perf_counter.c 107.5 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22 23 24
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
25 26 27
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
28
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
29 30
#include <linux/perf_counter.h>

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
P
Peter Zijlstra 已提交
43 44
static atomic_t nr_mmap_counters __read_mostly;
static atomic_t nr_comm_counters __read_mostly;
45

46
/*
47 48 49 50
 * perf counter paranoia level:
 *  0 - not paranoid
 *  1 - disallow cpu counters to unpriv
 *  2 - disallow kernel profiling to unpriv
51
 */
52
int sysctl_perf_counter_paranoid __read_mostly;
53 54 55 56 57 58 59 60 61 62 63

static inline bool perf_paranoid_cpu(void)
{
	return sysctl_perf_counter_paranoid > 0;
}

static inline bool perf_paranoid_kernel(void)
{
	return sysctl_perf_counter_paranoid > 1;
}

64
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
65 66 67 68 69

/*
 * max perf counter sample rate
 */
int sysctl_perf_counter_sample_rate __read_mostly = 100000;
70

71 72
static atomic64_t perf_counter_id;

T
Thomas Gleixner 已提交
73
/*
74
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
75
 */
76
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
77 78 79 80

/*
 * Architecture provided APIs - weak aliases:
 */
81
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
82
{
83
	return NULL;
T
Thomas Gleixner 已提交
84 85
}

86 87 88
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

89
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
90 91 92

int __weak
hw_perf_group_sched_in(struct perf_counter *group_leader,
93 94 95 96 97
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
98

99 100
void __weak perf_counter_print_debug(void)	{ }

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

125 126
static void get_ctx(struct perf_counter_context *ctx)
{
127
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
128 129
}

130 131 132 133 134 135 136 137
static void free_ctx(struct rcu_head *head)
{
	struct perf_counter_context *ctx;

	ctx = container_of(head, struct perf_counter_context, rcu_head);
	kfree(ctx);
}

138 139
static void put_ctx(struct perf_counter_context *ctx)
{
140 141 142
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
143 144 145
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
146
	}
147 148
}

149 150 151 152 153
/*
 * Get the perf_counter_context for a task and lock it.
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
154 155
static struct perf_counter_context *
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
{
	struct perf_counter_context *ctx;

	rcu_read_lock();
 retry:
	ctx = rcu_dereference(task->perf_counter_ctxp);
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
		 * perf_counter_task_sched_out, though the
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
		if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
178 179 180 181 182

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

static void perf_unpin_context(struct perf_counter_context *ctx)
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

216 217 218 219
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
220 221 222 223 224 225 226 227 228 229
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
230
	if (group_leader == counter)
231
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
232
	else {
233
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
234 235
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
236 237

	list_add_rcu(&counter->event_entry, &ctx->event_list);
238
	ctx->nr_counters++;
239 240
	if (counter->attr.inherit_stat)
		ctx->nr_stat++;
241 242
}

243 244
/*
 * Remove a counter from the lists for its context.
245
 * Must be called with ctx->mutex and ctx->lock held.
246
 */
247 248 249 250 251
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

252 253
	if (list_empty(&counter->list_entry))
		return;
254
	ctx->nr_counters--;
255 256
	if (counter->attr.inherit_stat)
		ctx->nr_stat--;
257

258
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
259
	list_del_rcu(&counter->event_entry);
260

P
Peter Zijlstra 已提交
261 262 263
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

264 265 266 267 268 269 270 271
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

272
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
273 274 275 276
		sibling->group_leader = sibling;
	}
}

277 278 279 280 281 282 283 284 285
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
286
	counter->tstamp_stopped = ctx->time;
287
	counter->pmu->disable(counter);
288 289 290 291 292
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
293
	if (counter->attr.exclusive || !cpuctx->active_oncpu)
294 295 296
		cpuctx->exclusive = 0;
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

315
	if (group_counter->attr.exclusive)
316 317 318
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
319 320 321 322 323 324
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
325
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
326 327 328 329 330 331 332 333 334 335
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
336
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
337 338
		return;

339
	spin_lock(&ctx->lock);
340 341 342 343 344
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
345

346 347
	counter_sched_out(counter, cpuctx, ctx);

348
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
349 350 351 352 353 354 355 356 357 358 359

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

360
	perf_enable();
361
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
362 363 364 365 366 367
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
368
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
369 370 371
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
372 373 374 375 376 377 378
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
 * When called from perf_counter_exit_task, it's OK because the
 * context has been detached from its task.
T
Thomas Gleixner 已提交
379
 */
380
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
381 382 383 384 385 386 387 388 389 390
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
391
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
392 393 394 395 396
					 counter, 1);
		return;
	}

retry:
397
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
398 399 400 401 402 403
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
404
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
405 406 407 408 409 410
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
411
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
412 413
	 * succeed.
	 */
414 415
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
416 417 418 419
	}
	spin_unlock_irq(&ctx->lock);
}

420
static inline u64 perf_clock(void)
421
{
422
	return cpu_clock(smp_processor_id());
423 424 425 426 427
}

/*
 * Update the record of the current time in a context.
 */
428
static void update_context_time(struct perf_counter_context *ctx)
429
{
430 431 432 433
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
434 435 436 437 438 439 440 441 442 443
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

444 445 446 447 448 449 450 451 452 453 454
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
455 456 457 458 459 460 461 462 463 464 465 466 467 468
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

469 470 471 472 473 474 475 476 477 478 479 480 481
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
482
	if (ctx->task && cpuctx->task_ctx != ctx)
483 484
		return;

485
	spin_lock(&ctx->lock);
486 487 488 489 490 491

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
492
		update_context_time(ctx);
493
		update_counter_times(counter);
494 495 496 497 498 499 500
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

501
	spin_unlock(&ctx->lock);
502 503 504 505
}

/*
 * Disable a counter.
506 507 508 509 510 511 512 513 514 515
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisifed when called through
 * perf_counter_for_each_child or perf_counter_for_each because they
 * hold the top-level counter's child_mutex, so any descendant that
 * goes to exit will block in sync_child_counter.
 * When called from perf_pending_counter it's OK because counter->ctx
 * is the current context on this CPU and preemption is disabled,
 * hence we can't get into perf_counter_task_sched_out for this context.
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
547 548
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
549
		counter->state = PERF_COUNTER_STATE_OFF;
550
	}
551 552 553 554

	spin_unlock_irq(&ctx->lock);
}

555 556 557 558 559 560
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
561
	if (counter->state <= PERF_COUNTER_STATE_OFF)
562 563 564 565 566 567 568 569 570
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

571
	if (counter->pmu->enable(counter)) {
572 573 574 575 576
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

577
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
578

579 580
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
581 582
	ctx->nr_active++;

583
	if (counter->attr.exclusive)
584 585
		cpuctx->exclusive = 1;

586 587 588
	return 0;
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

635 636 637 638 639 640 641 642 643 644
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
645

646 647 648
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
675
	if (counter->attr.exclusive && cpuctx->active_oncpu)
676 677 678 679 680 681 682 683
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

684 685 686 687
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
688 689 690
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
691 692
}

T
Thomas Gleixner 已提交
693
/*
694
 * Cross CPU call to install and enable a performance counter
695 696
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
697 698 699 700 701 702
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
703
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
704
	int cpu = smp_processor_id();
705
	int err;
T
Thomas Gleixner 已提交
706 707 708 709 710

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
711 712
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
713
	 */
714
	if (ctx->task && cpuctx->task_ctx != ctx) {
715
		if (cpuctx->task_ctx || ctx->task != current)
716 717 718
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
719

720
	spin_lock(&ctx->lock);
721
	ctx->is_active = 1;
722
	update_context_time(ctx);
T
Thomas Gleixner 已提交
723 724 725 726 727

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
728
	perf_disable();
T
Thomas Gleixner 已提交
729

730
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
731

732 733 734 735 736 737 738 739
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

740 741 742 743 744
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
745
	if (!group_can_go_on(counter, cpuctx, 1))
746 747 748 749
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

750 751 752 753 754 755 756 757
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
758
		if (leader->attr.pinned) {
759
			update_group_times(leader);
760
			leader->state = PERF_COUNTER_STATE_ERROR;
761
		}
762
	}
T
Thomas Gleixner 已提交
763

764
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
765 766
		cpuctx->max_pertask--;

767
 unlock:
768
	perf_enable();
769

770
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
771 772 773 774 775 776 777 778 779 780 781
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
782 783
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
810
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
811 812 813 814 815 816 817 818 819
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
820 821
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
822 823 824
	spin_unlock_irq(&ctx->lock);
}

825 826 827 828
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
829
{
830 831 832 833 834
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	int err;
835

836 837 838 839
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
840
	if (ctx->task && cpuctx->task_ctx != ctx) {
841
		if (cpuctx->task_ctx || ctx->task != current)
842 843 844
			return;
		cpuctx->task_ctx = ctx;
	}
845

846
	spin_lock(&ctx->lock);
847
	ctx->is_active = 1;
848
	update_context_time(ctx);
849 850 851 852

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
853
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
854 855

	/*
856 857
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
858
	 */
859 860
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
861

862
	if (!group_can_go_on(counter, cpuctx, 1)) {
863
		err = -EEXIST;
864
	} else {
865
		perf_disable();
866 867 868 869 870 871
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
872
		perf_enable();
873
	}
874 875 876 877 878 879 880 881

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
882
		if (leader->attr.pinned) {
883
			update_group_times(leader);
884
			leader->state = PERF_COUNTER_STATE_ERROR;
885
		}
886 887 888
	}

 unlock:
889
	spin_unlock(&ctx->lock);
890 891 892 893
}

/*
 * Enable a counter.
894 895 896 897 898 899
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisfied when called through
 * perf_counter_for_each_child or perf_counter_for_each as described
 * for perf_counter_disable.
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
946
	if (counter->state == PERF_COUNTER_STATE_OFF) {
947
		counter->state = PERF_COUNTER_STATE_INACTIVE;
948 949
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
950
	}
951 952 953 954
 out:
	spin_unlock_irq(&ctx->lock);
}

955
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
956
{
957 958 959
	/*
	 * not supported on inherited counters
	 */
960
	if (counter->attr.inherit)
961 962
		return -EINVAL;

963 964
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
965 966

	return 0;
967 968
}

969 970 971 972 973
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

974 975
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
976
	if (likely(!ctx->nr_counters))
977
		goto out;
978
	update_context_time(ctx);
979

980
	perf_disable();
981
	if (ctx->nr_active) {
982 983 984 985 986 987
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
988
	}
989
	perf_enable();
990
 out:
991 992 993
	spin_unlock(&ctx->lock);
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1009
		&& ctx1->parent_gen == ctx2->parent_gen
1010
		&& !ctx1->pin_count && !ctx2->pin_count;
1011 1012
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
static void __perf_counter_read(void *counter);

static void __perf_counter_sync_stat(struct perf_counter *counter,
				     struct perf_counter *next_counter)
{
	u64 value;

	if (!counter->attr.inherit_stat)
		return;

	/*
	 * Update the counter value, we cannot use perf_counter_read()
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
	 * we know the counter must be on the current CPU, therefore we
	 * don't need to use it.
	 */
	switch (counter->state) {
	case PERF_COUNTER_STATE_ACTIVE:
		__perf_counter_read(counter);
		break;

	case PERF_COUNTER_STATE_INACTIVE:
		update_counter_times(counter);
		break;

	default:
		break;
	}

	/*
	 * In order to keep per-task stats reliable we need to flip the counter
	 * values when we flip the contexts.
	 */
	value = atomic64_read(&next_counter->count);
	value = atomic64_xchg(&counter->count, value);
	atomic64_set(&next_counter->count, value);

1051 1052 1053
	swap(counter->total_time_enabled, next_counter->total_time_enabled);
	swap(counter->total_time_running, next_counter->total_time_running);

1054
	/*
1055
	 * Since we swizzled the values, update the user visible data too.
1056
	 */
1057 1058
	perf_counter_update_userpage(counter);
	perf_counter_update_userpage(next_counter);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

static void perf_counter_sync_stat(struct perf_counter_context *ctx,
				   struct perf_counter_context *next_ctx)
{
	struct perf_counter *counter, *next_counter;

	if (!ctx->nr_stat)
		return;

	counter = list_first_entry(&ctx->event_list,
				   struct perf_counter, event_entry);

	next_counter = list_first_entry(&next_ctx->event_list,
					struct perf_counter, event_entry);

	while (&counter->event_entry != &ctx->event_list &&
	       &next_counter->event_entry != &next_ctx->event_list) {

		__perf_counter_sync_stat(counter, next_counter);

		counter = list_next_entry(counter, event_entry);
		next_counter = list_next_entry(counter, event_entry);
	}
}

T
Thomas Gleixner 已提交
1088 1089 1090 1091 1092 1093
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
1094
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
1095 1096 1097 1098
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
1099 1100
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1101 1102
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1103
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1104
	struct perf_counter_context *next_ctx;
1105
	struct perf_counter_context *parent;
1106
	struct pt_regs *regs;
1107
	int do_switch = 1;
T
Thomas Gleixner 已提交
1108

1109
	regs = task_pt_regs(task);
1110
	perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1111

1112
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1113 1114
		return;

1115
	update_context_time(ctx);
1116 1117 1118

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1119
	next_ctx = next->perf_counter_ctxp;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1134 1135 1136 1137
			/*
			 * XXX do we need a memory barrier of sorts
			 * wrt to rcu_dereference() of perf_counter_ctxp
			 */
1138 1139 1140 1141 1142
			task->perf_counter_ctxp = next_ctx;
			next->perf_counter_ctxp = ctx;
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1143 1144

			perf_counter_sync_stat(ctx, next_ctx);
1145 1146 1147
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1148
	}
1149
	rcu_read_unlock();
1150

1151 1152 1153 1154
	if (do_switch) {
		__perf_counter_sched_out(ctx, cpuctx);
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1155 1156
}

1157 1158 1159
/*
 * Called with IRQs disabled
 */
1160 1161 1162 1163
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1164 1165
	if (!cpuctx->task_ctx)
		return;
1166 1167 1168 1169

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1170 1171 1172 1173
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

1174 1175 1176
/*
 * Called with IRQs disabled
 */
1177
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1178
{
1179
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1180 1181
}

1182 1183 1184
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1185 1186
{
	struct perf_counter *counter;
1187
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1188

1189 1190
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
1191
	if (likely(!ctx->nr_counters))
1192
		goto out;
T
Thomas Gleixner 已提交
1193

1194
	ctx->timestamp = perf_clock();
1195

1196
	perf_disable();
1197 1198 1199 1200 1201 1202 1203

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1204
		    !counter->attr.pinned)
1205 1206 1207 1208
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1209 1210 1211 1212 1213 1214
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1215 1216 1217 1218 1219

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1220 1221
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1222
			counter->state = PERF_COUNTER_STATE_ERROR;
1223
		}
1224 1225
	}

1226
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1227 1228 1229 1230 1231
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1232
		    counter->attr.pinned)
1233 1234
			continue;

1235 1236 1237 1238
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1239 1240 1241
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1242 1243
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1244
				can_add_hw = 0;
1245 1246 1247 1248 1249
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1250
		}
T
Thomas Gleixner 已提交
1251
	}
1252
	perf_enable();
1253
 out:
T
Thomas Gleixner 已提交
1254
	spin_unlock(&ctx->lock);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1271
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1272

1273 1274
	if (likely(!ctx))
		return;
1275 1276
	if (cpuctx->task_ctx == ctx)
		return;
1277
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1278 1279 1280
	cpuctx->task_ctx = ctx;
}

1281 1282 1283 1284 1285 1286 1287
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1288 1289 1290
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_counter *counter, int enable);
1291 1292
static void perf_log_period(struct perf_counter *counter, u64 period);

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
static void perf_adjust_period(struct perf_counter *counter, u64 events)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
	period = div64_u64(events, counter->attr.sample_freq);

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	perf_log_period(counter, sample_period);

	hwc->sample_period = sample_period;
}

static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1316 1317
{
	struct perf_counter *counter;
1318
	struct hw_perf_counter *hwc;
1319
	u64 interrupts, freq;
1320 1321 1322 1323 1324 1325

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

1326 1327 1328 1329
		hwc = &counter->hw;

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1330

1331 1332 1333
		/*
		 * unthrottle counters on the tick
		 */
1334 1335 1336
		if (interrupts == MAX_INTERRUPTS) {
			perf_log_throttle(counter, 1);
			counter->pmu->unthrottle(counter);
1337
			interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1338 1339
		}

1340
		if (!counter->attr.freq || !counter->attr.sample_freq)
1341 1342
			continue;

1343 1344 1345
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
		if (counter->attr.sample_freq < HZ) {
			freq = counter->attr.sample_freq;

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1361
		perf_adjust_period(counter, freq * interrupts);
1362

1363 1364 1365 1366 1367 1368 1369 1370
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
			counter->pmu->disable(counter);
1371
			atomic64_set(&hwc->period_left, 0);
1372 1373 1374
			counter->pmu->enable(counter);
			perf_enable();
		}
1375 1376 1377 1378
	}
	spin_unlock(&ctx->lock);
}

1379 1380 1381 1382
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1383 1384 1385
{
	struct perf_counter *counter;

1386
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1387 1388 1389 1390
		return;

	spin_lock(&ctx->lock);
	/*
1391
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1392
	 */
1393
	perf_disable();
1394
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1395
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1396 1397
		break;
	}
1398
	perf_enable();
T
Thomas Gleixner 已提交
1399 1400

	spin_unlock(&ctx->lock);
1401 1402 1403 1404
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1405 1406 1407 1408 1409 1410 1411
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1412
	ctx = curr->perf_counter_ctxp;
1413

1414
	perf_ctx_adjust_freq(&cpuctx->ctx);
1415
	if (ctx)
1416
		perf_ctx_adjust_freq(ctx);
1417

1418
	perf_counter_cpu_sched_out(cpuctx);
1419 1420
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1421

1422
	rotate_ctx(&cpuctx->ctx);
1423 1424
	if (ctx)
		rotate_ctx(ctx);
1425

1426
	perf_counter_cpu_sched_in(cpuctx, cpu);
1427 1428
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1429 1430
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
/*
 * Enable all of a task's counters that have been marked enable-on-exec.
 * This expects task == current.
 */
static void perf_counter_enable_on_exec(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	struct perf_counter *counter;
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
	ctx = task->perf_counter_ctxp;
	if (!ctx || !ctx->nr_counters)
		goto out;

	__perf_counter_task_sched_out(ctx);

	spin_lock(&ctx->lock);

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (!counter->attr.enable_on_exec)
			continue;
		counter->attr.enable_on_exec = 0;
		if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
			continue;
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
		enabled = 1;
	}

	/*
	 * Unclone this context if we enabled any counter.
	 */
	if (enabled && ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(task, smp_processor_id());
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1478 1479 1480
/*
 * Cross CPU call to read the hardware counter
 */
1481
static void __perf_counter_read(void *info)
T
Thomas Gleixner 已提交
1482
{
I
Ingo Molnar 已提交
1483
	struct perf_counter *counter = info;
1484
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1485
	unsigned long flags;
I
Ingo Molnar 已提交
1486

1487
	local_irq_save(flags);
1488
	if (ctx->is_active)
1489
		update_context_time(ctx);
1490
	counter->pmu->read(counter);
1491
	update_counter_times(counter);
1492
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1493 1494
}

1495
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1496 1497 1498 1499 1500
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1501
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1502
		smp_call_function_single(counter->oncpu,
1503
					 __perf_counter_read, counter, 1);
1504 1505
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1506 1507
	}

1508
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1509 1510
}

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1527 1528
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
1529
	struct perf_counter_context *parent_ctx;
1530 1531
	struct perf_counter_context *ctx;
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1532
	struct task_struct *task;
1533
	unsigned long flags;
1534
	int err;
T
Thomas Gleixner 已提交
1535 1536 1537 1538 1539 1540

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1541
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1557
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1574 1575 1576 1577 1578 1579 1580
	/*
	 * Can't attach counters to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1581
	/* Reuse ptrace permission checks for now. */
1582 1583 1584 1585 1586
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1587
	ctx = perf_lock_task_context(task, &flags);
1588 1589 1590 1591 1592 1593
	if (ctx) {
		parent_ctx = ctx->parent_ctx;
		if (parent_ctx) {
			put_ctx(parent_ctx);
			ctx->parent_ctx = NULL;		/* no longer a clone */
		}
1594
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1595 1596
	}

1597 1598
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1599 1600 1601
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1602
		__perf_counter_init_context(ctx, task);
1603 1604
		get_ctx(ctx);
		if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1605 1606 1607 1608 1609
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1610
			goto retry;
1611
		}
1612
		get_task_struct(task);
1613 1614
	}

1615
	put_task_struct(task);
T
Thomas Gleixner 已提交
1616
	return ctx;
1617 1618 1619 1620

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1621 1622
}

P
Peter Zijlstra 已提交
1623 1624 1625 1626 1627
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
1628 1629
	if (counter->ns)
		put_pid_ns(counter->ns);
P
Peter Zijlstra 已提交
1630 1631 1632
	kfree(counter);
}

1633 1634
static void perf_pending_sync(struct perf_counter *counter);

1635 1636
static void free_counter(struct perf_counter *counter)
{
1637 1638
	perf_pending_sync(counter);

1639 1640 1641 1642 1643 1644 1645
	if (!counter->parent) {
		atomic_dec(&nr_counters);
		if (counter->attr.mmap)
			atomic_dec(&nr_mmap_counters);
		if (counter->attr.comm)
			atomic_dec(&nr_comm_counters);
	}
1646

1647 1648 1649
	if (counter->destroy)
		counter->destroy(counter);

1650
	put_ctx(counter->ctx);
1651 1652 1653
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1664
	WARN_ON_ONCE(ctx->parent_ctx);
1665
	mutex_lock(&ctx->mutex);
1666
	perf_counter_remove_from_context(counter);
1667
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1668

1669 1670 1671 1672 1673
	mutex_lock(&counter->owner->perf_counter_mutex);
	list_del_init(&counter->owner_entry);
	mutex_unlock(&counter->owner->perf_counter_mutex);
	put_task_struct(counter->owner);

1674
	free_counter(counter);
T
Thomas Gleixner 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1685
	u64 values[4];
1686
	int n;
T
Thomas Gleixner 已提交
1687

1688 1689 1690 1691 1692 1693 1694 1695
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1696
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1697
	mutex_lock(&counter->child_mutex);
1698 1699
	values[0] = perf_counter_read(counter);
	n = 1;
1700
	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1701 1702
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
1703
	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1704 1705
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
1706
	if (counter->attr.read_format & PERF_FORMAT_ID)
1707
		values[n++] = counter->id;
1708
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1709

1710 1711 1712 1713 1714 1715 1716 1717
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1718 1719 1720 1721 1722 1723 1724
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1725
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1726 1727 1728 1729 1730
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1731
	struct perf_mmap_data *data;
1732
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1733 1734 1735 1736

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1737
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1738
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1739 1740 1741 1742 1743 1744

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1745 1746
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1747
	(void)perf_counter_read(counter);
1748
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1749 1750 1751
	perf_counter_update_userpage(counter);
}

1752 1753 1754 1755 1756 1757
/*
 * Holding the top-level counter's child_mutex means that any
 * descendant process that has inherited this counter will block
 * in sync_child_counter if it goes to exit, thus satisfying the
 * task existence requirements of perf_counter_enable/disable.
 */
P
Peter Zijlstra 已提交
1758 1759 1760 1761 1762
static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1763
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1764
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1765 1766 1767
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1768
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1769 1770 1771 1772 1773
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
1774 1775
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;
P
Peter Zijlstra 已提交
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	counter = counter->group_leader;

	perf_counter_for_each_child(counter, func);
	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		perf_counter_for_each_child(counter, func);
	mutex_unlock(&ctx->mutex);
1786 1787
}

1788 1789 1790 1791 1792 1793 1794
static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
{
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long size;
	int ret = 0;
	u64 value;

1795
	if (!counter->attr.sample_period)
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1806
	if (counter->attr.freq) {
1807
		if (value > sysctl_perf_counter_sample_rate) {
1808 1809 1810 1811
			ret = -EINVAL;
			goto unlock;
		}

1812
		counter->attr.sample_freq = value;
1813
	} else {
1814 1815
		perf_log_period(counter, value);

1816
		counter->attr.sample_period = value;
1817 1818 1819 1820 1821 1822 1823 1824
		counter->hw.sample_period = value;
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

1825 1826 1827
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1828 1829
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1830 1831 1832

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1833
		func = perf_counter_enable;
1834 1835
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1836
		func = perf_counter_disable;
1837
		break;
1838
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1839
		func = perf_counter_reset;
1840
		break;
P
Peter Zijlstra 已提交
1841 1842 1843

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1844 1845 1846 1847

	case PERF_COUNTER_IOC_PERIOD:
		return perf_counter_period(counter, (u64 __user *)arg);

1848
	default:
P
Peter Zijlstra 已提交
1849
		return -ENOTTY;
1850
	}
P
Peter Zijlstra 已提交
1851 1852 1853 1854 1855 1856 1857

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1858 1859
}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
int perf_counter_task_enable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_enable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

int perf_counter_task_disable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_disable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

1884 1885 1886 1887 1888 1889 1890 1891
static int perf_counter_index(struct perf_counter *counter)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

	return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
}

1892 1893 1894 1895 1896 1897
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1898
{
1899
	struct perf_counter_mmap_page *userpg;
1900
	struct perf_mmap_data *data;
1901 1902 1903 1904 1905 1906 1907

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1908

1909 1910 1911 1912 1913
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1914
	++userpg->lock;
1915
	barrier();
1916
	userpg->index = perf_counter_index(counter);
1917 1918 1919
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1920

1921 1922 1923 1924 1925 1926
	userpg->time_enabled = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);

	userpg->time_running = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);

1927
	barrier();
1928
	++userpg->lock;
1929
	preempt_enable();
1930
unlock:
1931
	rcu_read_unlock();
1932 1933 1934 1935 1936
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1937 1938 1939
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

1940 1941 1942 1943 1944 1945
	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

1946 1947 1948 1949 1950 1951 1952 1953 1954
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1955

1956 1957
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1958

1959 1960 1961
		if (vmf->flags & FAULT_FLAG_WRITE)
			goto unlock;

1962 1963
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1964

1965
	get_page(vmf->page);
1966 1967 1968
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
2002
	atomic_set(&data->lock, -1);
2003 2004 2005

	rcu_assign_pointer(counter->data, data);

2006
	return 0;
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

2021 2022
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2023
	struct page *page = virt_to_page((void *)addr);
2024 2025 2026 2027 2028

	page->mapping = NULL;
	__free_page(page);
}

2029 2030
static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
2031
	struct perf_mmap_data *data;
2032 2033
	int i;

2034 2035
	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);

2036
	perf_mmap_free_page((unsigned long)data->user_page);
2037
	for (i = 0; i < data->nr_pages; i++)
2038 2039
		perf_mmap_free_page((unsigned long)data->data_pages[i]);

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

2064
	WARN_ON_ONCE(counter->ctx->parent_ctx);
2065
	if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2066 2067 2068
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2069
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
2070 2071 2072
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
2073 2074 2075
}

static struct vm_operations_struct perf_mmap_vmops = {
2076 2077 2078 2079
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2080 2081 2082 2083 2084
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
2085
	unsigned long user_locked, user_lock_limit;
2086
	struct user_struct *user = current_user();
2087
	unsigned long locked, lock_limit;
2088 2089
	unsigned long vma_size;
	unsigned long nr_pages;
2090
	long user_extra, extra;
2091
	int ret = 0;
2092

2093
	if (!(vma->vm_flags & VM_SHARED))
2094
		return -EINVAL;
2095 2096 2097 2098

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2099 2100 2101 2102 2103
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2104 2105
		return -EINVAL;

2106
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2107 2108
		return -EINVAL;

2109 2110
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2111

2112
	WARN_ON_ONCE(counter->ctx->parent_ctx);
2113 2114 2115 2116 2117 2118 2119
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

2120 2121
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2122 2123 2124 2125 2126 2127

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2128
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2129

2130 2131 2132
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2133 2134 2135

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2136
	locked = vma->vm_mm->locked_vm + extra;
2137

2138 2139 2140 2141
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
2142 2143 2144

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
2145 2146 2147 2148
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
2149
	atomic_long_add(user_extra, &user->locked_vm);
2150 2151
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
2152 2153 2154
	if (vma->vm_flags & VM_WRITE)
		counter->data->writable = 1;

2155
unlock:
2156
	mutex_unlock(&counter->mmap_mutex);
2157 2158 2159

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2160 2161

	return ret;
2162 2163
}

P
Peter Zijlstra 已提交
2164 2165 2166
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2167
	struct perf_counter *counter = filp->private_data;
P
Peter Zijlstra 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2180 2181 2182 2183
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2184 2185
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2186
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2187
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2188 2189
};

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
2200 2201 2202 2203 2204

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

2232
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2233

2234
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2235 2236 2237
	PENDING_TAIL,
};

2238 2239
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2240
{
2241
	struct perf_pending_entry **head;
2242

2243
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2244 2245
		return;

2246 2247 2248
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2249 2250

	do {
2251 2252
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2253 2254 2255

	set_perf_counter_pending();

2256
	put_cpu_var(perf_pending_head);
2257 2258 2259 2260
}

static int __perf_pending_run(void)
{
2261
	struct perf_pending_entry *list;
2262 2263
	int nr = 0;

2264
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2265
	while (list != PENDING_TAIL) {
2266 2267
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2268 2269 2270

		list = list->next;

2271 2272
		func = entry->func;
		entry->next = NULL;
2273 2274 2275 2276 2277 2278 2279
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2280
		func(entry);
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2302
	return counter->pending.next == NULL;
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

2315 2316 2317 2318
/*
 * Callchain support -- arch specific
 */

2319
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2320 2321 2322 2323
{
	return NULL;
}

2324 2325 2326 2327
/*
 * Output
 */

2328 2329 2330
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
2331 2332
	unsigned long		head;
	unsigned long		offset;
2333
	int			nmi;
2334
	int			sample;
2335 2336
	int			locked;
	unsigned long		flags;
2337 2338
};

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
static bool perf_output_space(struct perf_mmap_data *data,
			      unsigned int offset, unsigned int head)
{
	unsigned long tail;
	unsigned long mask;

	if (!data->writable)
		return true;

	mask = (data->nr_pages << PAGE_SHIFT) - 1;
	/*
	 * Userspace could choose to issue a mb() before updating the tail
	 * pointer. So that all reads will be completed before the write is
	 * issued.
	 */
	tail = ACCESS_ONCE(data->user_page->data_tail);
	smp_rmb();

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2366
static void perf_output_wakeup(struct perf_output_handle *handle)
2367
{
2368 2369
	atomic_set(&handle->data->poll, POLL_IN);

2370
	if (handle->nmi) {
2371
		handle->counter->pending_wakeup = 1;
2372
		perf_pending_queue(&handle->counter->pending,
2373
				   perf_pending_counter);
2374
	} else
2375 2376 2377
		perf_counter_wakeup(handle->counter);
}

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2404
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2405 2406 2407 2408 2409 2410 2411 2412
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2413 2414
	unsigned long head;
	int cpu;
2415

2416
	data->done_head = data->head;
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2427
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2428 2429 2430
		data->user_page->data_head = head;

	/*
2431
	 * NMI can happen here, which means we can miss a done_head update.
2432 2433
	 */

2434
	cpu = atomic_xchg(&data->lock, -1);
2435 2436 2437 2438 2439
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2440
	if (unlikely(atomic_long_read(&data->done_head))) {
2441 2442 2443
		/*
		 * Since we had it locked, we can lock it again.
		 */
2444
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2445 2446 2447 2448 2449
			cpu_relax();

		goto again;
	}

2450
	if (atomic_xchg(&data->wakeup, 0))
2451 2452 2453 2454 2455
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
static void perf_output_copy(struct perf_output_handle *handle,
			     const void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2495
static int perf_output_begin(struct perf_output_handle *handle,
2496
			     struct perf_counter *counter, unsigned int size,
2497
			     int nmi, int sample)
2498
{
2499
	struct perf_mmap_data *data;
2500
	unsigned int offset, head;
2501 2502 2503 2504 2505 2506
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2507

2508 2509 2510 2511 2512 2513
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2514 2515 2516 2517 2518
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2519 2520 2521 2522
	handle->data	= data;
	handle->counter	= counter;
	handle->nmi	= nmi;
	handle->sample	= sample;
2523

2524
	if (!data->nr_pages)
2525
		goto fail;
2526

2527 2528 2529 2530
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2531 2532
	perf_output_lock(handle);

2533
	do {
2534
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2535
		head += size;
2536 2537
		if (unlikely(!perf_output_space(data, offset, head)))
			goto fail;
2538
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2539

2540
	handle->offset	= offset;
2541
	handle->head	= head;
2542 2543 2544

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2545

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	if (have_lost) {
		lost_event.header.type = PERF_EVENT_LOST;
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
		lost_event.id          = counter->id;
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2556
	return 0;
2557

2558
fail:
2559 2560
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2561 2562
out:
	rcu_read_unlock();
2563

2564 2565
	return -ENOSPC;
}
2566

2567
static void perf_output_end(struct perf_output_handle *handle)
2568
{
2569 2570 2571
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

2572
	int wakeup_events = counter->attr.wakeup_events;
P
Peter Zijlstra 已提交
2573

2574
	if (handle->sample && wakeup_events) {
2575
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2576
		if (events >= wakeup_events) {
2577
			atomic_sub(wakeup_events, &data->events);
2578
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2579
		}
2580 2581 2582
	}

	perf_output_unlock(handle);
2583
	rcu_read_unlock();
2584 2585
}

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_tgid_nr_ns(p, counter->ns);
}

static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_pid_nr_ns(p, counter->ns);
}

2608 2609
static void perf_counter_output(struct perf_counter *counter, int nmi,
				struct perf_sample_data *data)
2610
{
2611
	int ret;
2612
	u64 sample_type = counter->attr.sample_type;
2613 2614 2615
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2616
	struct {
2617
		u32 pid, tid;
2618
	} tid_entry;
2619
	struct {
2620
		u64 id;
2621 2622
		u64 counter;
	} group_entry;
2623 2624
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2625
	u64 time;
2626 2627 2628
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2629

2630
	header.type = PERF_EVENT_SAMPLE;
2631
	header.size = sizeof(header);
2632

2633
	header.misc = 0;
2634
	header.misc |= perf_misc_flags(data->regs);
2635

2636
	if (sample_type & PERF_SAMPLE_IP) {
2637
		ip = perf_instruction_pointer(data->regs);
2638 2639
		header.size += sizeof(ip);
	}
2640

2641
	if (sample_type & PERF_SAMPLE_TID) {
2642
		/* namespace issues */
2643 2644
		tid_entry.pid = perf_counter_pid(counter, current);
		tid_entry.tid = perf_counter_tid(counter, current);
2645 2646 2647 2648

		header.size += sizeof(tid_entry);
	}

2649
	if (sample_type & PERF_SAMPLE_TIME) {
2650 2651 2652 2653 2654 2655 2656 2657
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.size += sizeof(u64);
	}

2658
	if (sample_type & PERF_SAMPLE_ADDR)
2659 2660
		header.size += sizeof(u64);

2661
	if (sample_type & PERF_SAMPLE_ID)
2662 2663
		header.size += sizeof(u64);

2664
	if (sample_type & PERF_SAMPLE_CPU) {
2665 2666 2667
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
A
Arjan van de Ven 已提交
2668
		cpu_entry.reserved = 0;
2669 2670
	}

2671
	if (sample_type & PERF_SAMPLE_PERIOD)
2672 2673
		header.size += sizeof(u64);

2674
	if (sample_type & PERF_SAMPLE_GROUP) {
2675 2676 2677 2678
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

2679
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2680
		callchain = perf_callchain(data->regs);
2681 2682

		if (callchain) {
2683
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2684
			header.size += callchain_size;
2685 2686
		} else
			header.size += sizeof(u64);
2687 2688
	}

2689
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2690 2691
	if (ret)
		return;
2692

2693
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2694

2695
	if (sample_type & PERF_SAMPLE_IP)
2696
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2697

2698
	if (sample_type & PERF_SAMPLE_TID)
2699
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2700

2701
	if (sample_type & PERF_SAMPLE_TIME)
2702 2703
		perf_output_put(&handle, time);

2704
	if (sample_type & PERF_SAMPLE_ADDR)
2705
		perf_output_put(&handle, data->addr);
2706

2707 2708
	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(&handle, counter->id);
2709

2710
	if (sample_type & PERF_SAMPLE_CPU)
2711 2712
		perf_output_put(&handle, cpu_entry);

2713
	if (sample_type & PERF_SAMPLE_PERIOD)
2714
		perf_output_put(&handle, data->period);
2715

2716
	/*
2717
	 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2718
	 */
2719
	if (sample_type & PERF_SAMPLE_GROUP) {
2720 2721
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2722

2723
		perf_output_put(&handle, nr);
2724

2725 2726 2727
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2728
				sub->pmu->read(sub);
2729

2730
			group_entry.id = sub->id;
2731
			group_entry.counter = atomic64_read(&sub->count);
2732

2733 2734
			perf_output_put(&handle, group_entry);
		}
2735
	}
P
Peter Zijlstra 已提交
2736

2737 2738 2739 2740 2741 2742 2743 2744
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (callchain)
			perf_output_copy(&handle, callchain, callchain_size);
		else {
			u64 nr = 0;
			perf_output_put(&handle, nr);
		}
	}
2745

2746
	perf_output_end(&handle);
2747 2748
}

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
/*
 * read event
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
	u64				value;
	u64				format[3];
};

static void
perf_counter_read_event(struct perf_counter *counter,
			struct task_struct *task)
{
	struct perf_output_handle handle;
	struct perf_read_event event = {
		.header = {
			.type = PERF_EVENT_READ,
			.misc = 0,
			.size = sizeof(event) - sizeof(event.format),
		},
		.pid = perf_counter_pid(counter, task),
		.tid = perf_counter_tid(counter, task),
		.value = atomic64_read(&counter->count),
	};
	int ret, i = 0;

	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		event.header.size += sizeof(u64);
		event.format[i++] = counter->total_time_enabled;
	}

	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		event.header.size += sizeof(u64);
		event.format[i++] = counter->total_time_running;
	}

	if (counter->attr.read_format & PERF_FORMAT_ID) {
		u64 id;

		event.header.size += sizeof(u64);
		if (counter->parent)
			id = counter->parent->id;
		else
			id = counter->id;

		event.format[i++] = id;
	}

	ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
	if (ret)
		return;

	perf_output_copy(&handle, &event, event.header.size);
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
/*
 * fork tracking
 */

struct perf_fork_event {
	struct task_struct	*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
	} event;
};

static void perf_counter_fork_output(struct perf_counter *counter,
				     struct perf_fork_event *fork_event)
{
	struct perf_output_handle handle;
	int size = fork_event->event.header.size;
	struct task_struct *task = fork_event->task;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	fork_event->event.pid = perf_counter_pid(counter, task);
	fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);

	perf_output_put(&handle, fork_event->event);
	perf_output_end(&handle);
}

static int perf_counter_fork_match(struct perf_counter *counter)
{
2844
	if (counter->attr.comm || counter->attr.mmap)
P
Peter Zijlstra 已提交
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
		return 1;

	return 0;
}

static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
				  struct perf_fork_event *fork_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_fork_match(counter))
			perf_counter_fork_output(counter, fork_event);
	}
	rcu_read_unlock();
}

static void perf_counter_fork_event(struct perf_fork_event *fork_event)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
	put_cpu_var(perf_cpu_context);

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_fork_ctx(ctx, fork_event);
	rcu_read_unlock();
}

void perf_counter_fork(struct task_struct *task)
{
	struct perf_fork_event fork_event;

	if (!atomic_read(&nr_comm_counters) &&
2891
	    !atomic_read(&nr_mmap_counters))
P
Peter Zijlstra 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
		return;

	fork_event = (struct perf_fork_event){
		.task	= task,
		.event  = {
			.header = {
				.type = PERF_EVENT_FORK,
				.size = sizeof(fork_event.event),
			},
		},
	};

	perf_counter_fork_event(&fork_event);
}

2907 2908 2909 2910 2911
/*
 * comm tracking
 */

struct perf_comm_event {
2912 2913
	struct task_struct	*task;
	char			*comm;
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

2934 2935 2936
	comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
	comm_event->event.tid = perf_counter_tid(counter, comm_event->task);

2937 2938 2939 2940 2941 2942
	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
2943
static int perf_counter_comm_match(struct perf_counter *counter)
2944
{
P
Peter Zijlstra 已提交
2945
	if (counter->attr.comm)
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
P
Peter Zijlstra 已提交
2961
		if (perf_counter_comm_match(counter))
2962 2963 2964 2965 2966 2967 2968 2969
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
2970
	struct perf_counter_context *ctx;
2971 2972 2973
	unsigned int size;
	char *comm = comm_event->task->comm;

2974
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2975 2976 2977 2978 2979 2980 2981 2982 2983

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_comm_ctx(ctx, comm_event);
	rcu_read_unlock();
2994 2995 2996 2997
}

void perf_counter_comm(struct task_struct *task)
{
2998 2999
	struct perf_comm_event comm_event;

3000 3001 3002
	if (task->perf_counter_ctxp)
		perf_counter_enable_on_exec(task);

P
Peter Zijlstra 已提交
3003
	if (!atomic_read(&nr_comm_counters))
3004
		return;
3005

3006
	comm_event = (struct perf_comm_event){
3007 3008 3009 3010 3011 3012 3013 3014 3015
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
		},
	};

	perf_counter_comm_event(&comm_event);
}

3016 3017 3018 3019 3020
/*
 * mmap tracking
 */

struct perf_mmap_event {
3021 3022 3023 3024
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
3042
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
3043 3044 3045 3046

	if (ret)
		return;

3047 3048 3049
	mmap_event->event.pid = perf_counter_pid(counter, current);
	mmap_event->event.tid = perf_counter_tid(counter, current);

3050 3051 3052
	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3053
	perf_output_end(&handle);
3054 3055 3056 3057 3058
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
3059
	if (counter->attr.mmap)
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
3084
	struct perf_counter_context *ctx;
3085 3086
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3087 3088 3089
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3090
	const char *name;
3091 3092 3093 3094 3095 3096 3097

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3098
		name = d_path(&file->f_path, buf, PATH_MAX);
3099 3100 3101 3102 3103
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3104 3105 3106 3107 3108 3109 3110 3111 3112
		name = arch_vma_name(mmap_event->vma);
		if (name)
			goto got_name;

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3113 3114 3115 3116 3117
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3118
	size = ALIGN(strlen(name)+1, sizeof(u64));
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_mmap_ctx(ctx, mmap_event);
	rcu_read_unlock();

3139 3140 3141
	kfree(buf);
}

3142
void __perf_counter_mmap(struct vm_area_struct *vma)
3143
{
3144 3145
	struct perf_mmap_event mmap_event;

P
Peter Zijlstra 已提交
3146
	if (!atomic_read(&nr_mmap_counters))
3147 3148 3149
		return;

	mmap_event = (struct perf_mmap_event){
3150
		.vma	= vma,
3151 3152
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
3153 3154 3155
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3156 3157 3158 3159 3160 3161
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

3162
/*
3163
 * Log sample_period changes so that analyzing tools can re-normalize the
3164
 * event flow.
3165 3166
 */

3167 3168 3169 3170 3171 3172 3173
struct freq_event {
	struct perf_event_header	header;
	u64				time;
	u64				id;
	u64				period;
};

3174 3175 3176
static void perf_log_period(struct perf_counter *counter, u64 period)
{
	struct perf_output_handle handle;
3177
	struct freq_event event;
3178 3179
	int ret;

3180 3181 3182 3183 3184 3185 3186
	if (counter->hw.sample_period == period)
		return;

	if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
		return;

	event = (struct freq_event) {
3187 3188 3189
		.header = {
			.type = PERF_EVENT_PERIOD,
			.misc = 0,
3190
			.size = sizeof(event),
3191 3192
		},
		.time = sched_clock(),
3193
		.id = counter->id,
3194 3195 3196
		.period = period,
	};

3197
	ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
3198 3199 3200
	if (ret)
		return;

3201
	perf_output_put(&handle, event);
3202 3203 3204
	perf_output_end(&handle);
}

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
/*
 * IRQ throttle logging
 */

static void perf_log_throttle(struct perf_counter *counter, int enable)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3217
		u64				id;
3218 3219 3220 3221 3222 3223
	} throttle_event = {
		.header = {
			.type = PERF_EVENT_THROTTLE + 1,
			.misc = 0,
			.size = sizeof(throttle_event),
		},
3224 3225
		.time	= sched_clock(),
		.id	= counter->id,
3226 3227
	};

I
Ingo Molnar 已提交
3228
	ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3229 3230 3231 3232 3233 3234 3235
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3236
/*
3237
 * Generic counter overflow handling, sampling.
3238 3239
 */

3240 3241
int perf_counter_overflow(struct perf_counter *counter, int nmi,
			  struct perf_sample_data *data)
3242
{
3243
	int events = atomic_read(&counter->event_limit);
3244
	int throttle = counter->pmu->unthrottle != NULL;
3245
	struct hw_perf_counter *hwc = &counter->hw;
3246 3247
	int ret = 0;

3248
	if (!throttle) {
3249
		hwc->interrupts++;
3250
	} else {
3251 3252
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3253 3254
			if (HZ * hwc->interrupts >
					(u64)sysctl_perf_counter_sample_rate) {
3255
				hwc->interrupts = MAX_INTERRUPTS;
3256 3257 3258 3259 3260 3261 3262 3263 3264
				perf_log_throttle(counter, 0);
				ret = 1;
			}
		} else {
			/*
			 * Keep re-disabling counters even though on the previous
			 * pass we disabled it - just in case we raced with a
			 * sched-in and the counter got enabled again:
			 */
3265 3266 3267
			ret = 1;
		}
	}
3268

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	if (counter->attr.freq) {
		u64 now = sched_clock();
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
			perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
	}

3279 3280 3281 3282 3283
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

3284
	counter->pending_kill = POLL_IN;
3285 3286
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
3287
		counter->pending_kill = POLL_HUP;
3288 3289 3290 3291 3292 3293 3294 3295
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

3296
	perf_counter_output(counter, nmi, data);
3297
	return ret;
3298 3299
}

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
3326
	s64 period = hwc->sample_period;
3327 3328 3329 3330

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
3331
		hwc->last_period = period;
3332 3333 3334 3335 3336
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
3337
		hwc->last_period = period;
3338 3339 3340 3341 3342 3343
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

3344 3345
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
3346
	enum hrtimer_restart ret = HRTIMER_RESTART;
3347
	struct perf_sample_data data;
3348
	struct perf_counter *counter;
3349
	u64 period;
3350 3351

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
3352
	counter->pmu->read(counter);
3353

3354 3355
	data.addr = 0;
	data.regs = get_irq_regs();
3356 3357 3358 3359
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
3360
	if ((counter->attr.exclude_kernel || !data.regs) &&
3361
			!counter->attr.exclude_user)
3362
		data.regs = task_pt_regs(current);
3363

3364 3365
	if (data.regs) {
		if (perf_counter_overflow(counter, 0, &data))
3366 3367
			ret = HRTIMER_NORESTART;
	}
3368

3369
	period = max_t(u64, 10000, counter->hw.sample_period);
3370
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3371

3372
	return ret;
3373 3374 3375
}

static void perf_swcounter_overflow(struct perf_counter *counter,
3376
				    int nmi, struct perf_sample_data *data)
3377
{
3378
	data->period = counter->hw.last_period;
3379

3380 3381
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
3382
	if (perf_counter_overflow(counter, nmi, data))
3383 3384
		/* soft-disable the counter */
		;
3385 3386
}

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
static int perf_swcounter_is_counting(struct perf_counter *counter)
{
	struct perf_counter_context *ctx;
	unsigned long flags;
	int count;

	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		return 1;

	if (counter->state != PERF_COUNTER_STATE_INACTIVE)
		return 0;

	/*
	 * If the counter is inactive, it could be just because
	 * its task is scheduled out, or because it's in a group
	 * which could not go on the PMU.  We want to count in
	 * the first case but not the second.  If the context is
	 * currently active then an inactive software counter must
	 * be the second case.  If it's not currently active then
	 * we need to know whether the counter was active when the
	 * context was last active, which we can determine by
	 * comparing counter->tstamp_stopped with ctx->time.
	 *
	 * We are within an RCU read-side critical section,
	 * which protects the existence of *ctx.
	 */
	ctx = counter->ctx;
	spin_lock_irqsave(&ctx->lock, flags);
	count = 1;
	/* Re-check state now we have the lock */
	if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
	    counter->ctx->is_active ||
	    counter->tstamp_stopped < ctx->time)
		count = 0;
	spin_unlock_irqrestore(&ctx->lock, flags);
	return count;
}

3425
static int perf_swcounter_match(struct perf_counter *counter,
P
Peter Zijlstra 已提交
3426
				enum perf_type_id type,
3427
				u32 event, struct pt_regs *regs)
3428
{
3429
	if (!perf_swcounter_is_counting(counter))
3430 3431
		return 0;

3432 3433 3434
	if (counter->attr.type != type)
		return 0;
	if (counter->attr.config != event)
3435 3436
		return 0;

3437
	if (regs) {
3438
		if (counter->attr.exclude_user && user_mode(regs))
3439
			return 0;
3440

3441
		if (counter->attr.exclude_kernel && !user_mode(regs))
3442 3443
			return 0;
	}
3444 3445 3446 3447

	return 1;
}

3448
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3449
			       int nmi, struct perf_sample_data *data)
3450 3451
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
3452

3453 3454
	if (counter->hw.sample_period && !neg && data->regs)
		perf_swcounter_overflow(counter, nmi, data);
3455 3456
}

3457
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3458 3459 3460
				     enum perf_type_id type,
				     u32 event, u64 nr, int nmi,
				     struct perf_sample_data *data)
3461 3462 3463
{
	struct perf_counter *counter;

3464
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3465 3466
		return;

P
Peter Zijlstra 已提交
3467 3468
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3469 3470
		if (perf_swcounter_match(counter, type, event, data->regs))
			perf_swcounter_add(counter, nr, nmi, data);
3471
	}
P
Peter Zijlstra 已提交
3472
	rcu_read_unlock();
3473 3474
}

P
Peter Zijlstra 已提交
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

3489 3490 3491
static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
				    u64 nr, int nmi,
				    struct perf_sample_data *data)
3492 3493
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3494
	int *recursion = perf_swcounter_recursion_context(cpuctx);
3495
	struct perf_counter_context *ctx;
P
Peter Zijlstra 已提交
3496 3497 3498 3499 3500 3501

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3502

3503
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3504
				 nr, nmi, data);
3505 3506 3507 3508 3509 3510 3511
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
3512
		perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3513
	rcu_read_unlock();
3514

P
Peter Zijlstra 已提交
3515 3516 3517 3518
	barrier();
	(*recursion)--;

out:
3519 3520 3521
	put_cpu_var(perf_cpu_context);
}

3522 3523
void __perf_swcounter_event(u32 event, u64 nr, int nmi,
			    struct pt_regs *regs, u64 addr)
3524
{
3525 3526 3527 3528 3529 3530
	struct perf_sample_data data = {
		.regs = regs,
		.addr = addr,
	};

	do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3531 3532
}

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

3549
static const struct pmu perf_ops_generic = {
3550 3551 3552 3553 3554
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

3555 3556 3557 3558
/*
 * Software counter: cpu wall time clock
 */

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

3571 3572 3573 3574 3575 3576
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3577 3578
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3579 3580
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3581
		__hrtimer_start_range_ns(&hwc->hrtimer,
3582
				ns_to_ktime(period), 0,
3583 3584 3585 3586 3587 3588
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

3589 3590
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
3591
	if (counter->hw.sample_period)
3592
		hrtimer_cancel(&counter->hw.hrtimer);
3593
	cpu_clock_perf_counter_update(counter);
3594 3595 3596 3597
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
3598
	cpu_clock_perf_counter_update(counter);
3599 3600
}

3601
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
3602 3603 3604
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
3605 3606
};

3607 3608 3609 3610
/*
 * Software counter: task time clock
 */

3611
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
3612
{
3613
	u64 prev;
I
Ingo Molnar 已提交
3614 3615
	s64 delta;

3616
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
3617 3618
	delta = now - prev;
	atomic64_add(delta, &counter->count);
3619 3620
}

3621
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
3622
{
3623
	struct hw_perf_counter *hwc = &counter->hw;
3624 3625 3626
	u64 now;

	now = counter->ctx->time;
3627

3628
	atomic64_set(&hwc->prev_count, now);
3629 3630
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3631 3632
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3633
		__hrtimer_start_range_ns(&hwc->hrtimer,
3634
				ns_to_ktime(period), 0,
3635 3636
				HRTIMER_MODE_REL, 0);
	}
3637 3638

	return 0;
I
Ingo Molnar 已提交
3639 3640 3641
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
3642
{
3643
	if (counter->hw.sample_period)
3644
		hrtimer_cancel(&counter->hw.hrtimer);
3645 3646
	task_clock_perf_counter_update(counter, counter->ctx->time);

3647
}
I
Ingo Molnar 已提交
3648

3649 3650
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
3663 3664
}

3665
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
3666 3667 3668
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
3669 3670
};

3671 3672 3673
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
3674 3675 3676 3677
	struct perf_sample_data data = {
		.regs = get_irq_regs();
		.addr = 0,
	};
3678

3679 3680
	if (!data.regs)
		data.regs = task_pt_regs(current);
3681

3682
	do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data);
3683
}
3684
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3685 3686 3687 3688 3689 3690

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3691
	ftrace_profile_disable(perf_event_id(&counter->attr));
3692 3693
}

3694
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3695
{
3696
	int event_id = perf_event_id(&counter->attr);
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;

	return &perf_ops_generic;
}
#else
3708
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3709 3710 3711 3712 3713
{
	return NULL;
}
#endif

3714 3715 3716 3717 3718 3719
atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];

static void sw_perf_counter_destroy(struct perf_counter *counter)
{
	u64 event = counter->attr.config;

3720 3721
	WARN_ON(counter->parent);

3722 3723 3724
	atomic_dec(&perf_swcounter_enabled[event]);
}

3725
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3726
{
3727
	const struct pmu *pmu = NULL;
3728
	u64 event = counter->attr.config;
3729

3730 3731 3732 3733 3734 3735 3736
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3737
	switch (event) {
3738
	case PERF_COUNT_SW_CPU_CLOCK:
3739
		pmu = &perf_ops_cpu_clock;
3740

3741
		break;
3742
	case PERF_COUNT_SW_TASK_CLOCK:
3743 3744 3745 3746 3747
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3748
			pmu = &perf_ops_task_clock;
3749
		else
3750
			pmu = &perf_ops_cpu_clock;
3751

3752
		break;
3753 3754 3755 3756 3757
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
3758 3759 3760 3761
		if (!counter->parent) {
			atomic_inc(&perf_swcounter_enabled[event]);
			counter->destroy = sw_perf_counter_destroy;
		}
3762
		pmu = &perf_ops_generic;
3763
		break;
3764
	}
3765

3766
	return pmu;
3767 3768
}

T
Thomas Gleixner 已提交
3769 3770 3771 3772
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
3773
perf_counter_alloc(struct perf_counter_attr *attr,
3774
		   int cpu,
3775
		   struct perf_counter_context *ctx,
3776
		   struct perf_counter *group_leader,
3777
		   struct perf_counter *parent_counter,
3778
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
3779
{
3780
	const struct pmu *pmu;
I
Ingo Molnar 已提交
3781
	struct perf_counter *counter;
3782
	struct hw_perf_counter *hwc;
3783
	long err;
T
Thomas Gleixner 已提交
3784

3785
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
3786
	if (!counter)
3787
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
3788

3789 3790 3791 3792 3793 3794 3795
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

3796 3797 3798
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

3799
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
3800
	INIT_LIST_HEAD(&counter->event_entry);
3801
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
3802 3803
	init_waitqueue_head(&counter->waitq);

3804 3805
	mutex_init(&counter->mmap_mutex);

3806
	counter->cpu		= cpu;
3807
	counter->attr		= *attr;
3808 3809 3810 3811 3812
	counter->group_leader	= group_leader;
	counter->pmu		= NULL;
	counter->ctx		= ctx;
	counter->oncpu		= -1;

3813 3814
	counter->parent		= parent_counter;

3815 3816 3817 3818
	counter->ns		= get_pid_ns(current->nsproxy->pid_ns);
	counter->id		= atomic64_inc_return(&perf_counter_id);

	counter->state		= PERF_COUNTER_STATE_INACTIVE;
3819

3820
	if (attr->disabled)
3821 3822
		counter->state = PERF_COUNTER_STATE_OFF;

3823
	pmu = NULL;
3824

3825
	hwc = &counter->hw;
3826
	hwc->sample_period = attr->sample_period;
3827
	if (attr->freq && attr->sample_freq)
3828 3829 3830
		hwc->sample_period = 1;

	atomic64_set(&hwc->period_left, hwc->sample_period);
3831

3832
	/*
3833
	 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3834
	 */
3835
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3836 3837
		goto done;

3838
	switch (attr->type) {
3839
	case PERF_TYPE_RAW:
3840
	case PERF_TYPE_HARDWARE:
3841
	case PERF_TYPE_HW_CACHE:
3842
		pmu = hw_perf_counter_init(counter);
3843 3844 3845
		break;

	case PERF_TYPE_SOFTWARE:
3846
		pmu = sw_perf_counter_init(counter);
3847 3848 3849
		break;

	case PERF_TYPE_TRACEPOINT:
3850
		pmu = tp_perf_counter_init(counter);
3851
		break;
3852 3853 3854

	default:
		break;
3855
	}
3856 3857
done:
	err = 0;
3858
	if (!pmu)
3859
		err = -EINVAL;
3860 3861
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
3862

3863
	if (err) {
3864 3865
		if (counter->ns)
			put_pid_ns(counter->ns);
I
Ingo Molnar 已提交
3866
		kfree(counter);
3867
		return ERR_PTR(err);
I
Ingo Molnar 已提交
3868
	}
3869

3870
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
3871

3872 3873 3874 3875 3876 3877 3878
	if (!counter->parent) {
		atomic_inc(&nr_counters);
		if (counter->attr.mmap)
			atomic_inc(&nr_mmap_counters);
		if (counter->attr.comm)
			atomic_inc(&nr_comm_counters);
	}
3879

T
Thomas Gleixner 已提交
3880 3881 3882
	return counter;
}

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
static int perf_copy_attr(struct perf_counter_attr __user *uattr,
			  struct perf_counter_attr *attr)
{
	int ret;
	u32 size;

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0.
	 */
	if (size > sizeof(*attr)) {
		unsigned long val;
		unsigned long __user *addr;
		unsigned long __user *end;

		addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
				sizeof(unsigned long));
		end  = PTR_ALIGN((void __user *)uattr + size,
				sizeof(unsigned long));

		for (; addr < end; addr += sizeof(unsigned long)) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

T
Thomas Gleixner 已提交
3962
/**
3963
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
3964
 *
3965
 * @attr_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
3966
 * @pid:		target pid
I
Ingo Molnar 已提交
3967 3968
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
3969
 */
3970
SYSCALL_DEFINE5(perf_counter_open,
3971
		struct perf_counter_attr __user *, attr_uptr,
3972
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
3973
{
3974
	struct perf_counter *counter, *group_leader;
3975
	struct perf_counter_attr attr;
3976
	struct perf_counter_context *ctx;
3977
	struct file *counter_file = NULL;
3978 3979
	struct file *group_file = NULL;
	int fput_needed = 0;
3980
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
3981 3982
	int ret;

3983 3984 3985 3986
	/* for future expandability... */
	if (flags)
		return -EINVAL;

3987 3988 3989
	ret = perf_copy_attr(attr_uptr, &attr);
	if (ret)
		return ret;
3990

3991 3992 3993 3994 3995
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

3996 3997 3998 3999 4000
	if (attr.freq) {
		if (attr.sample_freq > sysctl_perf_counter_sample_rate)
			return -EINVAL;
	}

4001
	/*
I
Ingo Molnar 已提交
4002 4003 4004 4005 4006 4007 4008 4009
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
4010 4011 4012 4013 4014 4015
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4016
			goto err_put_context;
4017
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4018
			goto err_put_context;
4019 4020 4021

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4022 4023 4024 4025 4026 4027 4028 4029
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4030
		 */
I
Ingo Molnar 已提交
4031 4032
		if (group_leader->ctx != ctx)
			goto err_put_context;
4033 4034 4035
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4036
		if (attr.exclusive || attr.pinned)
4037
			goto err_put_context;
4038 4039
	}

4040
	counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4041
				     NULL, GFP_KERNEL);
4042 4043
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
4044 4045 4046 4047
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
4048 4049 4050 4051 4052 4053 4054
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
4055
	WARN_ON_ONCE(ctx->parent_ctx);
4056
	mutex_lock(&ctx->mutex);
4057
	perf_install_in_context(ctx, counter, cpu);
4058
	++ctx->generation;
4059
	mutex_unlock(&ctx->mutex);
4060

4061 4062 4063 4064 4065 4066
	counter->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_counter_mutex);
	list_add_tail(&counter->owner_entry, &current->perf_counter_list);
	mutex_unlock(&current->perf_counter_mutex);

4067
	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
4068

4069 4070 4071
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
4072 4073
	return ret;

4074
err_free_put_context:
T
Thomas Gleixner 已提交
4075 4076 4077
	kfree(counter);

err_put_context:
4078
	put_ctx(ctx);
T
Thomas Gleixner 已提交
4079

4080
	goto out_fput;
T
Thomas Gleixner 已提交
4081 4082
}

4083 4084 4085
/*
 * inherit a counter from parent task to child task:
 */
4086
static struct perf_counter *
4087 4088 4089 4090
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
4091
	      struct perf_counter *group_leader,
4092 4093 4094 4095
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

4096 4097 4098 4099 4100 4101 4102 4103 4104
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

4105
	child_counter = perf_counter_alloc(&parent_counter->attr,
4106
					   parent_counter->cpu, child_ctx,
4107 4108
					   group_leader, parent_counter,
					   GFP_KERNEL);
4109 4110
	if (IS_ERR(child_counter))
		return child_counter;
4111
	get_ctx(child_ctx);
4112

4113 4114
	/*
	 * Make the child state follow the state of the parent counter,
4115
	 * not its attr.disabled bit.  We hold the parent's mutex,
4116
	 * so we won't race with perf_counter_{en, dis}able_family.
4117 4118 4119 4120 4121 4122
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

4123 4124 4125
	if (parent_counter->attr.freq)
		child_counter->hw.sample_period = parent_counter->hw.sample_period;

4126 4127 4128
	/*
	 * Link it up in the child's context:
	 */
4129
	add_counter_to_ctx(child_counter, child_ctx);
4130 4131 4132 4133 4134 4135 4136 4137 4138

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

4139 4140 4141
	/*
	 * Link this into the parent counter's child list
	 */
4142
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4143
	mutex_lock(&parent_counter->child_mutex);
4144
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4145
	mutex_unlock(&parent_counter->child_mutex);
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
4158
	struct perf_counter *child_ctr;
4159 4160 4161

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
4162 4163
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4164
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4165 4166 4167 4168
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4169
	}
4170 4171 4172
	return 0;
}

4173
static void sync_child_counter(struct perf_counter *child_counter,
4174
			       struct task_struct *child)
4175
{
4176
	struct perf_counter *parent_counter = child_counter->parent;
4177
	u64 child_val;
4178

4179 4180
	if (child_counter->attr.inherit_stat)
		perf_counter_read_event(child_counter, child);
4181

4182 4183 4184 4185 4186 4187
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
4188 4189 4190 4191
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
4192 4193 4194 4195

	/*
	 * Remove this counter from the parent's list
	 */
4196
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4197
	mutex_lock(&parent_counter->child_mutex);
4198
	list_del_init(&child_counter->child_list);
4199
	mutex_unlock(&parent_counter->child_mutex);
4200 4201 4202 4203 4204 4205 4206 4207

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

4208
static void
4209
__perf_counter_exit_task(struct perf_counter *child_counter,
4210 4211
			 struct perf_counter_context *child_ctx,
			 struct task_struct *child)
4212 4213 4214
{
	struct perf_counter *parent_counter;

4215
	update_counter_times(child_counter);
4216
	perf_counter_remove_from_context(child_counter);
4217

4218 4219 4220 4221 4222 4223
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
4224
	if (parent_counter) {
4225
		sync_child_counter(child_counter, child);
4226
		free_counter(child_counter);
4227
	}
4228 4229 4230
}

/*
4231
 * When a child task exits, feed back counter values to parent counters.
4232 4233 4234 4235 4236
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
4237
	unsigned long flags;
4238

4239
	if (likely(!child->perf_counter_ctxp))
4240 4241
		return;

4242
	local_irq_save(flags);
4243 4244 4245 4246 4247 4248 4249
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
	child_ctx = child->perf_counter_ctxp;
4250
	__perf_counter_task_sched_out(child_ctx);
4251 4252 4253 4254 4255 4256 4257

	/*
	 * Take the context lock here so that if find_get_context is
	 * reading child->perf_counter_ctxp, we wait until it has
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4258
	child->perf_counter_ctxp = NULL;
4259 4260 4261 4262 4263 4264 4265 4266 4267
	if (child_ctx->parent_ctx) {
		/*
		 * This context is a clone; unclone it so it can't get
		 * swapped to another process while we're removing all
		 * the counters from it.
		 */
		put_ctx(child_ctx->parent_ctx);
		child_ctx->parent_ctx = NULL;
	}
4268
	spin_unlock(&child_ctx->lock);
4269 4270
	local_irq_restore(flags);

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
	/*
	 * We can recurse on the same lock type through:
	 *
	 *   __perf_counter_exit_task()
	 *     sync_child_counter()
	 *       fput(parent_counter->filp)
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4283

4284
again:
4285 4286
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
4287
		__perf_counter_exit_task(child_counter, child_ctx, child);
4288 4289 4290 4291 4292 4293 4294 4295

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
4296 4297 4298 4299

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
4300 4301
}

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
void perf_counter_free_task(struct task_struct *task)
{
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
	struct perf_counter *counter, *tmp;

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
		struct perf_counter *parent = counter->parent;

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
		list_del_init(&counter->child_list);
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

		list_del_counter(counter, ctx);
		free_counter(counter);
	}

	if (!list_empty(&ctx->counter_list))
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

4340 4341 4342
/*
 * Initialize the perf_counter context in task_struct
 */
4343
int perf_counter_init_task(struct task_struct *child)
4344 4345
{
	struct perf_counter_context *child_ctx, *parent_ctx;
4346
	struct perf_counter_context *cloned_ctx;
4347
	struct perf_counter *counter;
4348
	struct task_struct *parent = current;
4349
	int inherited_all = 1;
4350
	int ret = 0;
4351

4352
	child->perf_counter_ctxp = NULL;
4353

4354 4355 4356
	mutex_init(&child->perf_counter_mutex);
	INIT_LIST_HEAD(&child->perf_counter_list);

4357
	if (likely(!parent->perf_counter_ctxp))
4358 4359
		return 0;

4360 4361
	/*
	 * This is executed from the parent task context, so inherit
4362 4363
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
4364 4365
	 */

4366 4367
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
4368
		return -ENOMEM;
4369

4370 4371
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;
4372
	get_task_struct(child);
4373

4374
	/*
4375 4376
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
4377
	 */
4378 4379
	parent_ctx = perf_pin_task_context(parent);

4380 4381 4382 4383 4384 4385 4386
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

4387 4388 4389 4390
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
4391
	mutex_lock(&parent_ctx->mutex);
4392 4393 4394 4395 4396

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
4397 4398 4399 4400
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

4401
		if (!counter->attr.inherit) {
4402
			inherited_all = 0;
4403
			continue;
4404
		}
4405

4406 4407 4408
		ret = inherit_group(counter, parent, parent_ctx,
					     child, child_ctx);
		if (ret) {
4409
			inherited_all = 0;
4410
			break;
4411 4412 4413 4414 4415 4416 4417
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
4418 4419 4420 4421
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
		 * because the list of counters and the generation
		 * count can't have changed since we took the mutex.
4422
		 */
4423 4424 4425
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
4426
			child_ctx->parent_gen = parent_ctx->parent_gen;
4427 4428 4429 4430 4431
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
4432 4433
	}

4434
	mutex_unlock(&parent_ctx->mutex);
4435

4436
	perf_unpin_context(parent_ctx);
4437

4438
	return ret;
4439 4440
}

4441
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
4442
{
4443
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
4444

4445 4446
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
4447

4448
	spin_lock(&perf_resource_lock);
4449
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4450
	spin_unlock(&perf_resource_lock);
4451

4452
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
4453 4454 4455
}

#ifdef CONFIG_HOTPLUG_CPU
4456
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
4457 4458 4459 4460 4461
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

4462 4463
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
4464
}
4465
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
4466
{
4467 4468 4469 4470
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
4471
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4472
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
4473 4474
}
#else
4475
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4487
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
4488 4489 4490 4491
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
4492
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
4493 4494 4495 4496 4497 4498 4499 4500 4501
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

4502 4503 4504
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
4505 4506
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
4507
	.priority		= 20,
T
Thomas Gleixner 已提交
4508 4509
};

4510
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

4537
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
4547
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

4569
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4570
	perf_overcommit = val;
4571
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);