "setup.h"

69 70 71 72 73 74 75
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

int boot_cpuid = 0;
76
int __initdata boot_cpu_count;
77 78
u64 ppc64_pft_size;

79 80 81 82
/* Pick defaults since we might want to patch instructions
 * before we've read this from the device tree.
 */
struct ppc64_caches ppc64_caches = {
83 84 85 86
	.dline_size = 0x40,
	.log_dline_size = 6,
	.iline_size = 0x40,
	.log_iline_size = 6
87
};
88 89 90 91 92 93 94 95 96 97 98 99
EXPORT_SYMBOL_GPL(ppc64_caches);

/*
 * These are used in binfmt_elf.c to put aux entries on the stack
 * for each elf executable being started.
 */
int dcache_bsize;
int icache_bsize;
int ucache_bsize;

#ifdef CONFIG_SMP

100
static char *smt_enabled_cmdline;
101 102 103 104 105

/* Look for ibm,smt-enabled OF option */
static void check_smt_enabled(void)
{
	struct device_node *dn;
106
	const char *smt_option;
107

108 109
	/* Default to enabling all threads */
	smt_enabled_at_boot = threads_per_core;
110

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	/* Allow the command line to overrule the OF option */
	if (smt_enabled_cmdline) {
		if (!strcmp(smt_enabled_cmdline, "on"))
			smt_enabled_at_boot = threads_per_core;
		else if (!strcmp(smt_enabled_cmdline, "off"))
			smt_enabled_at_boot = 0;
		else {
			long smt;
			int rc;

			rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
			if (!rc)
				smt_enabled_at_boot =
					min(threads_per_core, (int)smt);
		}
	} else {
		dn = of_find_node_by_path("/options");
		if (dn) {
			smt_option = of_get_property(dn, "ibm,smt-enabled",
						     NULL);

			if (smt_option) {
				if (!strcmp(smt_option, "on"))
					smt_enabled_at_boot = threads_per_core;
				else if (!strcmp(smt_option, "off"))
					smt_enabled_at_boot = 0;
			}

			of_node_put(dn);
		}
	}
142 143 144 145 146
}

/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
147
	smt_enabled_cmdline = p;
148 149 150 151
	return 0;
}
early_param("smt-enabled", early_smt_enabled);

P
Paul Mackerras 已提交
152 153
#else
#define check_smt_enabled()
154 155 156 157 158 159 160 161
#endif /* CONFIG_SMP */

/*
 * Early initialization entry point. This is called by head.S
 * with MMU translation disabled. We rely on the "feature" of
 * the CPU that ignores the top 2 bits of the address in real
 * mode so we can access kernel globals normally provided we
 * only toy with things in the RMO region. From here, we do
Y
Yinghai Lu 已提交
162
 * some early parsing of the device-tree to setup out MEMBLOCK
163 164 165 166 167 168 169 170 171 172 173 174 175 176
 * data structures, and allocate & initialize the hash table
 * and segment tables so we can start running with translation
 * enabled.
 *
 * It is this function which will call the probe() callback of
 * the various platform types and copy the matching one to the
 * global ppc_md structure. Your platform can eventually do
 * some very early initializations from the probe() routine, but
 * this is not recommended, be very careful as, for example, the
 * device-tree is not accessible via normal means at this point.
 */

void __init early_setup(unsigned long dt_ptr)
{
177 178
	/* -------- printk is _NOT_ safe to use here ! ------- */

179
	/* Identify CPU type */
180
	identify_cpu(0, mfspr(SPRN_PVR));
181

182
	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
183 184
	initialise_paca(&boot_paca, 0);
	setup_paca(&boot_paca);
185

186 187 188
	/* Initialize lockdep early or else spinlocks will blow */
	lockdep_init();

189 190
	/* -------- printk is now safe to use ------- */

191 192 193
	/* Enable early debugging if any specified (see udbg.h) */
	udbg_early_init();

194
 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
195 196

	/*
197 198 199
	 * Do early initialization using the flattened device
	 * tree, such as retrieving the physical memory map or
	 * calculating/retrieving the hash table size.
200 201 202
	 */
	early_init_devtree(__va(dt_ptr));

203
	/* Now we know the logical id of our boot cpu, setup the paca. */
204
	setup_paca(&paca[boot_cpuid]);
205 206 207 208

	/* Fix up paca fields required for the boot cpu */
	get_paca()->cpu_start = 1;

209 210
	/* Probe the machine type */
	probe_machine();
211

212
	setup_kdump_trampoline();
213

214 215
	DBG("Found, Initializing memory management...\n");

216 217
	/* Initialize the hash table or TLB handling */
	early_init_mmu();
218 219 220 221

	DBG(" <- early_setup()\n");
}

222 223 224
#ifdef CONFIG_SMP
void early_setup_secondary(void)
{
225
	/* Mark interrupts enabled in PACA */
226
	get_paca()->soft_enabled = 0;
227

228 229
	/* Initialize the hash table or TLB handling */
	early_init_mmu_secondary();
230 231 232
}

#endif /* CONFIG_SMP */
233

234 235 236
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
void smp_release_cpus(void)
{
237
	unsigned long *ptr;
238
	int i;
239 240 241 242 243 244 245

	DBG(" -> smp_release_cpus()\n");

	/* All secondary cpus are spinning on a common spinloop, release them
	 * all now so they can start to spin on their individual paca
	 * spinloops. For non SMP kernels, the secondary cpus never get out
	 * of the common spinloop.
246
	 */
247

248 249
	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
			- PHYSICAL_START);
250
	*ptr = __pa(generic_secondary_smp_init);
251 252 253 254 255 256 257 258 259 260

	/* And wait a bit for them to catch up */
	for (i = 0; i < 100000; i++) {
		mb();
		HMT_low();
		if (boot_cpu_count == 0)
			break;
		udelay(1);
	}
	DBG("boot_cpu_count = %d\n", boot_cpu_count);
261 262 263 264 265

	DBG(" <- smp_release_cpus()\n");
}
#endif /* CONFIG_SMP || CONFIG_KEXEC */

266
/*
267 268
 * Initialize some remaining members of the ppc64_caches and systemcfg
 * structures
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
 * (at least until we get rid of them completely). This is mostly some
 * cache informations about the CPU that will be used by cache flush
 * routines and/or provided to userland
 */
static void __init initialize_cache_info(void)
{
	struct device_node *np;
	unsigned long num_cpus = 0;

	DBG(" -> initialize_cache_info()\n");

	for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
		num_cpus += 1;

		/* We're assuming *all* of the CPUs have the same
		 * d-cache and i-cache sizes... -Peter
		 */

		if ( num_cpus == 1 ) {
288
			const u32 *sizep, *lsizep;
289 290 291 292
			u32 size, lsize;

			size = 0;
			lsize = cur_cpu_spec->dcache_bsize;
293
			sizep = of_get_property(np, "d-cache-size", NULL);
294 295
			if (sizep != NULL)
				size = *sizep;
296 297 298 299
			lsizep = of_get_property(np, "d-cache-block-size", NULL);
			/* fallback if block size missing */
			if (lsizep == NULL)
				lsizep = of_get_property(np, "d-cache-line-size", NULL);
300 301 302 303 304 305
			if (lsizep != NULL)
				lsize = *lsizep;
			if (sizep == 0 || lsizep == 0)
				DBG("Argh, can't find dcache properties ! "
				    "sizep: %p, lsizep: %p\n", sizep, lsizep);

306 307
			ppc64_caches.dsize = size;
			ppc64_caches.dline_size = lsize;
308 309 310 311 312
			ppc64_caches.log_dline_size = __ilog2(lsize);
			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;

			size = 0;
			lsize = cur_cpu_spec->icache_bsize;
313
			sizep = of_get_property(np, "i-cache-size", NULL);
314 315
			if (sizep != NULL)
				size = *sizep;
316 317 318
			lsizep = of_get_property(np, "i-cache-block-size", NULL);
			if (lsizep == NULL)
				lsizep = of_get_property(np, "i-cache-line-size", NULL);
319 320 321 322 323 324
			if (lsizep != NULL)
				lsize = *lsizep;
			if (sizep == 0 || lsizep == 0)
				DBG("Argh, can't find icache properties ! "
				    "sizep: %p, lsizep: %p\n", sizep, lsizep);

325 326
			ppc64_caches.isize = size;
			ppc64_caches.iline_size = lsize;
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
			ppc64_caches.log_iline_size = __ilog2(lsize);
			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
		}
	}

	DBG(" <- initialize_cache_info()\n");
}


/*
 * Do some initial setup of the system.  The parameters are those which 
 * were passed in from the bootloader.
 */
void __init setup_system(void)
{
	DBG(" -> setup_system()\n");

344 345
	/* Apply the CPUs-specific and firmware specific fixups to kernel
	 * text (nop out sections not relevant to this CPU or this firmware)
346
	 */
347
	do_feature_fixups(cur_cpu_spec->cpu_features,
348
			  &__start___ftr_fixup, &__stop___ftr_fixup);
349 350
	do_feature_fixups(cur_cpu_spec->mmu_features,
			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
351 352
	do_feature_fixups(powerpc_firmware_features,
			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
K
Kumar Gala 已提交
353 354
	do_lwsync_fixups(cur_cpu_spec->cpu_features,
			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
355

356 357 358 359 360 361 362
	/*
	 * Unflatten the device-tree passed by prom_init or kexec
	 */
	unflatten_device_tree();

	/*
	 * Fill the ppc64_caches & systemcfg structures with informations
363
 	 * retrieved from the device-tree.
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	 */
	initialize_cache_info();

#ifdef CONFIG_PPC_RTAS
	/*
	 * Initialize RTAS if available
	 */
	rtas_initialize();
#endif /* CONFIG_PPC_RTAS */

	/*
	 * Check if we have an initrd provided via the device-tree
	 */
	check_for_initrd();

	/*
	 * Do some platform specific early initializations, that includes
	 * setting up the hash table pointers. It also sets up some interrupt-mapping
	 * related options that will be used by finish_device_tree()
	 */
384 385
	if (ppc_md.init_early)
		ppc_md.init_early();
386

387 388 389 390 391 392 393
 	/*
	 * We can discover serial ports now since the above did setup the
	 * hash table management for us, thus ioremap works. We do that early
	 * so that further code can be debugged
	 */
	find_legacy_serial_ports();

394 395 396 397 398
	/*
	 * Register early console
	 */
	register_early_udbg_console();

399 400 401 402
	/*
	 * Initialize xmon
	 */
	xmon_setup();
403

P
Paul Mackerras 已提交
404
	smp_setup_cpu_maps();
405
	check_smt_enabled();
406

407
#ifdef CONFIG_SMP
408 409 410 411
	/* Release secondary cpus out of their spinloops at 0x60 now that
	 * we can map physical -> logical CPU ids
	 */
	smp_release_cpus();
412
#endif
413

414
	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
415 416

	printk("-----------------------------------------------------\n");
417
	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
Y
Yinghai Lu 已提交
418
	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
419 420 421 422 423 424
	if (ppc64_caches.dline_size != 0x80)
		printk("ppc64_caches.dcache_line_size = 0x%x\n",
		       ppc64_caches.dline_size);
	if (ppc64_caches.iline_size != 0x80)
		printk("ppc64_caches.icache_line_size = 0x%x\n",
		       ppc64_caches.iline_size);
425
#ifdef CONFIG_PPC_STD_MMU_64
426 427
	if (htab_address)
		printk("htab_address                  = 0x%p\n", htab_address);
428
	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
429
#endif /* CONFIG_PPC_STD_MMU_64 */
430
	if (PHYSICAL_START > 0)
431 432
		printk("physical_start                = 0x%llx\n",
		       (unsigned long long)PHYSICAL_START);
433 434 435 436 437
	printk("-----------------------------------------------------\n");

	DBG(" <- setup_system()\n");
}

438 439 440 441 442 443
/* This returns the limit below which memory accesses to the linear
 * mapping are guarnateed not to cause a TLB or SLB miss. This is
 * used to allocate interrupt or emergency stacks for which our
 * exception entry path doesn't deal with being interrupted.
 */
static u64 safe_stack_limit(void)
444
{
445 446 447 448 449 450 451 452 453
#ifdef CONFIG_PPC_BOOK3E
	/* Freescale BookE bolts the entire linear mapping */
	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
		return linear_map_top;
	/* Other BookE, we assume the first GB is bolted */
	return 1ul << 30;
#else
	/* BookS, the first segment is bolted */
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
454 455
		return 1UL << SID_SHIFT_1T;
	return 1UL << SID_SHIFT;
456
#endif
457 458
}

459 460
static void __init irqstack_early_init(void)
{
461
	u64 limit = safe_stack_limit();
462 463 464
	unsigned int i;

	/*
465 466
	 * Interrupt stacks must be in the first segment since we
	 * cannot afford to take SLB misses on them.
467
	 */
468
	for_each_possible_cpu(i) {
469
		softirq_ctx[i] = (struct thread_info *)
Y
Yinghai Lu 已提交
470
			__va(memblock_alloc_base(THREAD_SIZE,
471
					    THREAD_SIZE, limit));
472
		hardirq_ctx[i] = (struct thread_info *)
Y
Yinghai Lu 已提交
473
			__va(memblock_alloc_base(THREAD_SIZE,
474
					    THREAD_SIZE, limit));
475 476 477
	}
}

478 479 480
#ifdef CONFIG_PPC_BOOK3E
static void __init exc_lvl_early_init(void)
{
481 482 483
	extern unsigned int interrupt_base_book3e;
	extern unsigned int exc_debug_debug_book3e;

484 485 486 487
	unsigned int i;

	for_each_possible_cpu(i) {
		critirq_ctx[i] = (struct thread_info *)
Y
Yinghai Lu 已提交
488
			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
489
		dbgirq_ctx[i] = (struct thread_info *)
Y
Yinghai Lu 已提交
490
			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
491
		mcheckirq_ctx[i] = (struct thread_info *)
Y
Yinghai Lu 已提交
492
			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
493
	}
494 495 496 497

	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
		patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
			     (unsigned long)&exc_debug_debug_book3e, 0);
498 499 500 501 502
}
#else
#define exc_lvl_early_init()
#endif

503 504 505 506 507 508
/*
 * Stack space used when we detect a bad kernel stack pointer, and
 * early in SMP boots before relocation is enabled.
 */
static void __init emergency_stack_init(void)
{
509
	u64 limit;
510 511 512 513 514 515 516 517 518 519 520
	unsigned int i;

	/*
	 * Emergency stacks must be under 256MB, we cannot afford to take
	 * SLB misses on them. The ABI also requires them to be 128-byte
	 * aligned.
	 *
	 * Since we use these as temporary stacks during secondary CPU
	 * bringup, we need to get at them in real mode. This means they
	 * must also be within the RMO region.
	 */
521
	limit = min(safe_stack_limit(), ppc64_rma_size);
522

523 524
	for_each_possible_cpu(i) {
		unsigned long sp;
Y
Yinghai Lu 已提交
525
		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
526 527 528
		sp += THREAD_SIZE;
		paca[i].emergency_sp = __va(sp);
	}
529 530 531
}

/*
532 533
 * Called into from start_kernel this initializes bootmem, which is used
 * to manage page allocation until mem_init is called.
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
 */
void __init setup_arch(char **cmdline_p)
{
	ppc64_boot_msg(0x12, "Setup Arch");

	*cmdline_p = cmd_line;

	/*
	 * Set cache line size based on type of cpu as a default.
	 * Systems with OF can look in the properties on the cpu node(s)
	 * for a possibly more accurate value.
	 */
	dcache_bsize = ppc64_caches.dline_size;
	icache_bsize = ppc64_caches.iline_size;

	/* reboot on panic */
	panic_timeout = 180;

	if (ppc_md.panic)
553
		setup_panic();
554

555
	init_mm.start_code = (unsigned long)_stext;
556 557 558 559 560
	init_mm.end_code = (unsigned long) _etext;
	init_mm.end_data = (unsigned long) _edata;
	init_mm.brk = klimit;
	
	irqstack_early_init();
561
	exc_lvl_early_init();
562 563
	emergency_stack_init();

564
#ifdef CONFIG_PPC_STD_MMU_64
565
	stabs_alloc();
566
#endif
567 568 569 570
	/* set up the bootmem stuff with available memory */
	do_init_bootmem();
	sparse_init();

571 572 573 574
#ifdef CONFIG_DUMMY_CONSOLE
	conswitchp = &dummy_con;
#endif

575 576
	if (ppc_md.setup_arch)
		ppc_md.setup_arch();
577 578

	paging_init();
579 580 581 582

	/* Initialize the MMU context management stuff */
	mmu_context_init();

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	ppc64_boot_msg(0x15, "Setup Done");
}


/* ToDo: do something useful if ppc_md is not yet setup. */
#define PPC64_LINUX_FUNCTION 0x0f000000
#define PPC64_IPL_MESSAGE 0xc0000000
#define PPC64_TERM_MESSAGE 0xb0000000

static void ppc64_do_msg(unsigned int src, const char *msg)
{
	if (ppc_md.progress) {
		char buf[128];

		sprintf(buf, "%08X\n", src);
		ppc_md.progress(buf, 0);
		snprintf(buf, 128, "%s", msg);
		ppc_md.progress(buf, 0);
	}
}

/* Print a boot progress message. */
void ppc64_boot_msg(unsigned int src, const char *msg)
{
	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
	printk("[boot]%04x %s\n", src, msg);
}

611
#ifdef CONFIG_SMP
612 613 614
#define PCPU_DYN_SIZE		()

static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
615
{
616 617 618
	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
				    __pa(MAX_DMA_ADDRESS));
}
619

620 621 622 623
static void __init pcpu_fc_free(void *ptr, size_t size)
{
	free_bootmem(__pa(ptr), size);
}
624

625 626 627 628 629 630 631 632
static int pcpu_cpu_distance(unsigned int from, unsigned int to)
{
	if (cpu_to_node(from) == cpu_to_node(to))
		return LOCAL_DISTANCE;
	else
		return REMOTE_DISTANCE;
}

633 634 635
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
void __init setup_per_cpu_areas(void)
{
	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
	size_t atom_size;
	unsigned long delta;
	unsigned int cpu;
	int rc;

	/*
	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
	 * to group units.  For larger mappings, use 1M atom which
	 * should be large enough to contain a number of units.
	 */
	if (mmu_linear_psize == MMU_PAGE_4K)
		atom_size = PAGE_SIZE;
	else
		atom_size = 1 << 20;

	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
				    pcpu_fc_alloc, pcpu_fc_free);
	if (rc < 0)
		panic("cannot initialize percpu area (err=%d)", rc);

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
660 661 662 663
	for_each_possible_cpu(cpu) {
                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
		paca[cpu].data_offset = __per_cpu_offset[cpu];
	}
664 665
}
#endif
666 667 668 669 670 671 672


#ifdef CONFIG_PPC_INDIRECT_IO
struct ppc_pci_io ppc_pci_io;
EXPORT_SYMBOL(ppc_pci_io);
#endif /* CONFIG_PPC_INDIRECT_IO */