dma-mapping.c 19.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
#include <linux/module.h>
#include <linux/mm.h>
14
#include <linux/gfp.h>
L
Linus Torvalds 已提交
15 16 17 18 19
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
20
#include <linux/highmem.h>
21
#include <linux/slab.h>
L
Linus Torvalds 已提交
22

23
#include <asm/memory.h>
24
#include <asm/highmem.h>
L
Linus Torvalds 已提交
25 26
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
27
#include <asm/sizes.h>
28
#include <asm/mach/arch.h>
29

30 31
#include "mm.h"

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
static inline dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	return __dma_map_page(dev, page, offset, size, dir);
}

/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
static inline void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	__dma_unmap_page(dev, handle, size, dir);
}

static inline void arm_dma_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
	if (!dmabounce_sync_for_cpu(dev, handle, size, dir))
		return;

	__dma_page_dev_to_cpu(page, offset, size, dir);
}

static inline void arm_dma_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
	if (!dmabounce_sync_for_device(dev, handle, size, dir))
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

static int arm_dma_set_mask(struct device *dev, u64 dma_mask);

struct dma_map_ops arm_dma_ops = {
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_dma_ops);

111 112
static u64 get_coherent_dma_mask(struct device *dev)
{
113
	u64 mask = (u64)arm_dma_limit;
114 115 116 117 118 119 120 121 122 123 124 125 126

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

127
		if ((~mask) & (u64)arm_dma_limit) {
128 129
			dev_warn(dev, "coherent DMA mask %#llx is smaller "
				 "than system GFP_DMA mask %#llx\n",
130
				 mask, (u64)arm_dma_limit);
131 132 133
			return 0;
		}
	}
L
Linus Torvalds 已提交
134

135 136 137
	return mask;
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;
	void *ptr;
	u64 mask = get_coherent_dma_mask(dev);

#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
	ptr = page_address(page);
	memset(ptr, 0, size);
	dmac_flush_range(ptr, ptr + size);
	outer_flush_range(__pa(ptr), __pa(ptr) + size);

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

200
#ifdef CONFIG_MMU
201

202
#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
203
#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
204

L
Linus Torvalds 已提交
205
/*
206
 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
L
Linus Torvalds 已提交
207
 */
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static pte_t **consistent_pte;

#define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M

unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;

void __init init_consistent_dma_size(unsigned long size)
{
	unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);

	BUG_ON(consistent_pte); /* Check we're called before DMA region init */
	BUG_ON(base < VMALLOC_END);

	/* Grow region to accommodate specified size  */
	if (base < consistent_base)
		consistent_base = base;
}
L
Linus Torvalds 已提交
225

226
#include "vmregion.h"
L
Linus Torvalds 已提交
227

228 229
static struct arm_vmregion_head consistent_head = {
	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
L
Linus Torvalds 已提交
230 231 232 233 234 235 236 237
	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
	.vm_end		= CONSISTENT_END,
};

#ifdef CONFIG_HUGETLB_PAGE
#error ARM Coherent DMA allocator does not (yet) support huge TLB
#endif

238 239 240 241 242 243 244
/*
 * Initialise the consistent memory allocation.
 */
static int __init consistent_init(void)
{
	int ret = 0;
	pgd_t *pgd;
R
Russell King 已提交
245
	pud_t *pud;
246 247 248
	pmd_t *pmd;
	pte_t *pte;
	int i = 0;
249
	unsigned long base = consistent_base;
250
	unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
251 252 253 254 255 256 257 258 259

	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
	if (!consistent_pte) {
		pr_err("%s: no memory\n", __func__);
		return -ENOMEM;
	}

	pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
	consistent_head.vm_start = base;
260 261 262

	do {
		pgd = pgd_offset(&init_mm, base);
R
Russell King 已提交
263 264 265

		pud = pud_alloc(&init_mm, pgd, base);
		if (!pud) {
266
			pr_err("%s: no pud tables\n", __func__);
R
Russell King 已提交
267 268 269 270 271
			ret = -ENOMEM;
			break;
		}

		pmd = pmd_alloc(&init_mm, pud, base);
272
		if (!pmd) {
273
			pr_err("%s: no pmd tables\n", __func__);
274 275 276 277 278 279 280
			ret = -ENOMEM;
			break;
		}
		WARN_ON(!pmd_none(*pmd));

		pte = pte_alloc_kernel(pmd, base);
		if (!pte) {
281
			pr_err("%s: no pte tables\n", __func__);
282 283 284 285 286
			ret = -ENOMEM;
			break;
		}

		consistent_pte[i++] = pte;
287
		base += PMD_SIZE;
288 289 290 291 292 293 294
	} while (base < CONSISTENT_END);

	return ret;
}

core_initcall(consistent_init);

L
Linus Torvalds 已提交
295
static void *
296 297
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
L
Linus Torvalds 已提交
298
{
299
	struct arm_vmregion *c;
300 301
	size_t align;
	int bit;
L
Linus Torvalds 已提交
302

303
	if (!consistent_pte) {
304
		pr_err("%s: not initialised\n", __func__);
305 306 307 308
		dump_stack();
		return NULL;
	}

309 310 311 312 313 314
	/*
	 * Align the virtual region allocation - maximum alignment is
	 * a section size, minimum is a page size.  This helps reduce
	 * fragmentation of the DMA space, and also prevents allocations
	 * smaller than a section from crossing a section boundary.
	 */
315
	bit = fls(size - 1);
316 317 318 319
	if (bit > SECTION_SHIFT)
		bit = SECTION_SHIFT;
	align = 1 << bit;

L
Linus Torvalds 已提交
320 321 322
	/*
	 * Allocate a virtual address in the consistent mapping region.
	 */
323
	c = arm_vmregion_alloc(&consistent_head, align, size,
324
			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
L
Linus Torvalds 已提交
325
	if (c) {
326 327 328
		pte_t *pte;
		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
L
Linus Torvalds 已提交
329

330
		pte = consistent_pte[idx] + off;
L
Linus Torvalds 已提交
331 332 333 334 335
		c->vm_pages = page;

		do {
			BUG_ON(!pte_none(*pte));

R
Russell King 已提交
336
			set_pte_ext(pte, mk_pte(page, prot), 0);
L
Linus Torvalds 已提交
337 338
			page++;
			pte++;
339 340 341 342 343
			off++;
			if (off >= PTRS_PER_PTE) {
				off = 0;
				pte = consistent_pte[++idx];
			}
L
Linus Torvalds 已提交
344 345
		} while (size -= PAGE_SIZE);

346 347
		dsb();

L
Linus Torvalds 已提交
348 349 350 351
		return (void *)c->vm_start;
	}
	return NULL;
}
352 353 354 355 356 357 358 359 360 361 362

static void __dma_free_remap(void *cpu_addr, size_t size)
{
	struct arm_vmregion *c;
	unsigned long addr;
	pte_t *ptep;
	int idx;
	u32 off;

	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
	if (!c) {
363
		pr_err("%s: trying to free invalid coherent area: %p\n",
364 365 366 367 368 369
		       __func__, cpu_addr);
		dump_stack();
		return;
	}

	if ((c->vm_end - c->vm_start) != size) {
370
		pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
		       __func__, c->vm_end - c->vm_start, size);
		dump_stack();
		size = c->vm_end - c->vm_start;
	}

	idx = CONSISTENT_PTE_INDEX(c->vm_start);
	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
	ptep = consistent_pte[idx] + off;
	addr = c->vm_start;
	do {
		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);

		ptep++;
		addr += PAGE_SIZE;
		off++;
		if (off >= PTRS_PER_PTE) {
			off = 0;
			ptep = consistent_pte[++idx];
		}

391
		if (pte_none(pte) || !pte_present(pte))
392 393
			pr_crit("%s: bad page in kernel page table\n",
				__func__);
394 395 396 397 398 399 400
	} while (size -= PAGE_SIZE);

	flush_tlb_kernel_range(c->vm_start, c->vm_end);

	arm_vmregion_free(&consistent_head, c);
}

401
#else	/* !CONFIG_MMU */
402

403
#define __dma_alloc_remap(page, size, gfp, prot, c)	page_address(page)
404 405 406 407
#define __dma_free_remap(addr, size)			do { } while (0)

#endif	/* CONFIG_MMU */

408 409
static void *
__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
410
	    pgprot_t prot, const void *caller)
411
{
412
	struct page *page;
413
	void *addr;
414

415 416 417 418 419 420 421 422 423
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

424
	*handle = DMA_ERROR_CODE;
425
	size = PAGE_ALIGN(size);
426

427 428 429
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;
430

431
	if (!arch_is_coherent())
432
		addr = __dma_alloc_remap(page, size, gfp, prot, caller);
433 434
	else
		addr = page_address(page);
435

436
	if (addr)
437
		*handle = pfn_to_dma(dev, page_to_pfn(page));
438 439
	else
		__dma_free_buffer(page, size);
440

441 442
	return addr;
}
L
Linus Torvalds 已提交
443 444 445 446 447 448

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
void *
A
Al Viro 已提交
449
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
L
Linus Torvalds 已提交
450
{
451 452 453 454 455
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

L
Linus Torvalds 已提交
456
	return __dma_alloc(dev, size, handle, gfp,
457 458
			   pgprot_dmacoherent(pgprot_kernel),
			   __builtin_return_address(0));
L
Linus Torvalds 已提交
459 460 461 462 463 464 465 466
}
EXPORT_SYMBOL(dma_alloc_coherent);

/*
 * Allocate a writecombining region, in much the same way as
 * dma_alloc_coherent above.
 */
void *
A
Al Viro 已提交
467
dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
L
Linus Torvalds 已提交
468 469
{
	return __dma_alloc(dev, size, handle, gfp,
470 471
			   pgprot_writecombine(pgprot_kernel),
			   __builtin_return_address(0));
L
Linus Torvalds 已提交
472 473 474 475 476 477
}
EXPORT_SYMBOL(dma_alloc_writecombine);

static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
478 479
	int ret = -ENXIO;
#ifdef CONFIG_MMU
480 481
	unsigned long user_size, kern_size;
	struct arm_vmregion *c;
L
Linus Torvalds 已提交
482

483 484 485
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

L
Linus Torvalds 已提交
486 487
	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;

488
	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
L
Linus Torvalds 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501
	if (c) {
		unsigned long off = vma->vm_pgoff;

		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;

		if (off < kern_size &&
		    user_size <= (kern_size - off)) {
			ret = remap_pfn_range(vma, vma->vm_start,
					      page_to_pfn(c->vm_pages) + off,
					      user_size << PAGE_SHIFT,
					      vma->vm_page_prot);
		}
	}
502
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
503 504 505 506 507 508 509

	return ret;
}

int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
510
	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
L
Linus Torvalds 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_coherent);

int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_writecombine);

/*
 * free a page as defined by the above mapping.
525
 * Must not be called with IRQs disabled.
L
Linus Torvalds 已提交
526 527 528
 */
void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
{
529 530
	WARN_ON(irqs_disabled());

531 532 533
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

534 535
	size = PAGE_ALIGN(size);

536 537
	if (!arch_is_coherent())
		__dma_free_remap(cpu_addr, size);
538

539
	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
L
Linus Torvalds 已提交
540 541 542
}
EXPORT_SYMBOL(dma_free_coherent);

543
static void dma_cache_maint_page(struct page *page, unsigned long offset,
544 545
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
546 547 548 549 550 551 552 553 554 555
{
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	size_t left = size;
	do {
		size_t len = left;
556 557 558 559 560 561 562 563 564 565 566 567 568
		void *vaddr;

		if (PageHighMem(page)) {
			if (len + offset > PAGE_SIZE) {
				if (offset >= PAGE_SIZE) {
					page += offset / PAGE_SIZE;
					offset %= PAGE_SIZE;
				}
				len = PAGE_SIZE - offset;
			}
			vaddr = kmap_high_get(page);
			if (vaddr) {
				vaddr += offset;
569
				op(vaddr, len, dir);
570
				kunmap_high(page);
571
			} else if (cache_is_vipt()) {
572 573
				/* unmapped pages might still be cached */
				vaddr = kmap_atomic(page);
574
				op(vaddr + offset, len, dir);
575
				kunmap_atomic(vaddr);
576
			}
577 578
		} else {
			vaddr = page_address(page) + offset;
579
			op(vaddr, len, dir);
580 581 582 583 584 585
		}
		offset = 0;
		page++;
		left -= len;
	} while (left);
}
586 587 588 589

void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
590 591
	unsigned long paddr;

592
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
593 594

	paddr = page_to_phys(page) + off;
595 596 597 598 599 600
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
601 602 603 604 605 606
}
EXPORT_SYMBOL(___dma_page_cpu_to_dev);

void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
607 608 609 610 611 612 613
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

614
	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
615 616 617 618 619 620

	/*
	 * Mark the D-cache clean for this page to avoid extra flushing.
	 */
	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
		set_bit(PG_dcache_clean, &page->flags);
621 622
}
EXPORT_SYMBOL(___dma_page_dev_to_cpu);
623

624
/**
625
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
626 627 628 629 630 631 632 633 634 635 636 637 638 639
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
640 641
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
642
{
643
	struct dma_map_ops *ops = get_dma_ops(dev);
644
	struct scatterlist *s;
645
	int i, j;
646 647

	for_each_sg(sg, s, nents, i) {
648 649
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
650 651
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
652 653
	}
	return nents;
654 655 656

 bad_mapping:
	for_each_sg(sg, s, i, j)
657
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
658
	return 0;
659 660 661
}

/**
662
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
663 664
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
665
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
666 667 668 669 670
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
671 672
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
673
{
674
	struct dma_map_ops *ops = get_dma_ops(dev);
675
	struct scatterlist *s;
676

677 678 679
	int i;

	for_each_sg(sg, s, nents, i)
680
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
681 682 683
}

/**
684
 * arm_dma_sync_sg_for_cpu
685 686 687 688 689
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
690
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
691 692
			int nents, enum dma_data_direction dir)
{
693
	struct dma_map_ops *ops = get_dma_ops(dev);
694 695 696
	struct scatterlist *s;
	int i;

697 698 699
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
700 701 702
}

/**
703
 * arm_dma_sync_sg_for_device
704 705 706 707 708
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
709
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
710 711
			int nents, enum dma_data_direction dir)
{
712
	struct dma_map_ops *ops = get_dma_ops(dev);
713 714 715
	struct scatterlist *s;
	int i;

716 717 718
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
719
}
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
	if (mask < (u64)arm_dma_limit)
		return 0;
	return 1;
}
EXPORT_SYMBOL(dma_supported);

735
static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
736 737 738 739 740 741 742 743 744 745 746
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

#ifndef CONFIG_DMABOUNCE
	*dev->dma_mask = dma_mask;
#endif

	return 0;
}

747 748 749 750
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
751 752 753
#ifdef CONFIG_MMU
	arm_vmregion_create_proc("dma-mappings", &consistent_head);
#endif
754 755 756 757
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);