crypto.c 56.4 KB
Newer Older
1 2 3 4 5
/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2004 Erez Zadok
 * Copyright (C) 2001-2004 Stony Brook University
6
 * Copyright (C) 2004-2007 International Business Machines Corp.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
36
#include <asm/unaligned.h>
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
#include "ecryptfs_kernel.h"

static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);

/**
 * ecryptfs_to_hex
 * @dst: Buffer to take hex character representation of contents of
 *       src; must be at least of size (src_size * 2)
 * @src: Buffer to be converted to a hex string respresentation
 * @src_size: number of bytes to convert
 */
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
	int x;

	for (x = 0; x < src_size; x++)
		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}

/**
 * ecryptfs_from_hex
 * @dst: Buffer to take the bytes from src hex; must be at least of
 *       size (src_size / 2)
 * @src: Buffer to be converted from a hex string respresentation to raw value
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 */
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
	int x;
	char tmp[3] = { 0, };

	for (x = 0; x < dst_size; x++) {
		tmp[0] = src[x * 2];
		tmp[1] = src[x * 2 + 1];
		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
	}
}

/**
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 * @dst: Pointer to 16 bytes of allocated memory
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @src: Data to be md5'd
 * @len: Length of @src
 *
 * Uses the allocated crypto context that crypt_stat references to
 * generate the MD5 sum of the contents of src.
 */
static int ecryptfs_calculate_md5(char *dst,
				  struct ecryptfs_crypt_stat *crypt_stat,
				  char *src, int len)
{
	struct scatterlist sg;
99 100 101 102 103
	struct hash_desc desc = {
		.tfm = crypt_stat->hash_tfm,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
104

105
	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
106
	sg_init_one(&sg, (u8 *)src, len);
107 108 109 110 111
	if (!desc.tfm) {
		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
					     CRYPTO_ALG_ASYNC);
		if (IS_ERR(desc.tfm)) {
			rc = PTR_ERR(desc.tfm);
112
			ecryptfs_printk(KERN_ERR, "Error attempting to "
113 114
					"allocate crypto context; rc = [%d]\n",
					rc);
115 116
			goto out;
		}
117
		crypt_stat->hash_tfm = desc.tfm;
118
	}
119 120 121 122
	rc = crypto_hash_init(&desc);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error initializing crypto hash; rc = [%d]\n",
123
		       __func__, rc);
124 125 126 127 128 129
		goto out;
	}
	rc = crypto_hash_update(&desc, &sg, len);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error updating crypto hash; rc = [%d]\n",
130
		       __func__, rc);
131 132 133 134 135 136
		goto out;
	}
	rc = crypto_hash_final(&desc, dst);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error finalizing crypto hash; rc = [%d]\n",
137
		       __func__, rc);
138 139
		goto out;
	}
140
out:
141
	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
142 143 144
	return rc;
}

145 146 147
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
						  char *cipher_name,
						  char *chaining_modifier)
148 149 150 151 152 153 154 155
{
	int cipher_name_len = strlen(cipher_name);
	int chaining_modifier_len = strlen(chaining_modifier);
	int algified_name_len;
	int rc;

	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
156
	if (!(*algified_name)) {
157 158 159 160 161 162 163 164 165 166
		rc = -ENOMEM;
		goto out;
	}
	snprintf((*algified_name), algified_name_len, "%s(%s)",
		 chaining_modifier, cipher_name);
	rc = 0;
out:
	return rc;
}

167 168 169 170
/**
 * ecryptfs_derive_iv
 * @iv: destination for the derived iv vale
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
M
Michael Halcrow 已提交
171
 * @offset: Offset of the extent whose IV we are to derive
172 173 174 175 176 177
 *
 * Generate the initialization vector from the given root IV and page
 * offset.
 *
 * Returns zero on success; non-zero on error.
 */
178 179
int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
		       loff_t offset)
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];
	char src[ECRYPTFS_MAX_IV_BYTES + 16];

	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
	}
	/* TODO: It is probably secure to just cast the least
	 * significant bits of the root IV into an unsigned long and
	 * add the offset to that rather than go through all this
	 * hashing business. -Halcrow */
	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
	memset((src + crypt_stat->iv_bytes), 0, 16);
M
Michael Halcrow 已提交
195
	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "source:\n");
		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
				    (crypt_stat->iv_bytes + 16));
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating IV for a page\n");
		goto out;
	}
	memcpy(iv, dst, crypt_stat->iv_bytes);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
	}
out:
	return rc;
}

/**
 * ecryptfs_init_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Initialize the crypt_stat structure.
 */
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 227
	INIT_LIST_HEAD(&crypt_stat->keysig_list);
	mutex_init(&crypt_stat->keysig_list_mutex);
228 229
	mutex_init(&crypt_stat->cs_mutex);
	mutex_init(&crypt_stat->cs_tfm_mutex);
230
	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
231
	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
232 233 234
}

/**
235
 * ecryptfs_destroy_crypt_stat
236 237 238 239
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Releases all memory associated with a crypt_stat struct.
 */
240
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
241
{
242 243
	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;

244
	if (crypt_stat->tfm)
245
		crypto_free_blkcipher(crypt_stat->tfm);
246 247
	if (crypt_stat->hash_tfm)
		crypto_free_hash(crypt_stat->hash_tfm);
248 249 250 251 252 253 254
	mutex_lock(&crypt_stat->keysig_list_mutex);
	list_for_each_entry_safe(key_sig, key_sig_tmp,
				 &crypt_stat->keysig_list, crypt_stat_list) {
		list_del(&key_sig->crypt_stat_list);
		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
	}
	mutex_unlock(&crypt_stat->keysig_list_mutex);
255 256 257
	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}

258
void ecryptfs_destroy_mount_crypt_stat(
259 260
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;

	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
		return;
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
				 &mount_crypt_stat->global_auth_tok_list,
				 mount_crypt_stat_list) {
		list_del(&auth_tok->mount_crypt_stat_list);
		mount_crypt_stat->num_global_auth_toks--;
		if (auth_tok->global_auth_tok_key
		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
			key_put(auth_tok->global_auth_tok_key);
		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
	}
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}

/**
 * virt_to_scatterlist
 * @addr: Virtual address
 * @size: Size of data; should be an even multiple of the block size
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 *      the number of scatterlist structs required in array
 * @sg_size: Max array size
 *
 * Fills in a scatterlist array with page references for a passed
 * virtual address.
 *
 * Returns the number of scatterlist structs in array used
 */
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
			int sg_size)
{
	int i = 0;
	struct page *pg;
	int offset;
	int remainder_of_page;

301 302
	sg_init_table(sg, sg_size);

303 304 305
	while (size > 0 && i < sg_size) {
		pg = virt_to_page(addr);
		offset = offset_in_page(addr);
306 307
		if (sg)
			sg_set_page(&sg[i], pg, 0, offset);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
		remainder_of_page = PAGE_CACHE_SIZE - offset;
		if (size >= remainder_of_page) {
			if (sg)
				sg[i].length = remainder_of_page;
			addr += remainder_of_page;
			size -= remainder_of_page;
		} else {
			if (sg)
				sg[i].length = size;
			addr += size;
			size = 0;
		}
		i++;
	}
	if (size > 0)
		return -ENOMEM;
	return i;
}

/**
 * encrypt_scatterlist
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 * @dest_sg: Destination of encrypted data
 * @src_sg: Data to be encrypted
 * @size: Length of data to be encrypted
 * @iv: iv to use during encryption
 *
 * Returns the number of bytes encrypted; negative value on error
 */
static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
342 343 344 345 346
	struct blkcipher_desc desc = {
		.tfm = crypt_stat->tfm,
		.info = iv,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
347 348 349
	int rc = 0;

	BUG_ON(!crypt_stat || !crypt_stat->tfm
350
	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351 352 353 354 355 356 357 358
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
	/* Consider doing this once, when the file is opened */
	mutex_lock(&crypt_stat->cs_tfm_mutex);
359 360 361 362 363
	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
					     crypt_stat->key_size);
		crypt_stat->flags |= ECRYPTFS_KEY_SET;
	}
364 365 366 367 368 369 370 371
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
				rc);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		rc = -EINVAL;
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
372
	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
373 374 375 376 377
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
out:
	return rc;
}

378 379 380 381 382
/**
 * ecryptfs_lower_offset_for_extent
 *
 * Convert an eCryptfs page index into a lower byte offset
 */
A
Adrian Bunk 已提交
383 384
static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
					     struct ecryptfs_crypt_stat *crypt_stat)
385
{
386
	(*offset) = (crypt_stat->num_header_bytes_at_front
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
		     + (crypt_stat->extent_size * extent_num));
}

/**
 * ecryptfs_encrypt_extent
 * @enc_extent_page: Allocated page into which to encrypt the data in
 *                   @page
 * @crypt_stat: crypt_stat containing cryptographic context for the
 *              encryption operation
 * @page: Page containing plaintext data extent to encrypt
 * @extent_offset: Page extent offset for use in generating IV
 *
 * Encrypts one extent of data.
 *
 * Return zero on success; non-zero otherwise
 */
static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
				   struct ecryptfs_crypt_stat *crypt_stat,
				   struct page *page,
				   unsigned long extent_offset)
{
M
Michael Halcrow 已提交
408
	loff_t extent_base;
409 410 411
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

M
Michael Halcrow 已提交
412
	extent_base = (((loff_t)page->index)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error attempting to "
				"derive IV for extent [0x%.16x]; "
				"rc = [%d]\n", (extent_base + extent_offset),
				rc);
		goto out;
	}
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
				"with iv:\n");
		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
				"encryption:\n");
		ecryptfs_dump_hex((char *)
				  (page_address(page)
				   + (extent_offset * crypt_stat->extent_size)),
				  8);
	}
	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
					  page, (extent_offset
						 * crypt_stat->extent_size),
					  crypt_stat->extent_size, extent_iv);
	if (rc < 0) {
		printk(KERN_ERR "%s: Error attempting to encrypt page with "
		       "page->index = [%ld], extent_offset = [%ld]; "
441
		       "rc = [%d]\n", __func__, page->index, extent_offset,
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
		       rc);
		goto out;
	}
	rc = 0;
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
				"rc = [%d]\n", (extent_base + extent_offset),
				rc);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
				"encryption:\n");
		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
	}
out:
	return rc;
}

458 459
/**
 * ecryptfs_encrypt_page
460 461 462
 * @page: Page mapped from the eCryptfs inode for the file; contains
 *        decrypted content that needs to be encrypted (to a temporary
 *        page; not in place) and written out to the lower file
463 464 465 466 467 468 469 470 471 472 473
 *
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
474
int ecryptfs_encrypt_page(struct page *page)
475
{
476
	struct inode *ecryptfs_inode;
477
	struct ecryptfs_crypt_stat *crypt_stat;
478 479
	char *enc_extent_virt;
	struct page *enc_extent_page = NULL;
480
	loff_t extent_offset;
481
	int rc = 0;
482 483 484 485

	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
486
	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
487 488
		rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
						       0, PAGE_CACHE_SIZE);
489
		if (rc)
490
			printk(KERN_ERR "%s: Error attempting to copy "
491
			       "page at index [%ld]\n", __func__,
492
			       page->index);
493 494
		goto out;
	}
495 496
	enc_extent_page = alloc_page(GFP_USER);
	if (!enc_extent_page) {
497 498 499 500 501
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
		goto out;
	}
502
	enc_extent_virt = kmap(enc_extent_page);
503 504 505 506 507 508 509
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
		loff_t offset;

		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
					     extent_offset);
510
		if (rc) {
511
			printk(KERN_ERR "%s: Error encrypting extent; "
512
			       "rc = [%d]\n", __func__, rc);
513 514
			goto out;
		}
515
		ecryptfs_lower_offset_for_extent(
M
Michael Halcrow 已提交
516 517 518
			&offset, ((((loff_t)page->index)
				   * (PAGE_CACHE_SIZE
				      / crypt_stat->extent_size))
519 520 521 522 523 524 525 526
				  + extent_offset), crypt_stat);
		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
					  offset, crypt_stat->extent_size);
		if (rc) {
			ecryptfs_printk(KERN_ERR, "Error attempting "
					"to write lower page; rc = [%d]"
					"\n", rc);
			goto out;
527 528
		}
	}
529
out:
530 531 532 533
	if (enc_extent_page) {
		kunmap(enc_extent_page);
		__free_page(enc_extent_page);
	}
534 535 536 537 538 539 540 541
	return rc;
}

static int ecryptfs_decrypt_extent(struct page *page,
				   struct ecryptfs_crypt_stat *crypt_stat,
				   struct page *enc_extent_page,
				   unsigned long extent_offset)
{
M
Michael Halcrow 已提交
542
	loff_t extent_base;
543 544 545
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

M
Michael Halcrow 已提交
546
	extent_base = (((loff_t)page->index)
547 548 549
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
550
	if (rc) {
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
		ecryptfs_printk(KERN_ERR, "Error attempting to "
				"derive IV for extent [0x%.16x]; "
				"rc = [%d]\n", (extent_base + extent_offset),
				rc);
		goto out;
	}
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
				"with iv:\n");
		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
				"decryption:\n");
		ecryptfs_dump_hex((char *)
				  (page_address(enc_extent_page)
				   + (extent_offset * crypt_stat->extent_size)),
				  8);
	}
	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
					  (extent_offset
					   * crypt_stat->extent_size),
					  enc_extent_page, 0,
					  crypt_stat->extent_size, extent_iv);
	if (rc < 0) {
		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
		       "page->index = [%ld], extent_offset = [%ld]; "
576
		       "rc = [%d]\n", __func__, page->index, extent_offset,
577 578 579 580 581 582 583 584 585 586 587 588 589
		       rc);
		goto out;
	}
	rc = 0;
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
				"rc = [%d]\n", (extent_base + extent_offset),
				rc);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
				"decryption:\n");
		ecryptfs_dump_hex((char *)(page_address(page)
					   + (extent_offset
					      * crypt_stat->extent_size)), 8);
590 591 592 593 594 595 596
	}
out:
	return rc;
}

/**
 * ecryptfs_decrypt_page
597 598 599
 * @page: Page mapped from the eCryptfs inode for the file; data read
 *        and decrypted from the lower file will be written into this
 *        page
600 601 602 603 604 605 606 607 608 609 610
 *
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
611
int ecryptfs_decrypt_page(struct page *page)
612
{
613
	struct inode *ecryptfs_inode;
614
	struct ecryptfs_crypt_stat *crypt_stat;
615 616
	char *enc_extent_virt;
	struct page *enc_extent_page = NULL;
617
	unsigned long extent_offset;
618 619
	int rc = 0;

620 621 622
	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
623
	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
624 625 626
		rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
						      PAGE_CACHE_SIZE,
						      ecryptfs_inode);
627
		if (rc)
628
			printk(KERN_ERR "%s: Error attempting to copy "
629
			       "page at index [%ld]\n", __func__,
630
			       page->index);
631
		goto out;
632
	}
633 634
	enc_extent_page = alloc_page(GFP_USER);
	if (!enc_extent_page) {
635
		rc = -ENOMEM;
636 637
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
638
		goto out;
639
	}
640
	enc_extent_virt = kmap(enc_extent_page);
641 642 643 644 645 646 647 648 649 650 651 652
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
		loff_t offset;

		ecryptfs_lower_offset_for_extent(
			&offset, ((page->index * (PAGE_CACHE_SIZE
						  / crypt_stat->extent_size))
				  + extent_offset), crypt_stat);
		rc = ecryptfs_read_lower(enc_extent_virt, offset,
					 crypt_stat->extent_size,
					 ecryptfs_inode);
653
		if (rc) {
654 655 656
			ecryptfs_printk(KERN_ERR, "Error attempting "
					"to read lower page; rc = [%d]"
					"\n", rc);
657
			goto out;
658
		}
659 660 661 662
		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
					     extent_offset);
		if (rc) {
			printk(KERN_ERR "%s: Error encrypting extent; "
663
			       "rc = [%d]\n", __func__, rc);
664
			goto out;
665 666 667
		}
	}
out:
668 669 670 671
	if (enc_extent_page) {
		kunmap(enc_extent_page);
		__free_page(enc_extent_page);
	}
672 673 674 675 676
	return rc;
}

/**
 * decrypt_scatterlist
677 678 679 680 681
 * @crypt_stat: Cryptographic context
 * @dest_sg: The destination scatterlist to decrypt into
 * @src_sg: The source scatterlist to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
682 683 684 685 686 687 688 689
 *
 * Returns the number of bytes decrypted; negative value on error
 */
static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
690 691 692 693 694
	struct blkcipher_desc desc = {
		.tfm = crypt_stat->tfm,
		.info = iv,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
695 696 697 698
	int rc = 0;

	/* Consider doing this once, when the file is opened */
	mutex_lock(&crypt_stat->cs_tfm_mutex);
699 700
	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
				     crypt_stat->key_size);
701 702 703 704 705 706 707 708
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
				rc);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		rc = -EINVAL;
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
709
	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
710 711 712 713 714 715 716 717 718 719 720 721 722
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
				rc);
		goto out;
	}
	rc = size;
out:
	return rc;
}

/**
 * ecryptfs_encrypt_page_offset
723 724 725 726 727 728 729
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to encrypt into
 * @dst_offset: The offset in the page to encrypt into
 * @src_page: The page to encrypt from
 * @src_offset: The offset in the page to encrypt from
 * @size: The number of bytes to encrypt
 * @iv: The initialization vector to use for the encryption
730 731 732 733 734 735 736 737 738 739 740
 *
 * Returns the number of bytes encrypted
 */
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
741 742 743
	sg_init_table(&src_sg, 1);
	sg_init_table(&dst_sg, 1);

744 745
	sg_set_page(&src_sg, src_page, size, src_offset);
	sg_set_page(&dst_sg, dst_page, size, dst_offset);
746 747 748 749 750
	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

/**
 * ecryptfs_decrypt_page_offset
751 752 753 754 755 756 757
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to decrypt into
 * @dst_offset: The offset in the page to decrypt into
 * @src_page: The page to decrypt from
 * @src_offset: The offset in the page to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
758 759 760 761 762 763 764 765 766 767 768
 *
 * Returns the number of bytes decrypted
 */
static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
769
	sg_init_table(&src_sg, 1);
770 771
	sg_set_page(&src_sg, src_page, size, src_offset);

J
Jens Axboe 已提交
772
	sg_init_table(&dst_sg, 1);
773
	sg_set_page(&dst_sg, dst_page, size, dst_offset);
J
Jens Axboe 已提交
774

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

#define ECRYPTFS_MAX_SCATTERLIST_LEN 4

/**
 * ecryptfs_init_crypt_ctx
 * @crypt_stat: Uninitilized crypt stats structure
 *
 * Initialize the crypto context.
 *
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 * only init if needed
 */
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
791
	char *full_alg_name;
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	int rc = -EINVAL;

	if (!crypt_stat->cipher) {
		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG,
			"Initializing cipher [%s]; strlen = [%d]; "
			"key_size_bits = [%d]\n",
			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
			crypt_stat->key_size << 3);
	if (crypt_stat->tfm) {
		rc = 0;
		goto out;
	}
	mutex_lock(&crypt_stat->cs_tfm_mutex);
808 809 810
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
						    crypt_stat->cipher, "cbc");
	if (rc)
811
		goto out_unlock;
812 813 814
	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
						 CRYPTO_ALG_ASYNC);
	kfree(full_alg_name);
815 816
	if (IS_ERR(crypt_stat->tfm)) {
		rc = PTR_ERR(crypt_stat->tfm);
817 818 819
		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
				"Error initializing cipher [%s]\n",
				crypt_stat->cipher);
820
		goto out_unlock;
821
	}
822
	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
823
	rc = 0;
824 825
out_unlock:
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
out:
	return rc;
}

static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
	int extent_size_tmp;

	crypt_stat->extent_mask = 0xFFFFFFFF;
	crypt_stat->extent_shift = 0;
	if (crypt_stat->extent_size == 0)
		return;
	extent_size_tmp = crypt_stat->extent_size;
	while ((extent_size_tmp & 0x01) == 0) {
		extent_size_tmp >>= 1;
		crypt_stat->extent_mask <<= 1;
		crypt_stat->extent_shift++;
	}
}

void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
	/* Default values; may be overwritten as we are parsing the
	 * packets. */
	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
	set_extent_mask_and_shift(crypt_stat);
	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
853
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
854
		crypt_stat->num_header_bytes_at_front = 0;
855 856
	else {
		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
857 858
			crypt_stat->num_header_bytes_at_front =
				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
859
		else
860
			crypt_stat->num_header_bytes_at_front =	PAGE_CACHE_SIZE;
861
	}
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
}

/**
 * ecryptfs_compute_root_iv
 * @crypt_stats
 *
 * On error, sets the root IV to all 0's.
 */
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];

	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
	BUG_ON(crypt_stat->iv_bytes <= 0);
877
	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
				"cannot generate root IV\n");
		goto out;
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
				    crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating root IV\n");
		goto out;
	}
	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
	if (rc) {
		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
894
		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
895 896 897 898 899 900 901
	}
	return rc;
}

static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
902
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
903 904 905 906 907 908 909 910
	ecryptfs_compute_root_iv(crypt_stat);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
}

911 912
/**
 * ecryptfs_copy_mount_wide_flags_to_inode_flags
913 914
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
915 916 917 918 919 920 921 922 923 924 925 926 927 928
 *
 * This function propagates the mount-wide flags to individual inode
 * flags.
 */
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
}

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct ecryptfs_global_auth_tok *global_auth_tok;
	int rc = 0;

	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry(global_auth_tok,
			    &mount_crypt_stat->global_auth_tok_list,
			    mount_crypt_stat_list) {
		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
		if (rc) {
			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
			mutex_unlock(
				&mount_crypt_stat->global_auth_tok_list_mutex);
			goto out;
		}
	}
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
out:
	return rc;
}

953 954
/**
 * ecryptfs_set_default_crypt_stat_vals
955 956
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
957 958 959 960 961 962 963
 *
 * Default values in the event that policy does not override them.
 */
static void ecryptfs_set_default_crypt_stat_vals(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
964 965
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
966 967 968
	ecryptfs_set_default_sizes(crypt_stat);
	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
969
	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
970 971 972 973 974 975
	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
	crypt_stat->mount_crypt_stat = mount_crypt_stat;
}

/**
 * ecryptfs_new_file_context
976
 * @ecryptfs_dentry: The eCryptfs dentry
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
 *
 * If the crypto context for the file has not yet been established,
 * this is where we do that.  Establishing a new crypto context
 * involves the following decisions:
 *  - What cipher to use?
 *  - What set of authentication tokens to use?
 * Here we just worry about getting enough information into the
 * authentication tokens so that we know that they are available.
 * We associate the available authentication tokens with the new file
 * via the set of signatures in the crypt_stat struct.  Later, when
 * the headers are actually written out, we may again defer to
 * userspace to perform the encryption of the session key; for the
 * foreseeable future, this will be the case with public key packets.
 *
 * Returns zero on success; non-zero otherwise
 */
int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
{
	struct ecryptfs_crypt_stat *crypt_stat =
	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
	    &ecryptfs_superblock_to_private(
		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
	int cipher_name_len;
1001
	int rc = 0;
1002 1003

	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1004
	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
							 mount_crypt_stat);
	if (rc) {
		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
		       "to the inode key sigs; rc = [%d]\n", rc);
		goto out;
	}
	cipher_name_len =
		strlen(mount_crypt_stat->global_default_cipher_name);
	memcpy(crypt_stat->cipher,
	       mount_crypt_stat->global_default_cipher_name,
	       cipher_name_len);
	crypt_stat->cipher[cipher_name_len] = '\0';
	crypt_stat->key_size =
		mount_crypt_stat->global_default_cipher_key_size;
	ecryptfs_generate_new_key(crypt_stat);
1023 1024 1025 1026 1027
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
				"context for cipher [%s]: rc = [%d]\n",
				crypt_stat->cipher, rc);
1028
out:
1029 1030 1031 1032 1033 1034 1035 1036 1037
	return rc;
}

/**
 * contains_ecryptfs_marker - check for the ecryptfs marker
 * @data: The data block in which to check
 *
 * Returns one if marker found; zero if not found
 */
1038
static int contains_ecryptfs_marker(char *data)
1039 1040 1041
{
	u32 m_1, m_2;

1042 1043
	m_1 = get_unaligned_be32(data);
	m_2 = get_unaligned_be32(data + 4);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
		return 1;
	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
			MAGIC_ECRYPTFS_MARKER);
	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
	return 0;
}

struct ecryptfs_flag_map_elem {
	u32 file_flag;
	u32 local_flag;
};

/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1062 1063
	{0x00000002, ECRYPTFS_ENCRYPTED},
	{0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1064 1065 1066 1067
};

/**
 * ecryptfs_process_flags
1068
 * @crypt_stat: The cryptographic context
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
 * @page_virt: Source data to be parsed
 * @bytes_read: Updated with the number of bytes read
 *
 * Returns zero on success; non-zero if the flag set is invalid
 */
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
				  char *page_virt, int *bytes_read)
{
	int rc = 0;
	int i;
	u32 flags;

1081
	flags = get_unaligned_be32(page_virt);
1082 1083 1084
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (flags & ecryptfs_flag_map[i].file_flag) {
1085
			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1086
		} else
1087
			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	/* Version is in top 8 bits of the 32-bit flag vector */
	crypt_stat->file_version = ((flags >> 24) & 0xFF);
	(*bytes_read) = 4;
	return rc;
}

/**
 * write_ecryptfs_marker
 * @page_virt: The pointer to in a page to begin writing the marker
 * @written: Number of bytes written
 *
 * Marker = 0x3c81b7f5
 */
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
	u32 m_1, m_2;

	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1107 1108 1109
	put_unaligned_be32(m_1, page_virt);
	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
	put_unaligned_be32(m_2, page_virt);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}

static void
write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
		     size_t *written)
{
	u32 flags = 0;
	int i;

	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1122
		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1123 1124 1125
			flags |= ecryptfs_flag_map[i].file_flag;
	/* Version is in top 8 bits of the 32-bit flag vector */
	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1126
	put_unaligned_be32(flags, page_virt);
1127 1128 1129 1130 1131
	(*written) = 4;
}

struct ecryptfs_cipher_code_str_map_elem {
	char cipher_str[16];
1132
	u8 cipher_code;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
};

/* Add support for additional ciphers by adding elements here. The
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 * ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
	{"aes",RFC2440_CIPHER_AES_128 },
	{"blowfish", RFC2440_CIPHER_BLOWFISH},
	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
	{"cast5", RFC2440_CIPHER_CAST_5},
	{"twofish", RFC2440_CIPHER_TWOFISH},
	{"cast6", RFC2440_CIPHER_CAST_6},
	{"aes", RFC2440_CIPHER_AES_192},
	{"aes", RFC2440_CIPHER_AES_256}
};

/**
 * ecryptfs_code_for_cipher_string
1152 1153
 * @cipher_name: The string alias for the cipher
 * @key_bytes: Length of key in bytes; used for AES code selection
1154 1155 1156
 *
 * Returns zero on no match, or the cipher code on match
 */
1157
u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1158 1159
{
	int i;
1160
	u8 code = 0;
1161 1162 1163
	struct ecryptfs_cipher_code_str_map_elem *map =
		ecryptfs_cipher_code_str_map;

1164 1165
	if (strcmp(cipher_name, "aes") == 0) {
		switch (key_bytes) {
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		case 16:
			code = RFC2440_CIPHER_AES_128;
			break;
		case 24:
			code = RFC2440_CIPHER_AES_192;
			break;
		case 32:
			code = RFC2440_CIPHER_AES_256;
		}
	} else {
		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1177
			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
				code = map[i].cipher_code;
				break;
			}
	}
	return code;
}

/**
 * ecryptfs_cipher_code_to_string
 * @str: Destination to write out the cipher name
 * @cipher_code: The code to convert to cipher name string
 *
 * Returns zero on success
 */
1192
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
{
	int rc = 0;
	int i;

	str[0] = '\0';
	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
	if (str[0] == '\0') {
		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
				"[%d]\n", cipher_code);
		rc = -EINVAL;
	}
	return rc;
}

1209 1210
int ecryptfs_read_and_validate_header_region(char *data,
					     struct inode *ecryptfs_inode)
1211
{
1212 1213
	struct ecryptfs_crypt_stat *crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1214 1215
	int rc;

1216 1217 1218 1219
	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
				 ecryptfs_inode);
	if (rc) {
		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1220
		       __func__, rc);
1221
		goto out;
1222 1223
	}
	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1224
		rc = -EINVAL;
1225 1226
		ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
	}
1227 1228 1229 1230
out:
	return rc;
}

1231 1232 1233 1234
void
ecryptfs_write_header_metadata(char *virt,
			       struct ecryptfs_crypt_stat *crypt_stat,
			       size_t *written)
1235 1236 1237 1238
{
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1239
	header_extent_size = (u32)crypt_stat->extent_size;
1240
	num_header_extents_at_front =
1241 1242
		(u16)(crypt_stat->num_header_bytes_at_front
		      / crypt_stat->extent_size);
1243
	put_unaligned_be32(header_extent_size, virt);
1244
	virt += 4;
1245
	put_unaligned_be16(num_header_extents_at_front, virt);
1246 1247 1248 1249 1250 1251 1252 1253
	(*written) = 6;
}

struct kmem_cache *ecryptfs_header_cache_1;
struct kmem_cache *ecryptfs_header_cache_2;

/**
 * ecryptfs_write_headers_virt
1254
 * @page_virt: The virtual address to write the headers to
1255
 * @max: The size of memory allocated at page_virt
1256 1257 1258
 * @size: Set to the number of bytes written by this function
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
 *
 * Format version: 1
 *
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 *   Data Extent 0:
 *     Lower data (CBC encrypted)
 *   Data Extent 1:
 *     Lower data (CBC encrypted)
 *   ...
 *
 * Returns zero on success
 */
1283 1284
static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
				       size_t *size,
1285 1286
				       struct ecryptfs_crypt_stat *crypt_stat,
				       struct dentry *ecryptfs_dentry)
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
{
	int rc;
	size_t written;
	size_t offset;

	offset = ECRYPTFS_FILE_SIZE_BYTES;
	write_ecryptfs_marker((page_virt + offset), &written);
	offset += written;
	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
	offset += written;
1297 1298
	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
				       &written);
1299 1300 1301
	offset += written;
	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
					      ecryptfs_dentry, &written,
1302
					      max - offset);
1303 1304 1305
	if (rc)
		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
				"set; rc = [%d]\n", rc);
1306 1307 1308 1309 1310 1311 1312
	if (size) {
		offset += written;
		*size = offset;
	}
	return rc;
}

1313 1314
static int
ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1315
				    struct dentry *ecryptfs_dentry,
1316
				    char *virt)
1317
{
1318
	int rc;
1319

1320 1321 1322
	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
				  0, crypt_stat->num_header_bytes_at_front);
	if (rc)
1323
		printk(KERN_ERR "%s: Error attempting to write header "
1324
		       "information to lower file; rc = [%d]\n", __func__,
1325
		       rc);
1326
	return rc;
1327 1328
}

1329 1330 1331 1332
static int
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
				 struct ecryptfs_crypt_stat *crypt_stat,
				 char *page_virt, size_t size)
1333 1334 1335 1336 1337
{
	int rc;

	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
			       size, 0);
1338 1339 1340 1341
	return rc;
}

/**
1342
 * ecryptfs_write_metadata
1343
 * @ecryptfs_dentry: The eCryptfs dentry
1344 1345 1346 1347 1348 1349 1350 1351 1352
 *
 * Write the file headers out.  This will likely involve a userspace
 * callout, in which the session key is encrypted with one or more
 * public keys and/or the passphrase necessary to do the encryption is
 * retrieved via a prompt.  Exactly what happens at this point should
 * be policy-dependent.
 *
 * Returns zero on success; non-zero on error
 */
1353
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1354
{
1355 1356
	struct ecryptfs_crypt_stat *crypt_stat =
		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1357
	char *virt;
1358
	size_t size = 0;
1359 1360
	int rc = 0;

1361 1362
	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1363
			printk(KERN_ERR "Key is invalid; bailing out\n");
1364 1365 1366 1367
			rc = -EINVAL;
			goto out;
		}
	} else {
1368
		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1369
		       __func__);
1370 1371 1372 1373
		rc = -EINVAL;
		goto out;
	}
	/* Released in this function */
1374
	virt = (char *)get_zeroed_page(GFP_KERNEL);
1375
	if (!virt) {
1376
		printk(KERN_ERR "%s: Out of memory\n", __func__);
1377 1378 1379
		rc = -ENOMEM;
		goto out;
	}
1380 1381
	rc = ecryptfs_write_headers_virt(virt, PAGE_CACHE_SIZE, &size,
					 crypt_stat, ecryptfs_dentry);
1382
	if (unlikely(rc)) {
1383
		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1384
		       __func__, rc);
1385 1386
		goto out_free;
	}
1387 1388
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1389
						      crypt_stat, virt, size);
1390
	else
1391
		rc = ecryptfs_write_metadata_to_contents(crypt_stat,
1392
							 ecryptfs_dentry, virt);
1393
	if (rc) {
1394
		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1395
		       "rc = [%d]\n", __func__, rc);
1396
		goto out_free;
1397 1398
	}
out_free:
1399
	free_page((unsigned long)virt);
1400 1401 1402 1403
out:
	return rc;
}

1404 1405
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1406
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1407 1408
				 char *virt, int *bytes_read,
				 int validate_header_size)
1409 1410 1411 1412 1413
{
	int rc = 0;
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1414 1415 1416
	header_extent_size = get_unaligned_be32(virt);
	virt += sizeof(__be32);
	num_header_extents_at_front = get_unaligned_be16(virt);
1417 1418 1419
	crypt_stat->num_header_bytes_at_front =
		(((size_t)num_header_extents_at_front
		  * (size_t)header_extent_size));
1420
	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1421
	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1422
	    && (crypt_stat->num_header_bytes_at_front
1423
		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1424
		rc = -EINVAL;
1425 1426
		printk(KERN_WARNING "Invalid header size: [%zd]\n",
		       crypt_stat->num_header_bytes_at_front);
1427 1428 1429 1430 1431 1432
	}
	return rc;
}

/**
 * set_default_header_data
1433
 * @crypt_stat: The cryptographic context
1434 1435 1436 1437 1438 1439 1440
 *
 * For version 0 file format; this function is only for backwards
 * compatibility for files created with the prior versions of
 * eCryptfs.
 */
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
1441 1442
	crypt_stat->num_header_bytes_at_front =
		ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1443 1444 1445 1446
}

/**
 * ecryptfs_read_headers_virt
1447 1448 1449 1450
 * @page_virt: The virtual address into which to read the headers
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
 * @validate_header_size: Whether to validate the header size while reading
1451 1452 1453 1454 1455 1456 1457 1458
 *
 * Read/parse the header data. The header format is detailed in the
 * comment block for the ecryptfs_write_headers_virt() function.
 *
 * Returns zero on success
 */
static int ecryptfs_read_headers_virt(char *page_virt,
				      struct ecryptfs_crypt_stat *crypt_stat,
1459 1460
				      struct dentry *ecryptfs_dentry,
				      int validate_header_size)
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
{
	int rc = 0;
	int offset;
	int bytes_read;

	ecryptfs_set_default_sizes(crypt_stat);
	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
		ecryptfs_dentry->d_sb)->mount_crypt_stat;
	offset = ECRYPTFS_FILE_SIZE_BYTES;
	rc = contains_ecryptfs_marker(page_virt + offset);
	if (rc == 0) {
		rc = -EINVAL;
		goto out;
	}
	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
				    &bytes_read);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
		goto out;
	}
	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
				"file version [%d] is supported by this "
				"version of eCryptfs\n",
				crypt_stat->file_version,
				ECRYPTFS_SUPPORTED_FILE_VERSION);
		rc = -EINVAL;
		goto out;
	}
	offset += bytes_read;
	if (crypt_stat->file_version >= 1) {
		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1494
					   &bytes_read, validate_header_size);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
		if (rc) {
			ecryptfs_printk(KERN_WARNING, "Error reading header "
					"metadata; rc = [%d]\n", rc);
		}
		offset += bytes_read;
	} else
		set_default_header_data(crypt_stat);
	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
				       ecryptfs_dentry);
out:
	return rc;
}

/**
1509
 * ecryptfs_read_xattr_region
1510
 * @page_virt: The vitual address into which to read the xattr data
1511
 * @ecryptfs_inode: The eCryptfs inode
1512 1513 1514
 *
 * Attempts to read the crypto metadata from the extended attribute
 * region of the lower file.
1515 1516
 *
 * Returns zero on success; non-zero on error
1517
 */
1518
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1519
{
1520 1521
	struct dentry *lower_dentry =
		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1522 1523 1524
	ssize_t size;
	int rc = 0;

1525 1526
	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1527
	if (size < 0) {
1528 1529 1530 1531
		if (unlikely(ecryptfs_verbosity > 0))
			printk(KERN_INFO "Error attempting to read the [%s] "
			       "xattr from the lower file; return value = "
			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

int ecryptfs_read_and_validate_xattr_region(char *page_virt,
					    struct dentry *ecryptfs_dentry)
{
	int rc;

1544
	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	if (rc)
		goto out;
	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
		rc = -EINVAL;
	}
out:
	return rc;
}

/**
 * ecryptfs_read_metadata
 *
 * Common entry point for reading file metadata. From here, we could
 * retrieve the header information from the header region of the file,
 * the xattr region of the file, or some other repostory that is
 * stored separately from the file itself. The current implementation
 * supports retrieving the metadata information from the file contents
 * and from the xattr region.
1565 1566 1567
 *
 * Returns zero if valid headers found and parsed; non-zero otherwise
 */
1568
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1569 1570 1571
{
	int rc = 0;
	char *page_virt = NULL;
1572
	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1573
	struct ecryptfs_crypt_stat *crypt_stat =
1574
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1575 1576 1577
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1578

1579 1580
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
1581
	/* Read the first page from the underlying file */
C
Christoph Lameter 已提交
1582
	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1583 1584
	if (!page_virt) {
		rc = -ENOMEM;
1585
		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1586
		       __func__);
1587 1588
		goto out;
	}
1589 1590 1591 1592 1593 1594
	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
				 ecryptfs_inode);
	if (!rc)
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_VALIDATE_HEADER_SIZE);
1595
	if (rc) {
1596
		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
			       "file header region or xattr region\n");
			rc = -EINVAL;
			goto out;
		}
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
			       "file xattr region either\n");
			rc = -EINVAL;
		}
		if (crypt_stat->mount_crypt_stat->flags
		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
		} else {
			printk(KERN_WARNING "Attempt to access file with "
			       "crypto metadata only in the extended attribute "
			       "region, but eCryptfs was mounted without "
			       "xattr support enabled. eCryptfs will not treat "
			       "this like an encrypted file.\n");
			rc = -EINVAL;
		}
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	}
out:
	if (page_virt) {
		memset(page_virt, 0, PAGE_CACHE_SIZE);
		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
	}
	return rc;
}

/**
 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 * @name: The plaintext name
 * @length: The length of the plaintext
 * @encoded_name: The encypted name
 *
 * Encrypts and encodes a filename into something that constitutes a
 * valid filename for a filesystem, with printable characters.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * TODO: Implement filename decoding and decryption here, in place of
 * memcpy. We are keeping the framework around for now to (1)
 * facilitate testing of the components needed to implement filename
 * encryption and (2) to provide a code base from which other
 * developers in the community can easily implement this feature.
 *
 * Returns the length of encoded filename; negative if error
 */
int
ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
			 const char *name, int length, char **encoded_name)
{
	int error = 0;

	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
	if (!(*encoded_name)) {
		error = -ENOMEM;
		goto out;
	}
	/* TODO: Filename encryption is a scheduled feature for a
	 * future version of eCryptfs. This function is here only for
	 * the purpose of providing a framework for other developers
	 * to easily implement filename encryption. Hint: Replace this
	 * memcpy() with a call to encrypt and encode the
	 * filename, the set the length accordingly. */
	memcpy((void *)(*encoded_name), (void *)name, length);
	(*encoded_name)[length] = '\0';
	error = length + 1;
out:
	return error;
}

/**
 * ecryptfs_decode_filename - converts the cipher text name to plaintext
 * @crypt_stat: The crypt_stat struct associated with the file
 * @name: The filename in cipher text
 * @length: The length of the cipher text name
 * @decrypted_name: The plaintext name
 *
 * Decodes and decrypts the filename.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * TODO: Implement filename decoding and decryption here, in place of
 * memcpy. We are keeping the framework around for now to (1)
 * facilitate testing of the components needed to implement filename
 * encryption and (2) to provide a code base from which other
 * developers in the community can easily implement this feature.
 *
 * Returns the length of decoded filename; negative if error
 */
int
ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
			 const char *name, int length, char **decrypted_name)
{
	int error = 0;

	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
	if (!(*decrypted_name)) {
		error = -ENOMEM;
		goto out;
	}
	/* TODO: Filename encryption is a scheduled feature for a
	 * future version of eCryptfs. This function is here only for
	 * the purpose of providing a framework for other developers
	 * to easily implement filename encryption. Hint: Replace this
	 * memcpy() with a call to decode and decrypt the
	 * filename, the set the length accordingly. */
	memcpy((void *)(*decrypted_name), (void *)name, length);
	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
						 * in printing out the
						 * string in debug
						 * messages */
	error = length;
out:
	return error;
}

/**
1724
 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1725
 * @key_tfm: Crypto context for key material, set by this function
1726 1727
 * @cipher_name: Name of the cipher
 * @key_size: Size of the key in bytes
1728 1729 1730 1731 1732
 *
 * Returns zero on success. Any crypto_tfm structs allocated here
 * should be released by other functions, such as on a superblock put
 * event, regardless of whether this function succeeds for fails.
 */
1733
static int
1734 1735
ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
			    char *cipher_name, size_t *key_size)
1736 1737
{
	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1738
	char *full_alg_name;
1739 1740
	int rc;

1741 1742
	*key_tfm = NULL;
	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1743 1744
		rc = -EINVAL;
		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1745
		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1746 1747
		goto out;
	}
1748 1749 1750 1751 1752 1753 1754 1755
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
						    "ecb");
	if (rc)
		goto out;
	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
	kfree(full_alg_name);
	if (IS_ERR(*key_tfm)) {
		rc = PTR_ERR(*key_tfm);
1756
		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1757
		       "[%s]; rc = [%d]\n", cipher_name, rc);
1758 1759
		goto out;
	}
1760 1761 1762 1763 1764 1765
	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
	if (*key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);

		*key_size = alg->max_keysize;
	}
1766
	get_random_bytes(dummy_key, *key_size);
1767
	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1768 1769
	if (rc) {
		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1770
		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1771 1772 1773 1774 1775 1776
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}
1777 1778

struct kmem_cache *ecryptfs_key_tfm_cache;
A
Adrian Bunk 已提交
1779
static struct list_head key_tfm_list;
1780
struct mutex key_tfm_list_mutex;
1781 1782 1783 1784 1785 1786 1787 1788

int ecryptfs_init_crypto(void)
{
	mutex_init(&key_tfm_list_mutex);
	INIT_LIST_HEAD(&key_tfm_list);
	return 0;
}

1789 1790 1791 1792 1793
/**
 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
 *
 * Called only at module unload time
 */
1794
int ecryptfs_destroy_crypto(void)
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
{
	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;

	mutex_lock(&key_tfm_list_mutex);
	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
				 key_tfm_list) {
		list_del(&key_tfm->key_tfm_list);
		if (key_tfm->key_tfm)
			crypto_free_blkcipher(key_tfm->key_tfm);
		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
	}
	mutex_unlock(&key_tfm_list_mutex);
	return 0;
}

int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
			 size_t key_size)
{
	struct ecryptfs_key_tfm *tmp_tfm;
	int rc = 0;

1817 1818
	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
	if (key_tfm != NULL)
		(*key_tfm) = tmp_tfm;
	if (!tmp_tfm) {
		rc = -ENOMEM;
		printk(KERN_ERR "Error attempting to allocate from "
		       "ecryptfs_key_tfm_cache\n");
		goto out;
	}
	mutex_init(&tmp_tfm->key_tfm_mutex);
	strncpy(tmp_tfm->cipher_name, cipher_name,
		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1831
	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1832
	tmp_tfm->key_size = key_size;
1833 1834 1835 1836
	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
					 tmp_tfm->cipher_name,
					 &tmp_tfm->key_size);
	if (rc) {
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
		printk(KERN_ERR "Error attempting to initialize key TFM "
		       "cipher with name = [%s]; rc = [%d]\n",
		       tmp_tfm->cipher_name, rc);
		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
		if (key_tfm != NULL)
			(*key_tfm) = NULL;
		goto out;
	}
	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
out:
	return rc;
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
/**
 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
 * @cipher_name: the name of the cipher to search for
 * @key_tfm: set to corresponding tfm if found
 *
 * Searches for cached key_tfm matching @cipher_name
 * Must be called with &key_tfm_list_mutex held
 * Returns 1 if found, with @key_tfm set
 * Returns 0 if not found, with @key_tfm set to NULL
 */
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
{
	struct ecryptfs_key_tfm *tmp_key_tfm;

	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
			if (key_tfm)
				(*key_tfm) = tmp_key_tfm;
			return 1;
		}
	}
	if (key_tfm)
		(*key_tfm) = NULL;
	return 0;
}

/**
 * ecryptfs_get_tfm_and_mutex_for_cipher_name
 *
 * @tfm: set to cached tfm found, or new tfm created
 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
 * @cipher_name: the name of the cipher to search for and/or add
 *
 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
 * Searches for cached item first, and creates new if not found.
 * Returns 0 on success, non-zero if adding new cipher failed
 */
1889 1890 1891 1892 1893 1894 1895 1896 1897
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
					       struct mutex **tfm_mutex,
					       char *cipher_name)
{
	struct ecryptfs_key_tfm *key_tfm;
	int rc = 0;

	(*tfm) = NULL;
	(*tfm_mutex) = NULL;
1898

1899
	mutex_lock(&key_tfm_list_mutex);
1900 1901 1902 1903 1904
	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
		if (rc) {
			printk(KERN_ERR "Error adding new key_tfm to list; "
					"rc = [%d]\n", rc);
1905 1906 1907 1908 1909 1910
			goto out;
		}
	}
	(*tfm) = key_tfm->key_tfm;
	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
out:
1911
	mutex_unlock(&key_tfm_list_mutex);
1912 1913
	return rc;
}