perf_event.c 125.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38
 */
39
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
40

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
206
		raw_spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
209 210
			goto retry;
		}
211 212

		if (!atomic_inc_not_zero(&ctx->refcount)) {
213
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
214 215
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
234
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
235 236 237 238
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242
{
	unsigned long flags;

243
	raw_spin_lock_irqsave(&ctx->lock, flags);
244
	--ctx->pin_count;
245
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 247 248
	put_ctx(ctx);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static inline u64 perf_clock(void)
{
	return cpu_clock(smp_processor_id());
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

277 278 279 280 281 282
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
283 284 285 286 287 288 289 290 291

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

292 293 294 295 296 297 298 299 300
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

301
/*
302
 * Add a event from the lists for its context.
303 304
 * Must be called with ctx->mutex and ctx->lock held.
 */
305
static void
306
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
307
{
308
	struct perf_event *group_leader = event->group_leader;
309 310

	/*
311 312
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
313 314
	 * leader's sibling list:
	 */
315 316 317
	if (group_leader == event) {
		struct list_head *list;

318 319 320
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

321 322 323
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
324 325 326 327
		if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
		    !is_software_event(event))
			group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

328
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
329 330
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
331

332 333 334
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
335
		ctx->nr_stat++;
336 337
}

338
/*
339
 * Remove a event from the lists for its context.
340
 * Must be called with ctx->mutex and ctx->lock held.
341
 */
342
static void
343
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
344
{
345
	struct perf_event *sibling, *tmp;
346

347
	if (list_empty(&event->group_entry))
348
		return;
349 350
	ctx->nr_events--;
	if (event->attr.inherit_stat)
351
		ctx->nr_stat--;
352

353 354
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
355

356 357
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
358

359
	update_event_times(event);
360 361 362 363 364 365 366 367 368 369

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
370

371
	/*
372 373
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
374 375
	 * to the context list directly:
	 */
376
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
377
		struct list_head *list;
378

379 380
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
381
		sibling->group_leader = sibling;
382 383 384

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
385 386 387
	}
}

388
static void
389
event_sched_out(struct perf_event *event,
390
		  struct perf_cpu_context *cpuctx,
391
		  struct perf_event_context *ctx)
392
{
393
	if (event->state != PERF_EVENT_STATE_ACTIVE)
394 395
		return;

396 397 398 399
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
400
	}
401 402 403
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
404

405
	if (!is_software_event(event))
406 407
		cpuctx->active_oncpu--;
	ctx->nr_active--;
408
	if (event->attr.exclusive || !cpuctx->active_oncpu)
409 410 411
		cpuctx->exclusive = 0;
}

412
static void
413
group_sched_out(struct perf_event *group_event,
414
		struct perf_cpu_context *cpuctx,
415
		struct perf_event_context *ctx)
416
{
417
	struct perf_event *event;
418

419
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
420 421
		return;

422
	event_sched_out(group_event, cpuctx, ctx);
423 424 425 426

	/*
	 * Schedule out siblings (if any):
	 */
427 428
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
429

430
	if (group_event->attr.exclusive)
431 432 433
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
434
/*
435
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
436
 *
437
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
438 439
 * remove it from the context list.
 */
440
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
441 442
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
443 444
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
445 446 447 448 449 450

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
451
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
452 453
		return;

454
	raw_spin_lock(&ctx->lock);
455 456
	/*
	 * Protect the list operation against NMI by disabling the
457
	 * events on a global level.
458 459
	 */
	perf_disable();
T
Thomas Gleixner 已提交
460

461
	event_sched_out(event, cpuctx, ctx);
462

463
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
464 465 466

	if (!ctx->task) {
		/*
467
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
468 469 470
		 * reservation:
		 */
		cpuctx->max_pertask =
471 472
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
473 474
	}

475
	perf_enable();
476
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
477 478 479 480
}


/*
481
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
482
 *
483
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
484
 *
485
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
486
 * call when the task is on a CPU.
487
 *
488 489
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
490 491
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
492
 * When called from perf_event_exit_task, it's OK because the
493
 * context has been detached from its task.
T
Thomas Gleixner 已提交
494
 */
495
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
496
{
497
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
498 499 500 501
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
502
		 * Per cpu events are removed via an smp call and
503
		 * the removal is always successful.
T
Thomas Gleixner 已提交
504
		 */
505 506 507
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
508 509 510 511
		return;
	}

retry:
512 513
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
514

515
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
516 517 518
	/*
	 * If the context is active we need to retry the smp call.
	 */
519
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
520
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
521 522 523 524 525
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
526
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
527 528
	 * succeed.
	 */
P
Peter Zijlstra 已提交
529
	if (!list_empty(&event->group_entry))
530
		list_del_event(event, ctx);
531
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
532 533
}

534
/*
535
 * Update total_time_enabled and total_time_running for all events in a group.
536
 */
537
static void update_group_times(struct perf_event *leader)
538
{
539
	struct perf_event *event;
540

541 542 543
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
544 545
}

546
/*
547
 * Cross CPU call to disable a performance event
548
 */
549
static void __perf_event_disable(void *info)
550
{
551
	struct perf_event *event = info;
552
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
553
	struct perf_event_context *ctx = event->ctx;
554 555

	/*
556 557
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
558
	 */
559
	if (ctx->task && cpuctx->task_ctx != ctx)
560 561
		return;

562
	raw_spin_lock(&ctx->lock);
563 564

	/*
565
	 * If the event is on, turn it off.
566 567
	 * If it is in error state, leave it in error state.
	 */
568
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
569
		update_context_time(ctx);
570 571 572
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
573
		else
574 575
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
576 577
	}

578
	raw_spin_unlock(&ctx->lock);
579 580 581
}

/*
582
 * Disable a event.
583
 *
584 585
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
586
 * remains valid.  This condition is satisifed when called through
587 588 589 590
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
591
 * is the current context on this CPU and preemption is disabled,
592
 * hence we can't get into perf_event_task_sched_out for this context.
593
 */
594
void perf_event_disable(struct perf_event *event)
595
{
596
	struct perf_event_context *ctx = event->ctx;
597 598 599 600
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
601
		 * Disable the event on the cpu that it's on
602
		 */
603 604
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
605 606 607 608
		return;
	}

 retry:
609
	task_oncpu_function_call(task, __perf_event_disable, event);
610

611
	raw_spin_lock_irq(&ctx->lock);
612
	/*
613
	 * If the event is still active, we need to retry the cross-call.
614
	 */
615
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
616
		raw_spin_unlock_irq(&ctx->lock);
617 618 619 620 621 622 623
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
624 625 626
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
627
	}
628

629
	raw_spin_unlock_irq(&ctx->lock);
630 631
}

632
static int
633
event_sched_in(struct perf_event *event,
634
		 struct perf_cpu_context *cpuctx,
635
		 struct perf_event_context *ctx,
636 637
		 int cpu)
{
638
	if (event->state <= PERF_EVENT_STATE_OFF)
639 640
		return 0;

641 642
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
643 644 645 646 647
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

648 649 650
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
651 652 653
		return -EAGAIN;
	}

654
	event->tstamp_running += ctx->time - event->tstamp_stopped;
655

656
	if (!is_software_event(event))
657
		cpuctx->active_oncpu++;
658 659
	ctx->nr_active++;

660
	if (event->attr.exclusive)
661 662
		cpuctx->exclusive = 1;

663 664 665
	return 0;
}

666
static int
667
group_sched_in(struct perf_event *group_event,
668
	       struct perf_cpu_context *cpuctx,
669
	       struct perf_event_context *ctx,
670 671
	       int cpu)
{
672
	struct perf_event *event, *partial_group;
673 674
	int ret;

675
	if (group_event->state == PERF_EVENT_STATE_OFF)
676 677
		return 0;

678
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
679 680 681
	if (ret)
		return ret < 0 ? ret : 0;

682
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
683 684 685 686 687
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
688 689 690
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
691 692 693 694 695 696 697 698 699 700 701
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
702 703
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
704
			break;
705
		event_sched_out(event, cpuctx, ctx);
706
	}
707
	event_sched_out(group_event, cpuctx, ctx);
708 709 710 711

	return -EAGAIN;
}

712
/*
713
 * Work out whether we can put this event group on the CPU now.
714
 */
715
static int group_can_go_on(struct perf_event *event,
716 717 718 719
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
720
	 * Groups consisting entirely of software events can always go on.
721
	 */
722
	if (event->group_flags & PERF_GROUP_SOFTWARE)
723 724 725
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
726
	 * events can go on.
727 728 729 730 731
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
732
	 * events on the CPU, it can't go on.
733
	 */
734
	if (event->attr.exclusive && cpuctx->active_oncpu)
735 736 737 738 739 740 741 742
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

743 744
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
745
{
746 747 748 749
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
750 751
}

T
Thomas Gleixner 已提交
752
/*
753
 * Cross CPU call to install and enable a performance event
754 755
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
756 757 758 759
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
760 761 762
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
763
	int cpu = smp_processor_id();
764
	int err;
T
Thomas Gleixner 已提交
765 766 767 768 769

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
770
	 * Or possibly this is the right context but it isn't
771
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
772
	 */
773
	if (ctx->task && cpuctx->task_ctx != ctx) {
774
		if (cpuctx->task_ctx || ctx->task != current)
775 776 777
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
778

779
	raw_spin_lock(&ctx->lock);
780
	ctx->is_active = 1;
781
	update_context_time(ctx);
T
Thomas Gleixner 已提交
782 783 784

	/*
	 * Protect the list operation against NMI by disabling the
785
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
786
	 */
787
	perf_disable();
T
Thomas Gleixner 已提交
788

789
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
790

791 792 793
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

794
	/*
795
	 * Don't put the event on if it is disabled or if
796 797
	 * it is in a group and the group isn't on.
	 */
798 799
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
800 801
		goto unlock;

802
	/*
803 804 805
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
806
	 */
807
	if (!group_can_go_on(event, cpuctx, 1))
808 809
		err = -EEXIST;
	else
810
		err = event_sched_in(event, cpuctx, ctx, cpu);
811

812 813
	if (err) {
		/*
814
		 * This event couldn't go on.  If it is in a group
815
		 * then we have to pull the whole group off.
816
		 * If the event group is pinned then put it in error state.
817
		 */
818
		if (leader != event)
819
			group_sched_out(leader, cpuctx, ctx);
820
		if (leader->attr.pinned) {
821
			update_group_times(leader);
822
			leader->state = PERF_EVENT_STATE_ERROR;
823
		}
824
	}
T
Thomas Gleixner 已提交
825

826
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
827 828
		cpuctx->max_pertask--;

829
 unlock:
830
	perf_enable();
831

832
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
833 834 835
}

/*
836
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
837
 *
838 839
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
840
 *
841
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
842 843
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
844 845
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
846 847
 */
static void
848 849
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
850 851 852 853 854 855
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
856
		 * Per cpu events are installed via an smp call and
857
		 * the install is always successful.
T
Thomas Gleixner 已提交
858 859
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
860
					 event, 1);
T
Thomas Gleixner 已提交
861 862 863 864 865
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
866
				 event);
T
Thomas Gleixner 已提交
867

868
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
869 870 871
	/*
	 * we need to retry the smp call.
	 */
872
	if (ctx->is_active && list_empty(&event->group_entry)) {
873
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
874 875 876 877 878
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
879
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
880 881
	 * succeed.
	 */
882 883
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
884
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
885 886
}

887
/*
888
 * Put a event into inactive state and update time fields.
889 890 891 892 893 894
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
895 896
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
897
{
898
	struct perf_event *sub;
899

900 901 902 903
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
904 905 906 907
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

908
/*
909
 * Cross CPU call to enable a performance event
910
 */
911
static void __perf_event_enable(void *info)
912
{
913
	struct perf_event *event = info;
914
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
915 916
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
917
	int err;
918

919
	/*
920 921
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
922
	 */
923
	if (ctx->task && cpuctx->task_ctx != ctx) {
924
		if (cpuctx->task_ctx || ctx->task != current)
925 926 927
			return;
		cpuctx->task_ctx = ctx;
	}
928

929
	raw_spin_lock(&ctx->lock);
930
	ctx->is_active = 1;
931
	update_context_time(ctx);
932

933
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
934
		goto unlock;
935
	__perf_event_mark_enabled(event, ctx);
936

937 938 939
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

940
	/*
941
	 * If the event is in a group and isn't the group leader,
942
	 * then don't put it on unless the group is on.
943
	 */
944
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
945
		goto unlock;
946

947
	if (!group_can_go_on(event, cpuctx, 1)) {
948
		err = -EEXIST;
949
	} else {
950
		perf_disable();
951 952
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
953 954
					     smp_processor_id());
		else
955
			err = event_sched_in(event, cpuctx, ctx,
956
					       smp_processor_id());
957
		perf_enable();
958
	}
959 960 961

	if (err) {
		/*
962
		 * If this event can't go on and it's part of a
963 964
		 * group, then the whole group has to come off.
		 */
965
		if (leader != event)
966
			group_sched_out(leader, cpuctx, ctx);
967
		if (leader->attr.pinned) {
968
			update_group_times(leader);
969
			leader->state = PERF_EVENT_STATE_ERROR;
970
		}
971 972 973
	}

 unlock:
974
	raw_spin_unlock(&ctx->lock);
975 976 977
}

/*
978
 * Enable a event.
979
 *
980 981
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
982
 * remains valid.  This condition is satisfied when called through
983 984
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
985
 */
986
void perf_event_enable(struct perf_event *event)
987
{
988
	struct perf_event_context *ctx = event->ctx;
989 990 991 992
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
993
		 * Enable the event on the cpu that it's on
994
		 */
995 996
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
997 998 999
		return;
	}

1000
	raw_spin_lock_irq(&ctx->lock);
1001
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1002 1003 1004
		goto out;

	/*
1005 1006
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1007 1008 1009 1010
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1011 1012
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1013 1014

 retry:
1015
	raw_spin_unlock_irq(&ctx->lock);
1016
	task_oncpu_function_call(task, __perf_event_enable, event);
1017

1018
	raw_spin_lock_irq(&ctx->lock);
1019 1020

	/*
1021
	 * If the context is active and the event is still off,
1022 1023
	 * we need to retry the cross-call.
	 */
1024
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1025 1026 1027 1028 1029 1030
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1031 1032
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1033

1034
 out:
1035
	raw_spin_unlock_irq(&ctx->lock);
1036 1037
}

1038
static int perf_event_refresh(struct perf_event *event, int refresh)
1039
{
1040
	/*
1041
	 * not supported on inherited events
1042
	 */
1043
	if (event->attr.inherit)
1044 1045
		return -EINVAL;

1046 1047
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1048 1049

	return 0;
1050 1051
}

1052 1053 1054 1055 1056 1057 1058 1059 1060
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1061
{
1062
	struct perf_event *event;
1063

1064
	raw_spin_lock(&ctx->lock);
1065
	ctx->is_active = 0;
1066
	if (likely(!ctx->nr_events))
1067
		goto out;
1068
	update_context_time(ctx);
1069

1070
	perf_disable();
1071 1072 1073 1074
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1075 1076 1077
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1078
	if (event_type & EVENT_FLEXIBLE)
1079
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1080
			group_sched_out(event, cpuctx, ctx);
1081 1082

 out_enable:
1083
	perf_enable();
1084
 out:
1085
	raw_spin_unlock(&ctx->lock);
1086 1087
}

1088 1089 1090
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1091 1092 1093 1094
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1095
 * in them directly with an fd; we can only enable/disable all
1096
 * events via prctl, or enable/disable all events in a family
1097 1098
 * via ioctl, which will have the same effect on both contexts.
 */
1099 1100
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1101 1102
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1103
		&& ctx1->parent_gen == ctx2->parent_gen
1104
		&& !ctx1->pin_count && !ctx2->pin_count;
1105 1106
}

1107 1108
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1109 1110 1111
{
	u64 value;

1112
	if (!event->attr.inherit_stat)
1113 1114 1115
		return;

	/*
1116
	 * Update the event value, we cannot use perf_event_read()
1117 1118
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1119
	 * we know the event must be on the current CPU, therefore we
1120 1121
	 * don't need to use it.
	 */
1122 1123
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1124 1125
		event->pmu->read(event);
		/* fall-through */
1126

1127 1128
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1129 1130 1131 1132 1133 1134 1135
		break;

	default:
		break;
	}

	/*
1136
	 * In order to keep per-task stats reliable we need to flip the event
1137 1138
	 * values when we flip the contexts.
	 */
1139 1140 1141
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1142

1143 1144
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1145

1146
	/*
1147
	 * Since we swizzled the values, update the user visible data too.
1148
	 */
1149 1150
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1151 1152 1153 1154 1155
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1156 1157
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1158
{
1159
	struct perf_event *event, *next_event;
1160 1161 1162 1163

	if (!ctx->nr_stat)
		return;

1164 1165
	update_context_time(ctx);

1166 1167
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1168

1169 1170
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1171

1172 1173
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1174

1175
		__perf_event_sync_stat(event, next_event);
1176

1177 1178
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1179 1180 1181
	}
}

T
Thomas Gleixner 已提交
1182
/*
1183
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1184 1185
 * with interrupts disabled.
 *
1186
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1187
 *
I
Ingo Molnar 已提交
1188
 * This does not protect us against NMI, but disable()
1189 1190 1191
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1192
 */
1193
void perf_event_task_sched_out(struct task_struct *task,
1194
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1195
{
1196
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1197 1198 1199
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1200
	struct pt_regs *regs;
1201
	int do_switch = 1;
T
Thomas Gleixner 已提交
1202

1203
	regs = task_pt_regs(task);
1204
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1205

1206
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1207 1208
		return;

1209 1210
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1211
	next_ctx = next->perf_event_ctxp;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1223 1224
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1225
		if (context_equiv(ctx, next_ctx)) {
1226 1227
			/*
			 * XXX do we need a memory barrier of sorts
1228
			 * wrt to rcu_dereference() of perf_event_ctxp
1229
			 */
1230 1231
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1232 1233 1234
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1235

1236
			perf_event_sync_stat(ctx, next_ctx);
1237
		}
1238 1239
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1240
	}
1241
	rcu_read_unlock();
1242

1243
	if (do_switch) {
1244
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1245 1246
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1247 1248
}

1249 1250
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1251 1252 1253
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1254 1255
	if (!cpuctx->task_ctx)
		return;
1256 1257 1258 1259

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1260
	ctx_sched_out(ctx, cpuctx, event_type);
1261 1262 1263
	cpuctx->task_ctx = NULL;
}

1264 1265 1266
/*
 * Called with IRQs disabled
 */
1267
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1268
{
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1279 1280
}

1281
static void
1282 1283 1284
ctx_pinned_sched_in(struct perf_event_context *ctx,
		    struct perf_cpu_context *cpuctx,
		    int cpu)
T
Thomas Gleixner 已提交
1285
{
1286
	struct perf_event *event;
T
Thomas Gleixner 已提交
1287

1288 1289
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1290
			continue;
1291
		if (event->cpu != -1 && event->cpu != cpu)
1292 1293
			continue;

1294 1295
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1296 1297 1298 1299 1300

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1301 1302 1303
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1304
		}
1305
	}
1306 1307 1308 1309 1310 1311 1312 1313 1314
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
		      struct perf_cpu_context *cpuctx,
		      int cpu)
{
	struct perf_event *event;
	int can_add_hw = 1;
1315

1316 1317 1318
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1319
			continue;
1320 1321
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1322
		 * of events:
1323
		 */
1324
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1325 1326
			continue;

1327 1328
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1329
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1330
	}
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	int cpu = smp_processor_id();

	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
		ctx_pinned_sched_in(ctx, cpuctx, cpu);

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
		ctx_flexible_sched_in(ctx, cpuctx, cpu);

1360
	perf_enable();
1361
 out:
1362
	raw_spin_unlock(&ctx->lock);
1363 1364
}

1365 1366 1367 1368 1369 1370 1371 1372
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1386
/*
1387
 * Called from scheduler to add the events of the current task
1388 1389
 * with interrupts disabled.
 *
1390
 * We restore the event value and then enable it.
1391 1392
 *
 * This does not protect us against NMI, but enable()
1393 1394 1395
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1396
 */
1397
void perf_event_task_sched_in(struct task_struct *task)
1398
{
1399 1400
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1401

1402 1403
	if (likely(!ctx))
		return;
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	if (cpuctx->task_ctx == ctx)
		return;

	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1420 1421
}

1422 1423
#define MAX_INTERRUPTS (~0ULL)

1424
static void perf_log_throttle(struct perf_event *event, int enable);
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1497
{
1498
	struct hw_perf_event *hwc = &event->hw;
1499 1500 1501
	u64 period, sample_period;
	s64 delta;

1502
	period = perf_calculate_period(event, nsec, count);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1513 1514 1515 1516 1517 1518 1519 1520

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
		event->pmu->disable(event);
		atomic64_set(&hwc->period_left, 0);
		event->pmu->enable(event);
		perf_enable();
	}
1521 1522
}

1523
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1524
{
1525 1526
	struct perf_event *event;
	struct hw_perf_event *hwc;
1527 1528
	u64 interrupts, now;
	s64 delta;
1529

1530
	raw_spin_lock(&ctx->lock);
1531
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1532
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1533 1534
			continue;

1535 1536 1537
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1538
		hwc = &event->hw;
1539 1540 1541

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1542

1543
		/*
1544
		 * unthrottle events on the tick
1545
		 */
1546
		if (interrupts == MAX_INTERRUPTS) {
1547 1548
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
1549 1550
		}

1551
		if (!event->attr.freq || !event->attr.sample_freq)
1552 1553
			continue;

1554 1555 1556 1557
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1558

1559 1560
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1561
	}
1562
	raw_spin_unlock(&ctx->lock);
1563 1564
}

1565
/*
1566
 * Round-robin a context's events:
1567
 */
1568
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1569
{
1570
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1571 1572
		return;

1573
	raw_spin_lock(&ctx->lock);
1574 1575

	/* Rotate the first entry last of non-pinned groups */
1576
	perf_disable();
1577

1578 1579
	list_rotate_left(&ctx->flexible_groups);

1580
	perf_enable();
T
Thomas Gleixner 已提交
1581

1582
	raw_spin_unlock(&ctx->lock);
1583 1584
}

1585
void perf_event_task_tick(struct task_struct *curr)
1586
{
1587
	struct perf_cpu_context *cpuctx;
1588
	struct perf_event_context *ctx;
1589

1590
	if (!atomic_read(&nr_events))
1591 1592
		return;

1593
	cpuctx = &__get_cpu_var(perf_cpu_context);
1594
	ctx = curr->perf_event_ctxp;
1595

1596
	perf_ctx_adjust_freq(&cpuctx->ctx);
1597
	if (ctx)
1598
		perf_ctx_adjust_freq(ctx);
1599

1600
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1601
	if (ctx)
1602
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1603

1604
	rotate_ctx(&cpuctx->ctx);
1605 1606
	if (ctx)
		rotate_ctx(ctx);
1607

1608
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1609
	if (ctx)
1610
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1611 1612
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1628
/*
1629
 * Enable all of a task's events that have been marked enable-on-exec.
1630 1631
 * This expects task == current.
 */
1632
static void perf_event_enable_on_exec(struct task_struct *task)
1633
{
1634 1635
	struct perf_event_context *ctx;
	struct perf_event *event;
1636 1637
	unsigned long flags;
	int enabled = 0;
1638
	int ret;
1639 1640

	local_irq_save(flags);
1641 1642
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1643 1644
		goto out;

1645
	__perf_event_task_sched_out(ctx);
1646

1647
	raw_spin_lock(&ctx->lock);
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1659 1660 1661
	}

	/*
1662
	 * Unclone this context if we enabled any event.
1663
	 */
1664 1665
	if (enabled)
		unclone_ctx(ctx);
1666

1667
	raw_spin_unlock(&ctx->lock);
1668

1669
	perf_event_task_sched_in(task);
1670 1671 1672 1673
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1674
/*
1675
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1676
 */
1677
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1678
{
1679
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1680 1681
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1682

1683 1684 1685 1686
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1687 1688
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1689 1690 1691 1692
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1693
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1694
	update_context_time(ctx);
1695
	update_event_times(event);
1696
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1697

P
Peter Zijlstra 已提交
1698
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1699 1700
}

1701
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1702 1703
{
	/*
1704 1705
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1706
	 */
1707 1708 1709 1710
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1711 1712 1713
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1714
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1715
		update_context_time(ctx);
1716
		update_event_times(event);
1717
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1718 1719
	}

1720
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1721 1722
}

1723
/*
1724
 * Initialize the perf_event context in a task_struct:
1725 1726
 */
static void
1727
__perf_event_init_context(struct perf_event_context *ctx,
1728 1729
			    struct task_struct *task)
{
1730
	raw_spin_lock_init(&ctx->lock);
1731
	mutex_init(&ctx->mutex);
1732 1733
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1734 1735 1736 1737 1738
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1739
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1740
{
1741
	struct perf_event_context *ctx;
1742
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1743
	struct task_struct *task;
1744
	unsigned long flags;
1745
	int err;
T
Thomas Gleixner 已提交
1746

1747
	if (pid == -1 && cpu != -1) {
1748
		/* Must be root to operate on a CPU event: */
1749
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1750 1751
			return ERR_PTR(-EACCES);

1752
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1753 1754 1755
			return ERR_PTR(-EINVAL);

		/*
1756
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1757 1758 1759
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1760
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1761 1762 1763 1764
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1765
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1782
	/*
1783
	 * Can't attach events to a dying task.
1784 1785 1786 1787 1788
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1789
	/* Reuse ptrace permission checks for now. */
1790 1791 1792 1793 1794
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1795
	ctx = perf_lock_task_context(task, &flags);
1796
	if (ctx) {
1797
		unclone_ctx(ctx);
1798
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1799 1800
	}

1801
	if (!ctx) {
1802
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1803 1804 1805
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1806
		__perf_event_init_context(ctx, task);
1807
		get_ctx(ctx);
1808
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1809 1810 1811 1812 1813
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1814
			goto retry;
1815
		}
1816
		get_task_struct(task);
1817 1818
	}

1819
	put_task_struct(task);
T
Thomas Gleixner 已提交
1820
	return ctx;
1821 1822 1823 1824

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1825 1826
}

L
Li Zefan 已提交
1827 1828
static void perf_event_free_filter(struct perf_event *event);

1829
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1830
{
1831
	struct perf_event *event;
P
Peter Zijlstra 已提交
1832

1833 1834 1835
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1836
	perf_event_free_filter(event);
1837
	kfree(event);
P
Peter Zijlstra 已提交
1838 1839
}

1840
static void perf_pending_sync(struct perf_event *event);
1841

1842
static void free_event(struct perf_event *event)
1843
{
1844
	perf_pending_sync(event);
1845

1846 1847 1848 1849 1850 1851 1852 1853
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1854
	}
1855

1856 1857 1858
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1859 1860
	}

1861 1862
	if (event->destroy)
		event->destroy(event);
1863

1864 1865
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1866 1867
}

1868
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1869
{
1870
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1871

1872
	WARN_ON_ONCE(ctx->parent_ctx);
1873
	mutex_lock(&ctx->mutex);
1874
	perf_event_remove_from_context(event);
1875
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1876

1877 1878 1879 1880
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1881

1882
	free_event(event);
T
Thomas Gleixner 已提交
1883 1884 1885

	return 0;
}
1886
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1887

1888 1889 1890 1891
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1892
{
1893
	struct perf_event *event = file->private_data;
1894

1895
	file->private_data = NULL;
1896

1897
	return perf_event_release_kernel(event);
1898 1899
}

1900
static int perf_event_read_size(struct perf_event *event)
1901 1902 1903 1904 1905
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1906
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1907 1908
		size += sizeof(u64);

1909
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1910 1911
		size += sizeof(u64);

1912
	if (event->attr.read_format & PERF_FORMAT_ID)
1913 1914
		entry += sizeof(u64);

1915 1916
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1917 1918 1919 1920 1921 1922 1923 1924
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1925
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1926
{
1927
	struct perf_event *child;
1928 1929
	u64 total = 0;

1930 1931 1932
	*enabled = 0;
	*running = 0;

1933
	mutex_lock(&event->child_mutex);
1934
	total += perf_event_read(event);
1935 1936 1937 1938 1939 1940
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1941
		total += perf_event_read(child);
1942 1943 1944
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1945
	mutex_unlock(&event->child_mutex);
1946 1947 1948

	return total;
}
1949
EXPORT_SYMBOL_GPL(perf_event_read_value);
1950

1951
static int perf_event_read_group(struct perf_event *event,
1952 1953
				   u64 read_format, char __user *buf)
{
1954
	struct perf_event *leader = event->group_leader, *sub;
1955 1956
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1957
	u64 values[5];
1958
	u64 count, enabled, running;
1959

1960
	mutex_lock(&ctx->mutex);
1961
	count = perf_event_read_value(leader, &enabled, &running);
1962 1963

	values[n++] = 1 + leader->nr_siblings;
1964 1965 1966 1967
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1968 1969 1970
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1971 1972 1973 1974

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1975
		goto unlock;
1976

1977
	ret = size;
1978

1979
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1980
		n = 0;
1981

1982
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1983 1984 1985 1986 1987
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1988
		if (copy_to_user(buf + ret, values, size)) {
1989 1990 1991
			ret = -EFAULT;
			goto unlock;
		}
1992 1993

		ret += size;
1994
	}
1995 1996
unlock:
	mutex_unlock(&ctx->mutex);
1997

1998
	return ret;
1999 2000
}

2001
static int perf_event_read_one(struct perf_event *event,
2002 2003
				 u64 read_format, char __user *buf)
{
2004
	u64 enabled, running;
2005 2006 2007
	u64 values[4];
	int n = 0;

2008 2009 2010 2011 2012
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2013
	if (read_format & PERF_FORMAT_ID)
2014
		values[n++] = primary_event_id(event);
2015 2016 2017 2018 2019 2020 2021

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2022
/*
2023
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2024 2025
 */
static ssize_t
2026
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2027
{
2028
	u64 read_format = event->attr.read_format;
2029
	int ret;
T
Thomas Gleixner 已提交
2030

2031
	/*
2032
	 * Return end-of-file for a read on a event that is in
2033 2034 2035
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2036
	if (event->state == PERF_EVENT_STATE_ERROR)
2037 2038
		return 0;

2039
	if (count < perf_event_read_size(event))
2040 2041
		return -ENOSPC;

2042
	WARN_ON_ONCE(event->ctx->parent_ctx);
2043
	if (read_format & PERF_FORMAT_GROUP)
2044
		ret = perf_event_read_group(event, read_format, buf);
2045
	else
2046
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2047

2048
	return ret;
T
Thomas Gleixner 已提交
2049 2050 2051 2052 2053
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2054
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2055

2056
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2057 2058 2059 2060
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2061
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2062
	struct perf_mmap_data *data;
2063
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2064 2065

	rcu_read_lock();
2066
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
2067
	if (data)
2068
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
2069
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2070

2071
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2072 2073 2074 2075

	return events;
}

2076
static void perf_event_reset(struct perf_event *event)
2077
{
2078 2079 2080
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2081 2082
}

2083
/*
2084 2085 2086 2087
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2088
 */
2089 2090
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2091
{
2092
	struct perf_event *child;
P
Peter Zijlstra 已提交
2093

2094 2095 2096 2097
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2098
		func(child);
2099
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2100 2101
}

2102 2103
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2104
{
2105 2106
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2107

2108 2109
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2110
	event = event->group_leader;
2111

2112 2113 2114 2115
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2116
	mutex_unlock(&ctx->mutex);
2117 2118
}

2119
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2120
{
2121
	struct perf_event_context *ctx = event->ctx;
2122 2123 2124 2125
	unsigned long size;
	int ret = 0;
	u64 value;

2126
	if (!event->attr.sample_period)
2127 2128 2129 2130 2131 2132 2133 2134 2135
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2136
	raw_spin_lock_irq(&ctx->lock);
2137 2138
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2139 2140 2141 2142
			ret = -EINVAL;
			goto unlock;
		}

2143
		event->attr.sample_freq = value;
2144
	} else {
2145 2146
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2147 2148
	}
unlock:
2149
	raw_spin_unlock_irq(&ctx->lock);
2150 2151 2152 2153

	return ret;
}

L
Li Zefan 已提交
2154 2155
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2156

2157 2158
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2159 2160
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2161
	u32 flags = arg;
2162 2163

	switch (cmd) {
2164 2165
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2166
		break;
2167 2168
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2169
		break;
2170 2171
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2172
		break;
P
Peter Zijlstra 已提交
2173

2174 2175
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2176

2177 2178
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2179

2180 2181
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2182

L
Li Zefan 已提交
2183 2184 2185
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2186
	default:
P
Peter Zijlstra 已提交
2187
		return -ENOTTY;
2188
	}
P
Peter Zijlstra 已提交
2189 2190

	if (flags & PERF_IOC_FLAG_GROUP)
2191
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2192
	else
2193
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2194 2195

	return 0;
2196 2197
}

2198
int perf_event_task_enable(void)
2199
{
2200
	struct perf_event *event;
2201

2202 2203 2204 2205
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2206 2207 2208 2209

	return 0;
}

2210
int perf_event_task_disable(void)
2211
{
2212
	struct perf_event *event;
2213

2214 2215 2216 2217
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2218 2219 2220 2221

	return 0;
}

2222 2223
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2224 2225
#endif

2226
static int perf_event_index(struct perf_event *event)
2227
{
2228
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2229 2230
		return 0;

2231
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2232 2233
}

2234 2235 2236 2237 2238
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2239
void perf_event_update_userpage(struct perf_event *event)
2240
{
2241
	struct perf_event_mmap_page *userpg;
2242
	struct perf_mmap_data *data;
2243 2244

	rcu_read_lock();
2245
	data = rcu_dereference(event->data);
2246 2247 2248 2249
	if (!data)
		goto unlock;

	userpg = data->user_page;
2250

2251 2252 2253 2254 2255
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2256
	++userpg->lock;
2257
	barrier();
2258 2259 2260 2261
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2262

2263 2264
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2265

2266 2267
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2268

2269
	barrier();
2270
	++userpg->lock;
2271
	preempt_enable();
2272
unlock:
2273
	rcu_read_unlock();
2274 2275
}

2276
static unsigned long perf_data_size(struct perf_mmap_data *data)
2277
{
2278 2279
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2280

2281
#ifndef CONFIG_PERF_USE_VMALLOC
2282

2283 2284 2285
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2286

2287 2288 2289 2290 2291
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2292

2293 2294
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2295

2296
	return virt_to_page(data->data_pages[pgoff - 1]);
2297 2298
}

2299 2300
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2301 2302 2303 2304 2305
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2306
	WARN_ON(atomic_read(&event->mmap_count));
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2325
	data->data_order = 0;
2326 2327
	data->nr_pages = nr_pages;

2328
	return data;
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2340
	return NULL;
2341 2342
}

2343 2344
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2345
	struct page *page = virt_to_page((void *)addr);
2346 2347 2348 2349 2350

	page->mapping = NULL;
	__free_page(page);
}

2351
static void perf_mmap_data_free(struct perf_mmap_data *data)
2352 2353 2354
{
	int i;

2355
	perf_mmap_free_page((unsigned long)data->user_page);
2356
	for (i = 0; i < data->nr_pages; i++)
2357
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2358
	kfree(data);
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2399
	kfree(data);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2415

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2493
		data->watermark = max_size / 2;
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2505 2506
}

2507
static void perf_mmap_data_release(struct perf_event *event)
2508
{
2509
	struct perf_mmap_data *data = event->data;
2510

2511
	WARN_ON(atomic_read(&event->mmap_count));
2512

2513
	rcu_assign_pointer(event->data, NULL);
2514
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2515 2516 2517 2518
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2519
	struct perf_event *event = vma->vm_file->private_data;
2520

2521
	atomic_inc(&event->mmap_count);
2522 2523 2524 2525
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2526
	struct perf_event *event = vma->vm_file->private_data;
2527

2528 2529
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2530
		unsigned long size = perf_data_size(event->data);
2531 2532
		struct user_struct *user = current_user();

2533
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2534
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2535
		perf_mmap_data_release(event);
2536
		mutex_unlock(&event->mmap_mutex);
2537
	}
2538 2539
}

2540
static const struct vm_operations_struct perf_mmap_vmops = {
2541 2542 2543 2544
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2545 2546 2547 2548
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2549
	struct perf_event *event = file->private_data;
2550
	unsigned long user_locked, user_lock_limit;
2551
	struct user_struct *user = current_user();
2552
	unsigned long locked, lock_limit;
2553
	struct perf_mmap_data *data;
2554 2555
	unsigned long vma_size;
	unsigned long nr_pages;
2556
	long user_extra, extra;
2557
	int ret = 0;
2558

2559
	if (!(vma->vm_flags & VM_SHARED))
2560
		return -EINVAL;
2561 2562 2563 2564

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2565 2566 2567 2568 2569
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2570 2571
		return -EINVAL;

2572
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2573 2574
		return -EINVAL;

2575 2576
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2577

2578 2579 2580
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2581 2582 2583 2584
		ret = -EINVAL;
		goto unlock;
	}

2585 2586
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2587 2588 2589 2590
			ret = -EINVAL;
		goto unlock;
	}

2591
	user_extra = nr_pages + 1;
2592
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2593 2594 2595 2596 2597 2598

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2599
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2600

2601 2602 2603
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2604 2605 2606

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2607
	locked = vma->vm_mm->locked_vm + extra;
2608

2609 2610
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2611 2612 2613
		ret = -EPERM;
		goto unlock;
	}
2614

2615
	WARN_ON(event->data);
2616 2617 2618 2619

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2620 2621
		goto unlock;

2622 2623 2624
	ret = 0;
	perf_mmap_data_init(event, data);

2625
	atomic_set(&event->mmap_count, 1);
2626
	atomic_long_add(user_extra, &user->locked_vm);
2627
	vma->vm_mm->locked_vm += extra;
2628
	event->data->nr_locked = extra;
2629
	if (vma->vm_flags & VM_WRITE)
2630
		event->data->writable = 1;
2631

2632
unlock:
2633
	mutex_unlock(&event->mmap_mutex);
2634 2635 2636

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2637 2638

	return ret;
2639 2640
}

P
Peter Zijlstra 已提交
2641 2642 2643
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2644
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2645 2646 2647
	int retval;

	mutex_lock(&inode->i_mutex);
2648
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2649 2650 2651 2652 2653 2654 2655 2656
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2657 2658 2659 2660
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2661 2662
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2663
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2664
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2665 2666
};

2667
/*
2668
 * Perf event wakeup
2669 2670 2671 2672 2673
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2674
void perf_event_wakeup(struct perf_event *event)
2675
{
2676
	wake_up_all(&event->waitq);
2677

2678 2679 2680
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2681
	}
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2693
static void perf_pending_event(struct perf_pending_entry *entry)
2694
{
2695 2696
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2697

2698 2699 2700
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2701 2702
	}

2703 2704 2705
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2706 2707 2708
	}
}

2709
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2710

2711
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2712 2713 2714
	PENDING_TAIL,
};

2715 2716
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2717
{
2718
	struct perf_pending_entry **head;
2719

2720
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2721 2722
		return;

2723 2724 2725
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2726 2727

	do {
2728 2729
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2730

2731
	set_perf_event_pending();
2732

2733
	put_cpu_var(perf_pending_head);
2734 2735 2736 2737
}

static int __perf_pending_run(void)
{
2738
	struct perf_pending_entry *list;
2739 2740
	int nr = 0;

2741
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2742
	while (list != PENDING_TAIL) {
2743 2744
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2745 2746 2747

		list = list->next;

2748 2749
		func = entry->func;
		entry->next = NULL;
2750 2751 2752 2753 2754 2755 2756
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2757
		func(entry);
2758 2759 2760 2761 2762 2763
		nr++;
	}

	return nr;
}

2764
static inline int perf_not_pending(struct perf_event *event)
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2779
	return event->pending.next == NULL;
2780 2781
}

2782
static void perf_pending_sync(struct perf_event *event)
2783
{
2784
	wait_event(event->waitq, perf_not_pending(event));
2785 2786
}

2787
void perf_event_do_pending(void)
2788 2789 2790 2791
{
	__perf_pending_run();
}

2792 2793 2794 2795
/*
 * Callchain support -- arch specific
 */

2796
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2797 2798 2799 2800
{
	return NULL;
}

2801 2802 2803
/*
 * Output
 */
2804 2805
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2806 2807 2808 2809 2810 2811
{
	unsigned long mask;

	if (!data->writable)
		return true;

2812
	mask = perf_data_size(data) - 1;
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2823
static void perf_output_wakeup(struct perf_output_handle *handle)
2824
{
2825 2826
	atomic_set(&handle->data->poll, POLL_IN);

2827
	if (handle->nmi) {
2828 2829 2830
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2831
	} else
2832
		perf_event_wakeup(handle->event);
2833 2834
}

2835 2836 2837
/*
 * Curious locking construct.
 *
2838 2839
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2840 2841 2842 2843 2844 2845
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2846
 * event_id completes.
2847 2848 2849 2850
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2851
	int cur, cpu = get_cpu();
2852 2853 2854

	handle->locked = 0;

2855 2856 2857 2858 2859 2860 2861 2862
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2863 2864

		cpu_relax();
2865
	}
2866 2867 2868 2869 2870
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2871 2872
	unsigned long head;
	int cpu;
2873

2874
	data->done_head = data->head;
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2885
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2886 2887 2888
		data->user_page->data_head = head;

	/*
2889
	 * NMI can happen here, which means we can miss a done_head update.
2890 2891
	 */

2892
	cpu = atomic_xchg(&data->lock, -1);
2893 2894 2895 2896 2897
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2898
	if (unlikely(atomic_long_read(&data->done_head))) {
2899 2900 2901
		/*
		 * Since we had it locked, we can lock it again.
		 */
2902
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2903 2904 2905 2906 2907
			cpu_relax();

		goto again;
	}

2908
	if (atomic_xchg(&data->wakeup, 0))
2909 2910
		perf_output_wakeup(handle);
out:
2911
	put_cpu();
2912 2913
}

2914 2915
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2916 2917
{
	unsigned int pages_mask;
2918
	unsigned long offset;
2919 2920 2921 2922 2923 2924 2925 2926
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2927 2928
		unsigned long page_offset;
		unsigned long page_size;
2929 2930 2931
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2932 2933 2934
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2952
int perf_output_begin(struct perf_output_handle *handle,
2953
		      struct perf_event *event, unsigned int size,
2954
		      int nmi, int sample)
2955
{
2956
	struct perf_event *output_event;
2957
	struct perf_mmap_data *data;
2958
	unsigned long tail, offset, head;
2959 2960 2961 2962 2963 2964
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2965

2966
	rcu_read_lock();
2967
	/*
2968
	 * For inherited events we send all the output towards the parent.
2969
	 */
2970 2971
	if (event->parent)
		event = event->parent;
2972

2973 2974 2975
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2976

2977
	data = rcu_dereference(event->data);
2978 2979 2980
	if (!data)
		goto out;

2981
	handle->data	= data;
2982
	handle->event	= event;
2983 2984
	handle->nmi	= nmi;
	handle->sample	= sample;
2985

2986
	if (!data->nr_pages)
2987
		goto fail;
2988

2989 2990 2991 2992
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2993 2994
	perf_output_lock(handle);

2995
	do {
2996 2997 2998 2999 3000 3001 3002
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
3003
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
3004
		head += size;
3005
		if (unlikely(!perf_output_space(data, tail, offset, head)))
3006
			goto fail;
3007
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3008

3009
	handle->offset	= offset;
3010
	handle->head	= head;
3011

3012
	if (head - tail > data->watermark)
3013
		atomic_set(&data->wakeup, 1);
3014

3015
	if (have_lost) {
3016
		lost_event.header.type = PERF_RECORD_LOST;
3017 3018
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3019
		lost_event.id          = event->id;
3020 3021 3022 3023 3024
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

3025
	return 0;
3026

3027
fail:
3028 3029
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
3030 3031
out:
	rcu_read_unlock();
3032

3033 3034
	return -ENOSPC;
}
3035

3036
void perf_output_end(struct perf_output_handle *handle)
3037
{
3038
	struct perf_event *event = handle->event;
3039 3040
	struct perf_mmap_data *data = handle->data;

3041
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3042

3043
	if (handle->sample && wakeup_events) {
3044
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
3045
		if (events >= wakeup_events) {
3046
			atomic_sub(wakeup_events, &data->events);
3047
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
3048
		}
3049 3050 3051
	}

	perf_output_unlock(handle);
3052
	rcu_read_unlock();
3053 3054
}

3055
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3056 3057
{
	/*
3058
	 * only top level events have the pid namespace they were created in
3059
	 */
3060 3061
	if (event->parent)
		event = event->parent;
3062

3063
	return task_tgid_nr_ns(p, event->ns);
3064 3065
}

3066
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3067 3068
{
	/*
3069
	 * only top level events have the pid namespace they were created in
3070
	 */
3071 3072
	if (event->parent)
		event = event->parent;
3073

3074
	return task_pid_nr_ns(p, event->ns);
3075 3076
}

3077
static void perf_output_read_one(struct perf_output_handle *handle,
3078
				 struct perf_event *event)
3079
{
3080
	u64 read_format = event->attr.read_format;
3081 3082 3083
	u64 values[4];
	int n = 0;

3084
	values[n++] = atomic64_read(&event->count);
3085
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3086 3087
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3088 3089
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3090 3091
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3092 3093
	}
	if (read_format & PERF_FORMAT_ID)
3094
		values[n++] = primary_event_id(event);
3095 3096 3097 3098 3099

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3100
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3101 3102
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3103
			    struct perf_event *event)
3104
{
3105 3106
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3118
	if (leader != event)
3119 3120 3121 3122
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3123
		values[n++] = primary_event_id(leader);
3124 3125 3126

	perf_output_copy(handle, values, n * sizeof(u64));

3127
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3128 3129
		n = 0;

3130
		if (sub != event)
3131 3132 3133 3134
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3135
			values[n++] = primary_event_id(sub);
3136 3137 3138 3139 3140 3141

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3142
			     struct perf_event *event)
3143
{
3144 3145
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3146
	else
3147
		perf_output_read_one(handle, event);
3148 3149
}

3150 3151 3152
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3153
			struct perf_event *event)
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3184
		perf_output_read(handle, event);
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3222
			 struct perf_event *event,
3223
			 struct pt_regs *regs)
3224
{
3225
	u64 sample_type = event->attr.sample_type;
3226

3227
	data->type = sample_type;
3228

3229
	header->type = PERF_RECORD_SAMPLE;
3230 3231 3232 3233
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3234

3235
	if (sample_type & PERF_SAMPLE_IP) {
3236 3237 3238
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3239
	}
3240

3241
	if (sample_type & PERF_SAMPLE_TID) {
3242
		/* namespace issues */
3243 3244
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3245

3246
		header->size += sizeof(data->tid_entry);
3247 3248
	}

3249
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3250
		data->time = perf_clock();
3251

3252
		header->size += sizeof(data->time);
3253 3254
	}

3255
	if (sample_type & PERF_SAMPLE_ADDR)
3256
		header->size += sizeof(data->addr);
3257

3258
	if (sample_type & PERF_SAMPLE_ID) {
3259
		data->id = primary_event_id(event);
3260

3261 3262 3263 3264
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3265
		data->stream_id = event->id;
3266 3267 3268

		header->size += sizeof(data->stream_id);
	}
3269

3270
	if (sample_type & PERF_SAMPLE_CPU) {
3271 3272
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3273

3274
		header->size += sizeof(data->cpu_entry);
3275 3276
	}

3277
	if (sample_type & PERF_SAMPLE_PERIOD)
3278
		header->size += sizeof(data->period);
3279

3280
	if (sample_type & PERF_SAMPLE_READ)
3281
		header->size += perf_event_read_size(event);
3282

3283
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3284
		int size = 1;
3285

3286 3287 3288 3289 3290 3291
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3292 3293
	}

3294
	if (sample_type & PERF_SAMPLE_RAW) {
3295 3296 3297 3298 3299 3300 3301 3302
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3303
		header->size += size;
3304
	}
3305
}
3306

3307
static void perf_event_output(struct perf_event *event, int nmi,
3308 3309 3310 3311 3312
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3313

3314
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3315

3316
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3317
		return;
3318

3319
	perf_output_sample(&handle, &header, data, event);
3320

3321
	perf_output_end(&handle);
3322 3323
}

3324
/*
3325
 * read event_id
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3336
perf_event_read_event(struct perf_event *event,
3337 3338 3339
			struct task_struct *task)
{
	struct perf_output_handle handle;
3340
	struct perf_read_event read_event = {
3341
		.header = {
3342
			.type = PERF_RECORD_READ,
3343
			.misc = 0,
3344
			.size = sizeof(read_event) + perf_event_read_size(event),
3345
		},
3346 3347
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3348
	};
3349
	int ret;
3350

3351
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3352 3353 3354
	if (ret)
		return;

3355
	perf_output_put(&handle, read_event);
3356
	perf_output_read(&handle, event);
3357

3358 3359 3360
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3361
/*
P
Peter Zijlstra 已提交
3362 3363 3364
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3365 3366
 */

P
Peter Zijlstra 已提交
3367
struct perf_task_event {
3368
	struct task_struct		*task;
3369
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3370 3371 3372 3373 3374 3375

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3376 3377
		u32				tid;
		u32				ptid;
3378
		u64				time;
3379
	} event_id;
P
Peter Zijlstra 已提交
3380 3381
};

3382
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3383
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3384 3385
{
	struct perf_output_handle handle;
3386
	int size;
P
Peter Zijlstra 已提交
3387
	struct task_struct *task = task_event->task;
3388 3389
	int ret;

3390 3391
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3392 3393 3394 3395

	if (ret)
		return;

3396 3397
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3398

3399 3400
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3401

3402
	task_event->event_id.time = perf_clock();
3403

3404
	perf_output_put(&handle, task_event->event_id);
3405

P
Peter Zijlstra 已提交
3406 3407 3408
	perf_output_end(&handle);
}

3409
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3410
{
3411 3412 3413
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3414
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3415 3416 3417 3418 3419
		return 1;

	return 0;
}

3420
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3421
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3422
{
3423
	struct perf_event *event;
P
Peter Zijlstra 已提交
3424

3425 3426 3427
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3428 3429 3430
	}
}

3431
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3432 3433
{
	struct perf_cpu_context *cpuctx;
3434
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3435

3436
	rcu_read_lock();
P
Peter Zijlstra 已提交
3437
	cpuctx = &get_cpu_var(perf_cpu_context);
3438
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3439
	if (!ctx)
3440
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3441
	if (ctx)
3442
		perf_event_task_ctx(ctx, task_event);
3443
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3444 3445 3446
	rcu_read_unlock();
}

3447 3448
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3449
			      int new)
P
Peter Zijlstra 已提交
3450
{
P
Peter Zijlstra 已提交
3451
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3452

3453 3454 3455
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3456 3457
		return;

P
Peter Zijlstra 已提交
3458
	task_event = (struct perf_task_event){
3459 3460
		.task	  = task,
		.task_ctx = task_ctx,
3461
		.event_id    = {
P
Peter Zijlstra 已提交
3462
			.header = {
3463
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3464
				.misc = 0,
3465
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3466
			},
3467 3468
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3469 3470
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3471 3472 3473
		},
	};

3474
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3475 3476
}

3477
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3478
{
3479
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3480 3481
}

3482 3483 3484 3485 3486
/*
 * comm tracking
 */

struct perf_comm_event {
3487 3488
	struct task_struct	*task;
	char			*comm;
3489 3490 3491 3492 3493 3494 3495
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3496
	} event_id;
3497 3498
};

3499
static void perf_event_comm_output(struct perf_event *event,
3500 3501 3502
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3503 3504
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3505 3506 3507 3508

	if (ret)
		return;

3509 3510
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3511

3512
	perf_output_put(&handle, comm_event->event_id);
3513 3514 3515 3516 3517
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3518
static int perf_event_comm_match(struct perf_event *event)
3519
{
3520 3521 3522
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3523
	if (event->attr.comm)
3524 3525 3526 3527 3528
		return 1;

	return 0;
}

3529
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3530 3531
				  struct perf_comm_event *comm_event)
{
3532
	struct perf_event *event;
3533

3534 3535 3536
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3537 3538 3539
	}
}

3540
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3541 3542
{
	struct perf_cpu_context *cpuctx;
3543
	struct perf_event_context *ctx;
3544
	unsigned int size;
3545
	char comm[TASK_COMM_LEN];
3546

3547
	memset(comm, 0, sizeof(comm));
3548
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3549
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3550 3551 3552 3553

	comm_event->comm = comm;
	comm_event->comm_size = size;

3554
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3555

3556
	rcu_read_lock();
3557
	cpuctx = &get_cpu_var(perf_cpu_context);
3558 3559
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3560
	if (ctx)
3561
		perf_event_comm_ctx(ctx, comm_event);
3562
	put_cpu_var(perf_cpu_context);
3563
	rcu_read_unlock();
3564 3565
}

3566
void perf_event_comm(struct task_struct *task)
3567
{
3568 3569
	struct perf_comm_event comm_event;

3570 3571
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3572

3573
	if (!atomic_read(&nr_comm_events))
3574
		return;
3575

3576
	comm_event = (struct perf_comm_event){
3577
		.task	= task,
3578 3579
		/* .comm      */
		/* .comm_size */
3580
		.event_id  = {
3581
			.header = {
3582
				.type = PERF_RECORD_COMM,
3583 3584 3585 3586 3587
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3588 3589 3590
		},
	};

3591
	perf_event_comm_event(&comm_event);
3592 3593
}

3594 3595 3596 3597 3598
/*
 * mmap tracking
 */

struct perf_mmap_event {
3599 3600 3601 3602
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3603 3604 3605 3606 3607 3608 3609 3610 3611

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3612
	} event_id;
3613 3614
};

3615
static void perf_event_mmap_output(struct perf_event *event,
3616 3617 3618
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3619 3620
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3621 3622 3623 3624

	if (ret)
		return;

3625 3626
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3627

3628
	perf_output_put(&handle, mmap_event->event_id);
3629 3630
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3631
	perf_output_end(&handle);
3632 3633
}

3634
static int perf_event_mmap_match(struct perf_event *event,
3635 3636
				   struct perf_mmap_event *mmap_event)
{
3637 3638 3639
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3640
	if (event->attr.mmap)
3641 3642 3643 3644 3645
		return 1;

	return 0;
}

3646
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3647 3648
				  struct perf_mmap_event *mmap_event)
{
3649
	struct perf_event *event;
3650

3651 3652 3653
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3654 3655 3656
	}
}

3657
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3658 3659
{
	struct perf_cpu_context *cpuctx;
3660
	struct perf_event_context *ctx;
3661 3662
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3663 3664 3665
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3666
	const char *name;
3667

3668 3669
	memset(tmp, 0, sizeof(tmp));

3670
	if (file) {
3671 3672 3673 3674 3675 3676
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3677 3678 3679 3680
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3681
		name = d_path(&file->f_path, buf, PATH_MAX);
3682 3683 3684 3685 3686
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3687 3688 3689
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3690
			goto got_name;
3691
		}
3692 3693 3694 3695 3696 3697

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3698 3699 3700 3701 3702
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3703
	size = ALIGN(strlen(name)+1, sizeof(u64));
3704 3705 3706 3707

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3708
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3709

3710
	rcu_read_lock();
3711
	cpuctx = &get_cpu_var(perf_cpu_context);
3712 3713
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3714
	if (ctx)
3715
		perf_event_mmap_ctx(ctx, mmap_event);
3716
	put_cpu_var(perf_cpu_context);
3717 3718
	rcu_read_unlock();

3719 3720 3721
	kfree(buf);
}

3722
void __perf_event_mmap(struct vm_area_struct *vma)
3723
{
3724 3725
	struct perf_mmap_event mmap_event;

3726
	if (!atomic_read(&nr_mmap_events))
3727 3728 3729
		return;

	mmap_event = (struct perf_mmap_event){
3730
		.vma	= vma,
3731 3732
		/* .file_name */
		/* .file_size */
3733
		.event_id  = {
3734
			.header = {
3735
				.type = PERF_RECORD_MMAP,
3736 3737 3738 3739 3740
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3741 3742 3743
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3744 3745 3746
		},
	};

3747
	perf_event_mmap_event(&mmap_event);
3748 3749
}

3750 3751 3752 3753
/*
 * IRQ throttle logging
 */

3754
static void perf_log_throttle(struct perf_event *event, int enable)
3755 3756 3757 3758 3759 3760 3761
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3762
		u64				id;
3763
		u64				stream_id;
3764 3765
	} throttle_event = {
		.header = {
3766
			.type = PERF_RECORD_THROTTLE,
3767 3768 3769
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3770
		.time		= perf_clock(),
3771 3772
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3773 3774
	};

3775
	if (enable)
3776
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3777

3778
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3779 3780 3781 3782 3783 3784 3785
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3786
/*
3787
 * Generic event overflow handling, sampling.
3788 3789
 */

3790
static int __perf_event_overflow(struct perf_event *event, int nmi,
3791 3792
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3793
{
3794 3795
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3796 3797
	int ret = 0;

3798
	throttle = (throttle && event->pmu->unthrottle != NULL);
3799

3800
	if (!throttle) {
3801
		hwc->interrupts++;
3802
	} else {
3803 3804
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3805
			if (HZ * hwc->interrupts >
3806
					(u64)sysctl_perf_event_sample_rate) {
3807
				hwc->interrupts = MAX_INTERRUPTS;
3808
				perf_log_throttle(event, 0);
3809 3810 3811 3812
				ret = 1;
			}
		} else {
			/*
3813
			 * Keep re-disabling events even though on the previous
3814
			 * pass we disabled it - just in case we raced with a
3815
			 * sched-in and the event got enabled again:
3816
			 */
3817 3818 3819
			ret = 1;
		}
	}
3820

3821
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3822
		u64 now = perf_clock();
3823
		s64 delta = now - hwc->freq_time_stamp;
3824

3825
		hwc->freq_time_stamp = now;
3826

3827 3828
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3829 3830
	}

3831 3832
	/*
	 * XXX event_limit might not quite work as expected on inherited
3833
	 * events
3834 3835
	 */

3836 3837
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3838
		ret = 1;
3839
		event->pending_kill = POLL_HUP;
3840
		if (nmi) {
3841 3842 3843
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3844
		} else
3845
			perf_event_disable(event);
3846 3847
	}

3848 3849 3850 3851 3852
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3853
	return ret;
3854 3855
}

3856
int perf_event_overflow(struct perf_event *event, int nmi,
3857 3858
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3859
{
3860
	return __perf_event_overflow(event, nmi, 1, data, regs);
3861 3862
}

3863
/*
3864
 * Generic software event infrastructure
3865 3866
 */

3867
/*
3868 3869
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3870 3871 3872 3873
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3874
static u64 perf_swevent_set_period(struct perf_event *event)
3875
{
3876
	struct hw_perf_event *hwc = &event->hw;
3877 3878 3879 3880 3881
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3882 3883

again:
3884 3885 3886
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3887

3888 3889 3890 3891 3892
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3893

3894
	return nr;
3895 3896
}

3897
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3898 3899
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3900
{
3901
	struct hw_perf_event *hwc = &event->hw;
3902
	int throttle = 0;
3903

3904
	data->period = event->hw.last_period;
3905 3906
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3907

3908 3909
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3910

3911
	for (; overflow; overflow--) {
3912
		if (__perf_event_overflow(event, nmi, throttle,
3913
					    data, regs)) {
3914 3915 3916 3917 3918 3919
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3920
		throttle = 1;
3921
	}
3922 3923
}

3924
static void perf_swevent_unthrottle(struct perf_event *event)
3925 3926
{
	/*
3927
	 * Nothing to do, we already reset hwc->interrupts.
3928
	 */
3929
}
3930

3931
static void perf_swevent_add(struct perf_event *event, u64 nr,
3932 3933
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3934
{
3935
	struct hw_perf_event *hwc = &event->hw;
3936

3937
	atomic64_add(nr, &event->count);
3938

3939 3940 3941
	if (!regs)
		return;

3942 3943
	if (!hwc->sample_period)
		return;
3944

3945 3946 3947 3948
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3949
		return;
3950

3951
	perf_swevent_overflow(event, 0, nmi, data, regs);
3952 3953
}

3954
static int perf_swevent_is_counting(struct perf_event *event)
3955
{
3956
	/*
3957
	 * The event is active, we're good!
3958
	 */
3959
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3960 3961
		return 1;

3962
	/*
3963
	 * The event is off/error, not counting.
3964
	 */
3965
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3966 3967 3968
		return 0;

	/*
3969
	 * The event is inactive, if the context is active
3970 3971
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3972
	 */
3973
	if (event->ctx->is_active)
3974 3975 3976 3977 3978 3979 3980 3981
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3982 3983
}

L
Li Zefan 已提交
3984 3985 3986
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4001
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4002
				enum perf_type_id type,
L
Li Zefan 已提交
4003 4004 4005
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4006
{
4007 4008 4009
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4010
	if (!perf_swevent_is_counting(event))
4011 4012
		return 0;

4013
	if (event->attr.type != type)
4014
		return 0;
4015

4016
	if (event->attr.config != event_id)
4017 4018
		return 0;

4019 4020
	if (perf_exclude_event(event, regs))
		return 0;
4021

L
Li Zefan 已提交
4022 4023 4024 4025
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

4026 4027 4028
	return 1;
}

4029
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4030
				     enum perf_type_id type,
4031
				     u32 event_id, u64 nr, int nmi,
4032 4033
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
4034
{
4035
	struct perf_event *event;
4036

4037
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
4038
		if (perf_swevent_match(event, type, event_id, data, regs))
4039
			perf_swevent_add(event, nr, nmi, data, regs);
4040 4041 4042
	}
}

4043
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4044
{
4045 4046
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
4047

P
Peter Zijlstra 已提交
4048
	if (in_nmi())
4049
		rctx = 3;
4050
	else if (in_irq())
4051
		rctx = 2;
4052
	else if (in_softirq())
4053
		rctx = 1;
4054
	else
4055
		rctx = 0;
P
Peter Zijlstra 已提交
4056

4057 4058
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
4059
		return -1;
4060
	}
P
Peter Zijlstra 已提交
4061

4062 4063
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4064

4065
	return rctx;
P
Peter Zijlstra 已提交
4066
}
I
Ingo Molnar 已提交
4067
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4068

4069
void perf_swevent_put_recursion_context(int rctx)
4070
{
4071 4072
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4073
	cpuctx->recursion[rctx]--;
4074
	put_cpu_var(perf_cpu_context);
4075
}
I
Ingo Molnar 已提交
4076
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4077

4078 4079 4080 4081
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4082
{
4083
	struct perf_cpu_context *cpuctx;
4084
	struct perf_event_context *ctx;
4085

4086
	cpuctx = &__get_cpu_var(perf_cpu_context);
4087
	rcu_read_lock();
4088
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4089
				 nr, nmi, data, regs);
4090 4091 4092 4093
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
4094
	ctx = rcu_dereference(current->perf_event_ctxp);
4095
	if (ctx)
4096
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4097
	rcu_read_unlock();
4098
}
4099

4100
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4101
			    struct pt_regs *regs, u64 addr)
4102
{
4103
	struct perf_sample_data data;
4104 4105 4106 4107 4108
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4109 4110 4111

	data.addr = addr;
	data.raw  = NULL;
4112

4113
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4114 4115

	perf_swevent_put_recursion_context(rctx);
4116 4117
}

4118
static void perf_swevent_read(struct perf_event *event)
4119 4120 4121
{
}

4122
static int perf_swevent_enable(struct perf_event *event)
4123
{
4124
	struct hw_perf_event *hwc = &event->hw;
4125 4126 4127

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4128
		perf_swevent_set_period(event);
4129
	}
4130 4131 4132
	return 0;
}

4133
static void perf_swevent_disable(struct perf_event *event)
4134 4135 4136
{
}

4137
static const struct pmu perf_ops_generic = {
4138 4139 4140 4141
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4142 4143
};

4144
/*
4145
 * hrtimer based swevent callback
4146 4147
 */

4148
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4149 4150 4151
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4152
	struct pt_regs *regs;
4153
	struct perf_event *event;
4154 4155
	u64 period;

4156 4157
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4158 4159

	data.addr = 0;
4160
	data.raw = NULL;
4161
	data.period = event->hw.last_period;
4162
	regs = get_irq_regs();
4163 4164 4165 4166
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4167 4168
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4169
		regs = task_pt_regs(current);
4170

4171
	if (regs) {
4172 4173 4174
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4175 4176
	}

4177
	period = max_t(u64, 10000, event->hw.sample_period);
4178 4179 4180 4181 4182
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4219
/*
4220
 * Software event: cpu wall time clock
4221 4222
 */

4223
static void cpu_clock_perf_event_update(struct perf_event *event)
4224 4225 4226 4227 4228 4229
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4230
	prev = atomic64_xchg(&event->hw.prev_count, now);
4231
	atomic64_add(now - prev, &event->count);
4232 4233
}

4234
static int cpu_clock_perf_event_enable(struct perf_event *event)
4235
{
4236
	struct hw_perf_event *hwc = &event->hw;
4237 4238 4239
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4240
	perf_swevent_start_hrtimer(event);
4241 4242 4243 4244

	return 0;
}

4245
static void cpu_clock_perf_event_disable(struct perf_event *event)
4246
{
4247
	perf_swevent_cancel_hrtimer(event);
4248
	cpu_clock_perf_event_update(event);
4249 4250
}

4251
static void cpu_clock_perf_event_read(struct perf_event *event)
4252
{
4253
	cpu_clock_perf_event_update(event);
4254 4255
}

4256
static const struct pmu perf_ops_cpu_clock = {
4257 4258 4259
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4260 4261
};

4262
/*
4263
 * Software event: task time clock
4264 4265
 */

4266
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4267
{
4268
	u64 prev;
I
Ingo Molnar 已提交
4269 4270
	s64 delta;

4271
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4272
	delta = now - prev;
4273
	atomic64_add(delta, &event->count);
4274 4275
}

4276
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4277
{
4278
	struct hw_perf_event *hwc = &event->hw;
4279 4280
	u64 now;

4281
	now = event->ctx->time;
4282

4283
	atomic64_set(&hwc->prev_count, now);
4284 4285

	perf_swevent_start_hrtimer(event);
4286 4287

	return 0;
I
Ingo Molnar 已提交
4288 4289
}

4290
static void task_clock_perf_event_disable(struct perf_event *event)
4291
{
4292
	perf_swevent_cancel_hrtimer(event);
4293
	task_clock_perf_event_update(event, event->ctx->time);
4294

4295
}
I
Ingo Molnar 已提交
4296

4297
static void task_clock_perf_event_read(struct perf_event *event)
4298
{
4299 4300 4301
	u64 time;

	if (!in_nmi()) {
4302 4303
		update_context_time(event->ctx);
		time = event->ctx->time;
4304 4305
	} else {
		u64 now = perf_clock();
4306 4307
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4308 4309
	}

4310
	task_clock_perf_event_update(event, time);
4311 4312
}

4313
static const struct pmu perf_ops_task_clock = {
4314 4315 4316
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4317 4318
};

4319
#ifdef CONFIG_EVENT_TRACING
L
Li Zefan 已提交
4320

4321
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4322
			  int entry_size)
4323
{
4324
	struct perf_raw_record raw = {
4325
		.size = entry_size,
4326
		.data = record,
4327 4328
	};

4329
	struct perf_sample_data data = {
4330
		.addr = addr,
4331
		.raw = &raw,
4332
	};
4333

4334 4335 4336 4337
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4338

4339
	/* Trace events already protected against recursion */
4340
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4341
				&data, regs);
4342
}
4343
EXPORT_SYMBOL_GPL(perf_tp_event);
4344

L
Li Zefan 已提交
4345 4346 4347 4348 4349 4350 4351 4352 4353
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4354

4355
static void tp_perf_event_destroy(struct perf_event *event)
4356
{
4357
	ftrace_profile_disable(event->attr.config);
4358 4359
}

4360
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4361
{
4362 4363 4364 4365
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4366
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4367
			perf_paranoid_tracepoint_raw() &&
4368 4369 4370
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4371
	if (ftrace_profile_enable(event->attr.config))
4372 4373
		return NULL;

4374
	event->destroy = tp_perf_event_destroy;
4375 4376 4377

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4402
#else
L
Li Zefan 已提交
4403 4404 4405 4406 4407 4408 4409

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4410
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4411 4412 4413
{
	return NULL;
}
L
Li Zefan 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4424
#endif /* CONFIG_EVENT_TRACING */
4425

4426 4427 4428 4429 4430 4431 4432 4433 4434
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4435 4436

	err = register_perf_hw_breakpoint(bp);
4437 4438 4439 4440 4441 4442 4443 4444
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4445
void perf_bp_event(struct perf_event *bp, void *data)
4446
{
4447 4448 4449
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4450
	sample.raw = NULL;
4451 4452 4453 4454
	sample.addr = bp->attr.bp_addr;

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4467
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4468

4469
static void sw_perf_event_destroy(struct perf_event *event)
4470
{
4471
	u64 event_id = event->attr.config;
4472

4473
	WARN_ON(event->parent);
4474

4475
	atomic_dec(&perf_swevent_enabled[event_id]);
4476 4477
}

4478
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4479
{
4480
	const struct pmu *pmu = NULL;
4481
	u64 event_id = event->attr.config;
4482

4483
	/*
4484
	 * Software events (currently) can't in general distinguish
4485 4486 4487 4488 4489
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4490
	switch (event_id) {
4491
	case PERF_COUNT_SW_CPU_CLOCK:
4492
		pmu = &perf_ops_cpu_clock;
4493

4494
		break;
4495
	case PERF_COUNT_SW_TASK_CLOCK:
4496
		/*
4497 4498
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4499
		 */
4500
		if (event->ctx->task)
4501
			pmu = &perf_ops_task_clock;
4502
		else
4503
			pmu = &perf_ops_cpu_clock;
4504

4505
		break;
4506 4507 4508 4509 4510
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4511 4512
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4513 4514 4515
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4516
		}
4517
		pmu = &perf_ops_generic;
4518
		break;
4519
	}
4520

4521
	return pmu;
4522 4523
}

T
Thomas Gleixner 已提交
4524
/*
4525
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4526
 */
4527 4528
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4529
		   int cpu,
4530 4531 4532
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4533
		   perf_overflow_handler_t overflow_handler,
4534
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4535
{
4536
	const struct pmu *pmu;
4537 4538
	struct perf_event *event;
	struct hw_perf_event *hwc;
4539
	long err;
T
Thomas Gleixner 已提交
4540

4541 4542
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4543
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4544

4545
	/*
4546
	 * Single events are their own group leaders, with an
4547 4548 4549
	 * empty sibling list:
	 */
	if (!group_leader)
4550
		group_leader = event;
4551

4552 4553
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4554

4555 4556 4557 4558
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4559

4560
	mutex_init(&event->mmap_mutex);
4561

4562 4563 4564 4565 4566 4567
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4568

4569
	event->parent		= parent_event;
4570

4571 4572
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4573

4574
	event->state		= PERF_EVENT_STATE_INACTIVE;
4575

4576 4577
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4578
	
4579
	event->overflow_handler	= overflow_handler;
4580

4581
	if (attr->disabled)
4582
		event->state = PERF_EVENT_STATE_OFF;
4583

4584
	pmu = NULL;
4585

4586
	hwc = &event->hw;
4587
	hwc->sample_period = attr->sample_period;
4588
	if (attr->freq && attr->sample_freq)
4589
		hwc->sample_period = 1;
4590
	hwc->last_period = hwc->sample_period;
4591 4592

	atomic64_set(&hwc->period_left, hwc->sample_period);
4593

4594
	/*
4595
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4596
	 */
4597
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4598 4599
		goto done;

4600
	switch (attr->type) {
4601
	case PERF_TYPE_RAW:
4602
	case PERF_TYPE_HARDWARE:
4603
	case PERF_TYPE_HW_CACHE:
4604
		pmu = hw_perf_event_init(event);
4605 4606 4607
		break;

	case PERF_TYPE_SOFTWARE:
4608
		pmu = sw_perf_event_init(event);
4609 4610 4611
		break;

	case PERF_TYPE_TRACEPOINT:
4612
		pmu = tp_perf_event_init(event);
4613
		break;
4614

4615 4616 4617 4618 4619
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4620 4621
	default:
		break;
4622
	}
4623 4624
done:
	err = 0;
4625
	if (!pmu)
4626
		err = -EINVAL;
4627 4628
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4629

4630
	if (err) {
4631 4632 4633
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4634
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4635
	}
4636

4637
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4638

4639 4640 4641 4642 4643 4644 4645 4646
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4647
	}
4648

4649
	return event;
T
Thomas Gleixner 已提交
4650 4651
}

4652 4653
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4654 4655
{
	u32 size;
4656
	int ret;
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4681 4682 4683
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4684 4685
	 */
	if (size > sizeof(*attr)) {
4686 4687 4688
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4689

4690 4691
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4692

4693
		for (; addr < end; addr++) {
4694 4695 4696 4697 4698 4699
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4700
		size = sizeof(*attr);
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4714
	if (attr->__reserved_1 || attr->__reserved_2)
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4732
static int perf_event_set_output(struct perf_event *event, int output_fd)
4733
{
4734
	struct perf_event *output_event = NULL;
4735
	struct file *output_file = NULL;
4736
	struct perf_event *old_output;
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4750
	output_event = output_file->private_data;
4751 4752

	/* Don't chain output fds */
4753
	if (output_event->output)
4754 4755 4756
		goto out;

	/* Don't set an output fd when we already have an output channel */
4757
	if (event->data)
4758 4759 4760 4761 4762
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4763 4764 4765 4766
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4767 4768 4769 4770

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4771
		 * is still referencing this event.
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4783
/**
4784
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4785
 *
4786
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4787
 * @pid:		target pid
I
Ingo Molnar 已提交
4788
 * @cpu:		target cpu
4789
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4790
 */
4791 4792
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4793
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4794
{
4795 4796 4797 4798
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4799 4800
	struct file *group_file = NULL;
	int fput_needed = 0;
4801
	int fput_needed2 = 0;
4802
	int err;
T
Thomas Gleixner 已提交
4803

4804
	/* for future expandability... */
4805
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4806 4807
		return -EINVAL;

4808 4809 4810
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4811

4812 4813 4814 4815 4816
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4817
	if (attr.freq) {
4818
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4819 4820 4821
			return -EINVAL;
	}

4822
	/*
I
Ingo Molnar 已提交
4823 4824 4825 4826 4827 4828 4829
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4830
	 * Look up the group leader (we will attach this event to it):
4831 4832
	 */
	group_leader = NULL;
4833
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4834
		err = -EINVAL;
4835 4836
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4837
			goto err_put_context;
4838
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4839
			goto err_put_context;
4840 4841 4842

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4843 4844 4845 4846 4847 4848 4849 4850
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4851
		 */
I
Ingo Molnar 已提交
4852 4853
		if (group_leader->ctx != ctx)
			goto err_put_context;
4854 4855 4856
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4857
		if (attr.exclusive || attr.pinned)
4858
			goto err_put_context;
4859 4860
	}

4861
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4862
				     NULL, NULL, GFP_KERNEL);
4863 4864
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4865 4866
		goto err_put_context;

4867
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4868
	if (err < 0)
4869 4870
		goto err_free_put_context;

4871 4872
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4873 4874
		goto err_free_put_context;

4875
	if (flags & PERF_FLAG_FD_OUTPUT) {
4876
		err = perf_event_set_output(event, group_fd);
4877 4878
		if (err)
			goto err_fput_free_put_context;
4879 4880
	}

4881
	event->filp = event_file;
4882
	WARN_ON_ONCE(ctx->parent_ctx);
4883
	mutex_lock(&ctx->mutex);
4884
	perf_install_in_context(ctx, event, cpu);
4885
	++ctx->generation;
4886
	mutex_unlock(&ctx->mutex);
4887

4888
	event->owner = current;
4889
	get_task_struct(current);
4890 4891 4892
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4893

4894
err_fput_free_put_context:
4895
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4896

4897
err_free_put_context:
4898
	if (err < 0)
4899
		kfree(event);
T
Thomas Gleixner 已提交
4900 4901

err_put_context:
4902 4903 4904 4905
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4906

4907
	return err;
T
Thomas Gleixner 已提交
4908 4909
}

4910 4911 4912 4913 4914 4915 4916 4917 4918
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4919 4920
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4931 4932 4933 4934
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4935 4936

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4937
				 NULL, overflow_handler, GFP_KERNEL);
4938 4939
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4940
		goto err_put_context;
4941
	}
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4958 4959 4960 4961
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4962 4963 4964
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4965
/*
4966
 * inherit a event from parent task to child task:
4967
 */
4968 4969
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4970
	      struct task_struct *parent,
4971
	      struct perf_event_context *parent_ctx,
4972
	      struct task_struct *child,
4973 4974
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4975
{
4976
	struct perf_event *child_event;
4977

4978
	/*
4979 4980
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4981 4982 4983
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4984 4985
	if (parent_event->parent)
		parent_event = parent_event->parent;
4986

4987 4988 4989
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4990
					   NULL, GFP_KERNEL);
4991 4992
	if (IS_ERR(child_event))
		return child_event;
4993
	get_ctx(child_ctx);
4994

4995
	/*
4996
	 * Make the child state follow the state of the parent event,
4997
	 * not its attr.disabled bit.  We hold the parent's mutex,
4998
	 * so we won't race with perf_event_{en, dis}able_family.
4999
	 */
5000 5001
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5002
	else
5003
		child_event->state = PERF_EVENT_STATE_OFF;
5004

5005 5006
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
5007

5008 5009
	child_event->overflow_handler = parent_event->overflow_handler;

5010 5011 5012
	/*
	 * Link it up in the child's context:
	 */
5013
	add_event_to_ctx(child_event, child_ctx);
5014 5015 5016

	/*
	 * Get a reference to the parent filp - we will fput it
5017
	 * when the child event exits. This is safe to do because
5018 5019 5020
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5021
	atomic_long_inc(&parent_event->filp->f_count);
5022

5023
	/*
5024
	 * Link this into the parent event's child list
5025
	 */
5026 5027 5028 5029
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5030

5031
	return child_event;
5032 5033
}

5034
static int inherit_group(struct perf_event *parent_event,
5035
	      struct task_struct *parent,
5036
	      struct perf_event_context *parent_ctx,
5037
	      struct task_struct *child,
5038
	      struct perf_event_context *child_ctx)
5039
{
5040 5041 5042
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5043

5044
	leader = inherit_event(parent_event, parent, parent_ctx,
5045
				 child, NULL, child_ctx);
5046 5047
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5048 5049
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5050 5051 5052
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5053
	}
5054 5055 5056
	return 0;
}

5057
static void sync_child_event(struct perf_event *child_event,
5058
			       struct task_struct *child)
5059
{
5060
	struct perf_event *parent_event = child_event->parent;
5061
	u64 child_val;
5062

5063 5064
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5065

5066
	child_val = atomic64_read(&child_event->count);
5067 5068 5069 5070

	/*
	 * Add back the child's count to the parent's count:
	 */
5071 5072 5073 5074 5075
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5076 5077

	/*
5078
	 * Remove this event from the parent's list
5079
	 */
5080 5081 5082 5083
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5084 5085

	/*
5086
	 * Release the parent event, if this was the last
5087 5088
	 * reference to it.
	 */
5089
	fput(parent_event->filp);
5090 5091
}

5092
static void
5093 5094
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5095
			 struct task_struct *child)
5096
{
5097
	struct perf_event *parent_event;
5098

5099
	perf_event_remove_from_context(child_event);
5100

5101
	parent_event = child_event->parent;
5102
	/*
5103
	 * It can happen that parent exits first, and has events
5104
	 * that are still around due to the child reference. These
5105
	 * events need to be zapped - but otherwise linger.
5106
	 */
5107 5108 5109
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5110
	}
5111 5112 5113
}

/*
5114
 * When a child task exits, feed back event values to parent events.
5115
 */
5116
void perf_event_exit_task(struct task_struct *child)
5117
{
5118 5119
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5120
	unsigned long flags;
5121

5122 5123
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5124
		return;
P
Peter Zijlstra 已提交
5125
	}
5126

5127
	local_irq_save(flags);
5128 5129 5130 5131 5132 5133
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5134 5135
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5136 5137 5138

	/*
	 * Take the context lock here so that if find_get_context is
5139
	 * reading child->perf_event_ctxp, we wait until it has
5140 5141
	 * incremented the context's refcount before we do put_ctx below.
	 */
5142
	raw_spin_lock(&child_ctx->lock);
5143
	child->perf_event_ctxp = NULL;
5144 5145 5146
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5147
	 * the events from it.
5148 5149
	 */
	unclone_ctx(child_ctx);
5150
	update_context_time(child_ctx);
5151
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5152 5153

	/*
5154 5155 5156
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5157
	 */
5158
	perf_event_task(child, child_ctx, 0);
5159

5160 5161 5162
	/*
	 * We can recurse on the same lock type through:
	 *
5163 5164 5165
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5166 5167 5168 5169 5170 5171
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5172

5173
again:
5174 5175 5176 5177 5178
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5179
				 group_entry)
5180
		__perf_event_exit_task(child_event, child_ctx, child);
5181 5182

	/*
5183
	 * If the last event was a group event, it will have appended all
5184 5185 5186
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5187 5188
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5189
		goto again;
5190 5191 5192 5193

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5194 5195
}

5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5214 5215 5216 5217
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5218
void perf_event_free_task(struct task_struct *task)
5219
{
5220 5221
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5222 5223 5224 5225 5226 5227

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5228 5229
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5230

5231 5232 5233
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5234

5235 5236 5237
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5238

5239
	mutex_unlock(&ctx->mutex);
5240

5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5256 5257
	}

5258 5259 5260 5261 5262 5263 5264
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5265

5266 5267 5268 5269
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5270

5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5283 5284
}

5285

5286
/*
5287
 * Initialize the perf_event context in task_struct
5288
 */
5289
int perf_event_init_task(struct task_struct *child)
5290
{
5291
	struct perf_event_context *child_ctx, *parent_ctx;
5292 5293
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5294
	struct task_struct *parent = current;
5295
	int inherited_all = 1;
5296
	int ret = 0;
5297

5298
	child->perf_event_ctxp = NULL;
5299

5300 5301
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5302

5303
	if (likely(!parent->perf_event_ctxp))
5304 5305
		return 0;

5306
	/*
5307 5308
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5309
	 */
5310 5311
	parent_ctx = perf_pin_task_context(parent);

5312 5313 5314 5315 5316 5317 5318
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5319 5320 5321 5322
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5323
	mutex_lock(&parent_ctx->mutex);
5324 5325 5326 5327 5328

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5329 5330 5331 5332 5333 5334
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5335

5336 5337 5338 5339
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5340
			break;
5341 5342
	}

5343 5344
	child_ctx = child->perf_event_ctxp;

5345
	if (child_ctx && inherited_all) {
5346 5347 5348
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5349 5350
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5351
		 * because the list of events and the generation
5352
		 * count can't have changed since we took the mutex.
5353
		 */
5354 5355 5356
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5357
			child_ctx->parent_gen = parent_ctx->parent_gen;
5358 5359 5360 5361 5362
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5363 5364
	}

5365
	mutex_unlock(&parent_ctx->mutex);
5366

5367
	perf_unpin_context(parent_ctx);
5368

5369
	return ret;
5370 5371
}

5372
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5373
{
5374
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5375

5376
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5377
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5378

5379
	spin_lock(&perf_resource_lock);
5380
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5381
	spin_unlock(&perf_resource_lock);
5382

5383
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5384 5385 5386
}

#ifdef CONFIG_HOTPLUG_CPU
5387
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5388 5389
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5390 5391
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5392

5393 5394 5395
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5396
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5397
}
5398
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5399
{
5400
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5401
	struct perf_event_context *ctx = &cpuctx->ctx;
5402 5403

	mutex_lock(&ctx->mutex);
5404
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5405
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5406 5407
}
#else
5408
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5420
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5421 5422
		break;

5423 5424
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5425
		hw_perf_event_setup_online(cpu);
5426 5427
		break;

T
Thomas Gleixner 已提交
5428 5429
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5430
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5431 5432 5433 5434 5435 5436 5437 5438 5439
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5440 5441 5442
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5443 5444
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5445
	.priority		= 20,
T
Thomas Gleixner 已提交
5446 5447
};

5448
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5449 5450 5451
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5452 5453
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5474
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5475 5476
		return -EINVAL;

5477
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5478 5479 5480
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5481
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5482 5483
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5484
		cpuctx->max_pertask = mpt;
5485
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5486
	}
5487
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5509
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5510
	perf_overcommit = val;
5511
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5538
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5539 5540
};

5541
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5542 5543 5544 5545
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5546
device_initcall(perf_event_sysfs_init);