crypto.c 67.4 KB
Newer Older
1 2 3 4 5
/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2004 Erez Zadok
 * Copyright (C) 2001-2004 Stony Brook University
6
 * Copyright (C) 2004-2007 International Business Machines Corp.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
36
#include <linux/slab.h>
37
#include <asm/unaligned.h>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
#include "ecryptfs_kernel.h"

static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);

/**
 * ecryptfs_to_hex
 * @dst: Buffer to take hex character representation of contents of
 *       src; must be at least of size (src_size * 2)
 * @src: Buffer to be converted to a hex string respresentation
 * @src_size: number of bytes to convert
 */
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
	int x;

	for (x = 0; x < src_size; x++)
		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}

/**
 * ecryptfs_from_hex
 * @dst: Buffer to take the bytes from src hex; must be at least of
 *       size (src_size / 2)
 * @src: Buffer to be converted from a hex string respresentation to raw value
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 */
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
	int x;
	char tmp[3] = { 0, };

	for (x = 0; x < dst_size; x++) {
		tmp[0] = src[x * 2];
		tmp[1] = src[x * 2 + 1];
		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
	}
}

/**
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 * @dst: Pointer to 16 bytes of allocated memory
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @src: Data to be md5'd
 * @len: Length of @src
 *
 * Uses the allocated crypto context that crypt_stat references to
 * generate the MD5 sum of the contents of src.
 */
static int ecryptfs_calculate_md5(char *dst,
				  struct ecryptfs_crypt_stat *crypt_stat,
				  char *src, int len)
{
	struct scatterlist sg;
100 101 102 103 104
	struct hash_desc desc = {
		.tfm = crypt_stat->hash_tfm,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
105

106
	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107
	sg_init_one(&sg, (u8 *)src, len);
108 109 110 111 112
	if (!desc.tfm) {
		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
					     CRYPTO_ALG_ASYNC);
		if (IS_ERR(desc.tfm)) {
			rc = PTR_ERR(desc.tfm);
113
			ecryptfs_printk(KERN_ERR, "Error attempting to "
114 115
					"allocate crypto context; rc = [%d]\n",
					rc);
116 117
			goto out;
		}
118
		crypt_stat->hash_tfm = desc.tfm;
119
	}
120 121 122 123
	rc = crypto_hash_init(&desc);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error initializing crypto hash; rc = [%d]\n",
124
		       __func__, rc);
125 126 127 128 129 130
		goto out;
	}
	rc = crypto_hash_update(&desc, &sg, len);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error updating crypto hash; rc = [%d]\n",
131
		       __func__, rc);
132 133 134 135 136 137
		goto out;
	}
	rc = crypto_hash_final(&desc, dst);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error finalizing crypto hash; rc = [%d]\n",
138
		       __func__, rc);
139 140
		goto out;
	}
141
out:
142
	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 144 145
	return rc;
}

146 147 148
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
						  char *cipher_name,
						  char *chaining_modifier)
149 150 151 152 153 154 155 156
{
	int cipher_name_len = strlen(cipher_name);
	int chaining_modifier_len = strlen(chaining_modifier);
	int algified_name_len;
	int rc;

	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157
	if (!(*algified_name)) {
158 159 160 161 162 163 164 165 166 167
		rc = -ENOMEM;
		goto out;
	}
	snprintf((*algified_name), algified_name_len, "%s(%s)",
		 chaining_modifier, cipher_name);
	rc = 0;
out:
	return rc;
}

168 169 170 171
/**
 * ecryptfs_derive_iv
 * @iv: destination for the derived iv vale
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
M
Michael Halcrow 已提交
172
 * @offset: Offset of the extent whose IV we are to derive
173 174 175 176 177 178
 *
 * Generate the initialization vector from the given root IV and page
 * offset.
 *
 * Returns zero on success; non-zero on error.
 */
179 180
int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
		       loff_t offset)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];
	char src[ECRYPTFS_MAX_IV_BYTES + 16];

	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
	}
	/* TODO: It is probably secure to just cast the least
	 * significant bits of the root IV into an unsigned long and
	 * add the offset to that rather than go through all this
	 * hashing business. -Halcrow */
	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
	memset((src + crypt_stat->iv_bytes), 0, 16);
M
Michael Halcrow 已提交
196
	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "source:\n");
		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
				    (crypt_stat->iv_bytes + 16));
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating IV for a page\n");
		goto out;
	}
	memcpy(iv, dst, crypt_stat->iv_bytes);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
	}
out:
	return rc;
}

/**
 * ecryptfs_init_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Initialize the crypt_stat structure.
 */
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 228
	INIT_LIST_HEAD(&crypt_stat->keysig_list);
	mutex_init(&crypt_stat->keysig_list_mutex);
229 230
	mutex_init(&crypt_stat->cs_mutex);
	mutex_init(&crypt_stat->cs_tfm_mutex);
231
	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232
	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233 234 235
}

/**
236
 * ecryptfs_destroy_crypt_stat
237 238 239 240
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Releases all memory associated with a crypt_stat struct.
 */
241
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242
{
243 244
	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;

245
	if (crypt_stat->tfm)
246
		crypto_free_blkcipher(crypt_stat->tfm);
247 248
	if (crypt_stat->hash_tfm)
		crypto_free_hash(crypt_stat->hash_tfm);
249 250 251 252 253
	list_for_each_entry_safe(key_sig, key_sig_tmp,
				 &crypt_stat->keysig_list, crypt_stat_list) {
		list_del(&key_sig->crypt_stat_list);
		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
	}
254 255 256
	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}

257
void ecryptfs_destroy_mount_crypt_stat(
258 259
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;

	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
		return;
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
				 &mount_crypt_stat->global_auth_tok_list,
				 mount_crypt_stat_list) {
		list_del(&auth_tok->mount_crypt_stat_list);
		if (auth_tok->global_auth_tok_key
		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
			key_put(auth_tok->global_auth_tok_key);
		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
	}
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}

/**
 * virt_to_scatterlist
 * @addr: Virtual address
 * @size: Size of data; should be an even multiple of the block size
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 *      the number of scatterlist structs required in array
 * @sg_size: Max array size
 *
 * Fills in a scatterlist array with page references for a passed
 * virtual address.
 *
 * Returns the number of scatterlist structs in array used
 */
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
			int sg_size)
{
	int i = 0;
	struct page *pg;
	int offset;
	int remainder_of_page;

299 300
	sg_init_table(sg, sg_size);

301 302 303
	while (size > 0 && i < sg_size) {
		pg = virt_to_page(addr);
		offset = offset_in_page(addr);
304 305
		if (sg)
			sg_set_page(&sg[i], pg, 0, offset);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
		remainder_of_page = PAGE_CACHE_SIZE - offset;
		if (size >= remainder_of_page) {
			if (sg)
				sg[i].length = remainder_of_page;
			addr += remainder_of_page;
			size -= remainder_of_page;
		} else {
			if (sg)
				sg[i].length = size;
			addr += size;
			size = 0;
		}
		i++;
	}
	if (size > 0)
		return -ENOMEM;
	return i;
}

/**
 * encrypt_scatterlist
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 * @dest_sg: Destination of encrypted data
 * @src_sg: Data to be encrypted
 * @size: Length of data to be encrypted
 * @iv: iv to use during encryption
 *
 * Returns the number of bytes encrypted; negative value on error
 */
static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
340 341 342 343 344
	struct blkcipher_desc desc = {
		.tfm = crypt_stat->tfm,
		.info = iv,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
345 346 347
	int rc = 0;

	BUG_ON(!crypt_stat || !crypt_stat->tfm
348
	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
349
	if (unlikely(ecryptfs_verbosity > 0)) {
350
		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
351 352 353 354 355 356
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
	/* Consider doing this once, when the file is opened */
	mutex_lock(&crypt_stat->cs_tfm_mutex);
357 358 359 360 361
	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
					     crypt_stat->key_size);
		crypt_stat->flags |= ECRYPTFS_KEY_SET;
	}
362 363 364 365 366 367 368 369
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
				rc);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		rc = -EINVAL;
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
370
	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
371 372 373 374 375
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
out:
	return rc;
}

376 377 378 379 380
/**
 * ecryptfs_lower_offset_for_extent
 *
 * Convert an eCryptfs page index into a lower byte offset
 */
A
Adrian Bunk 已提交
381 382
static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
					     struct ecryptfs_crypt_stat *crypt_stat)
383
{
384 385
	(*offset) = ecryptfs_lower_header_size(crypt_stat)
		    + (crypt_stat->extent_size * extent_num);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
}

/**
 * ecryptfs_encrypt_extent
 * @enc_extent_page: Allocated page into which to encrypt the data in
 *                   @page
 * @crypt_stat: crypt_stat containing cryptographic context for the
 *              encryption operation
 * @page: Page containing plaintext data extent to encrypt
 * @extent_offset: Page extent offset for use in generating IV
 *
 * Encrypts one extent of data.
 *
 * Return zero on success; non-zero otherwise
 */
static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
				   struct ecryptfs_crypt_stat *crypt_stat,
				   struct page *page,
				   unsigned long extent_offset)
{
M
Michael Halcrow 已提交
406
	loff_t extent_base;
407 408 409
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

M
Michael Halcrow 已提交
410
	extent_base = (((loff_t)page->index)
411 412 413 414
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
	if (rc) {
415 416 417
		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
			"extent [0x%.16llx]; rc = [%d]\n",
			(unsigned long long)(extent_base + extent_offset), rc);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
		goto out;
	}
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
				"with iv:\n");
		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
				"encryption:\n");
		ecryptfs_dump_hex((char *)
				  (page_address(page)
				   + (extent_offset * crypt_stat->extent_size)),
				  8);
	}
	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
					  page, (extent_offset
						 * crypt_stat->extent_size),
					  crypt_stat->extent_size, extent_iv);
	if (rc < 0) {
		printk(KERN_ERR "%s: Error attempting to encrypt page with "
		       "page->index = [%ld], extent_offset = [%ld]; "
438
		       "rc = [%d]\n", __func__, page->index, extent_offset,
439 440 441 442 443
		       rc);
		goto out;
	}
	rc = 0;
	if (unlikely(ecryptfs_verbosity > 0)) {
444 445 446
		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16llx]; "
			"rc = [%d]\n",
			(unsigned long long)(extent_base + extent_offset), rc);
447 448 449 450 451 452 453 454
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
				"encryption:\n");
		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
	}
out:
	return rc;
}

455 456
/**
 * ecryptfs_encrypt_page
457 458 459
 * @page: Page mapped from the eCryptfs inode for the file; contains
 *        decrypted content that needs to be encrypted (to a temporary
 *        page; not in place) and written out to the lower file
460 461 462 463 464 465 466 467 468 469 470
 *
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
471
int ecryptfs_encrypt_page(struct page *page)
472
{
473
	struct inode *ecryptfs_inode;
474
	struct ecryptfs_crypt_stat *crypt_stat;
475 476
	char *enc_extent_virt;
	struct page *enc_extent_page = NULL;
477
	loff_t extent_offset;
478
	int rc = 0;
479 480 481 482

	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
483
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
484 485
	enc_extent_page = alloc_page(GFP_USER);
	if (!enc_extent_page) {
486 487 488 489 490
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
		goto out;
	}
491
	enc_extent_virt = kmap(enc_extent_page);
492 493 494 495 496 497 498
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
		loff_t offset;

		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
					     extent_offset);
499
		if (rc) {
500
			printk(KERN_ERR "%s: Error encrypting extent; "
501
			       "rc = [%d]\n", __func__, rc);
502 503
			goto out;
		}
504
		ecryptfs_lower_offset_for_extent(
M
Michael Halcrow 已提交
505 506 507
			&offset, ((((loff_t)page->index)
				   * (PAGE_CACHE_SIZE
				      / crypt_stat->extent_size))
508 509 510
				  + extent_offset), crypt_stat);
		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
					  offset, crypt_stat->extent_size);
511
		if (rc < 0) {
512 513 514 515
			ecryptfs_printk(KERN_ERR, "Error attempting "
					"to write lower page; rc = [%d]"
					"\n", rc);
			goto out;
516 517
		}
	}
518
	rc = 0;
519
out:
520 521 522 523
	if (enc_extent_page) {
		kunmap(enc_extent_page);
		__free_page(enc_extent_page);
	}
524 525 526 527 528 529 530 531
	return rc;
}

static int ecryptfs_decrypt_extent(struct page *page,
				   struct ecryptfs_crypt_stat *crypt_stat,
				   struct page *enc_extent_page,
				   unsigned long extent_offset)
{
M
Michael Halcrow 已提交
532
	loff_t extent_base;
533 534 535
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

M
Michael Halcrow 已提交
536
	extent_base = (((loff_t)page->index)
537 538 539
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
540
	if (rc) {
541 542 543
		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
			"extent [0x%.16llx]; rc = [%d]\n",
			(unsigned long long)(extent_base + extent_offset), rc);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
		goto out;
	}
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
				"with iv:\n");
		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
				"decryption:\n");
		ecryptfs_dump_hex((char *)
				  (page_address(enc_extent_page)
				   + (extent_offset * crypt_stat->extent_size)),
				  8);
	}
	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
					  (extent_offset
					   * crypt_stat->extent_size),
					  enc_extent_page, 0,
					  crypt_stat->extent_size, extent_iv);
	if (rc < 0) {
		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
		       "page->index = [%ld], extent_offset = [%ld]; "
565
		       "rc = [%d]\n", __func__, page->index, extent_offset,
566 567 568 569 570
		       rc);
		goto out;
	}
	rc = 0;
	if (unlikely(ecryptfs_verbosity > 0)) {
571 572 573
		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16llx]; "
			"rc = [%d]\n",
			(unsigned long long)(extent_base + extent_offset), rc);
574 575 576 577 578
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
				"decryption:\n");
		ecryptfs_dump_hex((char *)(page_address(page)
					   + (extent_offset
					      * crypt_stat->extent_size)), 8);
579 580 581 582 583 584 585
	}
out:
	return rc;
}

/**
 * ecryptfs_decrypt_page
586 587 588
 * @page: Page mapped from the eCryptfs inode for the file; data read
 *        and decrypted from the lower file will be written into this
 *        page
589 590 591 592 593 594 595 596 597 598 599
 *
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
600
int ecryptfs_decrypt_page(struct page *page)
601
{
602
	struct inode *ecryptfs_inode;
603
	struct ecryptfs_crypt_stat *crypt_stat;
604 605
	char *enc_extent_virt;
	struct page *enc_extent_page = NULL;
606
	unsigned long extent_offset;
607 608
	int rc = 0;

609 610 611
	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
612
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
613 614
	enc_extent_page = alloc_page(GFP_USER);
	if (!enc_extent_page) {
615
		rc = -ENOMEM;
616 617
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
618
		goto out;
619
	}
620
	enc_extent_virt = kmap(enc_extent_page);
621 622 623 624 625 626 627 628 629 630 631 632
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
		loff_t offset;

		ecryptfs_lower_offset_for_extent(
			&offset, ((page->index * (PAGE_CACHE_SIZE
						  / crypt_stat->extent_size))
				  + extent_offset), crypt_stat);
		rc = ecryptfs_read_lower(enc_extent_virt, offset,
					 crypt_stat->extent_size,
					 ecryptfs_inode);
633
		if (rc < 0) {
634 635 636
			ecryptfs_printk(KERN_ERR, "Error attempting "
					"to read lower page; rc = [%d]"
					"\n", rc);
637
			goto out;
638
		}
639 640 641 642
		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
					     extent_offset);
		if (rc) {
			printk(KERN_ERR "%s: Error encrypting extent; "
643
			       "rc = [%d]\n", __func__, rc);
644
			goto out;
645 646 647
		}
	}
out:
648 649 650 651
	if (enc_extent_page) {
		kunmap(enc_extent_page);
		__free_page(enc_extent_page);
	}
652 653 654 655 656
	return rc;
}

/**
 * decrypt_scatterlist
657 658 659 660 661
 * @crypt_stat: Cryptographic context
 * @dest_sg: The destination scatterlist to decrypt into
 * @src_sg: The source scatterlist to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
662 663 664 665 666 667 668 669
 *
 * Returns the number of bytes decrypted; negative value on error
 */
static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
670 671 672 673 674
	struct blkcipher_desc desc = {
		.tfm = crypt_stat->tfm,
		.info = iv,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
675 676 677 678
	int rc = 0;

	/* Consider doing this once, when the file is opened */
	mutex_lock(&crypt_stat->cs_tfm_mutex);
679 680
	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
				     crypt_stat->key_size);
681 682 683 684 685 686 687 688
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
				rc);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		rc = -EINVAL;
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
689
	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
690 691 692 693 694 695 696 697 698 699 700 701 702
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
				rc);
		goto out;
	}
	rc = size;
out:
	return rc;
}

/**
 * ecryptfs_encrypt_page_offset
703 704 705 706 707 708 709
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to encrypt into
 * @dst_offset: The offset in the page to encrypt into
 * @src_page: The page to encrypt from
 * @src_offset: The offset in the page to encrypt from
 * @size: The number of bytes to encrypt
 * @iv: The initialization vector to use for the encryption
710 711 712 713 714 715 716 717 718 719 720
 *
 * Returns the number of bytes encrypted
 */
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
721 722 723
	sg_init_table(&src_sg, 1);
	sg_init_table(&dst_sg, 1);

724 725
	sg_set_page(&src_sg, src_page, size, src_offset);
	sg_set_page(&dst_sg, dst_page, size, dst_offset);
726 727 728 729 730
	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

/**
 * ecryptfs_decrypt_page_offset
731 732 733 734 735 736 737
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to decrypt into
 * @dst_offset: The offset in the page to decrypt into
 * @src_page: The page to decrypt from
 * @src_offset: The offset in the page to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
738 739 740 741 742 743 744 745 746 747 748
 *
 * Returns the number of bytes decrypted
 */
static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
749
	sg_init_table(&src_sg, 1);
750 751
	sg_set_page(&src_sg, src_page, size, src_offset);

J
Jens Axboe 已提交
752
	sg_init_table(&dst_sg, 1);
753
	sg_set_page(&dst_sg, dst_page, size, dst_offset);
J
Jens Axboe 已提交
754

755 756 757 758 759 760 761
	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

#define ECRYPTFS_MAX_SCATTERLIST_LEN 4

/**
 * ecryptfs_init_crypt_ctx
762
 * @crypt_stat: Uninitialized crypt stats structure
763 764 765 766 767 768 769 770
 *
 * Initialize the crypto context.
 *
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 * only init if needed
 */
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
771
	char *full_alg_name;
772 773 774 775 776 777 778 779
	int rc = -EINVAL;

	if (!crypt_stat->cipher) {
		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG,
			"Initializing cipher [%s]; strlen = [%d]; "
780
			"key_size_bits = [%zd]\n",
781 782 783 784 785 786 787
			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
			crypt_stat->key_size << 3);
	if (crypt_stat->tfm) {
		rc = 0;
		goto out;
	}
	mutex_lock(&crypt_stat->cs_tfm_mutex);
788 789 790
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
						    crypt_stat->cipher, "cbc");
	if (rc)
791
		goto out_unlock;
792 793 794
	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
						 CRYPTO_ALG_ASYNC);
	kfree(full_alg_name);
795 796
	if (IS_ERR(crypt_stat->tfm)) {
		rc = PTR_ERR(crypt_stat->tfm);
797
		crypt_stat->tfm = NULL;
798 799 800
		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
				"Error initializing cipher [%s]\n",
				crypt_stat->cipher);
801
		goto out_unlock;
802
	}
803
	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
804
	rc = 0;
805 806
out_unlock:
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
out:
	return rc;
}

static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
	int extent_size_tmp;

	crypt_stat->extent_mask = 0xFFFFFFFF;
	crypt_stat->extent_shift = 0;
	if (crypt_stat->extent_size == 0)
		return;
	extent_size_tmp = crypt_stat->extent_size;
	while ((extent_size_tmp & 0x01) == 0) {
		extent_size_tmp >>= 1;
		crypt_stat->extent_mask <<= 1;
		crypt_stat->extent_shift++;
	}
}

void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
	/* Default values; may be overwritten as we are parsing the
	 * packets. */
	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
	set_extent_mask_and_shift(crypt_stat);
	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
834
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
835
		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
836 837
	else {
		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
838
			crypt_stat->metadata_size =
839
				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
840
		else
841
			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
842
	}
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
}

/**
 * ecryptfs_compute_root_iv
 * @crypt_stats
 *
 * On error, sets the root IV to all 0's.
 */
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];

	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
	BUG_ON(crypt_stat->iv_bytes <= 0);
858
	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
				"cannot generate root IV\n");
		goto out;
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
				    crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating root IV\n");
		goto out;
	}
	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
	if (rc) {
		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
875
		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
876 877 878 879 880 881 882
	}
	return rc;
}

static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
883
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
884 885 886 887 888 889 890 891
	ecryptfs_compute_root_iv(crypt_stat);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
}

892 893
/**
 * ecryptfs_copy_mount_wide_flags_to_inode_flags
894 895
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
896 897 898 899 900 901 902 903 904 905 906 907
 *
 * This function propagates the mount-wide flags to individual inode
 * flags.
 */
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
908 909 910 911 912 913 914 915 916
	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
		if (mount_crypt_stat->flags
		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
		else if (mount_crypt_stat->flags
			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
	}
917 918
}

919 920 921 922 923 924 925
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct ecryptfs_global_auth_tok *global_auth_tok;
	int rc = 0;

926
	mutex_lock(&crypt_stat->keysig_list_mutex);
927
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
928

929 930 931
	list_for_each_entry(global_auth_tok,
			    &mount_crypt_stat->global_auth_tok_list,
			    mount_crypt_stat_list) {
932 933
		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
			continue;
934 935 936 937 938 939
		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
		if (rc) {
			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
			goto out;
		}
	}
940

941
out:
942 943
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
	mutex_unlock(&crypt_stat->keysig_list_mutex);
944 945 946
	return rc;
}

947 948
/**
 * ecryptfs_set_default_crypt_stat_vals
949 950
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
951 952 953 954 955 956 957
 *
 * Default values in the event that policy does not override them.
 */
static void ecryptfs_set_default_crypt_stat_vals(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
958 959
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
960 961 962
	ecryptfs_set_default_sizes(crypt_stat);
	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
963
	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
964 965 966 967 968 969
	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
	crypt_stat->mount_crypt_stat = mount_crypt_stat;
}

/**
 * ecryptfs_new_file_context
970
 * @ecryptfs_dentry: The eCryptfs dentry
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
 *
 * If the crypto context for the file has not yet been established,
 * this is where we do that.  Establishing a new crypto context
 * involves the following decisions:
 *  - What cipher to use?
 *  - What set of authentication tokens to use?
 * Here we just worry about getting enough information into the
 * authentication tokens so that we know that they are available.
 * We associate the available authentication tokens with the new file
 * via the set of signatures in the crypt_stat struct.  Later, when
 * the headers are actually written out, we may again defer to
 * userspace to perform the encryption of the session key; for the
 * foreseeable future, this will be the case with public key packets.
 *
 * Returns zero on success; non-zero otherwise
 */
int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
{
	struct ecryptfs_crypt_stat *crypt_stat =
	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
	    &ecryptfs_superblock_to_private(
		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
	int cipher_name_len;
995
	int rc = 0;
996 997

	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
998
	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
							 mount_crypt_stat);
	if (rc) {
		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
		       "to the inode key sigs; rc = [%d]\n", rc);
		goto out;
	}
	cipher_name_len =
		strlen(mount_crypt_stat->global_default_cipher_name);
	memcpy(crypt_stat->cipher,
	       mount_crypt_stat->global_default_cipher_name,
	       cipher_name_len);
	crypt_stat->cipher[cipher_name_len] = '\0';
	crypt_stat->key_size =
		mount_crypt_stat->global_default_cipher_key_size;
	ecryptfs_generate_new_key(crypt_stat);
1017 1018 1019 1020 1021
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
				"context for cipher [%s]: rc = [%d]\n",
				crypt_stat->cipher, rc);
1022
out:
1023 1024 1025 1026
	return rc;
}

/**
1027
 * ecryptfs_validate_marker - check for the ecryptfs marker
1028 1029
 * @data: The data block in which to check
 *
1030
 * Returns zero if marker found; -EINVAL if not found
1031
 */
1032
static int ecryptfs_validate_marker(char *data)
1033 1034 1035
{
	u32 m_1, m_2;

1036 1037
	m_1 = get_unaligned_be32(data);
	m_2 = get_unaligned_be32(data + 4);
1038
	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1039
		return 0;
1040 1041 1042 1043 1044
	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
			MAGIC_ECRYPTFS_MARKER);
	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1045
	return -EINVAL;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
}

struct ecryptfs_flag_map_elem {
	u32 file_flag;
	u32 local_flag;
};

/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1056
	{0x00000002, ECRYPTFS_ENCRYPTED},
1057 1058
	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1059 1060 1061 1062
};

/**
 * ecryptfs_process_flags
1063
 * @crypt_stat: The cryptographic context
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
 * @page_virt: Source data to be parsed
 * @bytes_read: Updated with the number of bytes read
 *
 * Returns zero on success; non-zero if the flag set is invalid
 */
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
				  char *page_virt, int *bytes_read)
{
	int rc = 0;
	int i;
	u32 flags;

1076
	flags = get_unaligned_be32(page_virt);
1077 1078 1079
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (flags & ecryptfs_flag_map[i].file_flag) {
1080
			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1081
		} else
1082
			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	/* Version is in top 8 bits of the 32-bit flag vector */
	crypt_stat->file_version = ((flags >> 24) & 0xFF);
	(*bytes_read) = 4;
	return rc;
}

/**
 * write_ecryptfs_marker
 * @page_virt: The pointer to in a page to begin writing the marker
 * @written: Number of bytes written
 *
 * Marker = 0x3c81b7f5
 */
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
	u32 m_1, m_2;

	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1102 1103 1104
	put_unaligned_be32(m_1, page_virt);
	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
	put_unaligned_be32(m_2, page_virt);
1105 1106 1107
	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}

1108 1109 1110
void ecryptfs_write_crypt_stat_flags(char *page_virt,
				     struct ecryptfs_crypt_stat *crypt_stat,
				     size_t *written)
1111 1112 1113 1114 1115 1116
{
	u32 flags = 0;
	int i;

	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1117
		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1118 1119 1120
			flags |= ecryptfs_flag_map[i].file_flag;
	/* Version is in top 8 bits of the 32-bit flag vector */
	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1121
	put_unaligned_be32(flags, page_virt);
1122 1123 1124 1125 1126
	(*written) = 4;
}

struct ecryptfs_cipher_code_str_map_elem {
	char cipher_str[16];
1127
	u8 cipher_code;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
};

/* Add support for additional ciphers by adding elements here. The
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 * ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
	{"aes",RFC2440_CIPHER_AES_128 },
	{"blowfish", RFC2440_CIPHER_BLOWFISH},
	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
	{"cast5", RFC2440_CIPHER_CAST_5},
	{"twofish", RFC2440_CIPHER_TWOFISH},
	{"cast6", RFC2440_CIPHER_CAST_6},
	{"aes", RFC2440_CIPHER_AES_192},
	{"aes", RFC2440_CIPHER_AES_256}
};

/**
 * ecryptfs_code_for_cipher_string
1147 1148
 * @cipher_name: The string alias for the cipher
 * @key_bytes: Length of key in bytes; used for AES code selection
1149 1150 1151
 *
 * Returns zero on no match, or the cipher code on match
 */
1152
u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1153 1154
{
	int i;
1155
	u8 code = 0;
1156 1157 1158
	struct ecryptfs_cipher_code_str_map_elem *map =
		ecryptfs_cipher_code_str_map;

1159 1160
	if (strcmp(cipher_name, "aes") == 0) {
		switch (key_bytes) {
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		case 16:
			code = RFC2440_CIPHER_AES_128;
			break;
		case 24:
			code = RFC2440_CIPHER_AES_192;
			break;
		case 32:
			code = RFC2440_CIPHER_AES_256;
		}
	} else {
		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1172
			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
				code = map[i].cipher_code;
				break;
			}
	}
	return code;
}

/**
 * ecryptfs_cipher_code_to_string
 * @str: Destination to write out the cipher name
 * @cipher_code: The code to convert to cipher name string
 *
 * Returns zero on success
 */
1187
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
{
	int rc = 0;
	int i;

	str[0] = '\0';
	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
	if (str[0] == '\0') {
		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
				"[%d]\n", cipher_code);
		rc = -EINVAL;
	}
	return rc;
}

1204
int ecryptfs_read_and_validate_header_region(struct inode *inode)
1205
{
1206 1207
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1208 1209
	int rc;

1210 1211 1212 1213 1214 1215 1216
	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
				 inode);
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
		return rc >= 0 ? -EINVAL : rc;
	rc = ecryptfs_validate_marker(marker);
	if (!rc)
		ecryptfs_i_size_init(file_size, inode);
1217 1218 1219
	return rc;
}

1220 1221 1222 1223
void
ecryptfs_write_header_metadata(char *virt,
			       struct ecryptfs_crypt_stat *crypt_stat,
			       size_t *written)
1224 1225 1226 1227
{
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1228
	header_extent_size = (u32)crypt_stat->extent_size;
1229
	num_header_extents_at_front =
1230
		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1231
	put_unaligned_be32(header_extent_size, virt);
1232
	virt += 4;
1233
	put_unaligned_be16(num_header_extents_at_front, virt);
1234 1235 1236
	(*written) = 6;
}

1237
struct kmem_cache *ecryptfs_header_cache;
1238 1239 1240

/**
 * ecryptfs_write_headers_virt
1241
 * @page_virt: The virtual address to write the headers to
1242
 * @max: The size of memory allocated at page_virt
1243 1244 1245
 * @size: Set to the number of bytes written by this function
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
 *
 * Format version: 1
 *
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 *   Data Extent 0:
 *     Lower data (CBC encrypted)
 *   Data Extent 1:
 *     Lower data (CBC encrypted)
 *   ...
 *
 * Returns zero on success
 */
1270 1271
static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
				       size_t *size,
1272 1273
				       struct ecryptfs_crypt_stat *crypt_stat,
				       struct dentry *ecryptfs_dentry)
1274 1275 1276 1277 1278 1279 1280 1281
{
	int rc;
	size_t written;
	size_t offset;

	offset = ECRYPTFS_FILE_SIZE_BYTES;
	write_ecryptfs_marker((page_virt + offset), &written);
	offset += written;
1282 1283
	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
					&written);
1284
	offset += written;
1285 1286
	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
				       &written);
1287 1288 1289
	offset += written;
	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
					      ecryptfs_dentry, &written,
1290
					      max - offset);
1291 1292 1293
	if (rc)
		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
				"set; rc = [%d]\n", rc);
1294 1295 1296 1297 1298 1299 1300
	if (size) {
		offset += written;
		*size = offset;
	}
	return rc;
}

1301
static int
1302 1303
ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
				    char *virt, size_t virt_len)
1304
{
1305
	int rc;
1306

1307
	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1308
				  0, virt_len);
1309
	if (rc < 0)
1310
		printk(KERN_ERR "%s: Error attempting to write header "
1311 1312 1313
		       "information to lower file; rc = [%d]\n", __func__, rc);
	else
		rc = 0;
1314
	return rc;
1315 1316
}

1317 1318 1319
static int
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
				 char *page_virt, size_t size)
1320 1321 1322 1323 1324
{
	int rc;

	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
			       size, 0);
1325 1326 1327
	return rc;
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
					       unsigned int order)
{
	struct page *page;

	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
	if (page)
		return (unsigned long) page_address(page);
	return 0;
}

1339
/**
1340
 * ecryptfs_write_metadata
1341
 * @ecryptfs_dentry: The eCryptfs dentry
1342 1343 1344 1345 1346 1347 1348 1349 1350
 *
 * Write the file headers out.  This will likely involve a userspace
 * callout, in which the session key is encrypted with one or more
 * public keys and/or the passphrase necessary to do the encryption is
 * retrieved via a prompt.  Exactly what happens at this point should
 * be policy-dependent.
 *
 * Returns zero on success; non-zero on error
 */
1351
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1352
{
1353 1354
	struct ecryptfs_crypt_stat *crypt_stat =
		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1355
	unsigned int order;
1356
	char *virt;
1357
	size_t virt_len;
1358
	size_t size = 0;
1359 1360
	int rc = 0;

1361 1362
	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1363
			printk(KERN_ERR "Key is invalid; bailing out\n");
1364 1365 1366 1367
			rc = -EINVAL;
			goto out;
		}
	} else {
1368
		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1369
		       __func__);
1370 1371 1372
		rc = -EINVAL;
		goto out;
	}
1373
	virt_len = crypt_stat->metadata_size;
1374
	order = get_order(virt_len);
1375
	/* Released in this function */
1376
	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1377
	if (!virt) {
1378
		printk(KERN_ERR "%s: Out of memory\n", __func__);
1379 1380 1381
		rc = -ENOMEM;
		goto out;
	}
1382
	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1383 1384
	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
					 ecryptfs_dentry);
1385
	if (unlikely(rc)) {
1386
		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1387
		       __func__, rc);
1388 1389
		goto out_free;
	}
1390
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1391 1392
		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
						      size);
1393
	else
1394 1395
		rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
							 virt_len);
1396
	if (rc) {
1397
		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1398
		       "rc = [%d]\n", __func__, rc);
1399
		goto out_free;
1400 1401
	}
out_free:
1402
	free_pages((unsigned long)virt, order);
1403 1404 1405 1406
out:
	return rc;
}

1407 1408
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1409
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1410 1411
				 char *virt, int *bytes_read,
				 int validate_header_size)
1412 1413 1414 1415 1416
{
	int rc = 0;
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1417 1418 1419
	header_extent_size = get_unaligned_be32(virt);
	virt += sizeof(__be32);
	num_header_extents_at_front = get_unaligned_be16(virt);
1420 1421
	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
				     * (size_t)header_extent_size));
1422
	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1423
	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1424
	    && (crypt_stat->metadata_size
1425
		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1426
		rc = -EINVAL;
1427
		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1428
		       crypt_stat->metadata_size);
1429 1430 1431 1432 1433 1434
	}
	return rc;
}

/**
 * set_default_header_data
1435
 * @crypt_stat: The cryptographic context
1436 1437 1438 1439 1440 1441 1442
 *
 * For version 0 file format; this function is only for backwards
 * compatibility for files created with the prior versions of
 * eCryptfs.
 */
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
1443
	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1444 1445
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
{
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
	struct ecryptfs_crypt_stat *crypt_stat;
	u64 file_size;

	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
	mount_crypt_stat =
		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
			file_size += crypt_stat->metadata_size;
	} else
		file_size = get_unaligned_be64(page_virt);
	i_size_write(inode, (loff_t)file_size);
	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
}

1465 1466
/**
 * ecryptfs_read_headers_virt
1467 1468 1469 1470
 * @page_virt: The virtual address into which to read the headers
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
 * @validate_header_size: Whether to validate the header size while reading
1471 1472 1473 1474 1475 1476 1477 1478
 *
 * Read/parse the header data. The header format is detailed in the
 * comment block for the ecryptfs_write_headers_virt() function.
 *
 * Returns zero on success
 */
static int ecryptfs_read_headers_virt(char *page_virt,
				      struct ecryptfs_crypt_stat *crypt_stat,
1479 1480
				      struct dentry *ecryptfs_dentry,
				      int validate_header_size)
1481 1482 1483 1484 1485 1486 1487 1488 1489
{
	int rc = 0;
	int offset;
	int bytes_read;

	ecryptfs_set_default_sizes(crypt_stat);
	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
		ecryptfs_dentry->d_sb)->mount_crypt_stat;
	offset = ECRYPTFS_FILE_SIZE_BYTES;
1490 1491
	rc = ecryptfs_validate_marker(page_virt + offset);
	if (rc)
1492
		goto out;
1493 1494
	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
				    &bytes_read);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
		goto out;
	}
	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
				"file version [%d] is supported by this "
				"version of eCryptfs\n",
				crypt_stat->file_version,
				ECRYPTFS_SUPPORTED_FILE_VERSION);
		rc = -EINVAL;
		goto out;
	}
	offset += bytes_read;
	if (crypt_stat->file_version >= 1) {
		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1514
					   &bytes_read, validate_header_size);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
		if (rc) {
			ecryptfs_printk(KERN_WARNING, "Error reading header "
					"metadata; rc = [%d]\n", rc);
		}
		offset += bytes_read;
	} else
		set_default_header_data(crypt_stat);
	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
				       ecryptfs_dentry);
out:
	return rc;
}

/**
1529
 * ecryptfs_read_xattr_region
1530
 * @page_virt: The vitual address into which to read the xattr data
1531
 * @ecryptfs_inode: The eCryptfs inode
1532 1533 1534
 *
 * Attempts to read the crypto metadata from the extended attribute
 * region of the lower file.
1535 1536
 *
 * Returns zero on success; non-zero on error
1537
 */
1538
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1539
{
1540 1541
	struct dentry *lower_dentry =
		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1542 1543 1544
	ssize_t size;
	int rc = 0;

1545 1546
	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1547
	if (size < 0) {
1548 1549 1550 1551
		if (unlikely(ecryptfs_verbosity > 0))
			printk(KERN_INFO "Error attempting to read the [%s] "
			       "xattr from the lower file; return value = "
			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1552 1553 1554 1555 1556 1557 1558
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

1559
int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1560
					    struct inode *inode)
1561
{
1562 1563
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1564 1565
	int rc;

1566 1567 1568 1569 1570 1571 1572 1573
	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
				     ECRYPTFS_XATTR_NAME, file_size,
				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
		return rc >= 0 ? -EINVAL : rc;
	rc = ecryptfs_validate_marker(marker);
	if (!rc)
		ecryptfs_i_size_init(file_size, inode);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	return rc;
}

/**
 * ecryptfs_read_metadata
 *
 * Common entry point for reading file metadata. From here, we could
 * retrieve the header information from the header region of the file,
 * the xattr region of the file, or some other repostory that is
 * stored separately from the file itself. The current implementation
 * supports retrieving the metadata information from the file contents
 * and from the xattr region.
1586 1587 1588
 *
 * Returns zero if valid headers found and parsed; non-zero otherwise
 */
1589
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1590 1591 1592
{
	int rc = 0;
	char *page_virt = NULL;
1593
	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1594
	struct ecryptfs_crypt_stat *crypt_stat =
1595
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1596 1597 1598
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1599

1600 1601
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
1602
	/* Read the first page from the underlying file */
1603
	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1604 1605
	if (!page_virt) {
		rc = -ENOMEM;
1606
		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1607
		       __func__);
1608 1609
		goto out;
	}
1610 1611
	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
				 ecryptfs_inode);
1612
	if (rc >= 0)
1613 1614 1615
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_VALIDATE_HEADER_SIZE);
1616
	if (rc) {
1617
		memset(page_virt, 0, PAGE_CACHE_SIZE);
1618
		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
			       "file header region or xattr region\n");
			rc = -EINVAL;
			goto out;
		}
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
			       "file xattr region either\n");
			rc = -EINVAL;
		}
		if (crypt_stat->mount_crypt_stat->flags
		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
		} else {
			printk(KERN_WARNING "Attempt to access file with "
			       "crypto metadata only in the extended attribute "
			       "region, but eCryptfs was mounted without "
			       "xattr support enabled. eCryptfs will not treat "
			       "this like an encrypted file.\n");
			rc = -EINVAL;
		}
1644 1645 1646 1647
	}
out:
	if (page_virt) {
		memset(page_virt, 0, PAGE_CACHE_SIZE);
1648
		kmem_cache_free(ecryptfs_header_cache, page_virt);
1649 1650 1651 1652
	}
	return rc;
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
/**
 * ecryptfs_encrypt_filename - encrypt filename
 *
 * CBC-encrypts the filename. We do not want to encrypt the same
 * filename with the same key and IV, which may happen with hard
 * links, so we prepend random bits to each filename.
 *
 * Returns zero on success; non-zero otherwise
 */
static int
ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
			  struct ecryptfs_crypt_stat *crypt_stat,
			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	int rc = 0;

	filename->encrypted_filename = NULL;
	filename->encrypted_filename_size = 0;
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
	    || (mount_crypt_stat && (mount_crypt_stat->flags
				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
		size_t packet_size;
		size_t remaining_bytes;

		rc = ecryptfs_write_tag_70_packet(
			NULL, NULL,
			&filename->encrypted_filename_size,
			mount_crypt_stat, NULL,
			filename->filename_size);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to get packet "
			       "size for tag 72; rc = [%d]\n", __func__,
			       rc);
			filename->encrypted_filename_size = 0;
			goto out;
		}
		filename->encrypted_filename =
			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
		if (!filename->encrypted_filename) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
M
Michael Halcrow 已提交
1693
			       "to kmalloc [%zd] bytes\n", __func__,
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
			       filename->encrypted_filename_size);
			rc = -ENOMEM;
			goto out;
		}
		remaining_bytes = filename->encrypted_filename_size;
		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
						  &remaining_bytes,
						  &packet_size,
						  mount_crypt_stat,
						  filename->filename,
						  filename->filename_size);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to generate "
			       "tag 70 packet; rc = [%d]\n", __func__,
			       rc);
			kfree(filename->encrypted_filename);
			filename->encrypted_filename = NULL;
			filename->encrypted_filename_size = 0;
			goto out;
		}
		filename->encrypted_filename_size = packet_size;
	} else {
		printk(KERN_ERR "%s: No support for requested filename "
		       "encryption method in this release\n", __func__);
1718
		rc = -EOPNOTSUPP;
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
		goto out;
	}
out:
	return rc;
}

static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
				  const char *name, size_t name_size)
{
	int rc = 0;

1730
	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1731 1732 1733 1734 1735 1736 1737 1738 1739
	if (!(*copied_name)) {
		rc = -ENOMEM;
		goto out;
	}
	memcpy((void *)(*copied_name), (void *)name, name_size);
	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
						 * in printing out the
						 * string in debug
						 * messages */
1740
	(*copied_name_size) = name_size;
1741 1742 1743 1744
out:
	return rc;
}

1745
/**
1746
 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1747
 * @key_tfm: Crypto context for key material, set by this function
1748 1749
 * @cipher_name: Name of the cipher
 * @key_size: Size of the key in bytes
1750 1751 1752 1753 1754
 *
 * Returns zero on success. Any crypto_tfm structs allocated here
 * should be released by other functions, such as on a superblock put
 * event, regardless of whether this function succeeds for fails.
 */
1755
static int
1756 1757
ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
			    char *cipher_name, size_t *key_size)
1758 1759
{
	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
D
Dan Carpenter 已提交
1760
	char *full_alg_name = NULL;
1761 1762
	int rc;

1763 1764
	*key_tfm = NULL;
	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1765
		rc = -EINVAL;
M
Michael Halcrow 已提交
1766
		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1767
		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1768 1769
		goto out;
	}
1770 1771 1772 1773 1774 1775 1776
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
						    "ecb");
	if (rc)
		goto out;
	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(*key_tfm)) {
		rc = PTR_ERR(*key_tfm);
1777
		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1778
		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1779 1780
		goto out;
	}
1781 1782 1783 1784 1785 1786
	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
	if (*key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);

		*key_size = alg->max_keysize;
	}
1787
	get_random_bytes(dummy_key, *key_size);
1788
	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1789
	if (rc) {
M
Michael Halcrow 已提交
1790
		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1791 1792
		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
		       rc);
1793 1794 1795 1796
		rc = -EINVAL;
		goto out;
	}
out:
D
Dan Carpenter 已提交
1797
	kfree(full_alg_name);
1798 1799
	return rc;
}
1800 1801

struct kmem_cache *ecryptfs_key_tfm_cache;
A
Adrian Bunk 已提交
1802
static struct list_head key_tfm_list;
1803
struct mutex key_tfm_list_mutex;
1804

1805
int __init ecryptfs_init_crypto(void)
1806 1807 1808 1809 1810 1811
{
	mutex_init(&key_tfm_list_mutex);
	INIT_LIST_HEAD(&key_tfm_list);
	return 0;
}

1812 1813 1814 1815 1816
/**
 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
 *
 * Called only at module unload time
 */
1817
int ecryptfs_destroy_crypto(void)
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
{
	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;

	mutex_lock(&key_tfm_list_mutex);
	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
				 key_tfm_list) {
		list_del(&key_tfm->key_tfm_list);
		if (key_tfm->key_tfm)
			crypto_free_blkcipher(key_tfm->key_tfm);
		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
	}
	mutex_unlock(&key_tfm_list_mutex);
	return 0;
}

int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
			 size_t key_size)
{
	struct ecryptfs_key_tfm *tmp_tfm;
	int rc = 0;

1840 1841
	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
	if (key_tfm != NULL)
		(*key_tfm) = tmp_tfm;
	if (!tmp_tfm) {
		rc = -ENOMEM;
		printk(KERN_ERR "Error attempting to allocate from "
		       "ecryptfs_key_tfm_cache\n");
		goto out;
	}
	mutex_init(&tmp_tfm->key_tfm_mutex);
	strncpy(tmp_tfm->cipher_name, cipher_name,
		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1854
	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1855
	tmp_tfm->key_size = key_size;
1856 1857 1858 1859
	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
					 tmp_tfm->cipher_name,
					 &tmp_tfm->key_size);
	if (rc) {
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
		printk(KERN_ERR "Error attempting to initialize key TFM "
		       "cipher with name = [%s]; rc = [%d]\n",
		       tmp_tfm->cipher_name, rc);
		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
		if (key_tfm != NULL)
			(*key_tfm) = NULL;
		goto out;
	}
	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
out:
	return rc;
}

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
/**
 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
 * @cipher_name: the name of the cipher to search for
 * @key_tfm: set to corresponding tfm if found
 *
 * Searches for cached key_tfm matching @cipher_name
 * Must be called with &key_tfm_list_mutex held
 * Returns 1 if found, with @key_tfm set
 * Returns 0 if not found, with @key_tfm set to NULL
 */
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
{
	struct ecryptfs_key_tfm *tmp_key_tfm;

	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
			if (key_tfm)
				(*key_tfm) = tmp_key_tfm;
			return 1;
		}
	}
	if (key_tfm)
		(*key_tfm) = NULL;
	return 0;
}

/**
 * ecryptfs_get_tfm_and_mutex_for_cipher_name
 *
 * @tfm: set to cached tfm found, or new tfm created
 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
 * @cipher_name: the name of the cipher to search for and/or add
 *
 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
 * Searches for cached item first, and creates new if not found.
 * Returns 0 on success, non-zero if adding new cipher failed
 */
1912 1913 1914 1915 1916 1917 1918 1919 1920
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
					       struct mutex **tfm_mutex,
					       char *cipher_name)
{
	struct ecryptfs_key_tfm *key_tfm;
	int rc = 0;

	(*tfm) = NULL;
	(*tfm_mutex) = NULL;
1921

1922
	mutex_lock(&key_tfm_list_mutex);
1923 1924 1925 1926 1927
	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
		if (rc) {
			printk(KERN_ERR "Error adding new key_tfm to list; "
					"rc = [%d]\n", rc);
1928 1929 1930 1931 1932 1933
			goto out;
		}
	}
	(*tfm) = key_tfm->key_tfm;
	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
out:
1934
	mutex_unlock(&key_tfm_list_mutex);
1935 1936
	return rc;
}
1937 1938 1939 1940 1941 1942 1943 1944 1945

/* 64 characters forming a 6-bit target field */
static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
						 "EFGHIJKLMNOPQRST"
						 "UVWXYZabcdefghij"
						 "klmnopqrstuvwxyz");

/* We could either offset on every reverse map or just pad some 0x00's
 * at the front here */
1946
static const unsigned char filename_rev_map[] = {
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
	0x3D, 0x3E, 0x3F
};

/**
 * ecryptfs_encode_for_filename
 * @dst: Destination location for encoded filename
 * @dst_size: Size of the encoded filename in bytes
 * @src: Source location for the filename to encode
 * @src_size: Size of the source in bytes
 */
void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
				  unsigned char *src, size_t src_size)
{
	size_t num_blocks;
	size_t block_num = 0;
	size_t dst_offset = 0;
	unsigned char last_block[3];

	if (src_size == 0) {
		(*dst_size) = 0;
		goto out;
	}
	num_blocks = (src_size / 3);
	if ((src_size % 3) == 0) {
		memcpy(last_block, (&src[src_size - 3]), 3);
	} else {
		num_blocks++;
		last_block[2] = 0x00;
		switch (src_size % 3) {
		case 1:
			last_block[0] = src[src_size - 1];
			last_block[1] = 0x00;
			break;
		case 2:
			last_block[0] = src[src_size - 2];
			last_block[1] = src[src_size - 1];
		}
	}
	(*dst_size) = (num_blocks * 4);
	if (!dst)
		goto out;
	while (block_num < num_blocks) {
		unsigned char *src_block;
		unsigned char dst_block[4];

		if (block_num == (num_blocks - 1))
			src_block = last_block;
		else
			src_block = &src[block_num * 3];
		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
		dst_block[1] = (((src_block[0] << 4) & 0x30)
				| ((src_block[1] >> 4) & 0x0F));
		dst_block[2] = (((src_block[1] << 2) & 0x3C)
				| ((src_block[2] >> 6) & 0x03));
		dst_block[3] = (src_block[2] & 0x3F);
		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
		block_num++;
	}
out:
	return;
}

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
/**
 * ecryptfs_decode_from_filename
 * @dst: If NULL, this function only sets @dst_size and returns. If
 *       non-NULL, this function decodes the encoded octets in @src
 *       into the memory that @dst points to.
 * @dst_size: Set to the size of the decoded string.
 * @src: The encoded set of octets to decode.
 * @src_size: The size of the encoded set of octets to decode.
 */
static void
ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
			      const unsigned char *src, size_t src_size)
2039 2040 2041 2042 2043 2044
{
	u8 current_bit_offset = 0;
	size_t src_byte_offset = 0;
	size_t dst_byte_offset = 0;

	if (dst == NULL) {
2045 2046 2047 2048 2049 2050
		/* Not exact; conservatively long. Every block of 4
		 * encoded characters decodes into a block of 3
		 * decoded characters. This segment of code provides
		 * the caller with the maximum amount of allocated
		 * space that @dst will need to point to in a
		 * subsequent call. */
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		(*dst_size) = (((src_size + 1) * 3) / 4);
		goto out;
	}
	while (src_byte_offset < src_size) {
		unsigned char src_byte =
				filename_rev_map[(int)src[src_byte_offset]];

		switch (current_bit_offset) {
		case 0:
			dst[dst_byte_offset] = (src_byte << 2);
			current_bit_offset = 6;
			break;
		case 6:
			dst[dst_byte_offset++] |= (src_byte >> 4);
			dst[dst_byte_offset] = ((src_byte & 0xF)
						 << 4);
			current_bit_offset = 4;
			break;
		case 4:
			dst[dst_byte_offset++] |= (src_byte >> 2);
			dst[dst_byte_offset] = (src_byte << 6);
			current_bit_offset = 2;
			break;
		case 2:
			dst[dst_byte_offset++] |= (src_byte);
			dst[dst_byte_offset] = 0;
			current_bit_offset = 0;
			break;
		}
		src_byte_offset++;
	}
	(*dst_size) = dst_byte_offset;
out:
2084
	return;
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
}

/**
 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 * @name: The plaintext name
 * @length: The length of the plaintext
 * @encoded_name: The encypted name
 *
 * Encrypts and encodes a filename into something that constitutes a
 * valid filename for a filesystem, with printable characters.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * Returns zero on success; non-zero on otherwise
 */
int ecryptfs_encrypt_and_encode_filename(
	char **encoded_name,
	size_t *encoded_name_size,
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
	const char *name, size_t name_size)
{
	size_t encoded_name_no_prefix_size;
	int rc = 0;

	(*encoded_name) = NULL;
	(*encoded_name_size) = 0;
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
	    || (mount_crypt_stat && (mount_crypt_stat->flags
				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
		struct ecryptfs_filename *filename;

		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
		if (!filename) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
2122
			       "to kzalloc [%zd] bytes\n", __func__,
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
			       sizeof(*filename));
			rc = -ENOMEM;
			goto out;
		}
		filename->filename = (char *)name;
		filename->filename_size = name_size;
		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
					       mount_crypt_stat);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to encrypt "
			       "filename; rc = [%d]\n", __func__, rc);
			kfree(filename);
			goto out;
		}
		ecryptfs_encode_for_filename(
			NULL, &encoded_name_no_prefix_size,
			filename->encrypted_filename,
			filename->encrypted_filename_size);
		if ((crypt_stat && (crypt_stat->flags
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
		    || (mount_crypt_stat
			&& (mount_crypt_stat->flags
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
			(*encoded_name_size) =
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
		else
			(*encoded_name_size) =
				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
		if (!(*encoded_name)) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
2156
			       "to kzalloc [%zd] bytes\n", __func__,
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
			       (*encoded_name_size));
			rc = -ENOMEM;
			kfree(filename->encrypted_filename);
			kfree(filename);
			goto out;
		}
		if ((crypt_stat && (crypt_stat->flags
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
		    || (mount_crypt_stat
			&& (mount_crypt_stat->flags
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
			memcpy((*encoded_name),
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
			ecryptfs_encode_for_filename(
			    ((*encoded_name)
			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
			    &encoded_name_no_prefix_size,
			    filename->encrypted_filename,
			    filename->encrypted_filename_size);
			(*encoded_name_size) =
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
			(*encoded_name)[(*encoded_name_size)] = '\0';
		} else {
2182
			rc = -EOPNOTSUPP;
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
		}
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to encode "
			       "encrypted filename; rc = [%d]\n", __func__,
			       rc);
			kfree((*encoded_name));
			(*encoded_name) = NULL;
			(*encoded_name_size) = 0;
		}
		kfree(filename->encrypted_filename);
		kfree(filename);
	} else {
		rc = ecryptfs_copy_filename(encoded_name,
					    encoded_name_size,
					    name, name_size);
	}
out:
	return rc;
}

/**
 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
 * @plaintext_name: The plaintext name
 * @plaintext_name_size: The plaintext name size
 * @ecryptfs_dir_dentry: eCryptfs directory dentry
 * @name: The filename in cipher text
 * @name_size: The cipher text name size
 *
 * Decrypts and decodes the filename.
 *
 * Returns zero on error; non-zero otherwise
 */
int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
					 size_t *plaintext_name_size,
					 struct dentry *ecryptfs_dir_dentry,
					 const char *name, size_t name_size)
{
2220 2221 2222
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2223 2224 2225 2226 2227
	char *decoded_name;
	size_t decoded_name_size;
	size_t packet_size;
	int rc = 0;

2228 2229 2230
	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2231 2232 2233 2234 2235 2236 2237
	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
		const char *orig_name = name;
		size_t orig_name_size = name_size;

		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2238 2239
		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
					      name, name_size);
2240 2241 2242
		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
		if (!decoded_name) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
M
Michael Halcrow 已提交
2243
			       "to kmalloc [%zd] bytes\n", __func__,
2244 2245 2246 2247
			       decoded_name_size);
			rc = -ENOMEM;
			goto out;
		}
2248 2249
		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
					      name, name_size);
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
						  plaintext_name_size,
						  &packet_size,
						  mount_crypt_stat,
						  decoded_name,
						  decoded_name_size);
		if (rc) {
			printk(KERN_INFO "%s: Could not parse tag 70 packet "
			       "from filename; copying through filename "
			       "as-is\n", __func__);
			rc = ecryptfs_copy_filename(plaintext_name,
						    plaintext_name_size,
						    orig_name, orig_name_size);
			goto out_free;
		}
	} else {
		rc = ecryptfs_copy_filename(plaintext_name,
					    plaintext_name_size,
					    name, name_size);
		goto out;
	}
out_free:
	kfree(decoded_name);
out:
	return rc;
}