perf_counter.c 97.3 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22 23 24
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
25 26 27
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
28
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
29 30
#include <linux/perf_counter.h>

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
P
Peter Zijlstra 已提交
43 44
static atomic_t nr_mmap_counters __read_mostly;
static atomic_t nr_comm_counters __read_mostly;
45

46
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
48
int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
49

50 51
static atomic64_t perf_counter_id;

T
Thomas Gleixner 已提交
52
/*
53
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
54
 */
55
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
56 57 58 59

/*
 * Architecture provided APIs - weak aliases:
 */
60
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
61
{
62
	return NULL;
T
Thomas Gleixner 已提交
63 64
}

65 66 67
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

68
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
69 70 71

int __weak
hw_perf_group_sched_in(struct perf_counter *group_leader,
72 73 74 75 76
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
77

78 79
void __weak perf_counter_print_debug(void)	{ }

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

104 105 106 107 108
static void get_ctx(struct perf_counter_context *ctx)
{
	atomic_inc(&ctx->refcount);
}

109 110 111 112 113 114 115 116
static void free_ctx(struct rcu_head *head)
{
	struct perf_counter_context *ctx;

	ctx = container_of(head, struct perf_counter_context, rcu_head);
	kfree(ctx);
}

117 118
static void put_ctx(struct perf_counter_context *ctx)
{
119 120 121
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
122 123 124
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
125
	}
126 127
}

128 129 130 131 132
/*
 * Get the perf_counter_context for a task and lock it.
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
133 134
static struct perf_counter_context *
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
{
	struct perf_counter_context *ctx;

	rcu_read_lock();
 retry:
	ctx = rcu_dereference(task->perf_counter_ctxp);
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
		 * perf_counter_task_sched_out, though the
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
		if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		get_ctx(ctx);
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

static void perf_unpin_context(struct perf_counter_context *ctx)
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

191 192 193 194
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
195 196 197 198 199 200 201 202 203 204
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
205
	if (group_leader == counter)
206
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
207
	else {
208
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
209 210
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
211 212

	list_add_rcu(&counter->event_entry, &ctx->event_list);
213
	ctx->nr_counters++;
214 215
}

216 217
/*
 * Remove a counter from the lists for its context.
218
 * Must be called with ctx->mutex and ctx->lock held.
219
 */
220 221 222 223 224
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

225 226
	if (list_empty(&counter->list_entry))
		return;
227 228
	ctx->nr_counters--;

229
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
230
	list_del_rcu(&counter->event_entry);
231

P
Peter Zijlstra 已提交
232 233 234
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

235 236 237 238 239 240 241 242
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

243
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
244 245 246 247
		sibling->group_leader = sibling;
	}
}

248 249 250 251 252 253 254 255 256
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
257
	counter->tstamp_stopped = ctx->time;
258
	counter->pmu->disable(counter);
259 260 261 262 263
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
264
	if (counter->attr.exclusive || !cpuctx->active_oncpu)
265 266 267
		cpuctx->exclusive = 0;
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

286
	if (group_counter->attr.exclusive)
287 288 289
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
290 291 292 293 294 295
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
296
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
297 298 299 300 301 302 303 304 305 306
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
307
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
308 309
		return;

310
	spin_lock(&ctx->lock);
311 312 313 314 315
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
316

317 318
	counter_sched_out(counter, cpuctx, ctx);

319
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
320 321 322 323 324 325 326 327 328 329 330

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

331
	perf_enable();
332
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
333 334 335 336 337 338
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
339
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
340 341 342
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
343 344 345 346 347 348 349
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
 * When called from perf_counter_exit_task, it's OK because the
 * context has been detached from its task.
T
Thomas Gleixner 已提交
350
 */
351
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
352 353 354 355 356 357 358 359 360 361
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
362
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
363 364 365 366 367
					 counter, 1);
		return;
	}

retry:
368
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
369 370 371 372 373 374
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
375
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
376 377 378 379 380 381
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
382
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
383 384
	 * succeed.
	 */
385 386
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
387 388 389 390
	}
	spin_unlock_irq(&ctx->lock);
}

391
static inline u64 perf_clock(void)
392
{
393
	return cpu_clock(smp_processor_id());
394 395 396 397 398
}

/*
 * Update the record of the current time in a context.
 */
399
static void update_context_time(struct perf_counter_context *ctx)
400
{
401 402 403 404
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
405 406 407 408 409 410 411 412 413 414
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

415 416 417 418 419 420 421 422 423 424 425
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
426 427 428 429 430 431 432 433 434 435 436 437 438 439
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

440 441 442 443 444 445 446 447 448 449 450 451 452
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
453
	if (ctx->task && cpuctx->task_ctx != ctx)
454 455
		return;

456
	spin_lock(&ctx->lock);
457 458 459 460 461 462

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
463
		update_context_time(ctx);
464
		update_counter_times(counter);
465 466 467 468 469 470 471
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

472
	spin_unlock(&ctx->lock);
473 474 475 476
}

/*
 * Disable a counter.
477 478 479 480 481 482 483 484 485 486
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisifed when called through
 * perf_counter_for_each_child or perf_counter_for_each because they
 * hold the top-level counter's child_mutex, so any descendant that
 * goes to exit will block in sync_child_counter.
 * When called from perf_pending_counter it's OK because counter->ctx
 * is the current context on this CPU and preemption is disabled,
 * hence we can't get into perf_counter_task_sched_out for this context.
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
518 519
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
520
		counter->state = PERF_COUNTER_STATE_OFF;
521
	}
522 523 524 525

	spin_unlock_irq(&ctx->lock);
}

526 527 528 529 530 531
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
532
	if (counter->state <= PERF_COUNTER_STATE_OFF)
533 534 535 536 537 538 539 540 541
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

542
	if (counter->pmu->enable(counter)) {
543 544 545 546 547
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

548
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
549

550 551
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
552 553
	ctx->nr_active++;

554
	if (counter->attr.exclusive)
555 556
		cpuctx->exclusive = 1;

557 558 559
	return 0;
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

606 607 608 609 610 611 612 613 614 615
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
616

617 618 619
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
620

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
646
	if (counter->attr.exclusive && cpuctx->active_oncpu)
647 648 649 650 651 652 653 654
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

655 656 657 658
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
659 660 661
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
662 663
}

T
Thomas Gleixner 已提交
664
/*
665
 * Cross CPU call to install and enable a performance counter
666 667
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
668 669 670 671 672 673
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
674
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
675
	int cpu = smp_processor_id();
676
	int err;
T
Thomas Gleixner 已提交
677 678 679 680 681

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
682 683
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
684
	 */
685
	if (ctx->task && cpuctx->task_ctx != ctx) {
686
		if (cpuctx->task_ctx || ctx->task != current)
687 688 689
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
690

691
	spin_lock(&ctx->lock);
692
	ctx->is_active = 1;
693
	update_context_time(ctx);
T
Thomas Gleixner 已提交
694 695 696 697 698

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
699
	perf_disable();
T
Thomas Gleixner 已提交
700

701
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
702

703 704 705 706 707 708 709 710
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

711 712 713 714 715
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
716
	if (!group_can_go_on(counter, cpuctx, 1))
717 718 719 720
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

721 722 723 724 725 726 727 728
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
729
		if (leader->attr.pinned) {
730
			update_group_times(leader);
731
			leader->state = PERF_COUNTER_STATE_ERROR;
732
		}
733
	}
T
Thomas Gleixner 已提交
734

735
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
736 737
		cpuctx->max_pertask--;

738
 unlock:
739
	perf_enable();
740

741
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
742 743 744 745 746 747 748 749 750 751 752
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
753 754
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
781
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
782 783 784 785 786 787 788 789 790
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
791 792
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
793 794 795
	spin_unlock_irq(&ctx->lock);
}

796 797 798 799
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
800
{
801 802 803 804 805
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	int err;
806

807 808 809 810
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
811
	if (ctx->task && cpuctx->task_ctx != ctx) {
812
		if (cpuctx->task_ctx || ctx->task != current)
813 814 815
			return;
		cpuctx->task_ctx = ctx;
	}
816

817
	spin_lock(&ctx->lock);
818
	ctx->is_active = 1;
819
	update_context_time(ctx);
820 821 822 823

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
824
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
825 826

	/*
827 828
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
829
	 */
830 831
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
832

833
	if (!group_can_go_on(counter, cpuctx, 1)) {
834
		err = -EEXIST;
835
	} else {
836
		perf_disable();
837 838 839 840 841 842
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
843
		perf_enable();
844
	}
845 846 847 848 849 850 851 852

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
853
		if (leader->attr.pinned) {
854
			update_group_times(leader);
855
			leader->state = PERF_COUNTER_STATE_ERROR;
856
		}
857 858 859
	}

 unlock:
860
	spin_unlock(&ctx->lock);
861 862 863 864
}

/*
 * Enable a counter.
865 866 867 868 869 870
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisfied when called through
 * perf_counter_for_each_child or perf_counter_for_each as described
 * for perf_counter_disable.
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
917
	if (counter->state == PERF_COUNTER_STATE_OFF) {
918
		counter->state = PERF_COUNTER_STATE_INACTIVE;
919 920
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
921
	}
922 923 924 925
 out:
	spin_unlock_irq(&ctx->lock);
}

926
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
927
{
928 929 930
	/*
	 * not supported on inherited counters
	 */
931
	if (counter->attr.inherit)
932 933
		return -EINVAL;

934 935
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
936 937

	return 0;
938 939
}

940 941 942 943 944
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

945 946
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
947
	if (likely(!ctx->nr_counters))
948
		goto out;
949
	update_context_time(ctx);
950

951
	perf_disable();
952
	if (ctx->nr_active) {
953 954 955 956 957 958
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
959
	}
960
	perf_enable();
961
 out:
962 963 964
	spin_unlock(&ctx->lock);
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
980
		&& ctx1->parent_gen == ctx2->parent_gen
981
		&& !ctx1->pin_count && !ctx2->pin_count;
982 983
}

T
Thomas Gleixner 已提交
984 985 986 987 988 989
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
990
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
991 992 993 994
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
995 996
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
997 998
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
999
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1000
	struct perf_counter_context *next_ctx;
1001
	struct perf_counter_context *parent;
1002
	struct pt_regs *regs;
1003
	int do_switch = 1;
T
Thomas Gleixner 已提交
1004

1005 1006 1007
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);

1008
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1009 1010
		return;

1011
	update_context_time(ctx);
1012 1013 1014

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1015
	next_ctx = next->perf_counter_ctxp;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1030 1031 1032 1033
			/*
			 * XXX do we need a memory barrier of sorts
			 * wrt to rcu_dereference() of perf_counter_ctxp
			 */
1034 1035 1036 1037 1038 1039 1040 1041
			task->perf_counter_ctxp = next_ctx;
			next->perf_counter_ctxp = ctx;
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1042
	}
1043
	rcu_read_unlock();
1044

1045 1046 1047 1048
	if (do_switch) {
		__perf_counter_sched_out(ctx, cpuctx);
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1049 1050
}

1051 1052 1053
/*
 * Called with IRQs disabled
 */
1054 1055 1056 1057
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1058 1059
	if (!cpuctx->task_ctx)
		return;
1060 1061 1062 1063

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1064 1065 1066 1067
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

1068 1069 1070
/*
 * Called with IRQs disabled
 */
1071
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1072
{
1073
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1074 1075
}

1076 1077 1078
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1079 1080
{
	struct perf_counter *counter;
1081
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1082

1083 1084
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
1085
	if (likely(!ctx->nr_counters))
1086
		goto out;
T
Thomas Gleixner 已提交
1087

1088
	ctx->timestamp = perf_clock();
1089

1090
	perf_disable();
1091 1092 1093 1094 1095 1096 1097

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1098
		    !counter->attr.pinned)
1099 1100 1101 1102
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1103 1104 1105 1106 1107 1108
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1109 1110 1111 1112 1113

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1114 1115
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1116
			counter->state = PERF_COUNTER_STATE_ERROR;
1117
		}
1118 1119
	}

1120
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1121 1122 1123 1124 1125
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1126
		    counter->attr.pinned)
1127 1128
			continue;

1129 1130 1131 1132
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1133 1134 1135
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1136 1137
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1138
				can_add_hw = 0;
1139 1140 1141 1142 1143
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1144
		}
T
Thomas Gleixner 已提交
1145
	}
1146
	perf_enable();
1147
 out:
T
Thomas Gleixner 已提交
1148
	spin_unlock(&ctx->lock);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1165
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1166

1167 1168
	if (likely(!ctx))
		return;
1169 1170
	if (cpuctx->task_ctx == ctx)
		return;
1171
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1172 1173 1174
	cpuctx->task_ctx = ctx;
}

1175 1176 1177 1178 1179 1180 1181
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1182 1183 1184
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_counter *counter, int enable);
1185 1186 1187
static void perf_log_period(struct perf_counter *counter, u64 period);

static void perf_adjust_freq(struct perf_counter_context *ctx)
1188 1189
{
	struct perf_counter *counter;
1190
	u64 interrupts, sample_period;
1191 1192 1193 1194 1195 1196 1197 1198
	u64 events, period;
	s64 delta;

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

1199 1200 1201 1202 1203 1204 1205 1206 1207
		interrupts = counter->hw.interrupts;
		counter->hw.interrupts = 0;

		if (interrupts == MAX_INTERRUPTS) {
			perf_log_throttle(counter, 1);
			counter->pmu->unthrottle(counter);
			interrupts = 2*sysctl_perf_counter_limit/HZ;
		}

1208
		if (!counter->attr.freq || !counter->attr.sample_freq)
1209 1210
			continue;

1211
		events = HZ * interrupts * counter->hw.sample_period;
1212
		period = div64_u64(events, counter->attr.sample_freq);
1213

1214
		delta = (s64)(1 + period - counter->hw.sample_period);
1215 1216
		delta >>= 1;

1217
		sample_period = counter->hw.sample_period + delta;
1218

1219 1220
		if (!sample_period)
			sample_period = 1;
1221

1222
		perf_log_period(counter, sample_period);
1223

1224
		counter->hw.sample_period = sample_period;
1225 1226 1227 1228
	}
	spin_unlock(&ctx->lock);
}

1229 1230 1231 1232
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1233 1234 1235
{
	struct perf_counter *counter;

1236
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1237 1238 1239 1240
		return;

	spin_lock(&ctx->lock);
	/*
1241
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1242
	 */
1243
	perf_disable();
1244
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1245
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1246 1247
		break;
	}
1248
	perf_enable();
T
Thomas Gleixner 已提交
1249 1250

	spin_unlock(&ctx->lock);
1251 1252 1253 1254
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1255 1256 1257 1258 1259 1260 1261
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1262
	ctx = curr->perf_counter_ctxp;
1263

1264
	perf_adjust_freq(&cpuctx->ctx);
1265 1266
	if (ctx)
		perf_adjust_freq(ctx);
1267

1268
	perf_counter_cpu_sched_out(cpuctx);
1269 1270
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1271

1272
	rotate_ctx(&cpuctx->ctx);
1273 1274
	if (ctx)
		rotate_ctx(ctx);
1275

1276
	perf_counter_cpu_sched_in(cpuctx, cpu);
1277 1278
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1279 1280 1281 1282 1283
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1284
static void __read(void *info)
T
Thomas Gleixner 已提交
1285
{
I
Ingo Molnar 已提交
1286
	struct perf_counter *counter = info;
1287
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1288
	unsigned long flags;
I
Ingo Molnar 已提交
1289

1290
	local_irq_save(flags);
1291
	if (ctx->is_active)
1292
		update_context_time(ctx);
1293
	counter->pmu->read(counter);
1294
	update_counter_times(counter);
1295
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1296 1297
}

1298
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1299 1300 1301 1302 1303
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1304
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1305
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1306
					 __read, counter, 1);
1307 1308
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1309 1310
	}

1311
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1312 1313
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1330 1331
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
1332
	struct perf_counter_context *parent_ctx;
1333 1334
	struct perf_counter_context *ctx;
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1335
	struct task_struct *task;
1336
	unsigned long flags;
1337
	int err;
T
Thomas Gleixner 已提交
1338 1339 1340 1341 1342 1343

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1344
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1360
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1377 1378 1379 1380 1381 1382 1383
	/*
	 * Can't attach counters to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1384
	/* Reuse ptrace permission checks for now. */
1385 1386 1387 1388 1389
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1390
	ctx = perf_lock_task_context(task, &flags);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	if (ctx) {
		parent_ctx = ctx->parent_ctx;
		if (parent_ctx) {
			put_ctx(parent_ctx);
			ctx->parent_ctx = NULL;		/* no longer a clone */
		}
		/*
		 * Get an extra reference before dropping the lock so that
		 * this context won't get freed if the task exits.
		 */
		get_ctx(ctx);
1402
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1403 1404
	}

1405 1406
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1407 1408 1409
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1410
		__perf_counter_init_context(ctx, task);
1411 1412
		get_ctx(ctx);
		if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1413 1414 1415 1416 1417
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1418
			goto retry;
1419
		}
1420
		get_task_struct(task);
1421 1422
	}

1423
	put_task_struct(task);
T
Thomas Gleixner 已提交
1424
	return ctx;
1425 1426 1427 1428

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1429 1430
}

P
Peter Zijlstra 已提交
1431 1432 1433 1434 1435
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
1436 1437
	if (counter->ns)
		put_pid_ns(counter->ns);
P
Peter Zijlstra 已提交
1438 1439 1440
	kfree(counter);
}

1441 1442
static void perf_pending_sync(struct perf_counter *counter);

1443 1444
static void free_counter(struct perf_counter *counter)
{
1445 1446
	perf_pending_sync(counter);

1447
	atomic_dec(&nr_counters);
1448
	if (counter->attr.mmap)
P
Peter Zijlstra 已提交
1449
		atomic_dec(&nr_mmap_counters);
1450
	if (counter->attr.comm)
P
Peter Zijlstra 已提交
1451
		atomic_dec(&nr_comm_counters);
1452

1453 1454 1455
	if (counter->destroy)
		counter->destroy(counter);

1456
	put_ctx(counter->ctx);
1457 1458 1459
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1470
	WARN_ON_ONCE(ctx->parent_ctx);
1471
	mutex_lock(&ctx->mutex);
1472
	perf_counter_remove_from_context(counter);
1473
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1474

1475 1476 1477 1478 1479
	mutex_lock(&counter->owner->perf_counter_mutex);
	list_del_init(&counter->owner_entry);
	mutex_unlock(&counter->owner->perf_counter_mutex);
	put_task_struct(counter->owner);

1480
	free_counter(counter);
T
Thomas Gleixner 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1491 1492
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1493

1494 1495 1496 1497 1498 1499 1500 1501
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1502
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1503
	mutex_lock(&counter->child_mutex);
1504 1505
	values[0] = perf_counter_read(counter);
	n = 1;
1506
	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1507 1508
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
1509
	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1510 1511
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
1512
	if (counter->attr.read_format & PERF_FORMAT_ID)
1513
		values[n++] = counter->id;
1514
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1515

1516 1517 1518 1519 1520 1521 1522 1523
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1524 1525 1526 1527 1528 1529 1530
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1531
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1532 1533 1534 1535 1536
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1537
	struct perf_mmap_data *data;
1538
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1539 1540 1541 1542

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1543
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1544
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1545 1546 1547 1548 1549 1550

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1551 1552
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1553
	(void)perf_counter_read(counter);
1554
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563
	perf_counter_update_userpage(counter);
}

static void perf_counter_for_each_sibling(struct perf_counter *counter,
					  void (*func)(struct perf_counter *))
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;

1564
	WARN_ON_ONCE(ctx->parent_ctx);
1565
	mutex_lock(&ctx->mutex);
P
Peter Zijlstra 已提交
1566 1567 1568 1569 1570
	counter = counter->group_leader;

	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		func(sibling);
1571
	mutex_unlock(&ctx->mutex);
P
Peter Zijlstra 已提交
1572 1573
}

1574 1575 1576 1577 1578 1579
/*
 * Holding the top-level counter's child_mutex means that any
 * descendant process that has inherited this counter will block
 * in sync_child_counter if it goes to exit, thus satisfying the
 * task existence requirements of perf_counter_enable/disable.
 */
P
Peter Zijlstra 已提交
1580 1581 1582 1583 1584
static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1585
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1586
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1587 1588 1589
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1590
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1591 1592 1593 1594 1595 1596 1597
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1598
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1599
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1600 1601 1602
	perf_counter_for_each_sibling(counter, func);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_for_each_sibling(child, func);
1603
	mutex_unlock(&counter->child_mutex);
1604 1605
}

1606 1607 1608 1609 1610 1611 1612
static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
{
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long size;
	int ret = 0;
	u64 value;

1613
	if (!counter->attr.sample_period)
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1624
	if (counter->attr.freq) {
1625 1626 1627 1628 1629
		if (value > sysctl_perf_counter_limit) {
			ret = -EINVAL;
			goto unlock;
		}

1630
		counter->attr.sample_freq = value;
1631
	} else {
1632
		counter->attr.sample_period = value;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
		counter->hw.sample_period = value;

		perf_log_period(counter, value);
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

1643 1644 1645
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1646 1647
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1648 1649 1650

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1651
		func = perf_counter_enable;
1652 1653
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1654
		func = perf_counter_disable;
1655
		break;
1656
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1657
		func = perf_counter_reset;
1658
		break;
P
Peter Zijlstra 已提交
1659 1660 1661

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1662 1663 1664 1665

	case PERF_COUNTER_IOC_PERIOD:
		return perf_counter_period(counter, (u64 __user *)arg);

1666
	default:
P
Peter Zijlstra 已提交
1667
		return -ENOTTY;
1668
	}
P
Peter Zijlstra 已提交
1669 1670 1671 1672 1673 1674 1675

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1676 1677
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
int perf_counter_task_enable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_enable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

int perf_counter_task_disable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_disable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

1702 1703 1704 1705 1706 1707
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1708
{
1709
	struct perf_counter_mmap_page *userpg;
1710
	struct perf_mmap_data *data;
1711 1712 1713 1714 1715 1716 1717

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1718

1719 1720 1721 1722 1723
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1724
	++userpg->lock;
1725
	barrier();
1726 1727 1728 1729
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1730

1731
	barrier();
1732
	++userpg->lock;
1733
	preempt_enable();
1734
unlock:
1735
	rcu_read_unlock();
1736 1737 1738 1739 1740
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1753

1754 1755
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1756

1757 1758
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1759
	get_page(vmf->page);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
1793
	atomic_set(&data->lock, -1);
1794 1795 1796

	rcu_assign_pointer(counter->data, data);

1797
	return 0;
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
1814
	struct perf_mmap_data *data;
1815 1816
	int i;

1817 1818
	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

1846
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1847
	if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1848 1849 1850
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1851
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1852 1853 1854
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1855 1856 1857
}

static struct vm_operations_struct perf_mmap_vmops = {
1858
	.open  = perf_mmap_open,
1859
	.close = perf_mmap_close,
1860 1861 1862 1863 1864 1865
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1866
	unsigned long user_locked, user_lock_limit;
1867
	struct user_struct *user = current_user();
1868
	unsigned long locked, lock_limit;
1869 1870
	unsigned long vma_size;
	unsigned long nr_pages;
1871
	long user_extra, extra;
1872
	int ret = 0;
1873 1874 1875

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1876 1877 1878 1879

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1880 1881 1882 1883 1884
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1885 1886
		return -EINVAL;

1887
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1888 1889
		return -EINVAL;

1890 1891
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1892

1893
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1894 1895 1896 1897 1898 1899 1900
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1901 1902
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
1903 1904 1905 1906 1907 1908

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

1909
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1910

1911 1912 1913
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
1914 1915 1916

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
1917
	locked = vma->vm_mm->locked_vm + extra;
1918

1919 1920 1921 1922
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1923 1924 1925

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1926 1927 1928 1929
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
1930
	atomic_long_add(user_extra, &user->locked_vm);
1931 1932
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
1933
unlock:
1934
	mutex_unlock(&counter->mmap_mutex);
1935 1936 1937 1938

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1939 1940

	return ret;
1941 1942
}

P
Peter Zijlstra 已提交
1943 1944 1945
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
1946
	struct perf_counter *counter = filp->private_data;
P
Peter Zijlstra 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1959 1960 1961 1962
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1963 1964
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1965
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1966
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1967 1968
};

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
1979 1980 1981 1982 1983

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

2011
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2012

2013
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2014 2015 2016
	PENDING_TAIL,
};

2017 2018
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2019
{
2020
	struct perf_pending_entry **head;
2021

2022
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2023 2024
		return;

2025 2026 2027
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2028 2029

	do {
2030 2031
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2032 2033 2034

	set_perf_counter_pending();

2035
	put_cpu_var(perf_pending_head);
2036 2037 2038 2039
}

static int __perf_pending_run(void)
{
2040
	struct perf_pending_entry *list;
2041 2042
	int nr = 0;

2043
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2044
	while (list != PENDING_TAIL) {
2045 2046
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2047 2048 2049

		list = list->next;

2050 2051
		func = entry->func;
		entry->next = NULL;
2052 2053 2054 2055 2056 2057 2058
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2059
		func(entry);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2081
	return counter->pending.next == NULL;
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

2094 2095 2096 2097
/*
 * Callchain support -- arch specific
 */

2098
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2099 2100 2101 2102
{
	return NULL;
}

2103 2104 2105 2106
/*
 * Output
 */

2107 2108 2109
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
2110 2111
	unsigned long		head;
	unsigned long		offset;
2112
	int			nmi;
2113
	int			overflow;
2114 2115
	int			locked;
	unsigned long		flags;
2116 2117
};

2118
static void perf_output_wakeup(struct perf_output_handle *handle)
2119
{
2120 2121
	atomic_set(&handle->data->poll, POLL_IN);

2122
	if (handle->nmi) {
2123
		handle->counter->pending_wakeup = 1;
2124
		perf_pending_queue(&handle->counter->pending,
2125
				   perf_pending_counter);
2126
	} else
2127 2128 2129
		perf_counter_wakeup(handle->counter);
}

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2156
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2157 2158 2159 2160 2161 2162 2163 2164
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2165 2166
	unsigned long head;
	int cpu;
2167

2168
	data->done_head = data->head;
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2179
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2180 2181 2182
		data->user_page->data_head = head;

	/*
2183
	 * NMI can happen here, which means we can miss a done_head update.
2184 2185
	 */

2186
	cpu = atomic_xchg(&data->lock, -1);
2187 2188 2189 2190 2191
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2192
	if (unlikely(atomic_long_read(&data->done_head))) {
2193 2194 2195
		/*
		 * Since we had it locked, we can lock it again.
		 */
2196
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2197 2198 2199 2200 2201
			cpu_relax();

		goto again;
	}

2202
	if (atomic_xchg(&data->wakeup, 0))
2203 2204 2205 2206 2207
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2208
static int perf_output_begin(struct perf_output_handle *handle,
2209
			     struct perf_counter *counter, unsigned int size,
2210
			     int nmi, int overflow)
2211
{
2212
	struct perf_mmap_data *data;
2213
	unsigned int offset, head;
2214

2215 2216 2217 2218 2219 2220
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2221 2222 2223 2224 2225
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2226
	handle->data	 = data;
2227 2228 2229
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
2230

2231
	if (!data->nr_pages)
2232
		goto fail;
2233

2234 2235
	perf_output_lock(handle);

2236
	do {
2237
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2238
		head += size;
2239
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2240

2241
	handle->offset	= offset;
2242
	handle->head	= head;
2243 2244 2245

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2246

2247
	return 0;
2248

2249
fail:
2250
	perf_output_wakeup(handle);
2251 2252
out:
	rcu_read_unlock();
2253

2254 2255
	return -ENOSPC;
}
2256

2257
static void perf_output_copy(struct perf_output_handle *handle,
2258
			     const void *buf, unsigned int len)
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
2285

2286 2287 2288 2289
	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
2290
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2291 2292
}

P
Peter Zijlstra 已提交
2293 2294 2295
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2296
static void perf_output_end(struct perf_output_handle *handle)
2297
{
2298 2299 2300
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

2301
	int wakeup_events = counter->attr.wakeup_events;
P
Peter Zijlstra 已提交
2302

2303
	if (handle->overflow && wakeup_events) {
2304
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2305
		if (events >= wakeup_events) {
2306
			atomic_sub(wakeup_events, &data->events);
2307
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2308
		}
2309 2310 2311
	}

	perf_output_unlock(handle);
2312
	rcu_read_unlock();
2313 2314
}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_tgid_nr_ns(p, counter->ns);
}

static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_pid_nr_ns(p, counter->ns);
}

2337
static void perf_counter_output(struct perf_counter *counter,
2338
				int nmi, struct pt_regs *regs, u64 addr)
2339
{
2340
	int ret;
2341
	u64 sample_type = counter->attr.sample_type;
2342 2343 2344
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2345
	struct {
2346
		u32 pid, tid;
2347
	} tid_entry;
2348
	struct {
2349
		u64 id;
2350 2351
		u64 counter;
	} group_entry;
2352 2353
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2354
	u64 time;
2355 2356 2357
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2358

2359
	header.type = 0;
2360
	header.size = sizeof(header);
2361

2362
	header.misc = PERF_EVENT_MISC_OVERFLOW;
2363
	header.misc |= perf_misc_flags(regs);
2364

2365
	if (sample_type & PERF_SAMPLE_IP) {
2366
		ip = perf_instruction_pointer(regs);
2367
		header.type |= PERF_SAMPLE_IP;
2368 2369
		header.size += sizeof(ip);
	}
2370

2371
	if (sample_type & PERF_SAMPLE_TID) {
2372
		/* namespace issues */
2373 2374
		tid_entry.pid = perf_counter_pid(counter, current);
		tid_entry.tid = perf_counter_tid(counter, current);
2375

2376
		header.type |= PERF_SAMPLE_TID;
2377 2378 2379
		header.size += sizeof(tid_entry);
	}

2380
	if (sample_type & PERF_SAMPLE_TIME) {
2381 2382 2383 2384 2385
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

2386
		header.type |= PERF_SAMPLE_TIME;
2387 2388 2389
		header.size += sizeof(u64);
	}

2390 2391
	if (sample_type & PERF_SAMPLE_ADDR) {
		header.type |= PERF_SAMPLE_ADDR;
2392 2393 2394
		header.size += sizeof(u64);
	}

2395 2396
	if (sample_type & PERF_SAMPLE_CONFIG) {
		header.type |= PERF_SAMPLE_CONFIG;
2397 2398 2399
		header.size += sizeof(u64);
	}

2400 2401
	if (sample_type & PERF_SAMPLE_CPU) {
		header.type |= PERF_SAMPLE_CPU;
2402 2403 2404 2405 2406
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
	}

2407 2408
	if (sample_type & PERF_SAMPLE_GROUP) {
		header.type |= PERF_SAMPLE_GROUP;
2409 2410 2411 2412
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

2413
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2414 2415 2416
		callchain = perf_callchain(regs);

		if (callchain) {
2417
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2418

2419
			header.type |= PERF_SAMPLE_CALLCHAIN;
2420 2421 2422 2423
			header.size += callchain_size;
		}
	}

2424
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2425 2426
	if (ret)
		return;
2427

2428
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2429

2430
	if (sample_type & PERF_SAMPLE_IP)
2431
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2432

2433
	if (sample_type & PERF_SAMPLE_TID)
2434
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2435

2436
	if (sample_type & PERF_SAMPLE_TIME)
2437 2438
		perf_output_put(&handle, time);

2439
	if (sample_type & PERF_SAMPLE_ADDR)
2440 2441
		perf_output_put(&handle, addr);

2442
	if (sample_type & PERF_SAMPLE_CONFIG)
2443
		perf_output_put(&handle, counter->attr.config);
2444

2445
	if (sample_type & PERF_SAMPLE_CPU)
2446 2447
		perf_output_put(&handle, cpu_entry);

2448
	/*
2449
	 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2450
	 */
2451
	if (sample_type & PERF_SAMPLE_GROUP) {
2452 2453
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2454

2455
		perf_output_put(&handle, nr);
2456

2457 2458 2459
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2460
				sub->pmu->read(sub);
2461

2462
			group_entry.id = sub->id;
2463
			group_entry.counter = atomic64_read(&sub->count);
2464

2465 2466
			perf_output_put(&handle, group_entry);
		}
2467
	}
P
Peter Zijlstra 已提交
2468

2469 2470
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2471

2472
	perf_output_end(&handle);
2473 2474
}

P
Peter Zijlstra 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
/*
 * fork tracking
 */

struct perf_fork_event {
	struct task_struct	*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
	} event;
};

static void perf_counter_fork_output(struct perf_counter *counter,
				     struct perf_fork_event *fork_event)
{
	struct perf_output_handle handle;
	int size = fork_event->event.header.size;
	struct task_struct *task = fork_event->task;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	fork_event->event.pid = perf_counter_pid(counter, task);
	fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);

	perf_output_put(&handle, fork_event->event);
	perf_output_end(&handle);
}

static int perf_counter_fork_match(struct perf_counter *counter)
{
2510
	if (counter->attr.comm || counter->attr.mmap)
P
Peter Zijlstra 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
		return 1;

	return 0;
}

static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
				  struct perf_fork_event *fork_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_fork_match(counter))
			perf_counter_fork_output(counter, fork_event);
	}
	rcu_read_unlock();
}

static void perf_counter_fork_event(struct perf_fork_event *fork_event)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
	put_cpu_var(perf_cpu_context);

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_fork_ctx(ctx, fork_event);
	rcu_read_unlock();
}

void perf_counter_fork(struct task_struct *task)
{
	struct perf_fork_event fork_event;

	if (!atomic_read(&nr_comm_counters) &&
2557
	    !atomic_read(&nr_mmap_counters))
P
Peter Zijlstra 已提交
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
		return;

	fork_event = (struct perf_fork_event){
		.task	= task,
		.event  = {
			.header = {
				.type = PERF_EVENT_FORK,
				.size = sizeof(fork_event.event),
			},
		},
	};

	perf_counter_fork_event(&fork_event);
}

2573 2574 2575 2576 2577
/*
 * comm tracking
 */

struct perf_comm_event {
2578 2579
	struct task_struct	*task;
	char			*comm;
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

2600 2601 2602
	comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
	comm_event->event.tid = perf_counter_tid(counter, comm_event->task);

2603 2604 2605 2606 2607 2608
	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
2609
static int perf_counter_comm_match(struct perf_counter *counter)
2610
{
P
Peter Zijlstra 已提交
2611
	if (counter->attr.comm)
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
P
Peter Zijlstra 已提交
2627
		if (perf_counter_comm_match(counter))
2628 2629 2630 2631 2632 2633 2634 2635
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
2636
	struct perf_counter_context *ctx;
2637 2638 2639
	unsigned int size;
	char *comm = comm_event->task->comm;

2640
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2641 2642 2643 2644 2645 2646 2647 2648 2649

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_comm_ctx(ctx, comm_event);
	rcu_read_unlock();
2660 2661 2662 2663
}

void perf_counter_comm(struct task_struct *task)
{
2664 2665
	struct perf_comm_event comm_event;

P
Peter Zijlstra 已提交
2666
	if (!atomic_read(&nr_comm_counters))
2667
		return;
2668

2669
	comm_event = (struct perf_comm_event){
2670 2671 2672 2673 2674 2675 2676 2677 2678
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
		},
	};

	perf_counter_comm_event(&comm_event);
}

2679 2680 2681 2682 2683
/*
 * mmap tracking
 */

struct perf_mmap_event {
2684 2685 2686 2687
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2705
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2706 2707 2708 2709

	if (ret)
		return;

2710 2711 2712
	mmap_event->event.pid = perf_counter_pid(counter, current);
	mmap_event->event.tid = perf_counter_tid(counter, current);

2713 2714 2715
	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2716
	perf_output_end(&handle);
2717 2718 2719 2720 2721
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
2722
	if (counter->attr.mmap)
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
2747
	struct perf_counter_context *ctx;
2748 2749
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
2750 2751 2752
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
2753
	const char *name;
2754 2755 2756 2757 2758 2759 2760

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2761
		name = d_path(&file->f_path, buf, PATH_MAX);
2762 2763 2764 2765 2766
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
2767 2768 2769 2770 2771 2772 2773 2774 2775
		name = arch_vma_name(mmap_event->vma);
		if (name)
			goto got_name;

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

2776 2777 2778 2779 2780
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2781
	size = ALIGN(strlen(name)+1, sizeof(u64));
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_mmap_ctx(ctx, mmap_event);
	rcu_read_unlock();

2802 2803 2804
	kfree(buf);
}

2805
void __perf_counter_mmap(struct vm_area_struct *vma)
2806
{
2807 2808
	struct perf_mmap_event mmap_event;

P
Peter Zijlstra 已提交
2809
	if (!atomic_read(&nr_mmap_counters))
2810 2811 2812
		return;

	mmap_event = (struct perf_mmap_event){
2813
		.vma	= vma,
2814 2815
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
2816 2817 2818
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
2819 2820 2821 2822 2823 2824
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2825
/*
2826
 * Log sample_period changes so that analyzing tools can re-normalize the
2827
 * event flow.
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
 */

static void perf_log_period(struct perf_counter *counter, u64 period)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
		u64				period;
	} freq_event = {
		.header = {
			.type = PERF_EVENT_PERIOD,
			.misc = 0,
			.size = sizeof(freq_event),
		},
		.time = sched_clock(),
		.period = period,
	};

2849
	if (counter->hw.sample_period == period)
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		return;

	ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
	if (ret)
		return;

	perf_output_put(&handle, freq_event);
	perf_output_end(&handle);
}

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
/*
 * IRQ throttle logging
 */

static void perf_log_throttle(struct perf_counter *counter, int enable)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
	} throttle_event = {
		.header = {
			.type = PERF_EVENT_THROTTLE + 1,
			.misc = 0,
			.size = sizeof(throttle_event),
		},
		.time = sched_clock(),
	};

I
Ingo Molnar 已提交
2881
	ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2882 2883 2884 2885 2886 2887 2888
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

2889 2890 2891 2892 2893
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2894
			  int nmi, struct pt_regs *regs, u64 addr)
2895
{
2896
	int events = atomic_read(&counter->event_limit);
2897
	int throttle = counter->pmu->unthrottle != NULL;
2898 2899
	int ret = 0;

2900 2901
	if (!throttle) {
		counter->hw.interrupts++;
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	} else {
		if (counter->hw.interrupts != MAX_INTERRUPTS) {
			counter->hw.interrupts++;
			if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
				counter->hw.interrupts = MAX_INTERRUPTS;
				perf_log_throttle(counter, 0);
				ret = 1;
			}
		} else {
			/*
			 * Keep re-disabling counters even though on the previous
			 * pass we disabled it - just in case we raced with a
			 * sched-in and the counter got enabled again:
			 */
2916 2917 2918
			ret = 1;
		}
	}
2919

2920 2921 2922 2923 2924
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

2925
	counter->pending_kill = POLL_IN;
2926 2927
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2928
		counter->pending_kill = POLL_HUP;
2929 2930 2931 2932 2933 2934 2935 2936
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2937
	perf_counter_output(counter, nmi, regs, addr);
2938
	return ret;
2939 2940
}

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
2967
	s64 period = hwc->sample_period;
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2983 2984
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2985
	enum hrtimer_restart ret = HRTIMER_RESTART;
2986 2987
	struct perf_counter *counter;
	struct pt_regs *regs;
2988
	u64 period;
2989 2990

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
2991
	counter->pmu->read(counter);
2992 2993 2994 2995 2996 2997

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
2998 2999
	if ((counter->attr.exclude_kernel || !regs) &&
			!counter->attr.exclude_user)
3000 3001
		regs = task_pt_regs(current);

3002
	if (regs) {
3003
		if (perf_counter_overflow(counter, 0, regs, 0))
3004 3005
			ret = HRTIMER_NORESTART;
	}
3006

3007
	period = max_t(u64, 10000, counter->hw.sample_period);
3008
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3009

3010
	return ret;
3011 3012 3013
}

static void perf_swcounter_overflow(struct perf_counter *counter,
3014
				    int nmi, struct pt_regs *regs, u64 addr)
3015
{
3016 3017
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
3018
	if (perf_counter_overflow(counter, nmi, regs, addr))
3019 3020 3021
		/* soft-disable the counter */
		;

3022 3023
}

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
static int perf_swcounter_is_counting(struct perf_counter *counter)
{
	struct perf_counter_context *ctx;
	unsigned long flags;
	int count;

	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		return 1;

	if (counter->state != PERF_COUNTER_STATE_INACTIVE)
		return 0;

	/*
	 * If the counter is inactive, it could be just because
	 * its task is scheduled out, or because it's in a group
	 * which could not go on the PMU.  We want to count in
	 * the first case but not the second.  If the context is
	 * currently active then an inactive software counter must
	 * be the second case.  If it's not currently active then
	 * we need to know whether the counter was active when the
	 * context was last active, which we can determine by
	 * comparing counter->tstamp_stopped with ctx->time.
	 *
	 * We are within an RCU read-side critical section,
	 * which protects the existence of *ctx.
	 */
	ctx = counter->ctx;
	spin_lock_irqsave(&ctx->lock, flags);
	count = 1;
	/* Re-check state now we have the lock */
	if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
	    counter->ctx->is_active ||
	    counter->tstamp_stopped < ctx->time)
		count = 0;
	spin_unlock_irqrestore(&ctx->lock, flags);
	return count;
}

3062
static int perf_swcounter_match(struct perf_counter *counter,
3063 3064
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
3065
{
3066
	u64 event_config;
3067

3068
	event_config = ((u64) type << PERF_COUNTER_TYPE_SHIFT) | event;
3069

3070
	if (!perf_swcounter_is_counting(counter))
3071 3072
		return 0;

3073
	if (counter->attr.config != event_config)
3074 3075
		return 0;

3076
	if (regs) {
3077
		if (counter->attr.exclude_user && user_mode(regs))
3078
			return 0;
3079

3080
		if (counter->attr.exclude_kernel && !user_mode(regs))
3081 3082
			return 0;
	}
3083 3084 3085 3086

	return 1;
}

3087
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3088
			       int nmi, struct pt_regs *regs, u64 addr)
3089 3090
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
3091

3092
	if (counter->hw.sample_period && !neg && regs)
3093
		perf_swcounter_overflow(counter, nmi, regs, addr);
3094 3095
}

3096
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3097
				     enum perf_event_types type, u32 event,
3098 3099
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
3100 3101 3102
{
	struct perf_counter *counter;

3103
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3104 3105
		return;

P
Peter Zijlstra 已提交
3106 3107
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3108
		if (perf_swcounter_match(counter, type, event, regs))
3109
			perf_swcounter_add(counter, nr, nmi, regs, addr);
3110
	}
P
Peter Zijlstra 已提交
3111
	rcu_read_unlock();
3112 3113
}

P
Peter Zijlstra 已提交
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

3128
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
3129 3130
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
3131 3132
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3133
	int *recursion = perf_swcounter_recursion_context(cpuctx);
3134
	struct perf_counter_context *ctx;
P
Peter Zijlstra 已提交
3135 3136 3137 3138 3139 3140

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3141

3142 3143
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
3144 3145 3146 3147 3148 3149 3150 3151 3152
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
	rcu_read_unlock();
3153

P
Peter Zijlstra 已提交
3154 3155 3156 3157
	barrier();
	(*recursion)--;

out:
3158 3159 3160
	put_cpu_var(perf_cpu_context);
}

3161 3162
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3163
{
3164
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3165 3166
}

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

3183
static const struct pmu perf_ops_generic = {
3184 3185 3186 3187 3188
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

3189 3190 3191 3192
/*
 * Software counter: cpu wall time clock
 */

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

3205 3206 3207 3208 3209 3210
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3211 3212
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3213 3214
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3215
		__hrtimer_start_range_ns(&hwc->hrtimer,
3216
				ns_to_ktime(period), 0,
3217 3218 3219 3220 3221 3222
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

3223 3224
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
3225
	if (counter->hw.sample_period)
3226
		hrtimer_cancel(&counter->hw.hrtimer);
3227
	cpu_clock_perf_counter_update(counter);
3228 3229 3230 3231
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
3232
	cpu_clock_perf_counter_update(counter);
3233 3234
}

3235
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
3236 3237 3238
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
3239 3240
};

3241 3242 3243 3244
/*
 * Software counter: task time clock
 */

3245
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
3246
{
3247
	u64 prev;
I
Ingo Molnar 已提交
3248 3249
	s64 delta;

3250
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
3251 3252
	delta = now - prev;
	atomic64_add(delta, &counter->count);
3253 3254
}

3255
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
3256
{
3257
	struct hw_perf_counter *hwc = &counter->hw;
3258 3259 3260
	u64 now;

	now = counter->ctx->time;
3261

3262
	atomic64_set(&hwc->prev_count, now);
3263 3264
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3265 3266
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3267
		__hrtimer_start_range_ns(&hwc->hrtimer,
3268
				ns_to_ktime(period), 0,
3269 3270
				HRTIMER_MODE_REL, 0);
	}
3271 3272

	return 0;
I
Ingo Molnar 已提交
3273 3274 3275
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
3276
{
3277
	if (counter->hw.sample_period)
3278
		hrtimer_cancel(&counter->hw.hrtimer);
3279 3280
	task_clock_perf_counter_update(counter, counter->ctx->time);

3281
}
I
Ingo Molnar 已提交
3282

3283 3284
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
3297 3298
}

3299
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
3300 3301 3302
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
3303 3304
};

3305 3306 3307
/*
 * Software counter: cpu migrations
 */
3308
void perf_counter_task_migration(struct task_struct *task, int cpu)
3309
{
3310 3311
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx;
3312

3313 3314 3315
	perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
				 PERF_COUNT_CPU_MIGRATIONS,
				 1, 1, NULL, 0);
3316

3317 3318 3319 3320 3321 3322 3323
	ctx = perf_pin_task_context(task);
	if (ctx) {
		perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
					 PERF_COUNT_CPU_MIGRATIONS,
					 1, 1, NULL, 0);
		perf_unpin_context(ctx);
	}
3324 3325
}

3326 3327 3328
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
3329 3330 3331 3332 3333
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

3334
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3335
}
3336
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3337 3338 3339 3340 3341 3342

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3343
	ftrace_profile_disable(perf_event_id(&counter->attr));
3344 3345
}

3346
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3347
{
3348
	int event_id = perf_event_id(&counter->attr);
3349 3350 3351 3352 3353 3354 3355
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
3356
	counter->hw.sample_period = counter->attr.sample_period;
3357 3358 3359 3360

	return &perf_ops_generic;
}
#else
3361
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3362 3363 3364 3365 3366
{
	return NULL;
}
#endif

3367
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3368
{
3369
	const struct pmu *pmu = NULL;
3370

3371 3372 3373 3374 3375 3376 3377
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3378
	switch (perf_event_id(&counter->attr)) {
3379
	case PERF_COUNT_CPU_CLOCK:
3380
		pmu = &perf_ops_cpu_clock;
3381

3382
		break;
3383
	case PERF_COUNT_TASK_CLOCK:
3384 3385 3386 3387 3388
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3389
			pmu = &perf_ops_task_clock;
3390
		else
3391
			pmu = &perf_ops_cpu_clock;
3392

3393
		break;
3394
	case PERF_COUNT_PAGE_FAULTS:
3395 3396
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
3397
	case PERF_COUNT_CONTEXT_SWITCHES:
3398
	case PERF_COUNT_CPU_MIGRATIONS:
3399
		pmu = &perf_ops_generic;
3400
		break;
3401
	}
3402

3403
	return pmu;
3404 3405
}

T
Thomas Gleixner 已提交
3406 3407 3408 3409
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
3410
perf_counter_alloc(struct perf_counter_attr *attr,
3411
		   int cpu,
3412
		   struct perf_counter_context *ctx,
3413 3414
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
3415
{
3416
	const struct pmu *pmu;
I
Ingo Molnar 已提交
3417
	struct perf_counter *counter;
3418
	struct hw_perf_counter *hwc;
3419
	long err;
T
Thomas Gleixner 已提交
3420

3421
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
3422
	if (!counter)
3423
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
3424

3425 3426 3427 3428 3429 3430 3431
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

3432 3433 3434
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

3435
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
3436
	INIT_LIST_HEAD(&counter->event_entry);
3437
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
3438 3439
	init_waitqueue_head(&counter->waitq);

3440 3441
	mutex_init(&counter->mmap_mutex);

3442
	counter->cpu		= cpu;
3443
	counter->attr		= *attr;
3444 3445 3446 3447 3448 3449 3450 3451 3452
	counter->group_leader	= group_leader;
	counter->pmu		= NULL;
	counter->ctx		= ctx;
	counter->oncpu		= -1;

	counter->ns		= get_pid_ns(current->nsproxy->pid_ns);
	counter->id		= atomic64_inc_return(&perf_counter_id);

	counter->state		= PERF_COUNTER_STATE_INACTIVE;
3453

3454
	if (attr->disabled)
3455 3456
		counter->state = PERF_COUNTER_STATE_OFF;

3457
	pmu = NULL;
3458

3459
	hwc = &counter->hw;
3460 3461
	if (attr->freq && attr->sample_freq)
		hwc->sample_period = div64_u64(TICK_NSEC, attr->sample_freq);
3462
	else
3463
		hwc->sample_period = attr->sample_period;
3464

3465
	/*
3466
	 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3467
	 */
3468
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3469 3470
		goto done;

3471
	if (perf_event_raw(attr)) {
3472
		pmu = hw_perf_counter_init(counter);
3473 3474 3475
		goto done;
	}

3476
	switch (perf_event_type(attr)) {
3477
	case PERF_TYPE_HARDWARE:
3478
		pmu = hw_perf_counter_init(counter);
3479 3480 3481
		break;

	case PERF_TYPE_SOFTWARE:
3482
		pmu = sw_perf_counter_init(counter);
3483 3484 3485
		break;

	case PERF_TYPE_TRACEPOINT:
3486
		pmu = tp_perf_counter_init(counter);
3487 3488
		break;
	}
3489 3490
done:
	err = 0;
3491
	if (!pmu)
3492
		err = -EINVAL;
3493 3494
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
3495

3496
	if (err) {
3497 3498
		if (counter->ns)
			put_pid_ns(counter->ns);
I
Ingo Molnar 已提交
3499
		kfree(counter);
3500
		return ERR_PTR(err);
I
Ingo Molnar 已提交
3501
	}
3502

3503
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
3504

3505
	atomic_inc(&nr_counters);
3506
	if (counter->attr.mmap)
P
Peter Zijlstra 已提交
3507
		atomic_inc(&nr_mmap_counters);
3508
	if (counter->attr.comm)
P
Peter Zijlstra 已提交
3509
		atomic_inc(&nr_comm_counters);
3510

T
Thomas Gleixner 已提交
3511 3512 3513 3514
	return counter;
}

/**
3515
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
3516
 *
3517
 * @attr_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
3518
 * @pid:		target pid
I
Ingo Molnar 已提交
3519 3520
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
3521
 */
3522
SYSCALL_DEFINE5(perf_counter_open,
3523
		const struct perf_counter_attr __user *, attr_uptr,
3524
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
3525
{
3526
	struct perf_counter *counter, *group_leader;
3527
	struct perf_counter_attr attr;
3528
	struct perf_counter_context *ctx;
3529
	struct file *counter_file = NULL;
3530 3531
	struct file *group_file = NULL;
	int fput_needed = 0;
3532
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
3533 3534
	int ret;

3535 3536 3537 3538
	/* for future expandability... */
	if (flags)
		return -EINVAL;

3539
	if (copy_from_user(&attr, attr_uptr, sizeof(attr)) != 0)
3540 3541
		return -EFAULT;

3542
	/*
I
Ingo Molnar 已提交
3543 3544 3545 3546 3547 3548 3549 3550
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
3551 3552 3553 3554 3555 3556
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
3557
			goto err_put_context;
3558
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
3559
			goto err_put_context;
3560 3561 3562

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
3563 3564 3565 3566 3567 3568 3569 3570
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
3571
		 */
I
Ingo Molnar 已提交
3572 3573
		if (group_leader->ctx != ctx)
			goto err_put_context;
3574 3575 3576
		/*
		 * Only a group leader can be exclusive or pinned
		 */
3577
		if (attr.exclusive || attr.pinned)
3578
			goto err_put_context;
3579 3580
	}

3581
	counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3582
				     GFP_KERNEL);
3583 3584
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
3585 3586 3587 3588
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
3589 3590 3591 3592 3593 3594 3595
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
3596
	WARN_ON_ONCE(ctx->parent_ctx);
3597
	mutex_lock(&ctx->mutex);
3598
	perf_install_in_context(ctx, counter, cpu);
3599
	++ctx->generation;
3600
	mutex_unlock(&ctx->mutex);
3601

3602 3603 3604 3605 3606 3607
	counter->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_counter_mutex);
	list_add_tail(&counter->owner_entry, &current->perf_counter_list);
	mutex_unlock(&current->perf_counter_mutex);

3608
	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
3609

3610 3611 3612
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
3613 3614
	return ret;

3615
err_free_put_context:
T
Thomas Gleixner 已提交
3616 3617 3618
	kfree(counter);

err_put_context:
3619
	put_ctx(ctx);
T
Thomas Gleixner 已提交
3620

3621
	goto out_fput;
T
Thomas Gleixner 已提交
3622 3623
}

3624 3625 3626
/*
 * inherit a counter from parent task to child task:
 */
3627
static struct perf_counter *
3628 3629 3630 3631
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
3632
	      struct perf_counter *group_leader,
3633 3634 3635 3636
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

3637 3638 3639 3640 3641 3642 3643 3644 3645
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

3646
	child_counter = perf_counter_alloc(&parent_counter->attr,
3647 3648
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
3649 3650
	if (IS_ERR(child_counter))
		return child_counter;
3651
	get_ctx(child_ctx);
3652

3653 3654
	/*
	 * Make the child state follow the state of the parent counter,
3655
	 * not its attr.disabled bit.  We hold the parent's mutex,
3656
	 * so we won't race with perf_counter_{en, dis}able_family.
3657 3658 3659 3660 3661 3662
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

3663 3664 3665
	/*
	 * Link it up in the child's context:
	 */
3666
	add_counter_to_ctx(child_counter, child_ctx);
3667 3668 3669 3670 3671

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
3672
	child_counter->attr.inherit = 1;
3673 3674 3675 3676 3677 3678 3679 3680 3681

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3682 3683 3684
	/*
	 * Link this into the parent counter's child list
	 */
3685
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3686
	mutex_lock(&parent_counter->child_mutex);
3687
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3688
	mutex_unlock(&parent_counter->child_mutex);
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3701
	struct perf_counter *child_ctr;
3702 3703 3704

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3705 3706
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3707
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3708 3709 3710 3711
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3712
	}
3713 3714 3715
	return 0;
}

3716 3717 3718
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
3719
	u64 child_val;
3720 3721 3722 3723 3724 3725 3726

	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3727 3728 3729 3730
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3731 3732 3733 3734

	/*
	 * Remove this counter from the parent's list
	 */
3735
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3736
	mutex_lock(&parent_counter->child_mutex);
3737
	list_del_init(&child_counter->child_list);
3738
	mutex_unlock(&parent_counter->child_mutex);
3739 3740 3741 3742 3743 3744 3745 3746

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3747
static void
3748
__perf_counter_exit_task(struct perf_counter *child_counter,
3749 3750 3751 3752
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;

3753
	update_counter_times(child_counter);
3754
	perf_counter_remove_from_context(child_counter);
3755

3756 3757 3758 3759 3760 3761
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3762 3763
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
3764
		free_counter(child_counter);
3765
	}
3766 3767 3768
}

/*
3769
 * When a child task exits, feed back counter values to parent counters.
3770 3771 3772 3773 3774
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
3775
	unsigned long flags;
3776

3777
	if (likely(!child->perf_counter_ctxp))
3778 3779
		return;

3780
	local_irq_save(flags);
3781 3782 3783 3784 3785 3786 3787
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
	child_ctx = child->perf_counter_ctxp;
3788
	__perf_counter_task_sched_out(child_ctx);
3789 3790 3791 3792 3793 3794 3795

	/*
	 * Take the context lock here so that if find_get_context is
	 * reading child->perf_counter_ctxp, we wait until it has
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
3796
	child->perf_counter_ctxp = NULL;
3797 3798 3799 3800 3801 3802 3803 3804 3805
	if (child_ctx->parent_ctx) {
		/*
		 * This context is a clone; unclone it so it can't get
		 * swapped to another process while we're removing all
		 * the counters from it.
		 */
		put_ctx(child_ctx->parent_ctx);
		child_ctx->parent_ctx = NULL;
	}
3806
	spin_unlock(&child_ctx->lock);
3807 3808 3809 3810
	local_irq_restore(flags);

	mutex_lock(&child_ctx->mutex);

3811
again:
3812 3813
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
3814
		__perf_counter_exit_task(child_counter, child_ctx);
3815 3816 3817 3818 3819 3820 3821 3822

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
3823 3824 3825 3826

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
3827 3828
}

3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
void perf_counter_free_task(struct task_struct *task)
{
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
	struct perf_counter *counter, *tmp;

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
		struct perf_counter *parent = counter->parent;

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
		list_del_init(&counter->child_list);
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

		list_del_counter(counter, ctx);
		free_counter(counter);
	}

	if (!list_empty(&ctx->counter_list))
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3867 3868 3869
/*
 * Initialize the perf_counter context in task_struct
 */
3870
int perf_counter_init_task(struct task_struct *child)
3871 3872
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3873
	struct perf_counter_context *cloned_ctx;
3874
	struct perf_counter *counter;
3875
	struct task_struct *parent = current;
3876
	int inherited_all = 1;
3877
	int ret = 0;
3878

3879
	child->perf_counter_ctxp = NULL;
3880

3881 3882 3883
	mutex_init(&child->perf_counter_mutex);
	INIT_LIST_HEAD(&child->perf_counter_list);

3884
	if (likely(!parent->perf_counter_ctxp))
3885 3886
		return 0;

3887 3888
	/*
	 * This is executed from the parent task context, so inherit
3889 3890
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
3891 3892
	 */

3893 3894
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
3895
		return -ENOMEM;
3896

3897 3898
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;
3899
	get_task_struct(child);
3900

3901
	/*
3902 3903
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
3904
	 */
3905 3906
	parent_ctx = perf_pin_task_context(parent);

3907 3908 3909 3910 3911 3912 3913
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

3914 3915 3916 3917
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3918
	mutex_lock(&parent_ctx->mutex);
3919 3920 3921 3922 3923

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
3924 3925 3926 3927
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

3928
		if (!counter->attr.inherit) {
3929
			inherited_all = 0;
3930
			continue;
3931
		}
3932

3933 3934 3935
		ret = inherit_group(counter, parent, parent_ctx,
					     child, child_ctx);
		if (ret) {
3936
			inherited_all = 0;
3937
			break;
3938 3939 3940 3941 3942 3943 3944
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
3945 3946 3947 3948
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
		 * because the list of counters and the generation
		 * count can't have changed since we took the mutex.
3949
		 */
3950 3951 3952
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
3953
			child_ctx->parent_gen = parent_ctx->parent_gen;
3954 3955 3956 3957 3958
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
3959 3960
	}

3961
	mutex_unlock(&parent_ctx->mutex);
3962

3963
	perf_unpin_context(parent_ctx);
3964

3965
	return ret;
3966 3967
}

3968
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3969
{
3970
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3971

3972 3973
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3974

3975
	spin_lock(&perf_resource_lock);
3976
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3977
	spin_unlock(&perf_resource_lock);
3978

3979
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3980 3981 3982
}

#ifdef CONFIG_HOTPLUG_CPU
3983
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3984 3985 3986 3987 3988
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3989 3990
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3991
}
3992
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3993
{
3994 3995 3996 3997
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3998
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3999
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
4000 4001
}
#else
4002
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4014
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
4015 4016 4017 4018
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
4019
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

4029 4030 4031
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
4032 4033
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
4034
	.priority		= 20,
T
Thomas Gleixner 已提交
4035 4036
};

4037
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

4064
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4065 4066 4067 4068 4069 4070 4071 4072 4073
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
4074
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

4096
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4097
	perf_overcommit = val;
4098
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);