dma-mapping.c 17.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
#include <linux/module.h>
#include <linux/mm.h>
14
#include <linux/gfp.h>
L
Linus Torvalds 已提交
15 16 17 18 19
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
20
#include <linux/highmem.h>
21
#include <linux/slab.h>
L
Linus Torvalds 已提交
22

23
#include <asm/memory.h>
24
#include <asm/highmem.h>
L
Linus Torvalds 已提交
25 26
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
27
#include <asm/sizes.h>
28
#include <asm/mach/arch.h>
29

30 31
#include "mm.h"

32 33
static u64 get_coherent_dma_mask(struct device *dev)
{
34
	u64 mask = (u64)arm_dma_limit;
35 36 37 38 39 40 41 42 43 44 45 46 47

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

48
		if ((~mask) & (u64)arm_dma_limit) {
49 50
			dev_warn(dev, "coherent DMA mask %#llx is smaller "
				 "than system GFP_DMA mask %#llx\n",
51
				 mask, (u64)arm_dma_limit);
52 53 54
			return 0;
		}
	}
L
Linus Torvalds 已提交
55

56 57 58
	return mask;
}

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;
	void *ptr;
	u64 mask = get_coherent_dma_mask(dev);

#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
	ptr = page_address(page);
	memset(ptr, 0, size);
	dmac_flush_range(ptr, ptr + size);
	outer_flush_range(__pa(ptr), __pa(ptr) + size);

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

121
#ifdef CONFIG_MMU
122

123
#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
124
#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
125

L
Linus Torvalds 已提交
126
/*
127
 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
L
Linus Torvalds 已提交
128
 */
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
static pte_t **consistent_pte;

#define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M

unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;

void __init init_consistent_dma_size(unsigned long size)
{
	unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);

	BUG_ON(consistent_pte); /* Check we're called before DMA region init */
	BUG_ON(base < VMALLOC_END);

	/* Grow region to accommodate specified size  */
	if (base < consistent_base)
		consistent_base = base;
}
L
Linus Torvalds 已提交
146

147
#include "vmregion.h"
L
Linus Torvalds 已提交
148

149 150
static struct arm_vmregion_head consistent_head = {
	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
L
Linus Torvalds 已提交
151 152 153 154 155 156 157 158
	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
	.vm_end		= CONSISTENT_END,
};

#ifdef CONFIG_HUGETLB_PAGE
#error ARM Coherent DMA allocator does not (yet) support huge TLB
#endif

159 160 161 162 163 164 165
/*
 * Initialise the consistent memory allocation.
 */
static int __init consistent_init(void)
{
	int ret = 0;
	pgd_t *pgd;
R
Russell King 已提交
166
	pud_t *pud;
167 168 169
	pmd_t *pmd;
	pte_t *pte;
	int i = 0;
170
	unsigned long base = consistent_base;
171
	unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
172 173 174 175 176 177 178 179 180

	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
	if (!consistent_pte) {
		pr_err("%s: no memory\n", __func__);
		return -ENOMEM;
	}

	pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
	consistent_head.vm_start = base;
181 182 183

	do {
		pgd = pgd_offset(&init_mm, base);
R
Russell King 已提交
184 185 186 187 188 189 190 191 192

		pud = pud_alloc(&init_mm, pgd, base);
		if (!pud) {
			printk(KERN_ERR "%s: no pud tables\n", __func__);
			ret = -ENOMEM;
			break;
		}

		pmd = pmd_alloc(&init_mm, pud, base);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
		if (!pmd) {
			printk(KERN_ERR "%s: no pmd tables\n", __func__);
			ret = -ENOMEM;
			break;
		}
		WARN_ON(!pmd_none(*pmd));

		pte = pte_alloc_kernel(pmd, base);
		if (!pte) {
			printk(KERN_ERR "%s: no pte tables\n", __func__);
			ret = -ENOMEM;
			break;
		}

		consistent_pte[i++] = pte;
208
		base += PMD_SIZE;
209 210 211 212 213 214 215
	} while (base < CONSISTENT_END);

	return ret;
}

core_initcall(consistent_init);

L
Linus Torvalds 已提交
216
static void *
217
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
L
Linus Torvalds 已提交
218
{
219
	struct arm_vmregion *c;
220 221
	size_t align;
	int bit;
L
Linus Torvalds 已提交
222

223
	if (!consistent_pte) {
224 225 226 227 228
		printk(KERN_ERR "%s: not initialised\n", __func__);
		dump_stack();
		return NULL;
	}

229 230 231 232 233 234
	/*
	 * Align the virtual region allocation - maximum alignment is
	 * a section size, minimum is a page size.  This helps reduce
	 * fragmentation of the DMA space, and also prevents allocations
	 * smaller than a section from crossing a section boundary.
	 */
235
	bit = fls(size - 1);
236 237 238 239
	if (bit > SECTION_SHIFT)
		bit = SECTION_SHIFT;
	align = 1 << bit;

L
Linus Torvalds 已提交
240 241 242
	/*
	 * Allocate a virtual address in the consistent mapping region.
	 */
243
	c = arm_vmregion_alloc(&consistent_head, align, size,
L
Linus Torvalds 已提交
244 245
			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
	if (c) {
246 247 248
		pte_t *pte;
		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
L
Linus Torvalds 已提交
249

250
		pte = consistent_pte[idx] + off;
L
Linus Torvalds 已提交
251 252 253 254 255
		c->vm_pages = page;

		do {
			BUG_ON(!pte_none(*pte));

R
Russell King 已提交
256
			set_pte_ext(pte, mk_pte(page, prot), 0);
L
Linus Torvalds 已提交
257 258
			page++;
			pte++;
259 260 261 262 263
			off++;
			if (off >= PTRS_PER_PTE) {
				off = 0;
				pte = consistent_pte[++idx];
			}
L
Linus Torvalds 已提交
264 265
		} while (size -= PAGE_SIZE);

266 267
		dsb();

L
Linus Torvalds 已提交
268 269 270 271
		return (void *)c->vm_start;
	}
	return NULL;
}
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

static void __dma_free_remap(void *cpu_addr, size_t size)
{
	struct arm_vmregion *c;
	unsigned long addr;
	pte_t *ptep;
	int idx;
	u32 off;

	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
	if (!c) {
		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
		       __func__, cpu_addr);
		dump_stack();
		return;
	}

	if ((c->vm_end - c->vm_start) != size) {
		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
		       __func__, c->vm_end - c->vm_start, size);
		dump_stack();
		size = c->vm_end - c->vm_start;
	}

	idx = CONSISTENT_PTE_INDEX(c->vm_start);
	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
	ptep = consistent_pte[idx] + off;
	addr = c->vm_start;
	do {
		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);

		ptep++;
		addr += PAGE_SIZE;
		off++;
		if (off >= PTRS_PER_PTE) {
			off = 0;
			ptep = consistent_pte[++idx];
		}

311 312 313
		if (pte_none(pte) || !pte_present(pte))
			printk(KERN_CRIT "%s: bad page in kernel page table\n",
			       __func__);
314 315 316 317 318 319 320
	} while (size -= PAGE_SIZE);

	flush_tlb_kernel_range(c->vm_start, c->vm_end);

	arm_vmregion_free(&consistent_head, c);
}

321
#else	/* !CONFIG_MMU */
322

323 324 325 326 327
#define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
#define __dma_free_remap(addr, size)			do { } while (0)

#endif	/* CONFIG_MMU */

328 329 330 331
static void *
__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
	    pgprot_t prot)
{
332
	struct page *page;
333
	void *addr;
334

335 336
	*handle = ~0;
	size = PAGE_ALIGN(size);
337

338 339 340
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;
341

342 343 344 345
	if (!arch_is_coherent())
		addr = __dma_alloc_remap(page, size, gfp, prot);
	else
		addr = page_address(page);
346

347
	if (addr)
348
		*handle = pfn_to_dma(dev, page_to_pfn(page));
349 350
	else
		__dma_free_buffer(page, size);
351

352 353
	return addr;
}
L
Linus Torvalds 已提交
354 355 356 357 358 359

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
void *
A
Al Viro 已提交
360
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
L
Linus Torvalds 已提交
361
{
362 363 364 365 366
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

L
Linus Torvalds 已提交
367
	return __dma_alloc(dev, size, handle, gfp,
368
			   pgprot_dmacoherent(pgprot_kernel));
L
Linus Torvalds 已提交
369 370 371 372 373 374 375 376
}
EXPORT_SYMBOL(dma_alloc_coherent);

/*
 * Allocate a writecombining region, in much the same way as
 * dma_alloc_coherent above.
 */
void *
A
Al Viro 已提交
377
dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
L
Linus Torvalds 已提交
378 379 380 381 382 383 384 385 386
{
	return __dma_alloc(dev, size, handle, gfp,
			   pgprot_writecombine(pgprot_kernel));
}
EXPORT_SYMBOL(dma_alloc_writecombine);

static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
387 388
	int ret = -ENXIO;
#ifdef CONFIG_MMU
389 390
	unsigned long user_size, kern_size;
	struct arm_vmregion *c;
L
Linus Torvalds 已提交
391 392 393

	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;

394
	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
L
Linus Torvalds 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407
	if (c) {
		unsigned long off = vma->vm_pgoff;

		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;

		if (off < kern_size &&
		    user_size <= (kern_size - off)) {
			ret = remap_pfn_range(vma, vma->vm_start,
					      page_to_pfn(c->vm_pages) + off,
					      user_size << PAGE_SHIFT,
					      vma->vm_page_prot);
		}
	}
408
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
409 410 411 412 413 414 415

	return ret;
}

int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
416
	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
L
Linus Torvalds 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_coherent);

int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_writecombine);

/*
 * free a page as defined by the above mapping.
431
 * Must not be called with IRQs disabled.
L
Linus Torvalds 已提交
432 433 434
 */
void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
{
435 436
	WARN_ON(irqs_disabled());

437 438 439
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

440 441
	size = PAGE_ALIGN(size);

442 443
	if (!arch_is_coherent())
		__dma_free_remap(cpu_addr, size);
444

445
	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
L
Linus Torvalds 已提交
446 447 448 449 450
}
EXPORT_SYMBOL(dma_free_coherent);

/*
 * Make an area consistent for devices.
451 452 453
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
L
Linus Torvalds 已提交
454
 */
455 456 457
void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
	enum dma_data_direction dir)
{
458 459
	unsigned long paddr;

460 461 462
	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));

	dmac_map_area(kaddr, size, dir);
463 464 465 466 467 468 469 470

	paddr = __pa(kaddr);
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
471 472 473 474 475 476
}
EXPORT_SYMBOL(___dma_single_cpu_to_dev);

void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
	enum dma_data_direction dir)
{
477 478
	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));

479 480 481 482 483 484 485
	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE) {
		unsigned long paddr = __pa(kaddr);
		outer_inv_range(paddr, paddr + size);
	}

486
	dmac_unmap_area(kaddr, size, dir);
487 488
}
EXPORT_SYMBOL(___dma_single_dev_to_cpu);
489

490
static void dma_cache_maint_page(struct page *page, unsigned long offset,
491 492
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
493 494 495 496 497 498 499 500 501 502
{
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	size_t left = size;
	do {
		size_t len = left;
503 504 505 506 507 508 509 510 511 512 513 514 515
		void *vaddr;

		if (PageHighMem(page)) {
			if (len + offset > PAGE_SIZE) {
				if (offset >= PAGE_SIZE) {
					page += offset / PAGE_SIZE;
					offset %= PAGE_SIZE;
				}
				len = PAGE_SIZE - offset;
			}
			vaddr = kmap_high_get(page);
			if (vaddr) {
				vaddr += offset;
516
				op(vaddr, len, dir);
517
				kunmap_high(page);
518
			} else if (cache_is_vipt()) {
519 520
				/* unmapped pages might still be cached */
				vaddr = kmap_atomic(page);
521
				op(vaddr + offset, len, dir);
522
				kunmap_atomic(vaddr);
523
			}
524 525
		} else {
			vaddr = page_address(page) + offset;
526
			op(vaddr, len, dir);
527 528 529 530 531 532
		}
		offset = 0;
		page++;
		left -= len;
	} while (left);
}
533 534 535 536

void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
537 538
	unsigned long paddr;

539
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
540 541

	paddr = page_to_phys(page) + off;
542 543 544 545 546 547
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
548 549 550 551 552 553
}
EXPORT_SYMBOL(___dma_page_cpu_to_dev);

void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
554 555 556 557 558 559 560
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

561
	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
562 563 564 565 566 567

	/*
	 * Mark the D-cache clean for this page to avoid extra flushing.
	 */
	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
		set_bit(PG_dcache_clean, &page->flags);
568 569
}
EXPORT_SYMBOL(___dma_page_dev_to_cpu);
570

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/**
 * dma_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir)
{
	struct scatterlist *s;
591
	int i, j;
592

593 594
	BUG_ON(!valid_dma_direction(dir));

595
	for_each_sg(sg, s, nents, i) {
596
		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
597 598 599
						s->length, dir);
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
600
	}
601
	debug_dma_map_sg(dev, sg, nents, nents, dir);
602
	return nents;
603 604 605

 bad_mapping:
	for_each_sg(sg, s, i, j)
606
		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
607
	return 0;
608 609 610 611 612 613 614
}
EXPORT_SYMBOL(dma_map_sg);

/**
 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
615
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
616 617 618 619 620 621 622 623
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir)
{
624 625 626
	struct scatterlist *s;
	int i;

627 628
	debug_dma_unmap_sg(dev, sg, nents, dir);

629
	for_each_sg(sg, s, nents, i)
630
		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
}
EXPORT_SYMBOL(dma_unmap_sg);

/**
 * dma_sync_sg_for_cpu
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
648 649 650 651 652 653
		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
					    sg_dma_len(s), dir))
			continue;

		__dma_page_dev_to_cpu(sg_page(s), s->offset,
				      s->length, dir);
654
	}
655 656

	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);

/**
 * dma_sync_sg_for_device
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
674 675 676 677
		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
					sg_dma_len(s), dir))
			continue;

678 679
		__dma_page_cpu_to_dev(sg_page(s), s->offset,
				      s->length, dir);
680
	}
681 682

	debug_dma_sync_sg_for_device(dev, sg, nents, dir);
683 684
}
EXPORT_SYMBOL(dma_sync_sg_for_device);
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
	if (mask < (u64)arm_dma_limit)
		return 0;
	return 1;
}
EXPORT_SYMBOL(dma_supported);

int dma_set_mask(struct device *dev, u64 dma_mask)
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

#ifndef CONFIG_DMABOUNCE
	*dev->dma_mask = dma_mask;
#endif

	return 0;
}
EXPORT_SYMBOL(dma_set_mask);

713 714 715 716 717 718 719 720
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);