imgwarp.cpp 173.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/* ////////////////////////////////////////////////////////////////////
//
//  Geometrical transforms on images and matrices: rotation, zoom etc.
//
// */

#include "precomp.hpp"
V
Vadim Pisarevsky 已提交
50
#include "opencl_kernels.hpp"
M
Marina Kolpakova 已提交
51

52 53
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
static IppStatus sts = ippInit();
54
#endif
55

56 57 58
namespace cv
{

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
    typedef IppStatus (CV_STDCALL* ippiSetFunc)(const void*, void *, int, IppiSize);
    typedef IppStatus (CV_STDCALL* ippiWarpPerspectiveBackFunc)(const void*, IppiSize, int, IppiRect, void *, int, IppiRect, double [3][3], int);
    typedef IppStatus (CV_STDCALL* ippiWarpAffineBackFunc)(const void*, IppiSize, int, IppiRect, void *, int, IppiRect, double [2][3], int);
    typedef IppStatus (CV_STDCALL* ippiResizeSqrPixelFunc)(const void*, IppiSize, int, IppiRect, void*, int, IppiRect, double, double, double, double, int, Ipp8u *);

    template <int channels, typename Type>
    bool IPPSetSimple(cv::Scalar value, void *dataPointer, int step, IppiSize &size, ippiSetFunc func)
    {
        Type values[channels];
        for( int i = 0; i < channels; i++ )
            values[i] = (Type)value[i];
        return func(values, dataPointer, step, size) >= 0;
    }

    bool IPPSet(const cv::Scalar &value, void *dataPointer, int step, IppiSize &size, int channels, int depth)
    {
        if( channels == 1 )
        {
78 79 80
            switch( depth )
            {
            case CV_8U:
81 82 83 84 85
                return ippiSet_8u_C1R((Ipp8u)value[0], (Ipp8u *)dataPointer, step, size) >= 0;
            case CV_16U:
                return ippiSet_16u_C1R((Ipp16u)value[0], (Ipp16u *)dataPointer, step, size) >= 0;
            case CV_32F:
                return ippiSet_32f_C1R((Ipp32f)value[0], (Ipp32f *)dataPointer, step, size) >= 0;
86
            }
87 88 89 90 91 92 93 94 95 96 97 98 99
        }
        else
        {
            if( channels == 3 )
            {
                switch( depth )
                {
                case CV_8U:
                    return IPPSetSimple<3, Ipp8u>(value, dataPointer, step, size, (ippiSetFunc)ippiSet_8u_C3R);
                case CV_16U:
                    return IPPSetSimple<3, Ipp16u>(value, dataPointer, step, size, (ippiSetFunc)ippiSet_16u_C3R);
                case CV_32F:
                    return IPPSetSimple<3, Ipp32f>(value, dataPointer, step, size, (ippiSetFunc)ippiSet_32f_C3R);
100
                }
101 102 103 104 105 106 107 108 109 110 111
            }
            else if( channels == 4 )
            {
                switch( depth )
                {
                case CV_8U:
                    return IPPSetSimple<4, Ipp8u>(value, dataPointer, step, size, (ippiSetFunc)ippiSet_8u_C4R);
                case CV_16U:
                    return IPPSetSimple<4, Ipp16u>(value, dataPointer, step, size, (ippiSetFunc)ippiSet_16u_C4R);
                case CV_32F:
                    return IPPSetSimple<4, Ipp32f>(value, dataPointer, step, size, (ippiSetFunc)ippiSet_32f_C4R);
112
                }
113 114 115 116 117 118
            }
        }
        return false;
    }
#endif

119 120 121 122 123 124 125 126 127 128 129 130 131 132
/************** interpolation formulas and tables ***************/

const int INTER_RESIZE_COEF_BITS=11;
const int INTER_RESIZE_COEF_SCALE=1 << INTER_RESIZE_COEF_BITS;

const int INTER_REMAP_COEF_BITS=15;
const int INTER_REMAP_COEF_SCALE=1 << INTER_REMAP_COEF_BITS;

static uchar NNDeltaTab_i[INTER_TAB_SIZE2][2];

static float BilinearTab_f[INTER_TAB_SIZE2][2][2];
static short BilinearTab_i[INTER_TAB_SIZE2][2][2];

#if CV_SSE2
V
Vadim Pisarevsky 已提交
133 134
static short BilinearTab_iC4_buf[INTER_TAB_SIZE2+2][2][8];
static short (*BilinearTab_iC4)[2][8] = (short (*)[2][8])alignPtr(BilinearTab_iC4_buf, 16);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#endif

static float BicubicTab_f[INTER_TAB_SIZE2][4][4];
static short BicubicTab_i[INTER_TAB_SIZE2][4][4];

static float Lanczos4Tab_f[INTER_TAB_SIZE2][8][8];
static short Lanczos4Tab_i[INTER_TAB_SIZE2][8][8];

static inline void interpolateLinear( float x, float* coeffs )
{
    coeffs[0] = 1.f - x;
    coeffs[1] = x;
}

static inline void interpolateCubic( float x, float* coeffs )
{
    const float A = -0.75f;

    coeffs[0] = ((A*(x + 1) - 5*A)*(x + 1) + 8*A)*(x + 1) - 4*A;
    coeffs[1] = ((A + 2)*x - (A + 3))*x*x + 1;
    coeffs[2] = ((A + 2)*(1 - x) - (A + 3))*(1 - x)*(1 - x) + 1;
    coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2];
}

static inline void interpolateLanczos4( float x, float* coeffs )
{
    static const double s45 = 0.70710678118654752440084436210485;
    static const double cs[][2]=
    {{1, 0}, {-s45, -s45}, {0, 1}, {s45, -s45}, {-1, 0}, {s45, s45}, {0, -1}, {-s45, s45}};

    if( x < FLT_EPSILON )
    {
        for( int i = 0; i < 8; i++ )
            coeffs[i] = 0;
        coeffs[3] = 1;
        return;
    }

    float sum = 0;
    double y0=-(x+3)*CV_PI*0.25, s0 = sin(y0), c0=cos(y0);
A
Andrey Kamaev 已提交
175
    for(int i = 0; i < 8; i++ )
176 177 178 179 180 181 182
    {
        double y = -(x+3-i)*CV_PI*0.25;
        coeffs[i] = (float)((cs[i][0]*s0 + cs[i][1]*c0)/(y*y));
        sum += coeffs[i];
    }

    sum = 1.f/sum;
A
Andrey Kamaev 已提交
183
    for(int i = 0; i < 8; i++ )
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        coeffs[i] *= sum;
}

static void initInterTab1D(int method, float* tab, int tabsz)
{
    float scale = 1.f/tabsz;
    if( method == INTER_LINEAR )
    {
        for( int i = 0; i < tabsz; i++, tab += 2 )
            interpolateLinear( i*scale, tab );
    }
    else if( method == INTER_CUBIC )
    {
        for( int i = 0; i < tabsz; i++, tab += 4 )
            interpolateCubic( i*scale, tab );
    }
    else if( method == INTER_LANCZOS4 )
    {
        for( int i = 0; i < tabsz; i++, tab += 8 )
            interpolateLanczos4( i*scale, tab );
    }
    else
        CV_Error( CV_StsBadArg, "Unknown interpolation method" );
}


static const void* initInterTab2D( int method, bool fixpt )
{
    static bool inittab[INTER_MAX+1] = {false};
    float* tab = 0;
    short* itab = 0;
    int ksize = 0;
    if( method == INTER_LINEAR )
        tab = BilinearTab_f[0][0], itab = BilinearTab_i[0][0], ksize=2;
    else if( method == INTER_CUBIC )
        tab = BicubicTab_f[0][0], itab = BicubicTab_i[0][0], ksize=4;
    else if( method == INTER_LANCZOS4 )
        tab = Lanczos4Tab_f[0][0], itab = Lanczos4Tab_i[0][0], ksize=8;
    else
        CV_Error( CV_StsBadArg, "Unknown/unsupported interpolation type" );

    if( !inittab[method] )
    {
227
        AutoBuffer<float> _tab(8*INTER_TAB_SIZE);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        int i, j, k1, k2;
        initInterTab1D(method, _tab, INTER_TAB_SIZE);
        for( i = 0; i < INTER_TAB_SIZE; i++ )
            for( j = 0; j < INTER_TAB_SIZE; j++, tab += ksize*ksize, itab += ksize*ksize )
            {
                int isum = 0;
                NNDeltaTab_i[i*INTER_TAB_SIZE+j][0] = j < INTER_TAB_SIZE/2;
                NNDeltaTab_i[i*INTER_TAB_SIZE+j][1] = i < INTER_TAB_SIZE/2;

                for( k1 = 0; k1 < ksize; k1++ )
                {
                    float vy = _tab[i*ksize + k1];
                    for( k2 = 0; k2 < ksize; k2++ )
                    {
                        float v = vy*_tab[j*ksize + k2];
                        tab[k1*ksize + k2] = v;
                        isum += itab[k1*ksize + k2] = saturate_cast<short>(v*INTER_REMAP_COEF_SCALE);
                    }
                }

                if( isum != INTER_REMAP_COEF_SCALE )
                {
                    int diff = isum - INTER_REMAP_COEF_SCALE;
                    int ksize2 = ksize/2, Mk1=ksize2, Mk2=ksize2, mk1=ksize2, mk2=ksize2;
                    for( k1 = ksize2; k1 < ksize2+2; k1++ )
                        for( k2 = ksize2; k2 < ksize2+2; k2++ )
                        {
                            if( itab[k1*ksize+k2] < itab[mk1*ksize+mk2] )
                                mk1 = k1, mk2 = k2;
                            else if( itab[k1*ksize+k2] > itab[Mk1*ksize+Mk2] )
                                Mk1 = k1, Mk2 = k2;
                        }
                    if( diff < 0 )
                        itab[Mk1*ksize + Mk2] = (short)(itab[Mk1*ksize + Mk2] - diff);
                    else
                        itab[mk1*ksize + mk2] = (short)(itab[mk1*ksize + mk2] - diff);
                }
            }
        tab -= INTER_TAB_SIZE2*ksize*ksize;
        itab -= INTER_TAB_SIZE2*ksize*ksize;
#if CV_SSE2
        if( method == INTER_LINEAR )
        {
            for( i = 0; i < INTER_TAB_SIZE2; i++ )
                for( j = 0; j < 4; j++ )
                {
                    BilinearTab_iC4[i][0][j*2] = BilinearTab_i[i][0][0];
                    BilinearTab_iC4[i][0][j*2+1] = BilinearTab_i[i][0][1];
                    BilinearTab_iC4[i][1][j*2] = BilinearTab_i[i][1][0];
                    BilinearTab_iC4[i][1][j*2+1] = BilinearTab_i[i][1][1];
                }
        }
#endif
        inittab[method] = true;
    }
    return fixpt ? (const void*)itab : (const void*)tab;
}

286
#ifndef __MINGW32__
V
Vadim Pisarevsky 已提交
287 288 289 290 291 292 293 294 295 296 297
static bool initAllInterTab2D()
{
    return  initInterTab2D( INTER_LINEAR, false ) &&
            initInterTab2D( INTER_LINEAR, true ) &&
            initInterTab2D( INTER_CUBIC, false ) &&
            initInterTab2D( INTER_CUBIC, true ) &&
            initInterTab2D( INTER_LANCZOS4, false ) &&
            initInterTab2D( INTER_LANCZOS4, true );
}

static volatile bool doInitAllInterTab2D = initAllInterTab2D();
298
#endif
V
Vadim Pisarevsky 已提交
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
template<typename ST, typename DT> struct Cast
{
    typedef ST type1;
    typedef DT rtype;

    DT operator()(ST val) const { return saturate_cast<DT>(val); }
};

template<typename ST, typename DT, int bits> struct FixedPtCast
{
    typedef ST type1;
    typedef DT rtype;
    enum { SHIFT = bits, DELTA = 1 << (bits-1) };

    DT operator()(ST val) const { return saturate_cast<DT>((val + DELTA)>>SHIFT); }
};

/****************************************************************************************\
*                                         Resize                                         *
\****************************************************************************************/

321 322 323 324 325 326 327 328 329
class resizeNNInvoker :
    public ParallelLoopBody
{
public:
    resizeNNInvoker(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
        ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
        ify(_ify)
    {
    }
330

331 332 333 334
    virtual void operator() (const Range& range) const
    {
        Size ssize = src.size(), dsize = dst.size();
        int y, x, pix_size = (int)src.elemSize();
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
        for( y = range.start; y < range.end; y++ )
        {
            uchar* D = dst.data + dst.step*y;
            int sy = std::min(cvFloor(y*ify), ssize.height-1);
            const uchar* S = src.data + src.step*sy;

            switch( pix_size )
            {
            case 1:
                for( x = 0; x <= dsize.width - 2; x += 2 )
                {
                    uchar t0 = S[x_ofs[x]];
                    uchar t1 = S[x_ofs[x+1]];
                    D[x] = t0;
                    D[x+1] = t1;
                }

                for( ; x < dsize.width; x++ )
                    D[x] = S[x_ofs[x]];
                break;
            case 2:
                for( x = 0; x < dsize.width; x++ )
                    *(ushort*)(D + x*2) = *(ushort*)(S + x_ofs[x]);
                break;
            case 3:
                for( x = 0; x < dsize.width; x++, D += 3 )
                {
                    const uchar* _tS = S + x_ofs[x];
                    D[0] = _tS[0]; D[1] = _tS[1]; D[2] = _tS[2];
                }
                break;
            case 4:
                for( x = 0; x < dsize.width; x++ )
                    *(int*)(D + x*4) = *(int*)(S + x_ofs[x]);
                break;
            case 6:
                for( x = 0; x < dsize.width; x++, D += 6 )
                {
                    const ushort* _tS = (const ushort*)(S + x_ofs[x]);
                    ushort* _tD = (ushort*)D;
                    _tD[0] = _tS[0]; _tD[1] = _tS[1]; _tD[2] = _tS[2];
                }
                break;
            case 8:
                for( x = 0; x < dsize.width; x++, D += 8 )
                {
                    const int* _tS = (const int*)(S + x_ofs[x]);
                    int* _tD = (int*)D;
                    _tD[0] = _tS[0]; _tD[1] = _tS[1];
                }
                break;
            case 12:
                for( x = 0; x < dsize.width; x++, D += 12 )
                {
                    const int* _tS = (const int*)(S + x_ofs[x]);
                    int* _tD = (int*)D;
                    _tD[0] = _tS[0]; _tD[1] = _tS[1]; _tD[2] = _tS[2];
                }
                break;
            default:
                for( x = 0; x < dsize.width; x++, D += pix_size )
                {
                    const int* _tS = (const int*)(S + x_ofs[x]);
                    int* _tD = (int*)D;
                    for( int k = 0; k < pix_size4; k++ )
                        _tD[k] = _tS[k];
                }
            }
        }
    }
406

407 408 409 410 411
private:
    const Mat src;
    Mat dst;
    int* x_ofs, pix_size4;
    double ify;
412 413 414

    resizeNNInvoker(const resizeNNInvoker&);
    resizeNNInvoker& operator=(const resizeNNInvoker&);
415 416
};

417 418 419 420 421 422 423 424 425
static void
resizeNN( const Mat& src, Mat& dst, double fx, double fy )
{
    Size ssize = src.size(), dsize = dst.size();
    AutoBuffer<int> _x_ofs(dsize.width);
    int* x_ofs = _x_ofs;
    int pix_size = (int)src.elemSize();
    int pix_size4 = (int)(pix_size / sizeof(int));
    double ifx = 1./fx, ify = 1./fy;
426
    int x;
427 428 429

    for( x = 0; x < dsize.width; x++ )
    {
430
        int sx = cvFloor(x*ifx);
431 432
        x_ofs[x] = std::min(sx, ssize.width-1)*pix_size;
    }
433

434 435
    Range range(0, dsize.height);
    resizeNNInvoker invoker(src, dst, x_ofs, pix_size4, ify);
436
    parallel_for_(range, invoker, dst.total()/(double)(1<<16));
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
}


struct VResizeNoVec
{
    int operator()(const uchar**, uchar*, const uchar*, int ) const { return 0; }
};

struct HResizeNoVec
{
    int operator()(const uchar**, uchar**, int, const int*,
        const uchar*, int, int, int, int, int) const { return 0; }
};

#if CV_SSE2

struct VResizeLinearVec_32s8u
{
    int operator()(const uchar** _src, uchar* dst, const uchar* _beta, int width ) const
    {
        if( !checkHardwareSupport(CV_CPU_SSE2) )
            return 0;
M
Marina Kolpakova 已提交
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
        const int** src = (const int**)_src;
        const short* beta = (const short*)_beta;
        const int *S0 = src[0], *S1 = src[1];
        int x = 0;
        __m128i b0 = _mm_set1_epi16(beta[0]), b1 = _mm_set1_epi16(beta[1]);
        __m128i delta = _mm_set1_epi16(2);

        if( (((size_t)S0|(size_t)S1)&15) == 0 )
            for( ; x <= width - 16; x += 16 )
            {
                __m128i x0, x1, x2, y0, y1, y2;
                x0 = _mm_load_si128((const __m128i*)(S0 + x));
                x1 = _mm_load_si128((const __m128i*)(S0 + x + 4));
                y0 = _mm_load_si128((const __m128i*)(S1 + x));
                y1 = _mm_load_si128((const __m128i*)(S1 + x + 4));
                x0 = _mm_packs_epi32(_mm_srai_epi32(x0, 4), _mm_srai_epi32(x1, 4));
                y0 = _mm_packs_epi32(_mm_srai_epi32(y0, 4), _mm_srai_epi32(y1, 4));

                x1 = _mm_load_si128((const __m128i*)(S0 + x + 8));
                x2 = _mm_load_si128((const __m128i*)(S0 + x + 12));
                y1 = _mm_load_si128((const __m128i*)(S1 + x + 8));
                y2 = _mm_load_si128((const __m128i*)(S1 + x + 12));
                x1 = _mm_packs_epi32(_mm_srai_epi32(x1, 4), _mm_srai_epi32(x2, 4));
                y1 = _mm_packs_epi32(_mm_srai_epi32(y1, 4), _mm_srai_epi32(y2, 4));

                x0 = _mm_adds_epi16(_mm_mulhi_epi16( x0, b0 ), _mm_mulhi_epi16( y0, b1 ));
                x1 = _mm_adds_epi16(_mm_mulhi_epi16( x1, b0 ), _mm_mulhi_epi16( y1, b1 ));

                x0 = _mm_srai_epi16(_mm_adds_epi16(x0, delta), 2);
                x1 = _mm_srai_epi16(_mm_adds_epi16(x1, delta), 2);
                _mm_storeu_si128( (__m128i*)(dst + x), _mm_packus_epi16(x0, x1));
            }
        else
            for( ; x <= width - 16; x += 16 )
            {
                __m128i x0, x1, x2, y0, y1, y2;
                x0 = _mm_loadu_si128((const __m128i*)(S0 + x));
                x1 = _mm_loadu_si128((const __m128i*)(S0 + x + 4));
                y0 = _mm_loadu_si128((const __m128i*)(S1 + x));
                y1 = _mm_loadu_si128((const __m128i*)(S1 + x + 4));
                x0 = _mm_packs_epi32(_mm_srai_epi32(x0, 4), _mm_srai_epi32(x1, 4));
                y0 = _mm_packs_epi32(_mm_srai_epi32(y0, 4), _mm_srai_epi32(y1, 4));

                x1 = _mm_loadu_si128((const __m128i*)(S0 + x + 8));
                x2 = _mm_loadu_si128((const __m128i*)(S0 + x + 12));
                y1 = _mm_loadu_si128((const __m128i*)(S1 + x + 8));
                y2 = _mm_loadu_si128((const __m128i*)(S1 + x + 12));
                x1 = _mm_packs_epi32(_mm_srai_epi32(x1, 4), _mm_srai_epi32(x2, 4));
                y1 = _mm_packs_epi32(_mm_srai_epi32(y1, 4), _mm_srai_epi32(y2, 4));

                x0 = _mm_adds_epi16(_mm_mulhi_epi16( x0, b0 ), _mm_mulhi_epi16( y0, b1 ));
                x1 = _mm_adds_epi16(_mm_mulhi_epi16( x1, b0 ), _mm_mulhi_epi16( y1, b1 ));

                x0 = _mm_srai_epi16(_mm_adds_epi16(x0, delta), 2);
                x1 = _mm_srai_epi16(_mm_adds_epi16(x1, delta), 2);
                _mm_storeu_si128( (__m128i*)(dst + x), _mm_packus_epi16(x0, x1));
            }

        for( ; x < width - 4; x += 4 )
        {
            __m128i x0, y0;
            x0 = _mm_srai_epi32(_mm_loadu_si128((const __m128i*)(S0 + x)), 4);
            y0 = _mm_srai_epi32(_mm_loadu_si128((const __m128i*)(S1 + x)), 4);
            x0 = _mm_packs_epi32(x0, x0);
            y0 = _mm_packs_epi32(y0, y0);
            x0 = _mm_adds_epi16(_mm_mulhi_epi16(x0, b0), _mm_mulhi_epi16(y0, b1));
            x0 = _mm_srai_epi16(_mm_adds_epi16(x0, delta), 2);
            x0 = _mm_packus_epi16(x0, x0);
            *(int*)(dst + x) = _mm_cvtsi128_si32(x0);
        }

        return x;
    }
};


template<int shiftval> struct VResizeLinearVec_32f16
{
    int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
    {
        if( !checkHardwareSupport(CV_CPU_SSE2) )
            return 0;
M
Marina Kolpakova 已提交
542

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
        const float** src = (const float**)_src;
        const float* beta = (const float*)_beta;
        const float *S0 = src[0], *S1 = src[1];
        ushort* dst = (ushort*)_dst;
        int x = 0;

        __m128 b0 = _mm_set1_ps(beta[0]), b1 = _mm_set1_ps(beta[1]);
        __m128i preshift = _mm_set1_epi32(shiftval);
        __m128i postshift = _mm_set1_epi16((short)shiftval);

        if( (((size_t)S0|(size_t)S1)&15) == 0 )
            for( ; x <= width - 16; x += 16 )
            {
                __m128 x0, x1, y0, y1;
                __m128i t0, t1, t2;
                x0 = _mm_load_ps(S0 + x);
                x1 = _mm_load_ps(S0 + x + 4);
                y0 = _mm_load_ps(S1 + x);
                y1 = _mm_load_ps(S1 + x + 4);

                x0 = _mm_add_ps(_mm_mul_ps(x0, b0), _mm_mul_ps(y0, b1));
                x1 = _mm_add_ps(_mm_mul_ps(x1, b0), _mm_mul_ps(y1, b1));
                t0 = _mm_add_epi32(_mm_cvtps_epi32(x0), preshift);
                t2 = _mm_add_epi32(_mm_cvtps_epi32(x1), preshift);
                t0 = _mm_add_epi16(_mm_packs_epi32(t0, t2), postshift);

                x0 = _mm_load_ps(S0 + x + 8);
                x1 = _mm_load_ps(S0 + x + 12);
                y0 = _mm_load_ps(S1 + x + 8);
                y1 = _mm_load_ps(S1 + x + 12);

                x0 = _mm_add_ps(_mm_mul_ps(x0, b0), _mm_mul_ps(y0, b1));
                x1 = _mm_add_ps(_mm_mul_ps(x1, b0), _mm_mul_ps(y1, b1));
                t1 = _mm_add_epi32(_mm_cvtps_epi32(x0), preshift);
                t2 = _mm_add_epi32(_mm_cvtps_epi32(x1), preshift);
                t1 = _mm_add_epi16(_mm_packs_epi32(t1, t2), postshift);

                _mm_storeu_si128( (__m128i*)(dst + x), t0);
                _mm_storeu_si128( (__m128i*)(dst + x + 8), t1);
            }
        else
            for( ; x <= width - 16; x += 16 )
            {
                __m128 x0, x1, y0, y1;
                __m128i t0, t1, t2;
                x0 = _mm_loadu_ps(S0 + x);
                x1 = _mm_loadu_ps(S0 + x + 4);
                y0 = _mm_loadu_ps(S1 + x);
                y1 = _mm_loadu_ps(S1 + x + 4);

                x0 = _mm_add_ps(_mm_mul_ps(x0, b0), _mm_mul_ps(y0, b1));
                x1 = _mm_add_ps(_mm_mul_ps(x1, b0), _mm_mul_ps(y1, b1));
                t0 = _mm_add_epi32(_mm_cvtps_epi32(x0), preshift);
                t2 = _mm_add_epi32(_mm_cvtps_epi32(x1), preshift);
                t0 = _mm_add_epi16(_mm_packs_epi32(t0, t2), postshift);

                x0 = _mm_loadu_ps(S0 + x + 8);
                x1 = _mm_loadu_ps(S0 + x + 12);
                y0 = _mm_loadu_ps(S1 + x + 8);
                y1 = _mm_loadu_ps(S1 + x + 12);

                x0 = _mm_add_ps(_mm_mul_ps(x0, b0), _mm_mul_ps(y0, b1));
                x1 = _mm_add_ps(_mm_mul_ps(x1, b0), _mm_mul_ps(y1, b1));
                t1 = _mm_add_epi32(_mm_cvtps_epi32(x0), preshift);
                t2 = _mm_add_epi32(_mm_cvtps_epi32(x1), preshift);
                t1 = _mm_add_epi16(_mm_packs_epi32(t1, t2), postshift);

                _mm_storeu_si128( (__m128i*)(dst + x), t0);
                _mm_storeu_si128( (__m128i*)(dst + x + 8), t1);
            }

        for( ; x < width - 4; x += 4 )
        {
            __m128 x0, y0;
            __m128i t0;
            x0 = _mm_loadu_ps(S0 + x);
            y0 = _mm_loadu_ps(S1 + x);

            x0 = _mm_add_ps(_mm_mul_ps(x0, b0), _mm_mul_ps(y0, b1));
            t0 = _mm_add_epi32(_mm_cvtps_epi32(x0), preshift);
            t0 = _mm_add_epi16(_mm_packs_epi32(t0, t0), postshift);
            _mm_storel_epi64( (__m128i*)(dst + x), t0);
        }

        return x;
    }
};

typedef VResizeLinearVec_32f16<SHRT_MIN> VResizeLinearVec_32f16u;
M
Marina Kolpakova 已提交
632
typedef VResizeLinearVec_32f16<0> VResizeLinearVec_32f16s;
633 634 635 636 637 638 639

struct VResizeLinearVec_32f
{
    int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
    {
        if( !checkHardwareSupport(CV_CPU_SSE) )
            return 0;
M
Marina Kolpakova 已提交
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
        const float** src = (const float**)_src;
        const float* beta = (const float*)_beta;
        const float *S0 = src[0], *S1 = src[1];
        float* dst = (float*)_dst;
        int x = 0;

        __m128 b0 = _mm_set1_ps(beta[0]), b1 = _mm_set1_ps(beta[1]);

        if( (((size_t)S0|(size_t)S1)&15) == 0 )
            for( ; x <= width - 8; x += 8 )
            {
                __m128 x0, x1, y0, y1;
                x0 = _mm_load_ps(S0 + x);
                x1 = _mm_load_ps(S0 + x + 4);
                y0 = _mm_load_ps(S1 + x);
                y1 = _mm_load_ps(S1 + x + 4);

                x0 = _mm_add_ps(_mm_mul_ps(x0, b0), _mm_mul_ps(y0, b1));
                x1 = _mm_add_ps(_mm_mul_ps(x1, b0), _mm_mul_ps(y1, b1));

                _mm_storeu_ps( dst + x, x0);
                _mm_storeu_ps( dst + x + 4, x1);
            }
        else
            for( ; x <= width - 8; x += 8 )
            {
                __m128 x0, x1, y0, y1;
                x0 = _mm_loadu_ps(S0 + x);
                x1 = _mm_loadu_ps(S0 + x + 4);
                y0 = _mm_loadu_ps(S1 + x);
                y1 = _mm_loadu_ps(S1 + x + 4);

                x0 = _mm_add_ps(_mm_mul_ps(x0, b0), _mm_mul_ps(y0, b1));
                x1 = _mm_add_ps(_mm_mul_ps(x1, b0), _mm_mul_ps(y1, b1));

                _mm_storeu_ps( dst + x, x0);
                _mm_storeu_ps( dst + x + 4, x1);
            }

        return x;
    }
};


struct VResizeCubicVec_32s8u
{
    int operator()(const uchar** _src, uchar* dst, const uchar* _beta, int width ) const
    {
        if( !checkHardwareSupport(CV_CPU_SSE2) )
            return 0;
M
Marina Kolpakova 已提交
691

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
        const int** src = (const int**)_src;
        const short* beta = (const short*)_beta;
        const int *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
        int x = 0;
        float scale = 1.f/(INTER_RESIZE_COEF_SCALE*INTER_RESIZE_COEF_SCALE);
        __m128 b0 = _mm_set1_ps(beta[0]*scale), b1 = _mm_set1_ps(beta[1]*scale),
            b2 = _mm_set1_ps(beta[2]*scale), b3 = _mm_set1_ps(beta[3]*scale);

        if( (((size_t)S0|(size_t)S1|(size_t)S2|(size_t)S3)&15) == 0 )
            for( ; x <= width - 8; x += 8 )
            {
                __m128i x0, x1, y0, y1;
                __m128 s0, s1, f0, f1;
                x0 = _mm_load_si128((const __m128i*)(S0 + x));
                x1 = _mm_load_si128((const __m128i*)(S0 + x + 4));
                y0 = _mm_load_si128((const __m128i*)(S1 + x));
                y1 = _mm_load_si128((const __m128i*)(S1 + x + 4));

                s0 = _mm_mul_ps(_mm_cvtepi32_ps(x0), b0);
                s1 = _mm_mul_ps(_mm_cvtepi32_ps(x1), b0);
                f0 = _mm_mul_ps(_mm_cvtepi32_ps(y0), b1);
                f1 = _mm_mul_ps(_mm_cvtepi32_ps(y1), b1);
                s0 = _mm_add_ps(s0, f0);
                s1 = _mm_add_ps(s1, f1);

                x0 = _mm_load_si128((const __m128i*)(S2 + x));
                x1 = _mm_load_si128((const __m128i*)(S2 + x + 4));
                y0 = _mm_load_si128((const __m128i*)(S3 + x));
                y1 = _mm_load_si128((const __m128i*)(S3 + x + 4));

                f0 = _mm_mul_ps(_mm_cvtepi32_ps(x0), b2);
                f1 = _mm_mul_ps(_mm_cvtepi32_ps(x1), b2);
                s0 = _mm_add_ps(s0, f0);
                s1 = _mm_add_ps(s1, f1);
                f0 = _mm_mul_ps(_mm_cvtepi32_ps(y0), b3);
                f1 = _mm_mul_ps(_mm_cvtepi32_ps(y1), b3);
                s0 = _mm_add_ps(s0, f0);
                s1 = _mm_add_ps(s1, f1);

                x0 = _mm_cvtps_epi32(s0);
                x1 = _mm_cvtps_epi32(s1);

                x0 = _mm_packs_epi32(x0, x1);
                _mm_storel_epi64( (__m128i*)(dst + x), _mm_packus_epi16(x0, x0));
            }
        else
            for( ; x <= width - 8; x += 8 )
            {
                __m128i x0, x1, y0, y1;
                __m128 s0, s1, f0, f1;
                x0 = _mm_loadu_si128((const __m128i*)(S0 + x));
                x1 = _mm_loadu_si128((const __m128i*)(S0 + x + 4));
                y0 = _mm_loadu_si128((const __m128i*)(S1 + x));
                y1 = _mm_loadu_si128((const __m128i*)(S1 + x + 4));

                s0 = _mm_mul_ps(_mm_cvtepi32_ps(x0), b0);
                s1 = _mm_mul_ps(_mm_cvtepi32_ps(x1), b0);
                f0 = _mm_mul_ps(_mm_cvtepi32_ps(y0), b1);
                f1 = _mm_mul_ps(_mm_cvtepi32_ps(y1), b1);
                s0 = _mm_add_ps(s0, f0);
                s1 = _mm_add_ps(s1, f1);

                x0 = _mm_loadu_si128((const __m128i*)(S2 + x));
                x1 = _mm_loadu_si128((const __m128i*)(S2 + x + 4));
                y0 = _mm_loadu_si128((const __m128i*)(S3 + x));
                y1 = _mm_loadu_si128((const __m128i*)(S3 + x + 4));

                f0 = _mm_mul_ps(_mm_cvtepi32_ps(x0), b2);
                f1 = _mm_mul_ps(_mm_cvtepi32_ps(x1), b2);
                s0 = _mm_add_ps(s0, f0);
                s1 = _mm_add_ps(s1, f1);
                f0 = _mm_mul_ps(_mm_cvtepi32_ps(y0), b3);
                f1 = _mm_mul_ps(_mm_cvtepi32_ps(y1), b3);
                s0 = _mm_add_ps(s0, f0);
                s1 = _mm_add_ps(s1, f1);

                x0 = _mm_cvtps_epi32(s0);
                x1 = _mm_cvtps_epi32(s1);

                x0 = _mm_packs_epi32(x0, x1);
                _mm_storel_epi64( (__m128i*)(dst + x), _mm_packus_epi16(x0, x0));
            }

        return x;
    }
};


template<int shiftval> struct VResizeCubicVec_32f16
{
    int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
    {
        if( !checkHardwareSupport(CV_CPU_SSE2) )
            return 0;
M
Marina Kolpakova 已提交
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
        const float** src = (const float**)_src;
        const float* beta = (const float*)_beta;
        const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
        ushort* dst = (ushort*)_dst;
        int x = 0;
        __m128 b0 = _mm_set1_ps(beta[0]), b1 = _mm_set1_ps(beta[1]),
            b2 = _mm_set1_ps(beta[2]), b3 = _mm_set1_ps(beta[3]);
        __m128i preshift = _mm_set1_epi32(shiftval);
        __m128i postshift = _mm_set1_epi16((short)shiftval);

        for( ; x <= width - 8; x += 8 )
        {
            __m128 x0, x1, y0, y1, s0, s1;
            __m128i t0, t1;
            x0 = _mm_loadu_ps(S0 + x);
            x1 = _mm_loadu_ps(S0 + x + 4);
            y0 = _mm_loadu_ps(S1 + x);
            y1 = _mm_loadu_ps(S1 + x + 4);

            s0 = _mm_mul_ps(x0, b0);
            s1 = _mm_mul_ps(x1, b0);
            y0 = _mm_mul_ps(y0, b1);
            y1 = _mm_mul_ps(y1, b1);
            s0 = _mm_add_ps(s0, y0);
            s1 = _mm_add_ps(s1, y1);

            x0 = _mm_loadu_ps(S2 + x);
            x1 = _mm_loadu_ps(S2 + x + 4);
            y0 = _mm_loadu_ps(S3 + x);
            y1 = _mm_loadu_ps(S3 + x + 4);

            x0 = _mm_mul_ps(x0, b2);
            x1 = _mm_mul_ps(x1, b2);
            y0 = _mm_mul_ps(y0, b3);
            y1 = _mm_mul_ps(y1, b3);
            s0 = _mm_add_ps(s0, x0);
            s1 = _mm_add_ps(s1, x1);
            s0 = _mm_add_ps(s0, y0);
            s1 = _mm_add_ps(s1, y1);

            t0 = _mm_add_epi32(_mm_cvtps_epi32(s0), preshift);
            t1 = _mm_add_epi32(_mm_cvtps_epi32(s1), preshift);

            t0 = _mm_add_epi16(_mm_packs_epi32(t0, t1), postshift);
            _mm_storeu_si128( (__m128i*)(dst + x), t0);
        }

        return x;
    }
};

typedef VResizeCubicVec_32f16<SHRT_MIN> VResizeCubicVec_32f16u;
M
Marina Kolpakova 已提交
839
typedef VResizeCubicVec_32f16<0> VResizeCubicVec_32f16s;
840 841 842 843 844 845 846

struct VResizeCubicVec_32f
{
    int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
    {
        if( !checkHardwareSupport(CV_CPU_SSE) )
            return 0;
M
Marina Kolpakova 已提交
847

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
        const float** src = (const float**)_src;
        const float* beta = (const float*)_beta;
        const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
        float* dst = (float*)_dst;
        int x = 0;
        __m128 b0 = _mm_set1_ps(beta[0]), b1 = _mm_set1_ps(beta[1]),
            b2 = _mm_set1_ps(beta[2]), b3 = _mm_set1_ps(beta[3]);

        for( ; x <= width - 8; x += 8 )
        {
            __m128 x0, x1, y0, y1, s0, s1;
            x0 = _mm_loadu_ps(S0 + x);
            x1 = _mm_loadu_ps(S0 + x + 4);
            y0 = _mm_loadu_ps(S1 + x);
            y1 = _mm_loadu_ps(S1 + x + 4);

            s0 = _mm_mul_ps(x0, b0);
            s1 = _mm_mul_ps(x1, b0);
            y0 = _mm_mul_ps(y0, b1);
            y1 = _mm_mul_ps(y1, b1);
            s0 = _mm_add_ps(s0, y0);
            s1 = _mm_add_ps(s1, y1);

            x0 = _mm_loadu_ps(S2 + x);
            x1 = _mm_loadu_ps(S2 + x + 4);
            y0 = _mm_loadu_ps(S3 + x);
            y1 = _mm_loadu_ps(S3 + x + 4);

            x0 = _mm_mul_ps(x0, b2);
            x1 = _mm_mul_ps(x1, b2);
            y0 = _mm_mul_ps(y0, b3);
            y1 = _mm_mul_ps(y1, b3);
            s0 = _mm_add_ps(s0, x0);
            s1 = _mm_add_ps(s1, x1);
            s0 = _mm_add_ps(s0, y0);
            s1 = _mm_add_ps(s1, y1);

            _mm_storeu_ps( dst + x, s0);
            _mm_storeu_ps( dst + x + 4, s1);
        }

        return x;
    }
};

#else

typedef VResizeNoVec VResizeLinearVec_32s8u;
typedef VResizeNoVec VResizeLinearVec_32f16u;
typedef VResizeNoVec VResizeLinearVec_32f16s;
typedef VResizeNoVec VResizeLinearVec_32f;
M
Marina Kolpakova 已提交
899

900 901 902 903
typedef VResizeNoVec VResizeCubicVec_32s8u;
typedef VResizeNoVec VResizeCubicVec_32f16u;
typedef VResizeNoVec VResizeCubicVec_32f16s;
typedef VResizeNoVec VResizeCubicVec_32f;
M
Marina Kolpakova 已提交
904

905 906
#endif

907 908 909 910 911 912
typedef HResizeNoVec HResizeLinearVec_8u32s;
typedef HResizeNoVec HResizeLinearVec_16u32f;
typedef HResizeNoVec HResizeLinearVec_16s32f;
typedef HResizeNoVec HResizeLinearVec_32f;
typedef HResizeNoVec HResizeLinearVec_64f;

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

template<typename T, typename WT, typename AT, int ONE, class VecOp>
struct HResizeLinear
{
    typedef T value_type;
    typedef WT buf_type;
    typedef AT alpha_type;

    void operator()(const T** src, WT** dst, int count,
                    const int* xofs, const AT* alpha,
                    int swidth, int dwidth, int cn, int xmin, int xmax ) const
    {
        int dx, k;
        VecOp vecOp;

        int dx0 = vecOp((const uchar**)src, (uchar**)dst, count,
            xofs, (const uchar*)alpha, swidth, dwidth, cn, xmin, xmax );

        for( k = 0; k <= count - 2; k++ )
        {
            const T *S0 = src[k], *S1 = src[k+1];
            WT *D0 = dst[k], *D1 = dst[k+1];
            for( dx = dx0; dx < xmax; dx++ )
            {
                int sx = xofs[dx];
                WT a0 = alpha[dx*2], a1 = alpha[dx*2+1];
                WT t0 = S0[sx]*a0 + S0[sx + cn]*a1;
                WT t1 = S1[sx]*a0 + S1[sx + cn]*a1;
                D0[dx] = t0; D1[dx] = t1;
            }

            for( ; dx < dwidth; dx++ )
            {
                int sx = xofs[dx];
                D0[dx] = WT(S0[sx]*ONE); D1[dx] = WT(S1[sx]*ONE);
            }
        }

        for( ; k < count; k++ )
        {
            const T *S = src[k];
            WT *D = dst[k];
            for( dx = 0; dx < xmax; dx++ )
            {
                int sx = xofs[dx];
                D[dx] = S[sx]*alpha[dx*2] + S[sx+cn]*alpha[dx*2+1];
            }

            for( ; dx < dwidth; dx++ )
                D[dx] = WT(S[xofs[dx]]*ONE);
        }
    }
};


template<typename T, typename WT, typename AT, class CastOp, class VecOp>
struct VResizeLinear
{
    typedef T value_type;
    typedef WT buf_type;
    typedef AT alpha_type;
M
Marina Kolpakova 已提交
974

975 976 977 978 979 980 981 982
    void operator()(const WT** src, T* dst, const AT* beta, int width ) const
    {
        WT b0 = beta[0], b1 = beta[1];
        const WT *S0 = src[0], *S1 = src[1];
        CastOp castOp;
        VecOp vecOp;

        int x = vecOp((const uchar**)src, (uchar*)dst, (const uchar*)beta, width);
M
Marina Kolpakova 已提交
983 984
        #if CV_ENABLE_UNROLLED
        for( ; x <= width - 4; x += 4 )
985 986 987 988 989 990 991 992 993
        {
            WT t0, t1;
            t0 = S0[x]*b0 + S1[x]*b1;
            t1 = S0[x+1]*b0 + S1[x+1]*b1;
            dst[x] = castOp(t0); dst[x+1] = castOp(t1);
            t0 = S0[x+2]*b0 + S1[x+2]*b1;
            t1 = S0[x+3]*b0 + S1[x+3]*b1;
            dst[x+2] = castOp(t0); dst[x+3] = castOp(t1);
        }
V
Victoria Zhislina 已提交
994
        #endif
995 996 997 998 999
        for( ; x < width; x++ )
            dst[x] = castOp(S0[x]*b0 + S1[x]*b1);
    }
};

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
template<>
struct VResizeLinear<uchar, int, short, FixedPtCast<int, uchar, INTER_RESIZE_COEF_BITS*2>, VResizeLinearVec_32s8u>
{
    typedef uchar value_type;
    typedef int buf_type;
    typedef short alpha_type;

    void operator()(const buf_type** src, value_type* dst, const alpha_type* beta, int width ) const
    {
        alpha_type b0 = beta[0], b1 = beta[1];
        const buf_type *S0 = src[0], *S1 = src[1];
        VResizeLinearVec_32s8u vecOp;

        int x = vecOp((const uchar**)src, (uchar*)dst, (const uchar*)beta, width);
        #if CV_ENABLE_UNROLLED
        for( ; x <= width - 4; x += 4 )
        {
            dst[x+0] = uchar(( ((b0 * (S0[x+0] >> 4)) >> 16) + ((b1 * (S1[x+0] >> 4)) >> 16) + 2)>>2);
            dst[x+1] = uchar(( ((b0 * (S0[x+1] >> 4)) >> 16) + ((b1 * (S1[x+1] >> 4)) >> 16) + 2)>>2);
            dst[x+2] = uchar(( ((b0 * (S0[x+2] >> 4)) >> 16) + ((b1 * (S1[x+2] >> 4)) >> 16) + 2)>>2);
            dst[x+3] = uchar(( ((b0 * (S0[x+3] >> 4)) >> 16) + ((b1 * (S1[x+3] >> 4)) >> 16) + 2)>>2);
        }
        #endif
        for( ; x < width; x++ )
            dst[x] = uchar(( ((b0 * (S0[x] >> 4)) >> 16) + ((b1 * (S1[x] >> 4)) >> 16) + 2)>>2);
    }
};

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

template<typename T, typename WT, typename AT>
struct HResizeCubic
{
    typedef T value_type;
    typedef WT buf_type;
    typedef AT alpha_type;

    void operator()(const T** src, WT** dst, int count,
                    const int* xofs, const AT* alpha,
                    int swidth, int dwidth, int cn, int xmin, int xmax ) const
    {
        for( int k = 0; k < count; k++ )
        {
            const T *S = src[k];
            WT *D = dst[k];
            int dx = 0, limit = xmin;
            for(;;)
            {
                for( ; dx < limit; dx++, alpha += 4 )
                {
                    int j, sx = xofs[dx] - cn;
                    WT v = 0;
                    for( j = 0; j < 4; j++ )
                    {
                        int sxj = sx + j*cn;
                        if( (unsigned)sxj >= (unsigned)swidth )
                        {
                            while( sxj < 0 )
                                sxj += cn;
                            while( sxj >= swidth )
                                sxj -= cn;
                        }
                        v += S[sxj]*alpha[j];
                    }
                    D[dx] = v;
                }
                if( limit == dwidth )
                    break;
                for( ; dx < xmax; dx++, alpha += 4 )
                {
                    int sx = xofs[dx];
                    D[dx] = S[sx-cn]*alpha[0] + S[sx]*alpha[1] +
                        S[sx+cn]*alpha[2] + S[sx+cn*2]*alpha[3];
                }
                limit = dwidth;
            }
            alpha -= dwidth*4;
        }
    }
};


template<typename T, typename WT, typename AT, class CastOp, class VecOp>
struct VResizeCubic
{
    typedef T value_type;
    typedef WT buf_type;
    typedef AT alpha_type;

    void operator()(const WT** src, T* dst, const AT* beta, int width ) const
    {
        WT b0 = beta[0], b1 = beta[1], b2 = beta[2], b3 = beta[3];
        const WT *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
        CastOp castOp;
        VecOp vecOp;

        int x = vecOp((const uchar**)src, (uchar*)dst, (const uchar*)beta, width);
        for( ; x < width; x++ )
            dst[x] = castOp(S0[x]*b0 + S1[x]*b1 + S2[x]*b2 + S3[x]*b3);
    }
};


template<typename T, typename WT, typename AT>
struct HResizeLanczos4
{
    typedef T value_type;
    typedef WT buf_type;
    typedef AT alpha_type;

    void operator()(const T** src, WT** dst, int count,
                    const int* xofs, const AT* alpha,
                    int swidth, int dwidth, int cn, int xmin, int xmax ) const
    {
        for( int k = 0; k < count; k++ )
        {
            const T *S = src[k];
            WT *D = dst[k];
            int dx = 0, limit = xmin;
            for(;;)
            {
                for( ; dx < limit; dx++, alpha += 8 )
                {
                    int j, sx = xofs[dx] - cn*3;
                    WT v = 0;
                    for( j = 0; j < 8; j++ )
                    {
                        int sxj = sx + j*cn;
                        if( (unsigned)sxj >= (unsigned)swidth )
                        {
                            while( sxj < 0 )
                                sxj += cn;
                            while( sxj >= swidth )
                                sxj -= cn;
                        }
                        v += S[sxj]*alpha[j];
                    }
                    D[dx] = v;
                }
                if( limit == dwidth )
                    break;
                for( ; dx < xmax; dx++, alpha += 8 )
                {
                    int sx = xofs[dx];
                    D[dx] = S[sx-cn*3]*alpha[0] + S[sx-cn*2]*alpha[1] +
                        S[sx-cn]*alpha[2] + S[sx]*alpha[3] +
                        S[sx+cn]*alpha[4] + S[sx+cn*2]*alpha[5] +
                        S[sx+cn*3]*alpha[6] + S[sx+cn*4]*alpha[7];
                }
                limit = dwidth;
            }
            alpha -= dwidth*8;
        }
    }
};


template<typename T, typename WT, typename AT, class CastOp, class VecOp>
struct VResizeLanczos4
{
    typedef T value_type;
    typedef WT buf_type;
    typedef AT alpha_type;

    void operator()(const WT** src, T* dst, const AT* beta, int width ) const
    {
        CastOp castOp;
        VecOp vecOp;
        int k, x = vecOp((const uchar**)src, (uchar*)dst, (const uchar*)beta, width);
M
Marina Kolpakova 已提交
1168
        #if CV_ENABLE_UNROLLED
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        for( ; x <= width - 4; x += 4 )
        {
            WT b = beta[0];
            const WT* S = src[0];
            WT s0 = S[x]*b, s1 = S[x+1]*b, s2 = S[x+2]*b, s3 = S[x+3]*b;

            for( k = 1; k < 8; k++ )
            {
                b = beta[k]; S = src[k];
                s0 += S[x]*b; s1 += S[x+1]*b;
                s2 += S[x+2]*b; s3 += S[x+3]*b;
            }

            dst[x] = castOp(s0); dst[x+1] = castOp(s1);
            dst[x+2] = castOp(s2); dst[x+3] = castOp(s3);
        }
V
Victoria Zhislina 已提交
1185
        #endif
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        for( ; x < width; x++ )
        {
            dst[x] = castOp(src[0][x]*beta[0] + src[1][x]*beta[1] +
                src[2][x]*beta[2] + src[3][x]*beta[3] + src[4][x]*beta[4] +
                src[5][x]*beta[5] + src[6][x]*beta[6] + src[7][x]*beta[7]);
        }
    }
};


static inline int clip(int x, int a, int b)
{
    return x >= a ? (x < b ? x : b-1) : a;
}

static const int MAX_ESIZE=16;

1203 1204 1205 1206 1207 1208 1209 1210
template <typename HResize, typename VResize>
class resizeGeneric_Invoker :
    public ParallelLoopBody
{
public:
    typedef typename HResize::value_type T;
    typedef typename HResize::buf_type WT;
    typedef typename HResize::alpha_type AT;
1211

1212 1213 1214 1215 1216 1217 1218 1219
    resizeGeneric_Invoker(const Mat& _src, Mat &_dst, const int *_xofs, const int *_yofs,
        const AT* _alpha, const AT* __beta, const Size& _ssize, const Size &_dsize,
        int _ksize, int _xmin, int _xmax) :
        ParallelLoopBody(), src(_src), dst(_dst), xofs(_xofs), yofs(_yofs),
        alpha(_alpha), _beta(__beta), ssize(_ssize), dsize(_dsize),
        ksize(_ksize), xmin(_xmin), xmax(_xmax)
    {
    }
1220

1221 1222 1223 1224 1225
    virtual void operator() (const Range& range) const
    {
        int dy, cn = src.channels();
        HResize hresize;
        VResize vresize;
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        int bufstep = (int)alignSize(dsize.width, 16);
        AutoBuffer<WT> _buffer(bufstep*ksize);
        const T* srows[MAX_ESIZE]={0};
        WT* rows[MAX_ESIZE]={0};
        int prev_sy[MAX_ESIZE];

        for(int k = 0; k < ksize; k++ )
        {
            prev_sy[k] = -1;
            rows[k] = (WT*)_buffer + bufstep*k;
        }
1238

1239
        const AT* beta = _beta + ksize * range.start;
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
        for( dy = range.start; dy < range.end; dy++, beta += ksize )
        {
            int sy0 = yofs[dy], k0=ksize, k1=0, ksize2 = ksize/2;

            for(int k = 0; k < ksize; k++ )
            {
                int sy = clip(sy0 - ksize2 + 1 + k, 0, ssize.height);
                for( k1 = std::max(k1, k); k1 < ksize; k1++ )
                {
                    if( sy == prev_sy[k1] ) // if the sy-th row has been computed already, reuse it.
                    {
                        if( k1 > k )
                            memcpy( rows[k], rows[k1], bufstep*sizeof(rows[0][0]) );
                        break;
                    }
                }
                if( k1 == ksize )
                    k0 = std::min(k0, k); // remember the first row that needs to be computed
                srows[k] = (T*)(src.data + src.step*sy);
                prev_sy[k] = sy;
            }

            if( k0 < ksize )
                hresize( (const T**)(srows + k0), (WT**)(rows + k0), ksize - k0, xofs, (const AT*)(alpha),
                        ssize.width, dsize.width, cn, xmin, xmax );
            vresize( (const WT**)rows, (T*)(dst.data + dst.step*dy), beta, dsize.width );
        }
    }
1269

1270
private:
1271
    Mat src;
1272 1273 1274
    Mat dst;
    const int* xofs, *yofs;
    const AT* alpha, *_beta;
1275 1276
    Size ssize, dsize;
    int ksize, xmin, xmax;
1277 1278
};

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
template<class HResize, class VResize>
static void resizeGeneric_( const Mat& src, Mat& dst,
                            const int* xofs, const void* _alpha,
                            const int* yofs, const void* _beta,
                            int xmin, int xmax, int ksize )
{
    typedef typename HResize::alpha_type AT;

    const AT* beta = (const AT*)_beta;
    Size ssize = src.size(), dsize = dst.size();
    int cn = src.channels();
    ssize.width *= cn;
    dsize.width *= cn;
    xmin *= cn;
    xmax *= cn;
1294
    // image resize is a separable operation. In case of not too strong
1295

1296 1297 1298
    Range range(0, dsize.height);
    resizeGeneric_Invoker<HResize, VResize> invoker(src, dst, xofs, yofs, (const AT*)_alpha, beta,
        ssize, dsize, ksize, xmin, xmax);
1299
    parallel_for_(range, invoker, dst.total()/(double)(1<<16));
1300
}
1301

1302 1303 1304
template <typename T, typename WT>
struct ResizeAreaFastNoVec
{
1305 1306 1307 1308
    ResizeAreaFastNoVec(int, int) { }
    ResizeAreaFastNoVec(int, int, int, int) { }
    int operator() (const T*, T*, int) const
    { return 0; }
1309
};
1310

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
#if CV_SSE2
class ResizeAreaFastVec_SIMD_8u
{
public:
    ResizeAreaFastVec_SIMD_8u(int _cn, int _step) :
        cn(_cn), step(_step)
    {
        use_simd = checkHardwareSupport(CV_CPU_SSE2);
    }

    int operator() (const uchar* S, uchar* D, int w) const
    {
        if (!use_simd)
            return 0;

        int dx = 0;
        const uchar* S0 = S;
        const uchar* S1 = S0 + step;
        __m128i zero = _mm_setzero_si128();
1330
        __m128i delta2 = _mm_set1_epi16(2);
1331 1332 1333

        if (cn == 1)
        {
1334
            __m128i masklow = _mm_set1_epi16(0x00ff);
1335
            for ( ; dx <= w - 8; dx += 8, S0 += 16, S1 += 16, D += 8)
1336
            {
1337 1338
                __m128i r0 = _mm_loadu_si128((const __m128i*)S0);
                __m128i r1 = _mm_loadu_si128((const __m128i*)S1);
1339

1340 1341 1342 1343
                __m128i s0 = _mm_add_epi16(_mm_srli_epi16(r0, 8), _mm_and_si128(r0, masklow));
                __m128i s1 = _mm_add_epi16(_mm_srli_epi16(r1, 8), _mm_and_si128(r1, masklow));
                s0 = _mm_add_epi16(_mm_add_epi16(s0, s1), delta2);
                s0 = _mm_packus_epi16(_mm_srli_epi16(s0, 2), zero);
1344

1345
                _mm_storel_epi64((__m128i*)D, s0);
1346 1347 1348
            }
        }
        else if (cn == 3)
1349
            for ( ; dx <= w - 11; dx += 6, S0 += 12, S1 += 12, D += 6)
1350
            {
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
                __m128i r0 = _mm_loadu_si128((const __m128i*)S0);
                __m128i r1 = _mm_loadu_si128((const __m128i*)S1);

                __m128i r0_16l = _mm_unpacklo_epi8(r0, zero);
                __m128i r0_16h = _mm_unpacklo_epi8(_mm_srli_si128(r0, 6), zero);
                __m128i r1_16l = _mm_unpacklo_epi8(r1, zero);
                __m128i r1_16h = _mm_unpacklo_epi8(_mm_srli_si128(r1, 6), zero);

                __m128i s0 = _mm_add_epi16(r0_16l, _mm_srli_si128(r0_16l, 6));
                __m128i s1 = _mm_add_epi16(r1_16l, _mm_srli_si128(r1_16l, 6));
                s0 = _mm_add_epi16(s1, _mm_add_epi16(s0, delta2));
                s0 = _mm_packus_epi16(_mm_srli_epi16(s0, 2), zero);
                _mm_storel_epi64((__m128i*)D, s0);

                s0 = _mm_add_epi16(r0_16h, _mm_srli_si128(r0_16h, 6));
                s1 = _mm_add_epi16(r1_16h, _mm_srli_si128(r1_16h, 6));
                s0 = _mm_add_epi16(s1, _mm_add_epi16(s0, delta2));
                s0 = _mm_packus_epi16(_mm_srli_epi16(s0, 2), zero);
                _mm_storel_epi64((__m128i*)(D+3), s0);
1370 1371 1372 1373
            }
        else
        {
            CV_Assert(cn == 4);
1374 1375 1376
            int v[] = { 0, 0, -1, -1 };
            __m128i mask = _mm_loadu_si128((const __m128i*)v);

1377
            for ( ; dx <= w - 8; dx += 8, S0 += 16, S1 += 16, D += 8)
1378
            {
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
                __m128i r0 = _mm_loadu_si128((const __m128i*)S0);
                __m128i r1 = _mm_loadu_si128((const __m128i*)S1);

                __m128i r0_16l = _mm_unpacklo_epi8(r0, zero);
                __m128i r0_16h = _mm_unpackhi_epi8(r0, zero);
                __m128i r1_16l = _mm_unpacklo_epi8(r1, zero);
                __m128i r1_16h = _mm_unpackhi_epi8(r1, zero);

                __m128i s0 = _mm_add_epi16(r0_16l, _mm_srli_si128(r0_16l, 8));
                __m128i s1 = _mm_add_epi16(r1_16l, _mm_srli_si128(r1_16l, 8));
                s0 = _mm_add_epi16(s1, _mm_add_epi16(s0, delta2));
1390
                __m128i res0 = _mm_srli_epi16(s0, 2);
1391 1392 1393 1394

                s0 = _mm_add_epi16(r0_16h, _mm_srli_si128(r0_16h, 8));
                s1 = _mm_add_epi16(r1_16h, _mm_srli_si128(r1_16h, 8));
                s0 = _mm_add_epi16(s1, _mm_add_epi16(s0, delta2));
1395 1396 1397 1398
                __m128i res1 = _mm_srli_epi16(s0, 2);
                s0 = _mm_packus_epi16(_mm_or_si128(_mm_andnot_si128(mask, res0),
                                                   _mm_and_si128(mask, _mm_slli_si128(res1, 8))), zero);
                _mm_storel_epi64((__m128i*)(D), s0);
1399 1400 1401 1402 1403 1404 1405 1406 1407
            }
        }

        return dx;
    }

private:
    int cn;
    bool use_simd;
1408
    int step;
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
};

class ResizeAreaFastVec_SIMD_16u
{
public:
    ResizeAreaFastVec_SIMD_16u(int _cn, int _step) :
        cn(_cn), step(_step)
    {
        use_simd = checkHardwareSupport(CV_CPU_SSE2);
    }

    int operator() (const ushort* S, ushort* D, int w) const
    {
        if (!use_simd)
            return 0;

        int dx = 0;
        const ushort* S0 = (const ushort*)S;
1427
        const ushort* S1 = (const ushort*)((const uchar*)(S) + step);
1428 1429
        __m128i masklow = _mm_set1_epi32(0x0000ffff);
        __m128i zero = _mm_setzero_si128();
1430
        __m128i delta2 = _mm_set1_epi32(2);
1431

I
Ilya Lavrenov 已提交
1432
#define _mm_packus_epi32(a, zero) _mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(a, 16), 16), zero)
1433

1434 1435
        if (cn == 1)
        {
1436
            for ( ; dx <= w - 4; dx += 4, S0 += 8, S1 += 8, D += 4)
1437
            {
1438 1439
                __m128i r0 = _mm_loadu_si128((const __m128i*)S0);
                __m128i r1 = _mm_loadu_si128((const __m128i*)S1);
1440

1441 1442 1443
                __m128i s0 = _mm_add_epi32(_mm_srli_epi32(r0, 16), _mm_and_si128(r0, masklow));
                __m128i s1 = _mm_add_epi32(_mm_srli_epi32(r1, 16), _mm_and_si128(r1, masklow));
                s0 = _mm_add_epi32(_mm_add_epi32(s0, s1), delta2);
1444 1445
                s0 = _mm_srli_epi32(s0, 2);
                s0 = _mm_packus_epi32(s0, zero);
1446

1447
                _mm_storel_epi64((__m128i*)D, s0);
1448 1449 1450
            }
        }
        else if (cn == 3)
1451
            for ( ; dx <= w - 4; dx += 3, S0 += 6, S1 += 6, D += 3)
1452
            {
1453 1454 1455 1456 1457 1458 1459 1460
                __m128i r0 = _mm_loadu_si128((const __m128i*)S0);
                __m128i r1 = _mm_loadu_si128((const __m128i*)S1);

                __m128i r0_16l = _mm_unpacklo_epi16(r0, zero);
                __m128i r0_16h = _mm_unpacklo_epi16(_mm_srli_si128(r0, 6), zero);
                __m128i r1_16l = _mm_unpacklo_epi16(r1, zero);
                __m128i r1_16h = _mm_unpacklo_epi16(_mm_srli_si128(r1, 6), zero);

1461 1462 1463
                __m128i s0 = _mm_add_epi32(r0_16l, r0_16h);
                __m128i s1 = _mm_add_epi32(r1_16l, r1_16h);
                s0 = _mm_add_epi32(delta2, _mm_add_epi32(s0, s1));
1464
                s0 = _mm_packus_epi32(_mm_srli_epi32(s0, 2), zero);
1465
                _mm_storel_epi64((__m128i*)D, s0);
1466 1467 1468 1469
            }
        else
        {
            CV_Assert(cn == 4);
1470
            for ( ; dx <= w - 4; dx += 4, S0 += 8, S1 += 8, D += 4)
1471
            {
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
                __m128i r0 = _mm_loadu_si128((const __m128i*)S0);
                __m128i r1 = _mm_loadu_si128((const __m128i*)S1);

                __m128i r0_32l = _mm_unpacklo_epi16(r0, zero);
                __m128i r0_32h = _mm_unpackhi_epi16(r0, zero);
                __m128i r1_32l = _mm_unpacklo_epi16(r1, zero);
                __m128i r1_32h = _mm_unpackhi_epi16(r1, zero);

                __m128i s0 = _mm_add_epi32(r0_32l, r0_32h);
                __m128i s1 = _mm_add_epi32(r1_32l, r1_32h);
                s0 = _mm_add_epi32(s1, _mm_add_epi32(s0, delta2));
1483
                s0 = _mm_packus_epi32(_mm_srli_epi32(s0, 2), zero);
1484
                _mm_storel_epi64((__m128i*)D, s0);
1485 1486 1487
            }
        }

I
Ilya Lavrenov 已提交
1488 1489
#undef _mm_packus_epi32

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
        return dx;
    }

private:
    int cn;
    int step;
    bool use_simd;
};

#else
typedef ResizeAreaFastNoVec<uchar, uchar> ResizeAreaFastVec_SIMD_8u;
typedef ResizeAreaFastNoVec<ushort, ushort> ResizeAreaFastVec_SIMD_16u;
#endif

template<typename T, typename SIMDVecOp>
1505
struct ResizeAreaFastVec
1506
{
1507 1508
    ResizeAreaFastVec(int _scale_x, int _scale_y, int _cn, int _step) :
        scale_x(_scale_x), scale_y(_scale_y), cn(_cn), step(_step), vecOp(_cn, _step)
1509 1510
    {
        fast_mode = scale_x == 2 && scale_y == 2 && (cn == 1 || cn == 3 || cn == 4);
1511
    }
1512

1513
    int operator() (const T* S, T* D, int w) const
1514
    {
1515
        if (!fast_mode)
1516
            return 0;
1517

1518
        const T* nextS = (const T*)((const uchar*)S + step);
1519
        int dx = vecOp(S, D, w);
1520

1521
        if (cn == 1)
1522 1523 1524 1525 1526
            for( ; dx < w; ++dx )
            {
                int index = dx*2;
                D[dx] = (T)((S[index] + S[index+1] + nextS[index] + nextS[index+1] + 2) >> 2);
            }
1527
        else if (cn == 3)
1528
            for( ; dx < w; dx += 3 )
1529
            {
1530
                int index = dx*2;
1531 1532 1533 1534 1535 1536
                D[dx] = (T)((S[index] + S[index+3] + nextS[index] + nextS[index+3] + 2) >> 2);
                D[dx+1] = (T)((S[index+1] + S[index+4] + nextS[index+1] + nextS[index+4] + 2) >> 2);
                D[dx+2] = (T)((S[index+2] + S[index+5] + nextS[index+2] + nextS[index+5] + 2) >> 2);
            }
        else
            {
1537
                CV_Assert(cn == 4);
1538 1539 1540 1541 1542 1543 1544 1545
                for( ; dx < w; dx += 4 )
                {
                    int index = dx*2;
                    D[dx] = (T)((S[index] + S[index+4] + nextS[index] + nextS[index+4] + 2) >> 2);
                    D[dx+1] = (T)((S[index+1] + S[index+5] + nextS[index+1] + nextS[index+5] + 2) >> 2);
                    D[dx+2] = (T)((S[index+2] + S[index+6] + nextS[index+2] + nextS[index+6] + 2) >> 2);
                    D[dx+3] = (T)((S[index+3] + S[index+7] + nextS[index+3] + nextS[index+7] + 2) >> 2);
                }
1546
            }
1547

1548
        return dx;
1549
    }
1550

1551
private:
1552 1553
    int scale_x, scale_y;
    int cn;
1554
    bool fast_mode;
1555
    int step;
1556
    SIMDVecOp vecOp;
1557
};
1558

1559 1560 1561
template <typename T, typename WT, typename VecOp>
class resizeAreaFast_Invoker :
    public ParallelLoopBody
1562
{
1563 1564 1565 1566 1567
public:
    resizeAreaFast_Invoker(const Mat &_src, Mat &_dst,
        int _scale_x, int _scale_y, const int* _ofs, const int* _xofs) :
        ParallelLoopBody(), src(_src), dst(_dst), scale_x(_scale_x),
        scale_y(_scale_y), ofs(_ofs), xofs(_xofs)
1568
    {
1569
    }
1570

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
    virtual void operator() (const Range& range) const
    {
        Size ssize = src.size(), dsize = dst.size();
        int cn = src.channels();
        int area = scale_x*scale_y;
        float scale = 1.f/(area);
        int dwidth1 = (ssize.width/scale_x)*cn;
        dsize.width *= cn;
        ssize.width *= cn;
        int dy, dx, k = 0;
1581

1582
        VecOp vop(scale_x, scale_y, src.channels(), (int)src.step/*, area_ofs*/);
1583

1584
        for( dy = range.start; dy < range.end; dy++ )
1585
        {
1586 1587 1588
            T* D = (T*)(dst.data + dst.step*dy);
            int sy0 = dy*scale_y;
            int w = sy0 + scale_y <= ssize.height ? dwidth1 : 0;
1589

1590 1591 1592 1593 1594 1595
            if( sy0 >= ssize.height )
            {
                for( dx = 0; dx < dsize.width; dx++ )
                    D[dx] = 0;
                continue;
            }
M
Marina Kolpakova 已提交
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
            dx = vop((const T*)(src.data + src.step * sy0), D, w);
            for( ; dx < w; dx++ )
            {
                const T* S = (const T*)(src.data + src.step * sy0) + xofs[dx];
                WT sum = 0;
                k = 0;
                #if CV_ENABLE_UNROLLED
                for( ; k <= area - 4; k += 4 )
                    sum += S[ofs[k]] + S[ofs[k+1]] + S[ofs[k+2]] + S[ofs[k+3]];
                #endif
                for( ; k < area; k++ )
                    sum += S[ofs[k]];
M
Marina Kolpakova 已提交
1609

1610 1611
                D[dx] = saturate_cast<T>(sum * scale);
            }
M
Marina Kolpakova 已提交
1612

1613
            for( ; dx < dsize.width; dx++ )
1614
            {
1615 1616 1617 1618 1619 1620
                WT sum = 0;
                int count = 0, sx0 = xofs[dx];
                if( sx0 >= ssize.width )
                    D[dx] = 0;

                for( int sy = 0; sy < scale_y; sy++ )
1621
                {
1622
                    if( sy0 + sy >= ssize.height )
1623
                        break;
1624 1625 1626 1627 1628 1629 1630 1631
                    const T* S = (const T*)(src.data + src.step*(sy0 + sy)) + sx0;
                    for( int sx = 0; sx < scale_x*cn; sx += cn )
                    {
                        if( sx0 + sx >= ssize.width )
                            break;
                        sum += S[sx];
                        count++;
                    }
1632
                }
M
Marina Kolpakova 已提交
1633

1634
                D[dx] = saturate_cast<T>((float)sum/count);
1635
            }
1636
        }
1637
    }
1638

1639
private:
1640
    Mat src;
1641
    Mat dst;
1642
    int scale_x, scale_y;
1643 1644 1645 1646 1647 1648 1649 1650
    const int *ofs, *xofs;
};

template<typename T, typename WT, typename VecOp>
static void resizeAreaFast_( const Mat& src, Mat& dst, const int* ofs, const int* xofs,
                             int scale_x, int scale_y )
{
    Range range(0, dst.rows);
1651
    resizeAreaFast_Invoker<T, WT, VecOp> invoker(src, dst, scale_x,
1652
        scale_y, ofs, xofs);
1653
    parallel_for_(range, invoker, dst.total()/(double)(1<<16));
1654 1655 1656 1657 1658 1659 1660 1661
}

struct DecimateAlpha
{
    int si, di;
    float alpha;
};

V
Vadim Pisarevsky 已提交
1662 1663

template<typename T, typename WT> class ResizeArea_Invoker :
1664
    public ParallelLoopBody
1665
{
1666
public:
V
Vadim Pisarevsky 已提交
1667 1668 1669 1670
    ResizeArea_Invoker( const Mat& _src, Mat& _dst,
                        const DecimateAlpha* _xtab, int _xtab_size,
                        const DecimateAlpha* _ytab, int _ytab_size,
                        const int* _tabofs )
1671
    {
V
Vadim Pisarevsky 已提交
1672 1673 1674 1675 1676 1677 1678
        src = &_src;
        dst = &_dst;
        xtab0 = _xtab;
        xtab_size0 = _xtab_size;
        ytab = _ytab;
        ytab_size = _ytab_size;
        tabofs = _tabofs;
1679
    }
1680

V
Vadim Pisarevsky 已提交
1681
    virtual void operator() (const Range& range) const
1682
    {
V
Vadim Pisarevsky 已提交
1683 1684
        Size dsize = dst->size();
        int cn = dst->channels();
1685 1686
        dsize.width *= cn;
        AutoBuffer<WT> _buffer(dsize.width*2);
V
Vadim Pisarevsky 已提交
1687 1688
        const DecimateAlpha* xtab = xtab0;
        int xtab_size = xtab_size0;
1689
        WT *buf = _buffer, *sum = buf + dsize.width;
1690
        int j_start = tabofs[range.start], j_end = tabofs[range.end], j, k, dx, prev_dy = ytab[j_start].di;
1691

I
attempt  
Ilya Lavrenov 已提交
1692
        for( dx = 0; dx < dsize.width; dx++ )
V
Vadim Pisarevsky 已提交
1693
            sum[dx] = (WT)0;
1694

V
Vadim Pisarevsky 已提交
1695
        for( j = j_start; j < j_end; j++ )
1696
        {
V
Vadim Pisarevsky 已提交
1697 1698 1699
            WT beta = ytab[j].alpha;
            int dy = ytab[j].di;
            int sy = ytab[j].si;
1700

1701
            {
V
Vadim Pisarevsky 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
                const T* S = (const T*)(src->data + src->step*sy);
                for( dx = 0; dx < dsize.width; dx++ )
                    buf[dx] = (WT)0;

                if( cn == 1 )
                    for( k = 0; k < xtab_size; k++ )
                    {
                        int dxn = xtab[k].di;
                        WT alpha = xtab[k].alpha;
                        buf[dxn] += S[xtab[k].si]*alpha;
                    }
                else if( cn == 2 )
                    for( k = 0; k < xtab_size; k++ )
                    {
                        int sxn = xtab[k].si;
                        int dxn = xtab[k].di;
                        WT alpha = xtab[k].alpha;
                        WT t0 = buf[dxn] + S[sxn]*alpha;
                        WT t1 = buf[dxn+1] + S[sxn+1]*alpha;
                        buf[dxn] = t0; buf[dxn+1] = t1;
                    }
                else if( cn == 3 )
                    for( k = 0; k < xtab_size; k++ )
                    {
                        int sxn = xtab[k].si;
                        int dxn = xtab[k].di;
                        WT alpha = xtab[k].alpha;
                        WT t0 = buf[dxn] + S[sxn]*alpha;
                        WT t1 = buf[dxn+1] + S[sxn+1]*alpha;
                        WT t2 = buf[dxn+2] + S[sxn+2]*alpha;
                        buf[dxn] = t0; buf[dxn+1] = t1; buf[dxn+2] = t2;
                    }
                else if( cn == 4 )
1735
                {
V
Vadim Pisarevsky 已提交
1736
                    for( k = 0; k < xtab_size; k++ )
I
attempt  
Ilya Lavrenov 已提交
1737
                    {
V
Vadim Pisarevsky 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746
                        int sxn = xtab[k].si;
                        int dxn = xtab[k].di;
                        WT alpha = xtab[k].alpha;
                        WT t0 = buf[dxn] + S[sxn]*alpha;
                        WT t1 = buf[dxn+1] + S[sxn+1]*alpha;
                        buf[dxn] = t0; buf[dxn+1] = t1;
                        t0 = buf[dxn+2] + S[sxn+2]*alpha;
                        t1 = buf[dxn+3] + S[sxn+3]*alpha;
                        buf[dxn+2] = t0; buf[dxn+3] = t1;
I
attempt  
Ilya Lavrenov 已提交
1747
                    }
1748 1749
                }
                else
V
Vadim Pisarevsky 已提交
1750 1751
                {
                    for( k = 0; k < xtab_size; k++ )
1752
                    {
V
Vadim Pisarevsky 已提交
1753 1754 1755 1756 1757
                        int sxn = xtab[k].si;
                        int dxn = xtab[k].di;
                        WT alpha = xtab[k].alpha;
                        for( int c = 0; c < cn; c++ )
                            buf[dxn + c] += S[sxn + c]*alpha;
1758
                    }
V
Vadim Pisarevsky 已提交
1759
                }
1760
            }
V
Vadim Pisarevsky 已提交
1761 1762

            if( dy != prev_dy )
1763
            {
V
Vadim Pisarevsky 已提交
1764 1765 1766
                T* D = (T*)(dst->data + dst->step*prev_dy);

                for( dx = 0; dx < dsize.width; dx++ )
I
attempt  
Ilya Lavrenov 已提交
1767
                {
V
Vadim Pisarevsky 已提交
1768 1769
                    D[dx] = saturate_cast<T>(sum[dx]);
                    sum[dx] = beta*buf[dx];
I
attempt  
Ilya Lavrenov 已提交
1770
                }
V
Vadim Pisarevsky 已提交
1771 1772 1773 1774 1775 1776
                prev_dy = dy;
            }
            else
            {
                for( dx = 0; dx < dsize.width; dx++ )
                    sum[dx] += beta*buf[dx];
1777 1778
            }
        }
1779

1780
        {
V
Vadim Pisarevsky 已提交
1781 1782 1783
        T* D = (T*)(dst->data + dst->step*prev_dy);
        for( dx = 0; dx < dsize.width; dx++ )
            D[dx] = saturate_cast<T>(sum[dx]);
1784 1785
        }
    }
1786

1787
private:
V
Vadim Pisarevsky 已提交
1788 1789 1790 1791 1792 1793
    const Mat* src;
    Mat* dst;
    const DecimateAlpha* xtab0;
    const DecimateAlpha* ytab;
    int xtab_size0, ytab_size;
    const int* tabofs;
1794 1795
};

V
Vadim Pisarevsky 已提交
1796

I
attempt  
Ilya Lavrenov 已提交
1797
template <typename T, typename WT>
V
Vadim Pisarevsky 已提交
1798 1799 1800 1801
static void resizeArea_( const Mat& src, Mat& dst,
                         const DecimateAlpha* xtab, int xtab_size,
                         const DecimateAlpha* ytab, int ytab_size,
                         const int* tabofs )
1802
{
V
Vadim Pisarevsky 已提交
1803 1804 1805
    parallel_for_(Range(0, dst.rows),
                 ResizeArea_Invoker<T, WT>(src, dst, xtab, xtab_size, ytab, ytab_size, tabofs),
                 dst.total()/((double)(1 << 16)));
1806
}
1807 1808 1809 1810 1811 1812 1813 1814


typedef void (*ResizeFunc)( const Mat& src, Mat& dst,
                            const int* xofs, const void* alpha,
                            const int* yofs, const void* beta,
                            int xmin, int xmax, int ksize );

typedef void (*ResizeAreaFastFunc)( const Mat& src, Mat& dst,
1815 1816
                                    const int* ofs, const int *xofs,
                                    int scale_x, int scale_y );
1817 1818

typedef void (*ResizeAreaFunc)( const Mat& src, Mat& dst,
V
Vadim Pisarevsky 已提交
1819 1820 1821 1822 1823 1824 1825
                                const DecimateAlpha* xtab, int xtab_size,
                                const DecimateAlpha* ytab, int ytab_size,
                                const int* yofs);


static int computeResizeAreaTab( int ssize, int dsize, int cn, double scale, DecimateAlpha* tab )
{
1826 1827
    int k = 0;
    for(int dx = 0; dx < dsize; dx++ )
V
Vadim Pisarevsky 已提交
1828
    {
1829
        double fsx1 = dx * scale;
V
Vadim Pisarevsky 已提交
1830
        double fsx2 = fsx1 + scale;
1831
        double cellWidth = std::min(scale, ssize - fsx1);
1832

V
Vadim Pisarevsky 已提交
1833 1834
        int sx1 = cvCeil(fsx1), sx2 = cvFloor(fsx2);

1835 1836 1837 1838
        sx2 = std::min(sx2, ssize - 1);
        sx1 = std::min(sx1, sx2);

        if( sx1 - fsx1 > 1e-3 )
V
Vadim Pisarevsky 已提交
1839 1840
        {
            assert( k < ssize*2 );
1841 1842 1843
            tab[k].di = dx * cn;
            tab[k].si = (sx1 - 1) * cn;
            tab[k++].alpha = (float)((sx1 - fsx1) / cellWidth);
V
Vadim Pisarevsky 已提交
1844 1845
        }

1846
        for(int sx = sx1; sx < sx2; sx++ )
V
Vadim Pisarevsky 已提交
1847 1848
        {
            assert( k < ssize*2 );
1849 1850 1851
            tab[k].di = dx * cn;
            tab[k].si = sx * cn;
            tab[k++].alpha = float(1.0 / cellWidth);
V
Vadim Pisarevsky 已提交
1852 1853 1854 1855 1856
        }

        if( fsx2 - sx2 > 1e-3 )
        {
            assert( k < ssize*2 );
1857 1858
            tab[k].di = dx * cn;
            tab[k].si = sx2 * cn;
1859
            tab[k++].alpha = (float)(std::min(std::min(fsx2 - sx2, 1.), cellWidth) / cellWidth);
V
Vadim Pisarevsky 已提交
1860 1861 1862 1863 1864
        }
    }
    return k;
}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
class IPPresizeInvoker :
    public ParallelLoopBody
{
public:
    IPPresizeInvoker(Mat &_src, Mat &_dst, double &_inv_scale_x, double &_inv_scale_y, int _mode, ippiResizeSqrPixelFunc _func, bool *_ok) :
      ParallelLoopBody(), src(_src), dst(_dst), inv_scale_x(_inv_scale_x), inv_scale_y(_inv_scale_y), mode(_mode), func(_func), ok(_ok)
      {
          *ok = true;
      }

      virtual void operator() (const Range& range) const
      {
          int cn = src.channels();
          IppiRect srcroi = { 0, range.start, src.cols, range.end - range.start };
          int dsty = CV_IMIN(cvRound(range.start * inv_scale_y), dst.rows);
          int dstwidth = CV_IMIN(cvRound(src.cols * inv_scale_x), dst.cols);
          int dstheight = CV_IMIN(cvRound(range.end * inv_scale_y), dst.rows);
          IppiRect dstroi = { 0, dsty, dstwidth, dstheight - dsty };
          int bufsize;
          ippiResizeGetBufSize( srcroi, dstroi, cn, mode, &bufsize );
1886 1887 1888
          AutoBuffer<uchar> buf(bufsize + 64);
          uchar* bufptr = alignPtr((uchar*)buf, 32);
          if( func( src.data, ippiSize(src.cols, src.rows), (int)src.step[0], srcroi, dst.data, (int)dst.step[0], dstroi, inv_scale_x, inv_scale_y, 0, 0, mode, bufptr ) < 0 )
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
              *ok = false;
      }
private:
    Mat &src;
    Mat &dst;
    double inv_scale_x;
    double inv_scale_y;
    int mode;
    ippiResizeSqrPixelFunc func;
    bool *ok;
    const IPPresizeInvoker& operator= (const IPPresizeInvoker&);
};
#endif
1902

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
static void ocl_computeResizeAreaTabs(int ssize, int dsize, double scale, int * const map_tab,
                                          float * const alpha_tab, int * const ofs_tab)
{
    int k = 0, dx = 0;
    for ( ; dx < dsize; dx++)
    {
        ofs_tab[dx] = k;

        double fsx1 = dx * scale;
        double fsx2 = fsx1 + scale;
        double cellWidth = std::min(scale, ssize - fsx1);

        int sx1 = cvCeil(fsx1), sx2 = cvFloor(fsx2);

        sx2 = std::min(sx2, ssize - 1);
        sx1 = std::min(sx1, sx2);

        if (sx1 - fsx1 > 1e-3)
        {
            map_tab[k] = sx1 - 1;
            alpha_tab[k++] = (float)((sx1 - fsx1) / cellWidth);
        }

        for (int sx = sx1; sx < sx2; sx++)
        {
            map_tab[k] = sx;
            alpha_tab[k++] = float(1.0 / cellWidth);
        }

        if (fsx2 - sx2 > 1e-3)
        {
            map_tab[k] = sx2;
            alpha_tab[k++] = (float)(std::min(std::min(fsx2 - sx2, 1.), cellWidth) / cellWidth);
        }
    }
    ofs_tab[dx] = k;
}

static void ocl_computeResizeAreaFastTabs(int * dmap_tab, int * smap_tab, int scale, int dcols, int scol)
{
    for (int i = 0; i < dcols; ++i)
        dmap_tab[i] = scale * i;

    for (int i = 0, size = dcols * scale; i < size; ++i)
        smap_tab[i] = std::min(scol - 1, i);
}

V
Vadim Pisarevsky 已提交
1950
static bool ocl_resize( InputArray _src, OutputArray _dst, Size dsize,
1951 1952 1953
                        double fx, double fy, int interpolation)
{
    int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
1954 1955 1956 1957 1958 1959 1960

    double inv_fx = 1. / fx, inv_fy = 1. / fy;
    float inv_fxf = (float)inv_fx, inv_fyf = (float)inv_fy;

    if( cn == 3 || !(cn <= 4 &&
           (interpolation == INTER_NEAREST || interpolation == INTER_LINEAR ||
            (interpolation == INTER_AREA && inv_fx >= 1 && inv_fy >= 1) )) )
1961
        return false;
1962

V
Vadim Pisarevsky 已提交
1963 1964 1965
    UMat src = _src.getUMat();
    _dst.create(dsize, type);
    UMat dst = _dst.getUMat();
1966

1967
    ocl::Kernel k;
1968
    size_t globalsize[] = { dst.cols, dst.rows };
1969 1970 1971

    if (interpolation == INTER_LINEAR)
    {
1972
        int wdepth = std::max(depth, CV_32S);
1973 1974 1975
        int wtype = CV_MAKETYPE(wdepth, cn);
        char buf[2][32];
        k.create("resizeLN", ocl::imgproc::resize_oclsrc,
1976
                 format("-D INTER_LINEAR -D depth=%d -D PIXTYPE=%s -D WORKTYPE=%s -D convertToWT=%s -D convertToDT=%s",
1977 1978 1979 1980 1981 1982 1983
                        depth, ocl::typeToStr(type), ocl::typeToStr(wtype),
                        ocl::convertTypeStr(depth, wdepth, cn, buf[0]),
                        ocl::convertTypeStr(wdepth, depth, cn, buf[1])));
    }
    else if (interpolation == INTER_NEAREST)
    {
        k.create("resizeNN", ocl::imgproc::resize_oclsrc,
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
                 format("-D INTER_NEAREST -D PIXTYPE=%s -D cn", ocl::memopTypeToStr(type), cn));
    }
    else if (interpolation == INTER_AREA)
    {
        int iscale_x = saturate_cast<int>(inv_fx);
        int iscale_y = saturate_cast<int>(inv_fy);
        bool is_area_fast = std::abs(inv_fx - iscale_x) < DBL_EPSILON &&
                        std::abs(inv_fy - iscale_y) < DBL_EPSILON;
        int wdepth = std::max(depth, is_area_fast ? CV_32S : CV_32F);
        int wtype = CV_MAKE_TYPE(wdepth, cn);

        char cvt[2][40];
        String buildOption = format("-D INTER_AREA -D T=%s -D WTV=%s -D convertToWTV=%s",
                                    ocl::typeToStr(type), ocl::typeToStr(wtype),
                                    ocl::convertTypeStr(depth, wdepth, cn, cvt[0]));

        UMat alphaOcl, tabofsOcl, mapOcl;
        UMat dmap, smap;

        if (is_area_fast)
        {
            int wdepth2 = std::max(CV_32F, depth), wtype2 = CV_MAKE_TYPE(wdepth2, cn);
            buildOption = buildOption + format(" -D convertToT=%s -D WT2V=%s -D convertToWT2V=%s -D INTER_AREA_FAST"
                                               " -D XSCALE=%d -D YSCALE=%d -D SCALE=%f",
                                               ocl::convertTypeStr(wdepth2, depth, cn, cvt[0]),
                                               ocl::typeToStr(wtype2), ocl::convertTypeStr(wdepth, wdepth2, cn, cvt[1]),
                                  iscale_x, iscale_y, 1.0f / (iscale_x * iscale_y));

            k.create("resizeAREA_FAST", ocl::imgproc::resize_oclsrc, buildOption);

            int smap_tab_size = dst.cols * iscale_x + dst.rows * iscale_y;
            AutoBuffer<int> dmap_tab(dst.cols + dst.rows), smap_tab(smap_tab_size);
            int * dxmap_tab = dmap_tab, * dymap_tab = dxmap_tab + dst.cols;
            int * sxmap_tab = smap_tab, * symap_tab = smap_tab + dst.cols * iscale_y;

            ocl_computeResizeAreaFastTabs(dxmap_tab, sxmap_tab, iscale_x, dst.cols, src.cols);
            ocl_computeResizeAreaFastTabs(dymap_tab, symap_tab, iscale_y, dst.rows, src.rows);

            Mat(1, dst.cols + dst.rows, CV_32SC1, (void *)dmap_tab).copyTo(dmap);
            Mat(1, smap_tab_size, CV_32SC1, (void *)smap_tab).copyTo(smap);
        }
        else
        {
            buildOption = buildOption + format(" -D convertToT=%s", ocl::convertTypeStr(wdepth, depth, cn, cvt[0]));
            k.create("resizeAREA", ocl::imgproc::resize_oclsrc, buildOption);

            Size ssize = src.size();
            int xytab_size = (ssize.width + ssize.height) << 1;
            int tabofs_size = dsize.height + dsize.width + 2;

            AutoBuffer<int> _xymap_tab(xytab_size), _xyofs_tab(tabofs_size);
            AutoBuffer<float> _xyalpha_tab(xytab_size);
            int * xmap_tab = _xymap_tab, * ymap_tab = _xymap_tab + (ssize.width << 1);
            float * xalpha_tab = _xyalpha_tab, * yalpha_tab = _xyalpha_tab + (ssize.width << 1);
            int * xofs_tab = _xyofs_tab, * yofs_tab = _xyofs_tab + dsize.width + 1;

            ocl_computeResizeAreaTabs(ssize.width, dsize.width, inv_fx, xmap_tab, xalpha_tab, xofs_tab);
            ocl_computeResizeAreaTabs(ssize.height, dsize.height, inv_fy, ymap_tab, yalpha_tab, yofs_tab);

            // loading precomputed arrays to GPU
            Mat(1, xytab_size, CV_32FC1, (void *)_xyalpha_tab).copyTo(alphaOcl);
            Mat(1, xytab_size, CV_32SC1, (void *)_xymap_tab).copyTo(mapOcl);
            Mat(1, tabofs_size, CV_32SC1, (void *)_xyofs_tab).copyTo(tabofsOcl);
        }

        ocl::KernelArg srcarg = ocl::KernelArg::ReadOnly(src), dstarg = ocl::KernelArg::WriteOnly(dst);

        if (is_area_fast)
            k.args(srcarg, dstarg, ocl::KernelArg::PtrReadOnly(dmap), ocl::KernelArg::PtrReadOnly(smap));
        else
            k.args(srcarg, dstarg, inv_fxf, inv_fyf, ocl::KernelArg::PtrReadOnly(tabofsOcl),
                   ocl::KernelArg::PtrReadOnly(mapOcl), ocl::KernelArg::PtrReadOnly(alphaOcl));

        return k.run(2, globalsize, NULL, false);
2058 2059 2060 2061 2062
    }

    if( k.empty() )
        return false;
    k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst),
2063
           (float)inv_fx, (float)inv_fy);
2064

2065
    return k.run(2, globalsize, 0, false);
2066
}
M
Marina Kolpakova 已提交
2067

2068
}
2069

2070 2071
//////////////////////////////////////////////////////////////////////////////////////////

2072
void cv::resize( InputArray _src, OutputArray _dst, Size dsize,
2073
                 double inv_scale_x, double inv_scale_y, int interpolation )
2074 2075 2076 2077 2078 2079
{
    static ResizeFunc linear_tab[] =
    {
        resizeGeneric_<
            HResizeLinear<uchar, int, short,
                INTER_RESIZE_COEF_SCALE,
M
Marina Kolpakova 已提交
2080
                HResizeLinearVec_8u32s>,
2081 2082
            VResizeLinear<uchar, int, short,
                FixedPtCast<int, uchar, INTER_RESIZE_COEF_BITS*2>,
M
Marina Kolpakova 已提交
2083 2084
                VResizeLinearVec_32s8u> >,
        0,
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
        resizeGeneric_<
            HResizeLinear<ushort, float, float, 1,
                HResizeLinearVec_16u32f>,
            VResizeLinear<ushort, float, float, Cast<float, ushort>,
                VResizeLinearVec_32f16u> >,
        resizeGeneric_<
            HResizeLinear<short, float, float, 1,
                HResizeLinearVec_16s32f>,
            VResizeLinear<short, float, float, Cast<float, short>,
                VResizeLinearVec_32f16s> >,
M
Marina Kolpakova 已提交
2095
        0,
2096 2097 2098 2099 2100
        resizeGeneric_<
            HResizeLinear<float, float, float, 1,
                HResizeLinearVec_32f>,
            VResizeLinear<float, float, float, Cast<float, float>,
                VResizeLinearVec_32f> >,
V
Vadim Pisarevsky 已提交
2101 2102 2103 2104 2105 2106
        resizeGeneric_<
            HResizeLinear<double, double, float, 1,
                HResizeNoVec>,
            VResizeLinear<double, double, float, Cast<double, double>,
                VResizeNoVec> >,
        0
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
    };

    static ResizeFunc cubic_tab[] =
    {
        resizeGeneric_<
            HResizeCubic<uchar, int, short>,
            VResizeCubic<uchar, int, short,
                FixedPtCast<int, uchar, INTER_RESIZE_COEF_BITS*2>,
                VResizeCubicVec_32s8u> >,
        0,
        resizeGeneric_<
            HResizeCubic<ushort, float, float>,
            VResizeCubic<ushort, float, float, Cast<float, ushort>,
            VResizeCubicVec_32f16u> >,
        resizeGeneric_<
            HResizeCubic<short, float, float>,
            VResizeCubic<short, float, float, Cast<float, short>,
            VResizeCubicVec_32f16s> >,
M
Marina Kolpakova 已提交
2125
        0,
2126 2127 2128 2129
        resizeGeneric_<
            HResizeCubic<float, float, float>,
            VResizeCubic<float, float, float, Cast<float, float>,
            VResizeCubicVec_32f> >,
V
Vadim Pisarevsky 已提交
2130 2131 2132 2133 2134
        resizeGeneric_<
            HResizeCubic<double, double, float>,
            VResizeCubic<double, double, float, Cast<double, double>,
            VResizeNoVec> >,
        0
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
    };

    static ResizeFunc lanczos4_tab[] =
    {
        resizeGeneric_<HResizeLanczos4<uchar, int, short>,
            VResizeLanczos4<uchar, int, short,
            FixedPtCast<int, uchar, INTER_RESIZE_COEF_BITS*2>,
            VResizeNoVec> >,
        0,
        resizeGeneric_<HResizeLanczos4<ushort, float, float>,
            VResizeLanczos4<ushort, float, float, Cast<float, ushort>,
            VResizeNoVec> >,
M
Marina Kolpakova 已提交
2147
        resizeGeneric_<HResizeLanczos4<short, float, float>,
2148 2149
            VResizeLanczos4<short, float, float, Cast<float, short>,
            VResizeNoVec> >,
M
Marina Kolpakova 已提交
2150
        0,
2151 2152 2153
        resizeGeneric_<HResizeLanczos4<float, float, float>,
            VResizeLanczos4<float, float, float, Cast<float, float>,
            VResizeNoVec> >,
V
Vadim Pisarevsky 已提交
2154 2155 2156 2157
        resizeGeneric_<HResizeLanczos4<double, double, float>,
            VResizeLanczos4<double, double, float, Cast<double, double>,
            VResizeNoVec> >,
        0
2158 2159 2160 2161
    };

    static ResizeAreaFastFunc areafast_tab[] =
    {
2162
        resizeAreaFast_<uchar, int, ResizeAreaFastVec<uchar, ResizeAreaFastVec_SIMD_8u> >,
2163
        0,
2164 2165
        resizeAreaFast_<ushort, float, ResizeAreaFastVec<ushort, ResizeAreaFastVec_SIMD_16u> >,
        resizeAreaFast_<short, float, ResizeAreaFastVec<short, ResizeAreaFastNoVec<short, float> > >,
V
Vadim Pisarevsky 已提交
2166
        0,
2167 2168
        resizeAreaFast_<float, float, ResizeAreaFastNoVec<float, float> >,
        resizeAreaFast_<double, double, ResizeAreaFastNoVec<double, double> >,
V
Vadim Pisarevsky 已提交
2169
        0
2170 2171 2172 2173
    };

    static ResizeAreaFunc area_tab[] =
    {
2174
        resizeArea_<uchar, float>, 0, resizeArea_<ushort, float>,
2175 2176
        resizeArea_<short, float>, 0, resizeArea_<float, float>,
        resizeArea_<double, double>, 0
2177 2178
    };

2179
    Size ssize = _src.size();
M
Marina Kolpakova 已提交
2180

2181
    CV_Assert( ssize.area() > 0 );
V
Vadim Pisarevsky 已提交
2182 2183
    CV_Assert( dsize.area() > 0 || (inv_scale_x > 0 && inv_scale_y > 0) );
    if( dsize.area() == 0 )
2184
    {
2185 2186
        dsize = Size(saturate_cast<int>(ssize.width*inv_scale_x),
                     saturate_cast<int>(ssize.height*inv_scale_y));
V
Vadim Pisarevsky 已提交
2187
        CV_Assert( dsize.area() > 0 );
2188 2189 2190
    }
    else
    {
2191 2192
        inv_scale_x = (double)dsize.width/ssize.width;
        inv_scale_y = (double)dsize.height/ssize.height;
2193
    }
2194 2195

    if( ocl::useOpenCL() && _dst.kind() == _InputArray::UMAT &&
2196
            ocl_resize(_src, _dst, dsize, inv_scale_x, inv_scale_y, interpolation))
2197
        return;
2198

V
Vadim Pisarevsky 已提交
2199 2200 2201
    Mat src = _src.getMat();
    _dst.create(dsize, src.type());
    Mat dst = _dst.getMat();
A
Andrey Kamaev 已提交
2202 2203

#ifdef HAVE_TEGRA_OPTIMIZATION
A
Alexander Smorkalov 已提交
2204
    if (tegra::resize(src, dst, (float)inv_scale_x, (float)inv_scale_y, interpolation))
A
Andrey Kamaev 已提交
2205 2206 2207
        return;
#endif

2208 2209 2210 2211
    int depth = src.depth(), cn = src.channels();
    double scale_x = 1./inv_scale_x, scale_y = 1./inv_scale_y;
    int k, sx, sy, dx, dy;

2212
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
2213
    int mode = interpolation == INTER_LINEAR ? IPPI_INTER_LINEAR : 0;
2214
    int type = src.type();
2215 2216
    ippiResizeSqrPixelFunc ippFunc =
        type == CV_8UC1 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_8u_C1R :
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
        type == CV_8UC3 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_8u_C3R :
        type == CV_8UC4 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_8u_C4R :
        type == CV_16UC1 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_16u_C1R :
        type == CV_16UC3 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_16u_C3R :
        type == CV_16UC4 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_16u_C4R :
        type == CV_16SC1 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_16s_C1R :
        type == CV_16SC3 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_16s_C3R :
        type == CV_16SC4 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_16s_C4R :
        type == CV_32FC1 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_32f_C1R :
        type == CV_32FC3 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_32f_C3R :
2227
        type == CV_32FC4 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_32f_C4R :
2228
        0;
2229
    if( ippFunc && mode != 0 )
2230 2231 2232 2233 2234 2235 2236 2237 2238
    {
        bool ok;
        Range range(0, src.rows);
        IPPresizeInvoker invoker(src, dst, inv_scale_x, inv_scale_y, mode, ippFunc, &ok);
        parallel_for_(range, invoker, dst.total()/(double)(1<<16));
        if( ok )
            return;
    }
#endif
2239 2240 2241 2242 2243 2244

    if( interpolation == INTER_NEAREST )
    {
        resizeNN( src, dst, inv_scale_x, inv_scale_y );
        return;
    }
2245

2246 2247 2248
    {
        int iscale_x = saturate_cast<int>(scale_x);
        int iscale_y = saturate_cast<int>(scale_y);
2249

2250 2251
        bool is_area_fast = std::abs(scale_x - iscale_x) < DBL_EPSILON &&
                std::abs(scale_y - iscale_y) < DBL_EPSILON;
2252 2253

        // in case of scale_x && scale_y is equal to 2
2254
        // INTER_AREA (fast) also is equal to INTER_LINEAR
2255
        if( interpolation == INTER_LINEAR && is_area_fast && iscale_x == 2 && iscale_y == 2 )
2256 2257 2258 2259 2260
            interpolation = INTER_AREA;

        // true "area" interpolation is only implemented for the case (scale_x <= 1 && scale_y <= 1).
        // In other cases it is emulated using some variant of bilinear interpolation
        if( interpolation == INTER_AREA && scale_x >= 1 && scale_y >= 1 )
2261
        {
2262
            if( is_area_fast )
2263
            {
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
                int area = iscale_x*iscale_y;
                size_t srcstep = src.step / src.elemSize1();
                AutoBuffer<int> _ofs(area + dsize.width*cn);
                int* ofs = _ofs;
                int* xofs = ofs + area;
                ResizeAreaFastFunc func = areafast_tab[depth];
                CV_Assert( func != 0 );

                for( sy = 0, k = 0; sy < iscale_y; sy++ )
                    for( sx = 0; sx < iscale_x; sx++ )
                        ofs[k++] = (int)(sy*srcstep + sx*cn);
2275

2276 2277 2278 2279 2280 2281 2282
                for( dx = 0; dx < dsize.width; dx++ )
                {
                    int j = dx * cn;
                    sx = iscale_x * j;
                    for( k = 0; k < cn; k++ )
                        xofs[j + k] = sx + k;
                }
2283

2284 2285 2286
                func( src, dst, ofs, xofs, iscale_x, iscale_y );
                return;
            }
2287

2288 2289
            ResizeAreaFunc func = area_tab[depth];
            CV_Assert( func != 0 && cn <= 4 );
2290

V
Vadim Pisarevsky 已提交
2291 2292
            AutoBuffer<DecimateAlpha> _xytab((ssize.width + ssize.height)*2);
            DecimateAlpha* xtab = _xytab, *ytab = xtab + ssize.width*2;
2293

V
Vadim Pisarevsky 已提交
2294 2295
            int xtab_size = computeResizeAreaTab(ssize.width, dsize.width, cn, scale_x, xtab);
            int ytab_size = computeResizeAreaTab(ssize.height, dsize.height, 1, scale_y, ytab);
2296

V
Vadim Pisarevsky 已提交
2297 2298 2299 2300 2301
            AutoBuffer<int> _tabofs(dsize.height + 1);
            int* tabofs = _tabofs;
            for( k = 0, dy = 0; k < ytab_size; k++ )
            {
                if( k == 0 || ytab[k].di != ytab[k-1].di )
2302
                {
V
Vadim Pisarevsky 已提交
2303 2304
                    assert( ytab[k].di == dy );
                    tabofs[dy++] = k;
2305
                }
2306
            }
V
Vadim Pisarevsky 已提交
2307
            tabofs[dy] = ytab_size;
2308

V
Vadim Pisarevsky 已提交
2309
            func( src, dst, xtab, xtab_size, ytab, ytab_size, tabofs );
2310
            return;
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
        }
    }

    int xmin = 0, xmax = dsize.width, width = dsize.width*cn;
    bool area_mode = interpolation == INTER_AREA;
    bool fixpt = depth == CV_8U;
    float fx, fy;
    ResizeFunc func=0;
    int ksize=0, ksize2;
    if( interpolation == INTER_CUBIC )
        ksize = 4, func = cubic_tab[depth];
    else if( interpolation == INTER_LANCZOS4 )
        ksize = 8, func = lanczos4_tab[depth];
    else if( interpolation == INTER_LINEAR || interpolation == INTER_AREA )
        ksize = 2, func = linear_tab[depth];
    else
        CV_Error( CV_StsBadArg, "Unknown interpolation method" );
    ksize2 = ksize/2;

    CV_Assert( func != 0 );

    AutoBuffer<uchar> _buffer((width + dsize.height)*(sizeof(int) + sizeof(float)*ksize));
    int* xofs = (int*)(uchar*)_buffer;
    int* yofs = xofs + width;
    float* alpha = (float*)(yofs + dsize.height);
    short* ialpha = (short*)alpha;
    float* beta = alpha + width*ksize;
    short* ibeta = ialpha + width*ksize;
    float cbuf[MAX_ESIZE];

    for( dx = 0; dx < dsize.width; dx++ )
    {
        if( !area_mode )
        {
            fx = (float)((dx+0.5)*scale_x - 0.5);
            sx = cvFloor(fx);
            fx -= sx;
        }
        else
        {
            sx = cvFloor(dx*scale_x);
            fx = (float)((dx+1) - (sx+1)*inv_scale_x);
            fx = fx <= 0 ? 0.f : fx - cvFloor(fx);
        }

        if( sx < ksize2-1 )
        {
            xmin = dx+1;
            if( sx < 0 )
                fx = 0, sx = 0;
        }

        if( sx + ksize2 >= ssize.width )
        {
            xmax = std::min( xmax, dx );
            if( sx >= ssize.width-1 )
                fx = 0, sx = ssize.width-1;
        }

        for( k = 0, sx *= cn; k < cn; k++ )
            xofs[dx*cn + k] = sx + k;

        if( interpolation == INTER_CUBIC )
            interpolateCubic( fx, cbuf );
        else if( interpolation == INTER_LANCZOS4 )
            interpolateLanczos4( fx, cbuf );
        else
        {
            cbuf[0] = 1.f - fx;
            cbuf[1] = fx;
        }
        if( fixpt )
        {
            for( k = 0; k < ksize; k++ )
                ialpha[dx*cn*ksize + k] = saturate_cast<short>(cbuf[k]*INTER_RESIZE_COEF_SCALE);
            for( ; k < cn*ksize; k++ )
                ialpha[dx*cn*ksize + k] = ialpha[dx*cn*ksize + k - ksize];
        }
        else
        {
            for( k = 0; k < ksize; k++ )
                alpha[dx*cn*ksize + k] = cbuf[k];
            for( ; k < cn*ksize; k++ )
                alpha[dx*cn*ksize + k] = alpha[dx*cn*ksize + k - ksize];
        }
    }

    for( dy = 0; dy < dsize.height; dy++ )
    {
        if( !area_mode )
        {
            fy = (float)((dy+0.5)*scale_y - 0.5);
            sy = cvFloor(fy);
            fy -= sy;
        }
        else
        {
            sy = cvFloor(dy*scale_y);
            fy = (float)((dy+1) - (sy+1)*inv_scale_y);
            fy = fy <= 0 ? 0.f : fy - cvFloor(fy);
        }

        yofs[dy] = sy;
        if( interpolation == INTER_CUBIC )
            interpolateCubic( fy, cbuf );
        else if( interpolation == INTER_LANCZOS4 )
            interpolateLanczos4( fy, cbuf );
        else
        {
            cbuf[0] = 1.f - fy;
            cbuf[1] = fy;
        }

        if( fixpt )
        {
            for( k = 0; k < ksize; k++ )
                ibeta[dy*ksize + k] = saturate_cast<short>(cbuf[k]*INTER_RESIZE_COEF_SCALE);
        }
        else
        {
            for( k = 0; k < ksize; k++ )
                beta[dy*ksize + k] = cbuf[k];
        }
    }

    func( src, dst, xofs, fixpt ? (void*)ialpha : (void*)alpha, yofs,
          fixpt ? (void*)ibeta : (void*)beta, xmin, xmax, ksize );
}


/****************************************************************************************\
*                       General warping (affine, perspective, remap)                     *
\****************************************************************************************/

2445 2446 2447
namespace cv
{

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
template<typename T>
static void remapNearest( const Mat& _src, Mat& _dst, const Mat& _xy,
                          int borderType, const Scalar& _borderValue )
{
    Size ssize = _src.size(), dsize = _dst.size();
    int cn = _src.channels();
    const T* S0 = (const T*)_src.data;
    size_t sstep = _src.step/sizeof(S0[0]);
    Scalar_<T> cval(saturate_cast<T>(_borderValue[0]),
        saturate_cast<T>(_borderValue[1]),
        saturate_cast<T>(_borderValue[2]),
        saturate_cast<T>(_borderValue[3]));
    int dx, dy;

    unsigned width1 = ssize.width, height1 = ssize.height;

    if( _dst.isContinuous() && _xy.isContinuous() )
    {
        dsize.width *= dsize.height;
        dsize.height = 1;
    }

    for( dy = 0; dy < dsize.height; dy++ )
    {
        T* D = (T*)(_dst.data + _dst.step*dy);
        const short* XY = (const short*)(_xy.data + _xy.step*dy);

        if( cn == 1 )
        {
            for( dx = 0; dx < dsize.width; dx++ )
            {
                int sx = XY[dx*2], sy = XY[dx*2+1];
                if( (unsigned)sx < width1 && (unsigned)sy < height1 )
                    D[dx] = S0[sy*sstep + sx];
                else
                {
                    if( borderType == BORDER_REPLICATE )
                    {
                        sx = clip(sx, 0, ssize.width);
                        sy = clip(sy, 0, ssize.height);
                        D[dx] = S0[sy*sstep + sx];
                    }
                    else if( borderType == BORDER_CONSTANT )
                        D[dx] = cval[0];
                    else if( borderType != BORDER_TRANSPARENT )
                    {
                        sx = borderInterpolate(sx, ssize.width, borderType);
                        sy = borderInterpolate(sy, ssize.height, borderType);
                        D[dx] = S0[sy*sstep + sx];
                    }
                }
            }
        }
        else
        {
            for( dx = 0; dx < dsize.width; dx++, D += cn )
            {
                int sx = XY[dx*2], sy = XY[dx*2+1], k;
                const T *S;
                if( (unsigned)sx < width1 && (unsigned)sy < height1 )
                {
                    if( cn == 3 )
                    {
                        S = S0 + sy*sstep + sx*3;
                        D[0] = S[0], D[1] = S[1], D[2] = S[2];
                    }
                    else if( cn == 4 )
                    {
                        S = S0 + sy*sstep + sx*4;
                        D[0] = S[0], D[1] = S[1], D[2] = S[2], D[3] = S[3];
                    }
                    else
                    {
                        S = S0 + sy*sstep + sx*cn;
                        for( k = 0; k < cn; k++ )
                            D[k] = S[k];
                    }
                }
                else if( borderType != BORDER_TRANSPARENT )
                {
                    if( borderType == BORDER_REPLICATE )
                    {
                        sx = clip(sx, 0, ssize.width);
                        sy = clip(sy, 0, ssize.height);
                        S = S0 + sy*sstep + sx*cn;
                    }
                    else if( borderType == BORDER_CONSTANT )
                        S = &cval[0];
                    else
                    {
                        sx = borderInterpolate(sx, ssize.width, borderType);
                        sy = borderInterpolate(sy, ssize.height, borderType);
                        S = S0 + sy*sstep + sx*cn;
                    }
                    for( k = 0; k < cn; k++ )
                        D[k] = S[k];
                }
            }
        }
    }
}


struct RemapNoVec
{
    int operator()( const Mat&, void*, const short*, const ushort*,
                    const void*, int ) const { return 0; }
};

#if CV_SSE2

struct RemapVec_8u
{
    int operator()( const Mat& _src, void* _dst, const short* XY,
                    const ushort* FXY, const void* _wtab, int width ) const
    {
        int cn = _src.channels();

        if( (cn != 1 && cn != 3 && cn != 4) || !checkHardwareSupport(CV_CPU_SSE2) )
            return 0;

        const uchar *S0 = _src.data, *S1 = _src.data + _src.step;
        const short* wtab = cn == 1 ? (const short*)_wtab : &BilinearTab_iC4[0][0][0];
        uchar* D = (uchar*)_dst;
        int x = 0, sstep = (int)_src.step;
        __m128i delta = _mm_set1_epi32(INTER_REMAP_COEF_SCALE/2);
        __m128i xy2ofs = _mm_set1_epi32(cn + (sstep << 16));
        __m128i z = _mm_setzero_si128();
        int CV_DECL_ALIGNED(16) iofs0[4], iofs1[4];

        if( cn == 1 )
        {
            for( ; x <= width - 8; x += 8 )
            {
                __m128i xy0 = _mm_loadu_si128( (const __m128i*)(XY + x*2));
                __m128i xy1 = _mm_loadu_si128( (const __m128i*)(XY + x*2 + 8));
                __m128i v0, v1, v2, v3, a0, a1, b0, b1;
                unsigned i0, i1;

                xy0 = _mm_madd_epi16( xy0, xy2ofs );
                xy1 = _mm_madd_epi16( xy1, xy2ofs );
                _mm_store_si128( (__m128i*)iofs0, xy0 );
                _mm_store_si128( (__m128i*)iofs1, xy1 );

                i0 = *(ushort*)(S0 + iofs0[0]) + (*(ushort*)(S0 + iofs0[1]) << 16);
                i1 = *(ushort*)(S0 + iofs0[2]) + (*(ushort*)(S0 + iofs0[3]) << 16);
                v0 = _mm_unpacklo_epi32(_mm_cvtsi32_si128(i0), _mm_cvtsi32_si128(i1));
                i0 = *(ushort*)(S1 + iofs0[0]) + (*(ushort*)(S1 + iofs0[1]) << 16);
                i1 = *(ushort*)(S1 + iofs0[2]) + (*(ushort*)(S1 + iofs0[3]) << 16);
                v1 = _mm_unpacklo_epi32(_mm_cvtsi32_si128(i0), _mm_cvtsi32_si128(i1));
                v0 = _mm_unpacklo_epi8(v0, z);
                v1 = _mm_unpacklo_epi8(v1, z);

                a0 = _mm_unpacklo_epi32(_mm_loadl_epi64((__m128i*)(wtab+FXY[x]*4)),
                                        _mm_loadl_epi64((__m128i*)(wtab+FXY[x+1]*4)));
                a1 = _mm_unpacklo_epi32(_mm_loadl_epi64((__m128i*)(wtab+FXY[x+2]*4)),
                                        _mm_loadl_epi64((__m128i*)(wtab+FXY[x+3]*4)));
                b0 = _mm_unpacklo_epi64(a0, a1);
                b1 = _mm_unpackhi_epi64(a0, a1);
                v0 = _mm_madd_epi16(v0, b0);
                v1 = _mm_madd_epi16(v1, b1);
                v0 = _mm_add_epi32(_mm_add_epi32(v0, v1), delta);

                i0 = *(ushort*)(S0 + iofs1[0]) + (*(ushort*)(S0 + iofs1[1]) << 16);
                i1 = *(ushort*)(S0 + iofs1[2]) + (*(ushort*)(S0 + iofs1[3]) << 16);
                v2 = _mm_unpacklo_epi32(_mm_cvtsi32_si128(i0), _mm_cvtsi32_si128(i1));
                i0 = *(ushort*)(S1 + iofs1[0]) + (*(ushort*)(S1 + iofs1[1]) << 16);
                i1 = *(ushort*)(S1 + iofs1[2]) + (*(ushort*)(S1 + iofs1[3]) << 16);
                v3 = _mm_unpacklo_epi32(_mm_cvtsi32_si128(i0), _mm_cvtsi32_si128(i1));
                v2 = _mm_unpacklo_epi8(v2, z);
                v3 = _mm_unpacklo_epi8(v3, z);

                a0 = _mm_unpacklo_epi32(_mm_loadl_epi64((__m128i*)(wtab+FXY[x+4]*4)),
                                        _mm_loadl_epi64((__m128i*)(wtab+FXY[x+5]*4)));
                a1 = _mm_unpacklo_epi32(_mm_loadl_epi64((__m128i*)(wtab+FXY[x+6]*4)),
                                        _mm_loadl_epi64((__m128i*)(wtab+FXY[x+7]*4)));
                b0 = _mm_unpacklo_epi64(a0, a1);
                b1 = _mm_unpackhi_epi64(a0, a1);
                v2 = _mm_madd_epi16(v2, b0);
                v3 = _mm_madd_epi16(v3, b1);
                v2 = _mm_add_epi32(_mm_add_epi32(v2, v3), delta);

                v0 = _mm_srai_epi32(v0, INTER_REMAP_COEF_BITS);
                v2 = _mm_srai_epi32(v2, INTER_REMAP_COEF_BITS);
                v0 = _mm_packus_epi16(_mm_packs_epi32(v0, v2), z);
                _mm_storel_epi64( (__m128i*)(D + x), v0 );
            }
        }
        else if( cn == 3 )
        {
            for( ; x <= width - 5; x += 4, D += 12 )
            {
                __m128i xy0 = _mm_loadu_si128( (const __m128i*)(XY + x*2));
                __m128i u0, v0, u1, v1;

                xy0 = _mm_madd_epi16( xy0, xy2ofs );
                _mm_store_si128( (__m128i*)iofs0, xy0 );
                const __m128i *w0, *w1;
                w0 = (const __m128i*)(wtab + FXY[x]*16);
                w1 = (const __m128i*)(wtab + FXY[x+1]*16);

                u0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S0 + iofs0[0])),
                                       _mm_cvtsi32_si128(*(int*)(S0 + iofs0[0] + 3)));
                v0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S1 + iofs0[0])),
                                       _mm_cvtsi32_si128(*(int*)(S1 + iofs0[0] + 3)));
                u1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S0 + iofs0[1])),
                                       _mm_cvtsi32_si128(*(int*)(S0 + iofs0[1] + 3)));
                v1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S1 + iofs0[1])),
                                       _mm_cvtsi32_si128(*(int*)(S1 + iofs0[1] + 3)));
                u0 = _mm_unpacklo_epi8(u0, z);
                v0 = _mm_unpacklo_epi8(v0, z);
                u1 = _mm_unpacklo_epi8(u1, z);
                v1 = _mm_unpacklo_epi8(v1, z);
                u0 = _mm_add_epi32(_mm_madd_epi16(u0, w0[0]), _mm_madd_epi16(v0, w0[1]));
                u1 = _mm_add_epi32(_mm_madd_epi16(u1, w1[0]), _mm_madd_epi16(v1, w1[1]));
                u0 = _mm_srai_epi32(_mm_add_epi32(u0, delta), INTER_REMAP_COEF_BITS);
                u1 = _mm_srai_epi32(_mm_add_epi32(u1, delta), INTER_REMAP_COEF_BITS);
                u0 = _mm_slli_si128(u0, 4);
                u0 = _mm_packs_epi32(u0, u1);
                u0 = _mm_packus_epi16(u0, u0);
                _mm_storel_epi64((__m128i*)D, _mm_srli_si128(u0,1));

                w0 = (const __m128i*)(wtab + FXY[x+2]*16);
                w1 = (const __m128i*)(wtab + FXY[x+3]*16);

                u0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S0 + iofs0[2])),
                                       _mm_cvtsi32_si128(*(int*)(S0 + iofs0[2] + 3)));
                v0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S1 + iofs0[2])),
                                       _mm_cvtsi32_si128(*(int*)(S1 + iofs0[2] + 3)));
                u1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S0 + iofs0[3])),
                                       _mm_cvtsi32_si128(*(int*)(S0 + iofs0[3] + 3)));
                v1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S1 + iofs0[3])),
                                       _mm_cvtsi32_si128(*(int*)(S1 + iofs0[3] + 3)));
                u0 = _mm_unpacklo_epi8(u0, z);
                v0 = _mm_unpacklo_epi8(v0, z);
                u1 = _mm_unpacklo_epi8(u1, z);
                v1 = _mm_unpacklo_epi8(v1, z);
                u0 = _mm_add_epi32(_mm_madd_epi16(u0, w0[0]), _mm_madd_epi16(v0, w0[1]));
                u1 = _mm_add_epi32(_mm_madd_epi16(u1, w1[0]), _mm_madd_epi16(v1, w1[1]));
                u0 = _mm_srai_epi32(_mm_add_epi32(u0, delta), INTER_REMAP_COEF_BITS);
                u1 = _mm_srai_epi32(_mm_add_epi32(u1, delta), INTER_REMAP_COEF_BITS);
                u0 = _mm_slli_si128(u0, 4);
                u0 = _mm_packs_epi32(u0, u1);
                u0 = _mm_packus_epi16(u0, u0);
                _mm_storel_epi64((__m128i*)(D + 6), _mm_srli_si128(u0,1));
            }
        }
        else if( cn == 4 )
        {
            for( ; x <= width - 4; x += 4, D += 16 )
            {
                __m128i xy0 = _mm_loadu_si128( (const __m128i*)(XY + x*2));
                __m128i u0, v0, u1, v1;

                xy0 = _mm_madd_epi16( xy0, xy2ofs );
                _mm_store_si128( (__m128i*)iofs0, xy0 );
                const __m128i *w0, *w1;
                w0 = (const __m128i*)(wtab + FXY[x]*16);
                w1 = (const __m128i*)(wtab + FXY[x+1]*16);

                u0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S0 + iofs0[0])),
                                       _mm_cvtsi32_si128(*(int*)(S0 + iofs0[0] + 4)));
                v0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S1 + iofs0[0])),
                                       _mm_cvtsi32_si128(*(int*)(S1 + iofs0[0] + 4)));
                u1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S0 + iofs0[1])),
                                       _mm_cvtsi32_si128(*(int*)(S0 + iofs0[1] + 4)));
                v1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S1 + iofs0[1])),
                                       _mm_cvtsi32_si128(*(int*)(S1 + iofs0[1] + 4)));
                u0 = _mm_unpacklo_epi8(u0, z);
                v0 = _mm_unpacklo_epi8(v0, z);
                u1 = _mm_unpacklo_epi8(u1, z);
                v1 = _mm_unpacklo_epi8(v1, z);
                u0 = _mm_add_epi32(_mm_madd_epi16(u0, w0[0]), _mm_madd_epi16(v0, w0[1]));
                u1 = _mm_add_epi32(_mm_madd_epi16(u1, w1[0]), _mm_madd_epi16(v1, w1[1]));
                u0 = _mm_srai_epi32(_mm_add_epi32(u0, delta), INTER_REMAP_COEF_BITS);
                u1 = _mm_srai_epi32(_mm_add_epi32(u1, delta), INTER_REMAP_COEF_BITS);
                u0 = _mm_packs_epi32(u0, u1);
                u0 = _mm_packus_epi16(u0, u0);
                _mm_storel_epi64((__m128i*)D, u0);

                w0 = (const __m128i*)(wtab + FXY[x+2]*16);
                w1 = (const __m128i*)(wtab + FXY[x+3]*16);

                u0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S0 + iofs0[2])),
                                       _mm_cvtsi32_si128(*(int*)(S0 + iofs0[2] + 4)));
                v0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S1 + iofs0[2])),
                                       _mm_cvtsi32_si128(*(int*)(S1 + iofs0[2] + 4)));
                u1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S0 + iofs0[3])),
                                       _mm_cvtsi32_si128(*(int*)(S0 + iofs0[3] + 4)));
                v1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(int*)(S1 + iofs0[3])),
                                       _mm_cvtsi32_si128(*(int*)(S1 + iofs0[3] + 4)));
                u0 = _mm_unpacklo_epi8(u0, z);
                v0 = _mm_unpacklo_epi8(v0, z);
                u1 = _mm_unpacklo_epi8(u1, z);
                v1 = _mm_unpacklo_epi8(v1, z);
                u0 = _mm_add_epi32(_mm_madd_epi16(u0, w0[0]), _mm_madd_epi16(v0, w0[1]));
                u1 = _mm_add_epi32(_mm_madd_epi16(u1, w1[0]), _mm_madd_epi16(v1, w1[1]));
                u0 = _mm_srai_epi32(_mm_add_epi32(u0, delta), INTER_REMAP_COEF_BITS);
                u1 = _mm_srai_epi32(_mm_add_epi32(u1, delta), INTER_REMAP_COEF_BITS);
                u0 = _mm_packs_epi32(u0, u1);
                u0 = _mm_packus_epi16(u0, u0);
                _mm_storel_epi64((__m128i*)(D + 8), u0);
            }
        }

        return x;
    }
};

#else

typedef RemapNoVec RemapVec_8u;

#endif


template<class CastOp, class VecOp, typename AT>
static void remapBilinear( const Mat& _src, Mat& _dst, const Mat& _xy,
                           const Mat& _fxy, const void* _wtab,
                           int borderType, const Scalar& _borderValue )
{
    typedef typename CastOp::rtype T;
    typedef typename CastOp::type1 WT;
    Size ssize = _src.size(), dsize = _dst.size();
    int cn = _src.channels();
    const AT* wtab = (const AT*)_wtab;
    const T* S0 = (const T*)_src.data;
    size_t sstep = _src.step/sizeof(S0[0]);
    Scalar_<T> cval(saturate_cast<T>(_borderValue[0]),
        saturate_cast<T>(_borderValue[1]),
        saturate_cast<T>(_borderValue[2]),
        saturate_cast<T>(_borderValue[3]));
    int dx, dy;
    CastOp castOp;
    VecOp vecOp;

    unsigned width1 = std::max(ssize.width-1, 0), height1 = std::max(ssize.height-1, 0);
    CV_Assert( cn <= 4 && ssize.area() > 0 );
#if CV_SSE2
    if( _src.type() == CV_8UC3 )
        width1 = std::max(ssize.width-2, 0);
#endif

    for( dy = 0; dy < dsize.height; dy++ )
    {
        T* D = (T*)(_dst.data + _dst.step*dy);
        const short* XY = (const short*)(_xy.data + _xy.step*dy);
        const ushort* FXY = (const ushort*)(_fxy.data + _fxy.step*dy);
        int X0 = 0;
        bool prevInlier = false;

        for( dx = 0; dx <= dsize.width; dx++ )
        {
            bool curInlier = dx < dsize.width ?
                (unsigned)XY[dx*2] < width1 &&
                (unsigned)XY[dx*2+1] < height1 : !prevInlier;
            if( curInlier == prevInlier )
                continue;

            int X1 = dx;
            dx = X0;
            X0 = X1;
            prevInlier = curInlier;

            if( !curInlier )
            {
                int len = vecOp( _src, D, XY + dx*2, FXY + dx, wtab, X1 - dx );
                D += len*cn;
                dx += len;

                if( cn == 1 )
                {
                    for( ; dx < X1; dx++, D++ )
                    {
                        int sx = XY[dx*2], sy = XY[dx*2+1];
                        const AT* w = wtab + FXY[dx]*4;
                        const T* S = S0 + sy*sstep + sx;
                        *D = castOp(WT(S[0]*w[0] + S[1]*w[1] + S[sstep]*w[2] + S[sstep+1]*w[3]));
                    }
                }
                else if( cn == 2 )
                    for( ; dx < X1; dx++, D += 2 )
                    {
                        int sx = XY[dx*2], sy = XY[dx*2+1];
                        const AT* w = wtab + FXY[dx]*4;
                        const T* S = S0 + sy*sstep + sx*2;
                        WT t0 = S[0]*w[0] + S[2]*w[1] + S[sstep]*w[2] + S[sstep+2]*w[3];
                        WT t1 = S[1]*w[0] + S[3]*w[1] + S[sstep+1]*w[2] + S[sstep+3]*w[3];
                        D[0] = castOp(t0); D[1] = castOp(t1);
                    }
                else if( cn == 3 )
                    for( ; dx < X1; dx++, D += 3 )
                    {
                        int sx = XY[dx*2], sy = XY[dx*2+1];
                        const AT* w = wtab + FXY[dx]*4;
                        const T* S = S0 + sy*sstep + sx*3;
                        WT t0 = S[0]*w[0] + S[3]*w[1] + S[sstep]*w[2] + S[sstep+3]*w[3];
                        WT t1 = S[1]*w[0] + S[4]*w[1] + S[sstep+1]*w[2] + S[sstep+4]*w[3];
                        WT t2 = S[2]*w[0] + S[5]*w[1] + S[sstep+2]*w[2] + S[sstep+5]*w[3];
                        D[0] = castOp(t0); D[1] = castOp(t1); D[2] = castOp(t2);
                    }
                else
                    for( ; dx < X1; dx++, D += 4 )
                    {
                        int sx = XY[dx*2], sy = XY[dx*2+1];
                        const AT* w = wtab + FXY[dx]*4;
                        const T* S = S0 + sy*sstep + sx*4;
                        WT t0 = S[0]*w[0] + S[4]*w[1] + S[sstep]*w[2] + S[sstep+4]*w[3];
                        WT t1 = S[1]*w[0] + S[5]*w[1] + S[sstep+1]*w[2] + S[sstep+5]*w[3];
                        D[0] = castOp(t0); D[1] = castOp(t1);
                        t0 = S[2]*w[0] + S[6]*w[1] + S[sstep+2]*w[2] + S[sstep+6]*w[3];
                        t1 = S[3]*w[0] + S[7]*w[1] + S[sstep+3]*w[2] + S[sstep+7]*w[3];
                        D[2] = castOp(t0); D[3] = castOp(t1);
                    }
            }
            else
            {
                if( borderType == BORDER_TRANSPARENT && cn != 3 )
                {
                    D += (X1 - dx)*cn;
                    dx = X1;
                    continue;
                }

                if( cn == 1 )
                    for( ; dx < X1; dx++, D++ )
                    {
                        int sx = XY[dx*2], sy = XY[dx*2+1];
                        if( borderType == BORDER_CONSTANT &&
                            (sx >= ssize.width || sx+1 < 0 ||
                             sy >= ssize.height || sy+1 < 0) )
                        {
                            D[0] = cval[0];
                        }
                        else
                        {
                            int sx0, sx1, sy0, sy1;
                            T v0, v1, v2, v3;
                            const AT* w = wtab + FXY[dx]*4;
                            if( borderType == BORDER_REPLICATE )
                            {
                                sx0 = clip(sx, 0, ssize.width);
                                sx1 = clip(sx+1, 0, ssize.width);
                                sy0 = clip(sy, 0, ssize.height);
                                sy1 = clip(sy+1, 0, ssize.height);
                                v0 = S0[sy0*sstep + sx0];
                                v1 = S0[sy0*sstep + sx1];
                                v2 = S0[sy1*sstep + sx0];
                                v3 = S0[sy1*sstep + sx1];
                            }
                            else
                            {
                                sx0 = borderInterpolate(sx, ssize.width, borderType);
                                sx1 = borderInterpolate(sx+1, ssize.width, borderType);
                                sy0 = borderInterpolate(sy, ssize.height, borderType);
                                sy1 = borderInterpolate(sy+1, ssize.height, borderType);
                                v0 = sx0 >= 0 && sy0 >= 0 ? S0[sy0*sstep + sx0] : cval[0];
                                v1 = sx1 >= 0 && sy0 >= 0 ? S0[sy0*sstep + sx1] : cval[0];
                                v2 = sx0 >= 0 && sy1 >= 0 ? S0[sy1*sstep + sx0] : cval[0];
                                v3 = sx1 >= 0 && sy1 >= 0 ? S0[sy1*sstep + sx1] : cval[0];
                            }
                            D[0] = castOp(WT(v0*w[0] + v1*w[1] + v2*w[2] + v3*w[3]));
                        }
                    }
                else
                    for( ; dx < X1; dx++, D += cn )
                    {
                        int sx = XY[dx*2], sy = XY[dx*2+1], k;
                        if( borderType == BORDER_CONSTANT &&
                            (sx >= ssize.width || sx+1 < 0 ||
                             sy >= ssize.height || sy+1 < 0) )
                        {
                            for( k = 0; k < cn; k++ )
                                D[k] = cval[k];
                        }
                        else
                        {
                            int sx0, sx1, sy0, sy1;
                            const T *v0, *v1, *v2, *v3;
                            const AT* w = wtab + FXY[dx]*4;
                            if( borderType == BORDER_REPLICATE )
                            {
                                sx0 = clip(sx, 0, ssize.width);
                                sx1 = clip(sx+1, 0, ssize.width);
                                sy0 = clip(sy, 0, ssize.height);
                                sy1 = clip(sy+1, 0, ssize.height);
                                v0 = S0 + sy0*sstep + sx0*cn;
                                v1 = S0 + sy0*sstep + sx1*cn;
                                v2 = S0 + sy1*sstep + sx0*cn;
                                v3 = S0 + sy1*sstep + sx1*cn;
                            }
                            else if( borderType == BORDER_TRANSPARENT &&
                                ((unsigned)sx >= (unsigned)(ssize.width-1) ||
                                (unsigned)sy >= (unsigned)(ssize.height-1)))
                                continue;
                            else
                            {
                                sx0 = borderInterpolate(sx, ssize.width, borderType);
                                sx1 = borderInterpolate(sx+1, ssize.width, borderType);
                                sy0 = borderInterpolate(sy, ssize.height, borderType);
                                sy1 = borderInterpolate(sy+1, ssize.height, borderType);
                                v0 = sx0 >= 0 && sy0 >= 0 ? S0 + sy0*sstep + sx0*cn : &cval[0];
                                v1 = sx1 >= 0 && sy0 >= 0 ? S0 + sy0*sstep + sx1*cn : &cval[0];
                                v2 = sx0 >= 0 && sy1 >= 0 ? S0 + sy1*sstep + sx0*cn : &cval[0];
                                v3 = sx1 >= 0 && sy1 >= 0 ? S0 + sy1*sstep + sx1*cn : &cval[0];
                            }
                            for( k = 0; k < cn; k++ )
                                D[k] = castOp(WT(v0[k]*w[0] + v1[k]*w[1] + v2[k]*w[2] + v3[k]*w[3]));
                        }
                    }
            }
        }
    }
}


template<class CastOp, typename AT, int ONE>
static void remapBicubic( const Mat& _src, Mat& _dst, const Mat& _xy,
                          const Mat& _fxy, const void* _wtab,
                          int borderType, const Scalar& _borderValue )
{
    typedef typename CastOp::rtype T;
    typedef typename CastOp::type1 WT;
    Size ssize = _src.size(), dsize = _dst.size();
    int cn = _src.channels();
    const AT* wtab = (const AT*)_wtab;
    const T* S0 = (const T*)_src.data;
    size_t sstep = _src.step/sizeof(S0[0]);
    Scalar_<T> cval(saturate_cast<T>(_borderValue[0]),
        saturate_cast<T>(_borderValue[1]),
        saturate_cast<T>(_borderValue[2]),
        saturate_cast<T>(_borderValue[3]));
    int dx, dy;
    CastOp castOp;
2982
    int borderType1 = borderType != BORDER_TRANSPARENT ? borderType : BORDER_REFLECT_101;
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021

    unsigned width1 = std::max(ssize.width-3, 0), height1 = std::max(ssize.height-3, 0);

    if( _dst.isContinuous() && _xy.isContinuous() && _fxy.isContinuous() )
    {
        dsize.width *= dsize.height;
        dsize.height = 1;
    }

    for( dy = 0; dy < dsize.height; dy++ )
    {
        T* D = (T*)(_dst.data + _dst.step*dy);
        const short* XY = (const short*)(_xy.data + _xy.step*dy);
        const ushort* FXY = (const ushort*)(_fxy.data + _fxy.step*dy);

        for( dx = 0; dx < dsize.width; dx++, D += cn )
        {
            int sx = XY[dx*2]-1, sy = XY[dx*2+1]-1;
            const AT* w = wtab + FXY[dx]*16;
            int i, k;
            if( (unsigned)sx < width1 && (unsigned)sy < height1 )
            {
                const T* S = S0 + sy*sstep + sx*cn;
                for( k = 0; k < cn; k++ )
                {
                    WT sum = S[0]*w[0] + S[cn]*w[1] + S[cn*2]*w[2] + S[cn*3]*w[3];
                    S += sstep;
                    sum += S[0]*w[4] + S[cn]*w[5] + S[cn*2]*w[6] + S[cn*3]*w[7];
                    S += sstep;
                    sum += S[0]*w[8] + S[cn]*w[9] + S[cn*2]*w[10] + S[cn*3]*w[11];
                    S += sstep;
                    sum += S[0]*w[12] + S[cn]*w[13] + S[cn*2]*w[14] + S[cn*3]*w[15];
                    S += 1 - sstep*3;
                    D[k] = castOp(sum);
                }
            }
            else
            {
                int x[4], y[4];
3022 3023 3024
                if( borderType == BORDER_TRANSPARENT &&
                    ((unsigned)(sx+1) >= (unsigned)ssize.width ||
                    (unsigned)(sy+1) >= (unsigned)ssize.height) )
3025 3026
                    continue;

3027
                if( borderType1 == BORDER_CONSTANT &&
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
                    (sx >= ssize.width || sx+4 <= 0 ||
                    sy >= ssize.height || sy+4 <= 0))
                {
                    for( k = 0; k < cn; k++ )
                        D[k] = cval[k];
                    continue;
                }

                for( i = 0; i < 4; i++ )
                {
3038 3039
                    x[i] = borderInterpolate(sx + i, ssize.width, borderType1)*cn;
                    y[i] = borderInterpolate(sy + i, ssize.height, borderType1);
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
                }

                for( k = 0; k < cn; k++, S0++, w -= 16 )
                {
                    WT cv = cval[k], sum = cv*ONE;
                    for( i = 0; i < 4; i++, w += 4 )
                    {
                        int yi = y[i];
                        const T* S = S0 + yi*sstep;
                        if( yi < 0 )
                            continue;
                        if( x[0] >= 0 )
                            sum += (S[x[0]] - cv)*w[0];
                        if( x[1] >= 0 )
                            sum += (S[x[1]] - cv)*w[1];
                        if( x[2] >= 0 )
                            sum += (S[x[2]] - cv)*w[2];
                        if( x[3] >= 0 )
                            sum += (S[x[3]] - cv)*w[3];
                    }
                    D[k] = castOp(sum);
                }
                S0 -= cn;
            }
        }
    }
}


template<class CastOp, typename AT, int ONE>
static void remapLanczos4( const Mat& _src, Mat& _dst, const Mat& _xy,
                           const Mat& _fxy, const void* _wtab,
                           int borderType, const Scalar& _borderValue )
{
    typedef typename CastOp::rtype T;
    typedef typename CastOp::type1 WT;
    Size ssize = _src.size(), dsize = _dst.size();
    int cn = _src.channels();
    const AT* wtab = (const AT*)_wtab;
    const T* S0 = (const T*)_src.data;
    size_t sstep = _src.step/sizeof(S0[0]);
    Scalar_<T> cval(saturate_cast<T>(_borderValue[0]),
        saturate_cast<T>(_borderValue[1]),
        saturate_cast<T>(_borderValue[2]),
        saturate_cast<T>(_borderValue[3]));
    int dx, dy;
    CastOp castOp;
3087
    int borderType1 = borderType != BORDER_TRANSPARENT ? borderType : BORDER_REFLECT_101;
M
Marina Kolpakova 已提交
3088

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
    unsigned width1 = std::max(ssize.width-7, 0), height1 = std::max(ssize.height-7, 0);

    if( _dst.isContinuous() && _xy.isContinuous() && _fxy.isContinuous() )
    {
        dsize.width *= dsize.height;
        dsize.height = 1;
    }

    for( dy = 0; dy < dsize.height; dy++ )
    {
        T* D = (T*)(_dst.data + _dst.step*dy);
        const short* XY = (const short*)(_xy.data + _xy.step*dy);
        const ushort* FXY = (const ushort*)(_fxy.data + _fxy.step*dy);

        for( dx = 0; dx < dsize.width; dx++, D += cn )
        {
            int sx = XY[dx*2]-3, sy = XY[dx*2+1]-3;
            const AT* w = wtab + FXY[dx]*64;
            const T* S = S0 + sy*sstep + sx*cn;
            int i, k;
            if( (unsigned)sx < width1 && (unsigned)sy < height1 )
            {
                for( k = 0; k < cn; k++ )
                {
                    WT sum = 0;
                    for( int r = 0; r < 8; r++, S += sstep, w += 8 )
                        sum += S[0]*w[0] + S[cn]*w[1] + S[cn*2]*w[2] + S[cn*3]*w[3] +
                            S[cn*4]*w[4] + S[cn*5]*w[5] + S[cn*6]*w[6] + S[cn*7]*w[7];
                    w -= 64;
                    S -= sstep*8 - 1;
                    D[k] = castOp(sum);
                }
            }
            else
            {
                int x[8], y[8];
3125 3126 3127
                if( borderType == BORDER_TRANSPARENT &&
                    ((unsigned)(sx+3) >= (unsigned)ssize.width ||
                    (unsigned)(sy+3) >= (unsigned)ssize.height) )
3128 3129
                    continue;

3130
                if( borderType1 == BORDER_CONSTANT &&
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
                    (sx >= ssize.width || sx+8 <= 0 ||
                    sy >= ssize.height || sy+8 <= 0))
                {
                    for( k = 0; k < cn; k++ )
                        D[k] = cval[k];
                    continue;
                }

                for( i = 0; i < 8; i++ )
                {
3141 3142
                    x[i] = borderInterpolate(sx + i, ssize.width, borderType1)*cn;
                    y[i] = borderInterpolate(sy + i, ssize.height, borderType1);
3143 3144 3145 3146 3147 3148 3149 3150
                }

                for( k = 0; k < cn; k++, S0++, w -= 64 )
                {
                    WT cv = cval[k], sum = cv*ONE;
                    for( i = 0; i < 8; i++, w += 8 )
                    {
                        int yi = y[i];
A
Andrey Kamaev 已提交
3151
                        const T* S1 = S0 + yi*sstep;
3152 3153 3154
                        if( yi < 0 )
                            continue;
                        if( x[0] >= 0 )
A
Andrey Kamaev 已提交
3155
                            sum += (S1[x[0]] - cv)*w[0];
3156
                        if( x[1] >= 0 )
A
Andrey Kamaev 已提交
3157
                            sum += (S1[x[1]] - cv)*w[1];
3158
                        if( x[2] >= 0 )
A
Andrey Kamaev 已提交
3159
                            sum += (S1[x[2]] - cv)*w[2];
3160
                        if( x[3] >= 0 )
A
Andrey Kamaev 已提交
3161
                            sum += (S1[x[3]] - cv)*w[3];
3162
                        if( x[4] >= 0 )
A
Andrey Kamaev 已提交
3163
                            sum += (S1[x[4]] - cv)*w[4];
3164
                        if( x[5] >= 0 )
A
Andrey Kamaev 已提交
3165
                            sum += (S1[x[5]] - cv)*w[5];
3166
                        if( x[6] >= 0 )
A
Andrey Kamaev 已提交
3167
                            sum += (S1[x[6]] - cv)*w[6];
3168
                        if( x[7] >= 0 )
A
Andrey Kamaev 已提交
3169
                            sum += (S1[x[7]] - cv)*w[7];
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
                    }
                    D[k] = castOp(sum);
                }
                S0 -= cn;
            }
        }
    }
}


typedef void (*RemapNNFunc)(const Mat& _src, Mat& _dst, const Mat& _xy,
                            int borderType, const Scalar& _borderValue );

typedef void (*RemapFunc)(const Mat& _src, Mat& _dst, const Mat& _xy,
                          const Mat& _fxy, const void* _wtab,
                          int borderType, const Scalar& _borderValue);

3187
class RemapInvoker :
3188 3189 3190
    public ParallelLoopBody
{
public:
3191
    RemapInvoker(const Mat& _src, Mat& _dst, const Mat *_m1,
3192
                 const Mat *_m2, int _borderType, const Scalar &_borderValue,
3193
                 int _planar_input, RemapNNFunc _nnfunc, RemapFunc _ifunc, const void *_ctab) :
3194
        ParallelLoopBody(), src(&_src), dst(&_dst), m1(_m1), m2(_m2),
3195
        borderType(_borderType), borderValue(_borderValue),
3196
        planar_input(_planar_input), nnfunc(_nnfunc), ifunc(_ifunc), ctab(_ctab)
3197 3198 3199
    {
    }

3200 3201 3202 3203
    virtual void operator() (const Range& range) const
    {
        int x, y, x1, y1;
        const int buf_size = 1 << 14;
3204 3205 3206
        int brows0 = std::min(128, dst->rows), map_depth = m1->depth();
        int bcols0 = std::min(buf_size/brows0, dst->cols);
        brows0 = std::min(buf_size/bcols0, dst->rows);
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
    #if CV_SSE2
        bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
    #endif

        Mat _bufxy(brows0, bcols0, CV_16SC2), _bufa;
        if( !nnfunc )
            _bufa.create(brows0, bcols0, CV_16UC1);

        for( y = range.start; y < range.end; y += brows0 )
        {
3217
            for( x = 0; x < dst->cols; x += bcols0 )
3218 3219
            {
                int brows = std::min(brows0, range.end - y);
3220 3221
                int bcols = std::min(bcols0, dst->cols - x);
                Mat dpart(*dst, Rect(x, y, bcols, brows));
3222 3223 3224 3225
                Mat bufxy(_bufxy, Rect(0, 0, bcols, brows));

                if( nnfunc )
                {
3226 3227
                    if( m1->type() == CV_16SC2 && !m2->data ) // the data is already in the right format
                        bufxy = (*m1)(Rect(x, y, bcols, brows));
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
                    else if( map_depth != CV_32F )
                    {
                        for( y1 = 0; y1 < brows; y1++ )
                        {
                            short* XY = (short*)(bufxy.data + bufxy.step*y1);
                            const short* sXY = (const short*)(m1->data + m1->step*(y+y1)) + x*2;
                            const ushort* sA = (const ushort*)(m2->data + m2->step*(y+y1)) + x;

                            for( x1 = 0; x1 < bcols; x1++ )
                            {
                                int a = sA[x1] & (INTER_TAB_SIZE2-1);
                                XY[x1*2] = sXY[x1*2] + NNDeltaTab_i[a][0];
                                XY[x1*2+1] = sXY[x1*2+1] + NNDeltaTab_i[a][1];
                            }
                        }
                    }
                    else if( !planar_input )
3245
                        (*m1)(Rect(x, y, bcols, brows)).convertTo(bufxy, bufxy.depth());
3246 3247 3248 3249 3250
                    else
                    {
                        for( y1 = 0; y1 < brows; y1++ )
                        {
                            short* XY = (short*)(bufxy.data + bufxy.step*y1);
3251 3252
                            const float* sX = (const float*)(m1->data + m1->step*(y+y1)) + x;
                            const float* sY = (const float*)(m2->data + m2->step*(y+y1)) + x;
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
                            x1 = 0;

                        #if CV_SSE2
                            if( useSIMD )
                            {
                                for( ; x1 <= bcols - 8; x1 += 8 )
                                {
                                    __m128 fx0 = _mm_loadu_ps(sX + x1);
                                    __m128 fx1 = _mm_loadu_ps(sX + x1 + 4);
                                    __m128 fy0 = _mm_loadu_ps(sY + x1);
                                    __m128 fy1 = _mm_loadu_ps(sY + x1 + 4);
                                    __m128i ix0 = _mm_cvtps_epi32(fx0);
                                    __m128i ix1 = _mm_cvtps_epi32(fx1);
                                    __m128i iy0 = _mm_cvtps_epi32(fy0);
                                    __m128i iy1 = _mm_cvtps_epi32(fy1);
                                    ix0 = _mm_packs_epi32(ix0, ix1);
                                    iy0 = _mm_packs_epi32(iy0, iy1);
                                    ix1 = _mm_unpacklo_epi16(ix0, iy0);
                                    iy1 = _mm_unpackhi_epi16(ix0, iy0);
                                    _mm_storeu_si128((__m128i*)(XY + x1*2), ix1);
                                    _mm_storeu_si128((__m128i*)(XY + x1*2 + 8), iy1);
                                }
                            }
                        #endif

                            for( ; x1 < bcols; x1++ )
                            {
                                XY[x1*2] = saturate_cast<short>(sX[x1]);
                                XY[x1*2+1] = saturate_cast<short>(sY[x1]);
                            }
                        }
                    }
3285
                    nnfunc( *src, dpart, bufxy, borderType, borderValue );
3286 3287 3288 3289 3290 3291 3292 3293 3294
                    continue;
                }

                Mat bufa(_bufa, Rect(0, 0, bcols, brows));
                for( y1 = 0; y1 < brows; y1++ )
                {
                    short* XY = (short*)(bufxy.data + bufxy.step*y1);
                    ushort* A = (ushort*)(bufa.data + bufa.step*y1);

3295
                    if( m1->type() == CV_16SC2 && (m2->type() == CV_16UC1 || m2->type() == CV_16SC1) )
3296
                    {
3297 3298
                        bufxy = (*m1)(Rect(x, y, bcols, brows));
                        bufa = (*m2)(Rect(x, y, bcols, brows));
3299 3300 3301
                    }
                    else if( planar_input )
                    {
3302 3303
                        const float* sX = (const float*)(m1->data + m1->step*(y+y1)) + x;
                        const float* sY = (const float*)(m2->data + m2->step*(y+y1)) + x;
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348

                        x1 = 0;
                    #if CV_SSE2
                        if( useSIMD )
                        {
                            __m128 scale = _mm_set1_ps((float)INTER_TAB_SIZE);
                            __m128i mask = _mm_set1_epi32(INTER_TAB_SIZE-1);
                            for( ; x1 <= bcols - 8; x1 += 8 )
                            {
                                __m128 fx0 = _mm_loadu_ps(sX + x1);
                                __m128 fx1 = _mm_loadu_ps(sX + x1 + 4);
                                __m128 fy0 = _mm_loadu_ps(sY + x1);
                                __m128 fy1 = _mm_loadu_ps(sY + x1 + 4);
                                __m128i ix0 = _mm_cvtps_epi32(_mm_mul_ps(fx0, scale));
                                __m128i ix1 = _mm_cvtps_epi32(_mm_mul_ps(fx1, scale));
                                __m128i iy0 = _mm_cvtps_epi32(_mm_mul_ps(fy0, scale));
                                __m128i iy1 = _mm_cvtps_epi32(_mm_mul_ps(fy1, scale));
                                __m128i mx0 = _mm_and_si128(ix0, mask);
                                __m128i mx1 = _mm_and_si128(ix1, mask);
                                __m128i my0 = _mm_and_si128(iy0, mask);
                                __m128i my1 = _mm_and_si128(iy1, mask);
                                mx0 = _mm_packs_epi32(mx0, mx1);
                                my0 = _mm_packs_epi32(my0, my1);
                                my0 = _mm_slli_epi16(my0, INTER_BITS);
                                mx0 = _mm_or_si128(mx0, my0);
                                _mm_storeu_si128((__m128i*)(A + x1), mx0);
                                ix0 = _mm_srai_epi32(ix0, INTER_BITS);
                                ix1 = _mm_srai_epi32(ix1, INTER_BITS);
                                iy0 = _mm_srai_epi32(iy0, INTER_BITS);
                                iy1 = _mm_srai_epi32(iy1, INTER_BITS);
                                ix0 = _mm_packs_epi32(ix0, ix1);
                                iy0 = _mm_packs_epi32(iy0, iy1);
                                ix1 = _mm_unpacklo_epi16(ix0, iy0);
                                iy1 = _mm_unpackhi_epi16(ix0, iy0);
                                _mm_storeu_si128((__m128i*)(XY + x1*2), ix1);
                                _mm_storeu_si128((__m128i*)(XY + x1*2 + 8), iy1);
                            }
                        }
                    #endif

                        for( ; x1 < bcols; x1++ )
                        {
                            int sx = cvRound(sX[x1]*INTER_TAB_SIZE);
                            int sy = cvRound(sY[x1]*INTER_TAB_SIZE);
                            int v = (sy & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE + (sx & (INTER_TAB_SIZE-1));
3349 3350
                            XY[x1*2] = saturate_cast<short>(sx >> INTER_BITS);
                            XY[x1*2+1] = saturate_cast<short>(sy >> INTER_BITS);
3351 3352 3353 3354 3355
                            A[x1] = (ushort)v;
                        }
                    }
                    else
                    {
3356
                        const float* sXY = (const float*)(m1->data + m1->step*(y+y1)) + x*2;
3357 3358 3359 3360 3361 3362

                        for( x1 = 0; x1 < bcols; x1++ )
                        {
                            int sx = cvRound(sXY[x1*2]*INTER_TAB_SIZE);
                            int sy = cvRound(sXY[x1*2+1]*INTER_TAB_SIZE);
                            int v = (sy & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE + (sx & (INTER_TAB_SIZE-1));
3363 3364
                            XY[x1*2] = saturate_cast<short>(sx >> INTER_BITS);
                            XY[x1*2+1] = saturate_cast<short>(sy >> INTER_BITS);
3365 3366 3367 3368
                            A[x1] = (ushort)v;
                        }
                    }
                }
3369
                ifunc(*src, dpart, bufxy, bufa, ctab, borderType, borderValue);
3370 3371 3372
            }
        }
    }
3373

3374
private:
3375 3376
    const Mat* src;
    Mat* dst;
3377
    const Mat *m1, *m2;
3378
    int borderType;
3379
    Scalar borderValue;
3380 3381 3382 3383 3384 3385
    int planar_input;
    RemapNNFunc nnfunc;
    RemapFunc ifunc;
    const void *ctab;
};

3386
}
M
Marina Kolpakova 已提交
3387

3388 3389
void cv::remap( InputArray _src, OutputArray _dst,
                InputArray _map1, InputArray _map2,
3390
                int interpolation, int borderType, const Scalar& borderValue )
3391 3392 3393
{
    static RemapNNFunc nn_tab[] =
    {
3394 3395
        remapNearest<uchar>, remapNearest<schar>, remapNearest<ushort>, remapNearest<short>,
        remapNearest<int>, remapNearest<float>, remapNearest<double>, 0
3396 3397 3398 3399 3400 3401 3402
    };

    static RemapFunc linear_tab[] =
    {
        remapBilinear<FixedPtCast<int, uchar, INTER_REMAP_COEF_BITS>, RemapVec_8u, short>, 0,
        remapBilinear<Cast<float, ushort>, RemapNoVec, float>,
        remapBilinear<Cast<float, short>, RemapNoVec, float>, 0,
3403 3404
        remapBilinear<Cast<float, float>, RemapNoVec, float>,
        remapBilinear<Cast<double, double>, RemapNoVec, float>, 0
3405 3406 3407 3408 3409 3410 3411
    };

    static RemapFunc cubic_tab[] =
    {
        remapBicubic<FixedPtCast<int, uchar, INTER_REMAP_COEF_BITS>, short, INTER_REMAP_COEF_SCALE>, 0,
        remapBicubic<Cast<float, ushort>, float, 1>,
        remapBicubic<Cast<float, short>, float, 1>, 0,
3412 3413
        remapBicubic<Cast<float, float>, float, 1>,
        remapBicubic<Cast<double, double>, float, 1>, 0
3414 3415 3416 3417 3418 3419 3420
    };

    static RemapFunc lanczos4_tab[] =
    {
        remapLanczos4<FixedPtCast<int, uchar, INTER_REMAP_COEF_BITS>, short, INTER_REMAP_COEF_SCALE>, 0,
        remapLanczos4<Cast<float, ushort>, float, 1>,
        remapLanczos4<Cast<float, short>, float, 1>, 0,
3421 3422
        remapLanczos4<Cast<float, float>, float, 1>,
        remapLanczos4<Cast<double, double>, float, 1>, 0
3423 3424
    };

3425
    Mat src = _src.getMat(), map1 = _map1.getMat(), map2 = _map2.getMat();
M
Marina Kolpakova 已提交
3426

3427 3428
    CV_Assert( map1.size().area() > 0 );
    CV_Assert( !map2.data || (map2.size() == map1.size()));
M
Marina Kolpakova 已提交
3429

3430 3431
    _dst.create( map1.size(), src.type() );
    Mat dst = _dst.getMat();
3432 3433
    if( dst.data == src.data )
        src = src.clone();
3434

3435
    int depth = src.depth();
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
    RemapNNFunc nnfunc = 0;
    RemapFunc ifunc = 0;
    const void* ctab = 0;
    bool fixpt = depth == CV_8U;
    bool planar_input = false;

    if( interpolation == INTER_NEAREST )
    {
        nnfunc = nn_tab[depth];
        CV_Assert( nnfunc != 0 );
    }
    else
    {
        if( interpolation == INTER_AREA )
            interpolation = INTER_LINEAR;

        if( interpolation == INTER_LINEAR )
            ifunc = linear_tab[depth];
        else if( interpolation == INTER_CUBIC )
            ifunc = cubic_tab[depth];
        else if( interpolation == INTER_LANCZOS4 )
            ifunc = lanczos4_tab[depth];
        else
            CV_Error( CV_StsBadArg, "Unknown interpolation method" );
        CV_Assert( ifunc != 0 );
        ctab = initInterTab2D( interpolation, fixpt );
    }

    const Mat *m1 = &map1, *m2 = &map2;

3466 3467
    if( (map1.type() == CV_16SC2 && (map2.type() == CV_16UC1 || map2.type() == CV_16SC1 || !map2.data)) ||
        (map2.type() == CV_16SC2 && (map1.type() == CV_16UC1 || map1.type() == CV_16SC1 || !map1.data)) )
3468 3469 3470 3471 3472 3473
    {
        if( map1.type() != CV_16SC2 )
            std::swap(m1, m2);
    }
    else
    {
3474
        CV_Assert( ((map1.type() == CV_32FC2 || map1.type() == CV_16SC2) && !map2.data) ||
3475 3476 3477 3478
            (map1.type() == CV_32FC1 && map2.type() == CV_32FC1) );
        planar_input = map1.channels() == 1;
    }

3479
    RemapInvoker invoker(src, dst, m1, m2,
3480 3481
                         borderType, borderValue, planar_input, nnfunc, ifunc,
                         ctab);
3482
    parallel_for_(Range(0, dst.rows), invoker, dst.total()/(double)(1<<16));
3483 3484 3485
}


3486
void cv::convertMaps( InputArray _map1, InputArray _map2,
3487 3488
                      OutputArray _dstmap1, OutputArray _dstmap2,
                      int dstm1type, bool nninterpolate )
3489
{
3490
    Mat map1 = _map1.getMat(), map2 = _map2.getMat(), dstmap1, dstmap2;
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
    Size size = map1.size();
    const Mat *m1 = &map1, *m2 = &map2;
    int m1type = m1->type(), m2type = m2->type();

    CV_Assert( (m1type == CV_16SC2 && (nninterpolate || m2type == CV_16UC1 || m2type == CV_16SC1)) ||
               (m2type == CV_16SC2 && (nninterpolate || m1type == CV_16UC1 || m1type == CV_16SC1)) ||
               (m1type == CV_32FC1 && m2type == CV_32FC1) ||
               (m1type == CV_32FC2 && !m2->data) );

    if( m2type == CV_16SC2 )
    {
        std::swap( m1, m2 );
        std::swap( m1type, m2type );
    }

    if( dstm1type <= 0 )
        dstm1type = m1type == CV_16SC2 ? CV_32FC2 : CV_16SC2;
    CV_Assert( dstm1type == CV_16SC2 || dstm1type == CV_32FC1 || dstm1type == CV_32FC2 );
3509 3510
    _dstmap1.create( size, dstm1type );
    dstmap1 = _dstmap1.getMat();
M
Marina Kolpakova 已提交
3511

3512
    if( !nninterpolate && dstm1type != CV_32FC2 )
3513 3514 3515 3516
    {
        _dstmap2.create( size, dstm1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 );
        dstmap2 = _dstmap2.getMat();
    }
3517
    else
3518
        _dstmap2.release();
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577

    if( m1type == dstm1type || (nninterpolate &&
        ((m1type == CV_16SC2 && dstm1type == CV_32FC2) ||
        (m1type == CV_32FC2 && dstm1type == CV_16SC2))) )
    {
        m1->convertTo( dstmap1, dstmap1.type() );
        if( dstmap2.data && dstmap2.type() == m2->type() )
            m2->copyTo( dstmap2 );
        return;
    }

    if( m1type == CV_32FC1 && dstm1type == CV_32FC2 )
    {
        Mat vdata[] = { *m1, *m2 };
        merge( vdata, 2, dstmap1 );
        return;
    }

    if( m1type == CV_32FC2 && dstm1type == CV_32FC1 )
    {
        Mat mv[] = { dstmap1, dstmap2 };
        split( *m1, mv );
        return;
    }

    if( m1->isContinuous() && (!m2->data || m2->isContinuous()) &&
        dstmap1.isContinuous() && (!dstmap2.data || dstmap2.isContinuous()) )
    {
        size.width *= size.height;
        size.height = 1;
    }

    const float scale = 1.f/INTER_TAB_SIZE;
    int x, y;
    for( y = 0; y < size.height; y++ )
    {
        const float* src1f = (const float*)(m1->data + m1->step*y);
        const float* src2f = (const float*)(m2->data + m2->step*y);
        const short* src1 = (const short*)src1f;
        const ushort* src2 = (const ushort*)src2f;

        float* dst1f = (float*)(dstmap1.data + dstmap1.step*y);
        float* dst2f = (float*)(dstmap2.data + dstmap2.step*y);
        short* dst1 = (short*)dst1f;
        ushort* dst2 = (ushort*)dst2f;

        if( m1type == CV_32FC1 && dstm1type == CV_16SC2 )
        {
            if( nninterpolate )
                for( x = 0; x < size.width; x++ )
                {
                    dst1[x*2] = saturate_cast<short>(src1f[x]);
                    dst1[x*2+1] = saturate_cast<short>(src2f[x]);
                }
            else
                for( x = 0; x < size.width; x++ )
                {
                    int ix = saturate_cast<int>(src1f[x]*INTER_TAB_SIZE);
                    int iy = saturate_cast<int>(src2f[x]*INTER_TAB_SIZE);
3578 3579
                    dst1[x*2] = saturate_cast<short>(ix >> INTER_BITS);
                    dst1[x*2+1] = saturate_cast<short>(iy >> INTER_BITS);
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
                    dst2[x] = (ushort)((iy & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE + (ix & (INTER_TAB_SIZE-1)));
                }
        }
        else if( m1type == CV_32FC2 && dstm1type == CV_16SC2 )
        {
            if( nninterpolate )
                for( x = 0; x < size.width; x++ )
                {
                    dst1[x*2] = saturate_cast<short>(src1f[x*2]);
                    dst1[x*2+1] = saturate_cast<short>(src1f[x*2+1]);
                }
            else
                for( x = 0; x < size.width; x++ )
                {
                    int ix = saturate_cast<int>(src1f[x*2]*INTER_TAB_SIZE);
                    int iy = saturate_cast<int>(src1f[x*2+1]*INTER_TAB_SIZE);
3596 3597
                    dst1[x*2] = saturate_cast<short>(ix >> INTER_BITS);
                    dst1[x*2+1] = saturate_cast<short>(iy >> INTER_BITS);
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
                    dst2[x] = (ushort)((iy & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE + (ix & (INTER_TAB_SIZE-1)));
                }
        }
        else if( m1type == CV_16SC2 && dstm1type == CV_32FC1 )
        {
            for( x = 0; x < size.width; x++ )
            {
                int fxy = src2 ? src2[x] : 0;
                dst1f[x] = src1[x*2] + (fxy & (INTER_TAB_SIZE-1))*scale;
                dst2f[x] = src1[x*2+1] + (fxy >> INTER_BITS)*scale;
            }
        }
        else if( m1type == CV_16SC2 && dstm1type == CV_32FC2 )
        {
            for( x = 0; x < size.width; x++ )
            {
                int fxy = src2 ? src2[x] : 0;
                dst1f[x*2] = src1[x*2] + (fxy & (INTER_TAB_SIZE-1))*scale;
                dst1f[x*2+1] = src1[x*2+1] + (fxy >> INTER_BITS)*scale;
            }
        }
        else
            CV_Error( CV_StsNotImplemented, "Unsupported combination of input/output matrices" );
    }
}

3624

3625 3626 3627
namespace cv
{

3628
class warpAffineInvoker :
3629 3630 3631
    public ParallelLoopBody
{
public:
3632
    warpAffineInvoker(const Mat &_src, Mat &_dst, int _interpolation, int _borderType,
3633 3634 3635 3636 3637 3638
                      const Scalar &_borderValue, int *_adelta, int *_bdelta, double *_M) :
        ParallelLoopBody(), src(_src), dst(_dst), interpolation(_interpolation),
        borderType(_borderType), borderValue(_borderValue), adelta(_adelta), bdelta(_bdelta),
        M(_M)
    {
    }
3639

3640 3641 3642 3643 3644
    virtual void operator() (const Range& range) const
    {
        const int BLOCK_SZ = 64;
        short XY[BLOCK_SZ*BLOCK_SZ*2], A[BLOCK_SZ*BLOCK_SZ];
        const int AB_BITS = MAX(10, (int)INTER_BITS);
3645
        const int AB_SCALE = 1 << AB_BITS;
3646 3647 3648 3649
        int round_delta = interpolation == INTER_NEAREST ? AB_SCALE/2 : AB_SCALE/INTER_TAB_SIZE/2, x, y, x1, y1;
    #if CV_SSE2
        bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
    #endif
3650

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
        int bh0 = std::min(BLOCK_SZ/2, dst.rows);
        int bw0 = std::min(BLOCK_SZ*BLOCK_SZ/bh0, dst.cols);
        bh0 = std::min(BLOCK_SZ*BLOCK_SZ/bw0, dst.rows);

        for( y = range.start; y < range.end; y += bh0 )
        {
            for( x = 0; x < dst.cols; x += bw0 )
            {
                int bw = std::min( bw0, dst.cols - x);
                int bh = std::min( bh0, range.end - y);

                Mat _XY(bh, bw, CV_16SC2, XY), matA;
                Mat dpart(dst, Rect(x, y, bw, bh));

                for( y1 = 0; y1 < bh; y1++ )
                {
                    short* xy = XY + y1*bw*2;
                    int X0 = saturate_cast<int>((M[1]*(y + y1) + M[2])*AB_SCALE) + round_delta;
                    int Y0 = saturate_cast<int>((M[4]*(y + y1) + M[5])*AB_SCALE) + round_delta;

                    if( interpolation == INTER_NEAREST )
                        for( x1 = 0; x1 < bw; x1++ )
                        {
                            int X = (X0 + adelta[x+x1]) >> AB_BITS;
                            int Y = (Y0 + bdelta[x+x1]) >> AB_BITS;
                            xy[x1*2] = saturate_cast<short>(X);
                            xy[x1*2+1] = saturate_cast<short>(Y);
                        }
                    else
                    {
                        short* alpha = A + y1*bw;
                        x1 = 0;
                    #if CV_SSE2
                        if( useSIMD )
                        {
                            __m128i fxy_mask = _mm_set1_epi32(INTER_TAB_SIZE - 1);
                            __m128i XX = _mm_set1_epi32(X0), YY = _mm_set1_epi32(Y0);
                            for( ; x1 <= bw - 8; x1 += 8 )
                            {
                                __m128i tx0, tx1, ty0, ty1;
                                tx0 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(adelta + x + x1)), XX);
                                ty0 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(bdelta + x + x1)), YY);
                                tx1 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(adelta + x + x1 + 4)), XX);
                                ty1 = _mm_add_epi32(_mm_loadu_si128((const __m128i*)(bdelta + x + x1 + 4)), YY);

                                tx0 = _mm_srai_epi32(tx0, AB_BITS - INTER_BITS);
                                ty0 = _mm_srai_epi32(ty0, AB_BITS - INTER_BITS);
                                tx1 = _mm_srai_epi32(tx1, AB_BITS - INTER_BITS);
                                ty1 = _mm_srai_epi32(ty1, AB_BITS - INTER_BITS);

                                __m128i fx_ = _mm_packs_epi32(_mm_and_si128(tx0, fxy_mask),
                                                            _mm_and_si128(tx1, fxy_mask));
                                __m128i fy_ = _mm_packs_epi32(_mm_and_si128(ty0, fxy_mask),
                                                            _mm_and_si128(ty1, fxy_mask));
                                tx0 = _mm_packs_epi32(_mm_srai_epi32(tx0, INTER_BITS),
                                                            _mm_srai_epi32(tx1, INTER_BITS));
                                ty0 = _mm_packs_epi32(_mm_srai_epi32(ty0, INTER_BITS),
                                                    _mm_srai_epi32(ty1, INTER_BITS));
                                fx_ = _mm_adds_epi16(fx_, _mm_slli_epi16(fy_, INTER_BITS));

                                _mm_storeu_si128((__m128i*)(xy + x1*2), _mm_unpacklo_epi16(tx0, ty0));
                                _mm_storeu_si128((__m128i*)(xy + x1*2 + 8), _mm_unpackhi_epi16(tx0, ty0));
                                _mm_storeu_si128((__m128i*)(alpha + x1), fx_);
                            }
                        }
                    #endif
                        for( ; x1 < bw; x1++ )
                        {
                            int X = (X0 + adelta[x+x1]) >> (AB_BITS - INTER_BITS);
                            int Y = (Y0 + bdelta[x+x1]) >> (AB_BITS - INTER_BITS);
                            xy[x1*2] = saturate_cast<short>(X >> INTER_BITS);
                            xy[x1*2+1] = saturate_cast<short>(Y >> INTER_BITS);
                            alpha[x1] = (short)((Y & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE +
                                    (X & (INTER_TAB_SIZE-1)));
                        }
                    }
                }
3728

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
                if( interpolation == INTER_NEAREST )
                    remap( src, dpart, _XY, Mat(), interpolation, borderType, borderValue );
                else
                {
                    Mat _matA(bh, bw, CV_16U, A);
                    remap( src, dpart, _XY, _matA, interpolation, borderType, borderValue );
                }
            }
        }
    }
3739

3740
private:
3741
    Mat src;
3742 3743
    Mat dst;
    int interpolation, borderType;
3744
    Scalar borderValue;
3745 3746 3747
    int *adelta, *bdelta;
    double *M;
};
3748

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
class IPPwarpAffineInvoker :
    public ParallelLoopBody
{
public:
    IPPwarpAffineInvoker(Mat &_src, Mat &_dst, double (&_coeffs)[2][3], int &_interpolation, int &_borderType, const Scalar &_borderValue, ippiWarpAffineBackFunc _func, bool *_ok) :
      ParallelLoopBody(), src(_src), dst(_dst), mode(_interpolation), coeffs(_coeffs), borderType(_borderType), borderValue(_borderValue), func(_func), ok(_ok)
      {
          *ok = true;
      }

      virtual void operator() (const Range& range) const
      {
          IppiSize srcsize = { src.cols, src.rows };
          IppiRect srcroi = { 0, 0, src.cols, src.rows };
          IppiRect dstroi = { 0, range.start, dst.cols, range.end - range.start };
          int cnn = src.channels();
          if( borderType == BORDER_CONSTANT )
          {
              IppiSize setSize = { dst.cols, range.end - range.start };
              void *dataPointer = dst.data + dst.step[0] * range.start;
              if( !IPPSet( borderValue, dataPointer, (int)dst.step[0], setSize, cnn, src.depth() ) )
              {
                  *ok = false;
                  return;
              }
          }
          if( func( src.data, srcsize, (int)src.step[0], srcroi, dst.data, (int)dst.step[0], dstroi, coeffs, mode ) < 0) ////Aug 2013: problem in IPP 7.1, 8.0 : sometimes function return ippStsCoeffErr
              *ok = false;
      }
private:
    Mat &src;
    Mat &dst;
    double (&coeffs)[2][3];
    int mode;
    int borderType;
    Scalar borderValue;
    ippiWarpAffineBackFunc func;
    bool *ok;
    const IPPwarpAffineInvoker& operator= (const IPPwarpAffineInvoker&);
};
#endif

I
Ilya Lavrenov 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
enum { OCL_OP_PERSPECTIVE = 1, OCL_OP_AFFINE = 0 };

static bool ocl_warpTransform(InputArray _src, OutputArray _dst, InputArray _M0,
                              Size dsize, int flags, int borderType, const Scalar& borderValue,
                              int op_type)
{
    CV_Assert(op_type == OCL_OP_AFFINE || op_type == OCL_OP_PERSPECTIVE);

    int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), wdepth = depth;
    double doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;

    int interpolation = flags & INTER_MAX;
    if( interpolation == INTER_AREA )
        interpolation = INTER_LINEAR;

    if ( !(borderType == cv::BORDER_CONSTANT &&
           (interpolation == cv::INTER_NEAREST || interpolation == cv::INTER_LINEAR || interpolation == cv::INTER_CUBIC)) ||
         (!doubleSupport && depth == CV_64F) || cn > 4 || cn == 3)
        return false;

    UMat src = _src.getUMat(), M0;
    _dst.create( dsize.area() == 0 ? src.size() : dsize, src.type() );
    UMat dst = _dst.getUMat();

    double M[9];
    int matRows = (op_type == OCL_OP_AFFINE ? 2 : 3);
    Mat matM(matRows, 3, CV_64F, M), M1 = _M0.getMat();
    CV_Assert( (M1.type() == CV_32F || M1.type() == CV_64F) &&
               M1.rows == matRows && M1.cols == 3 );
    M1.convertTo(matM, matM.type());

    if( !(flags & WARP_INVERSE_MAP) )
    {
        if (op_type == OCL_OP_PERSPECTIVE)
            invert(matM, matM);
        else
        {
            double D = M[0]*M[4] - M[1]*M[3];
            D = D != 0 ? 1./D : 0;
            double A11 = M[4]*D, A22=M[0]*D;
            M[0] = A11; M[1] *= -D;
            M[3] *= -D; M[4] = A22;
            double b1 = -M[0]*M[2] - M[1]*M[5];
            double b2 = -M[3]*M[2] - M[4]*M[5];
            M[2] = b1; M[5] = b2;
        }
    }
    matM.convertTo(M0, doubleSupport ? CV_64F : CV_32F);

    const char * const interpolationMap[3] = { "NEAREST", "LINEAR", "CUBIC" };
    ocl::ProgramSource2 program = op_type == OCL_OP_AFFINE ?
                ocl::imgproc::warp_affine_oclsrc : ocl::imgproc::warp_perspective_oclsrc;
    const char * const kernelName = op_type == OCL_OP_AFFINE ? "warpAffine" : "warpPerspective";

    ocl::Kernel k;
    if (interpolation == INTER_NEAREST)
    {
        k.create(kernelName, program,
                 format("-D INTER_NEAREST -D T=%s%s", ocl::typeToStr(type),
                        doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
    }
    else
    {
        char cvt[2][50];
        wdepth = std::max(CV_32S, depth);
        k.create(kernelName, program,
                  format("-D INTER_%s -D T=%s -D WT=%s -D depth=%d -D convertToWT=%s -D convertToT=%s%s",
                         interpolationMap[interpolation], ocl::typeToStr(type),
                         ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), depth,
                         ocl::convertTypeStr(depth, wdepth, cn, cvt[0]),
                         ocl::convertTypeStr(wdepth, depth, cn, cvt[1]),
                         doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
    }

    k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::PtrOnly(M0),
           ocl::KernelArg::Constant(Mat(1, 1, CV_MAKE_TYPE(wdepth, cn), borderValue)));

    size_t globalThreads[2] = { dst.cols, dst.rows };
    return k.run(2, globalThreads, NULL, false);
}

3873
}
3874 3875


3876 3877
void cv::warpAffine( InputArray _src, OutputArray _dst,
                     InputArray _M0, Size dsize,
3878
                     int flags, int borderType, const Scalar& borderValue )
3879
{
I
Ilya Lavrenov 已提交
3880 3881 3882 3883 3884
    if (ocl::useOpenCL() && _dst.isUMat() &&
        ocl_warpTransform(_src, _dst, _M0, dsize, flags, borderType,
                                            borderValue, OCL_OP_AFFINE))
        return;

3885
    Mat src = _src.getMat(), M0 = _M0.getMat();
3886
    _dst.create( dsize.area() == 0 ? src.size() : dsize, src.type() );
3887
    Mat dst = _dst.getMat();
3888 3889 3890
    CV_Assert( src.cols > 0 && src.rows > 0 );
    if( dst.data == src.data )
        src = src.clone();
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900

    double M[6];
    Mat matM(2, 3, CV_64F, M);
    int interpolation = flags & INTER_MAX;
    if( interpolation == INTER_AREA )
        interpolation = INTER_LINEAR;

    CV_Assert( (M0.type() == CV_32F || M0.type() == CV_64F) && M0.rows == 2 && M0.cols == 3 );
    M0.convertTo(matM, matM.type());

A
Andrey Kamaev 已提交
3901 3902 3903 3904 3905
#ifdef HAVE_TEGRA_OPTIMIZATION
    if( tegra::warpAffine(src, dst, M, flags, borderType, borderValue) )
        return;
#endif

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
    if( !(flags & WARP_INVERSE_MAP) )
    {
        double D = M[0]*M[4] - M[1]*M[3];
        D = D != 0 ? 1./D : 0;
        double A11 = M[4]*D, A22=M[0]*D;
        M[0] = A11; M[1] *= -D;
        M[3] *= -D; M[4] = A22;
        double b1 = -M[0]*M[2] - M[1]*M[5];
        double b2 = -M[3]*M[2] - M[4]*M[5];
        M[2] = b1; M[5] = b2;
    }

3918 3919 3920
    int x;
    AutoBuffer<int> _abdelta(dst.cols*2);
    int* adelta = &_abdelta[0], *bdelta = adelta + dst.cols;
3921 3922 3923
    const int AB_BITS = MAX(10, (int)INTER_BITS);
    const int AB_SCALE = 1 << AB_BITS;

3924 3925 3926
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
    int depth = src.depth();
    int channels = src.channels();
3927 3928
    if( ( depth == CV_8U || depth == CV_16U || depth == CV_32F ) &&
        ( channels == 1 || channels == 3 || channels == 4 ) &&
3929 3930 3931
        ( borderType == cv::BORDER_TRANSPARENT || ( borderType == cv::BORDER_CONSTANT ) ) )
    {
        int type = src.type();
3932
        ippiWarpAffineBackFunc ippFunc =
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
            type == CV_8UC1 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_8u_C1R :
            type == CV_8UC3 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_8u_C3R :
            type == CV_8UC4 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_8u_C4R :
            type == CV_16UC1 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_16u_C1R :
            type == CV_16UC3 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_16u_C3R :
            type == CV_16UC4 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_16u_C4R :
            type == CV_32FC1 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_32f_C1R :
            type == CV_32FC3 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_32f_C3R :
            type == CV_32FC4 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_32f_C4R :
            0;
3943
        int mode =
3944 3945
            flags == INTER_LINEAR ? IPPI_INTER_LINEAR :
            flags == INTER_NEAREST ? IPPI_INTER_NN :
3946
            flags == INTER_CUBIC ? IPPI_INTER_CUBIC :
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
            0;
        if( mode && ippFunc )
        {
            double coeffs[2][3];
            for( int i = 0; i < 2; i++ )
            {
                for( int j = 0; j < 3; j++ )
                {
                    coeffs[i][j] = matM.at<double>(i, j);
                }
            }
            bool ok;
            Range range(0, dst.rows);
            IPPwarpAffineInvoker invoker(src, dst, coeffs, mode, borderType, borderValue, ippFunc, &ok);
            parallel_for_(range, invoker, dst.total()/(double)(1<<16));
            if( ok )
                return;
        }
    }
#endif
3967

3968
    for( x = 0; x < dst.cols; x++ )
3969 3970 3971 3972 3973
    {
        adelta[x] = saturate_cast<int>(M[0]*x*AB_SCALE);
        bdelta[x] = saturate_cast<int>(M[3]*x*AB_SCALE);
    }

3974 3975 3976
    Range range(0, dst.rows);
    warpAffineInvoker invoker(src, dst, interpolation, borderType,
                              borderValue, adelta, bdelta, M);
3977
    parallel_for_(range, invoker, dst.total()/(double)(1<<16));
3978
}
3979 3980


3981 3982
namespace cv
{
3983

3984 3985 3986 3987
class warpPerspectiveInvoker :
    public ParallelLoopBody
{
public:
3988

3989 3990 3991 3992 3993 3994
    warpPerspectiveInvoker(const Mat &_src, Mat &_dst, double *_M, int _interpolation,
                           int _borderType, const Scalar &_borderValue) :
        ParallelLoopBody(), src(_src), dst(_dst), M(_M), interpolation(_interpolation),
        borderType(_borderType), borderValue(_borderValue)
    {
    }
3995

3996 3997 3998 3999 4000
    virtual void operator() (const Range& range) const
    {
        const int BLOCK_SZ = 32;
        short XY[BLOCK_SZ*BLOCK_SZ*2], A[BLOCK_SZ*BLOCK_SZ];
        int x, y, x1, y1, width = dst.cols, height = dst.rows;
4001

4002 4003 4004
        int bh0 = std::min(BLOCK_SZ/2, height);
        int bw0 = std::min(BLOCK_SZ*BLOCK_SZ/bh0, width);
        bh0 = std::min(BLOCK_SZ*BLOCK_SZ/bw0, height);
4005

4006 4007 4008
        for( y = range.start; y < range.end; y += bh0 )
        {
            for( x = 0; x < width; x += bw0 )
4009
            {
4010 4011
                int bw = std::min( bw0, width - x);
                int bh = std::min( bh0, range.end - y); // height
4012

4013 4014
                Mat _XY(bh, bw, CV_16SC2, XY), matA;
                Mat dpart(dst, Rect(x, y, bw, bh));
4015

4016
                for( y1 = 0; y1 < bh; y1++ )
4017
                {
4018 4019 4020 4021
                    short* xy = XY + y1*bw*2;
                    double X0 = M[0]*x + M[1]*(y + y1) + M[2];
                    double Y0 = M[3]*x + M[4]*(y + y1) + M[5];
                    double W0 = M[6]*x + M[7]*(y + y1) + M[8];
4022

4023 4024
                    if( interpolation == INTER_NEAREST )
                        for( x1 = 0; x1 < bw; x1++ )
4025
                        {
4026 4027 4028 4029 4030 4031
                            double W = W0 + M[6]*x1;
                            W = W ? 1./W : 0;
                            double fX = std::max((double)INT_MIN, std::min((double)INT_MAX, (X0 + M[0]*x1)*W));
                            double fY = std::max((double)INT_MIN, std::min((double)INT_MAX, (Y0 + M[3]*x1)*W));
                            int X = saturate_cast<int>(fX);
                            int Y = saturate_cast<int>(fY);
4032

4033 4034
                            xy[x1*2] = saturate_cast<short>(X);
                            xy[x1*2+1] = saturate_cast<short>(Y);
4035
                        }
4036
                    else
4037
                    {
4038 4039 4040 4041 4042 4043 4044 4045 4046
                        short* alpha = A + y1*bw;
                        for( x1 = 0; x1 < bw; x1++ )
                        {
                            double W = W0 + M[6]*x1;
                            W = W ? INTER_TAB_SIZE/W : 0;
                            double fX = std::max((double)INT_MIN, std::min((double)INT_MAX, (X0 + M[0]*x1)*W));
                            double fY = std::max((double)INT_MIN, std::min((double)INT_MAX, (Y0 + M[3]*x1)*W));
                            int X = saturate_cast<int>(fX);
                            int Y = saturate_cast<int>(fY);
4047

4048 4049 4050 4051 4052
                            xy[x1*2] = saturate_cast<short>(X >> INTER_BITS);
                            xy[x1*2+1] = saturate_cast<short>(Y >> INTER_BITS);
                            alpha[x1] = (short)((Y & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE +
                                                (X & (INTER_TAB_SIZE-1)));
                        }
4053 4054
                    }
                }
4055

4056 4057 4058 4059 4060 4061 4062
                if( interpolation == INTER_NEAREST )
                    remap( src, dpart, _XY, Mat(), interpolation, borderType, borderValue );
                else
                {
                    Mat _matA(bh, bw, CV_16U, A);
                    remap( src, dpart, _XY, _matA, interpolation, borderType, borderValue );
                }
4063 4064 4065
            }
        }
    }
4066

4067
private:
4068
    Mat src;
4069 4070 4071
    Mat dst;
    double* M;
    int interpolation, borderType;
4072
    Scalar borderValue;
4073
};
4074

4075 4076 4077 4078 4079
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
class IPPwarpPerspectiveInvoker :
    public ParallelLoopBody
{
public:
4080
    IPPwarpPerspectiveInvoker(Mat &_src, Mat &_dst, double (&_coeffs)[3][3], int &_interpolation, int &_borderType, const Scalar &_borderValue, ippiWarpPerspectiveBackFunc _func, bool *_ok) :
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
      ParallelLoopBody(), src(_src), dst(_dst), mode(_interpolation), coeffs(_coeffs), borderType(_borderType), borderValue(_borderValue), func(_func), ok(_ok)
      {
          *ok = true;
      }

      virtual void operator() (const Range& range) const
      {
          IppiSize srcsize = {src.cols, src.rows};
          IppiRect srcroi = {0, 0, src.cols, src.rows};
          IppiRect dstroi = {0, range.start, dst.cols, range.end - range.start};
          int cnn = src.channels();

          if( borderType == BORDER_CONSTANT )
          {
              IppiSize setSize = {dst.cols, range.end - range.start};
              void *dataPointer = dst.data + dst.step[0] * range.start;
              if( !IPPSet( borderValue, dataPointer, (int)dst.step[0], setSize, cnn, src.depth() ) )
              {
                  *ok = false;
                  return;
              }
          }
          if( func(src.data, srcsize, (int)src.step[0], srcroi, dst.data, (int)dst.step[0], dstroi, coeffs, mode) < 0)
              *ok = false;
      }
private:
    Mat &src;
    Mat &dst;
    double (&coeffs)[3][3];
    int mode;
    int borderType;
    const Scalar borderValue;
    ippiWarpPerspectiveBackFunc func;
    bool *ok;
    const IPPwarpPerspectiveInvoker& operator= (const IPPwarpPerspectiveInvoker&);
};
#endif

4119 4120
}

4121
void cv::warpPerspective( InputArray _src, OutputArray _dst, InputArray _M0,
4122
                          Size dsize, int flags, int borderType, const Scalar& borderValue )
4123
{
I
Ilya Lavrenov 已提交
4124 4125
    CV_Assert( _src.total() > 0 );

I
Ilya Lavrenov 已提交
4126 4127 4128
    if (ocl::useOpenCL() && _dst.isUMat() &&
            ocl_warpTransform(_src, _dst, _M0, dsize, flags, borderType, borderValue,
                              OCL_OP_PERSPECTIVE))
I
Ilya Lavrenov 已提交
4129 4130
        return;

4131
    Mat src = _src.getMat(), M0 = _M0.getMat();
4132
    _dst.create( dsize.area() == 0 ? src.size() : dsize, src.type() );
4133
    Mat dst = _dst.getMat();
M
Marina Kolpakova 已提交
4134

4135 4136
    if( dst.data == src.data )
        src = src.clone();
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146

    double M[9];
    Mat matM(3, 3, CV_64F, M);
    int interpolation = flags & INTER_MAX;
    if( interpolation == INTER_AREA )
        interpolation = INTER_LINEAR;

    CV_Assert( (M0.type() == CV_32F || M0.type() == CV_64F) && M0.rows == 3 && M0.cols == 3 );
    M0.convertTo(matM, matM.type());

4147
#ifdef HAVE_TEGRA_OPTIMIZATION
A
Andrey Kamaev 已提交
4148
    if( tegra::warpPerspective(src, dst, M, flags, borderType, borderValue) )
4149 4150 4151
        return;
#endif

A
Andrey Kamaev 已提交
4152 4153 4154
    if( !(flags & WARP_INVERSE_MAP) )
         invert(matM, matM);

4155 4156 4157
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
    int depth = src.depth();
    int channels = src.channels();
4158 4159
    if( ( depth == CV_8U || depth == CV_16U || depth == CV_32F ) &&
        ( channels == 1 || channels == 3 || channels == 4 ) &&
4160 4161 4162
        ( borderType == cv::BORDER_TRANSPARENT || borderType == cv::BORDER_CONSTANT ) )
    {
        int type = src.type();
4163
        ippiWarpPerspectiveBackFunc ippFunc =
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
            type == CV_8UC1 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_8u_C1R :
            type == CV_8UC3 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_8u_C3R :
            type == CV_8UC4 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_8u_C4R :
            type == CV_16UC1 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_16u_C1R :
            type == CV_16UC3 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_16u_C3R :
            type == CV_16UC4 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_16u_C4R :
            type == CV_32FC1 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_32f_C1R :
            type == CV_32FC3 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_32f_C3R :
            type == CV_32FC4 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_32f_C4R :
            0;
4174
        int mode =
4175 4176
            flags == INTER_LINEAR ? IPPI_INTER_LINEAR :
            flags == INTER_NEAREST ? IPPI_INTER_NN :
4177
            flags == INTER_CUBIC ? IPPI_INTER_CUBIC :
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
            0;
        if( mode && ippFunc )
        {
            double coeffs[3][3];
            for( int i = 0; i < 3; i++ )
            {
                for( int j = 0; j < 3; j++ )
                {
                    coeffs[i][j] = matM.at<double>(i, j);
                }
            }
            bool ok;
            Range range(0, dst.rows);
            IPPwarpPerspectiveInvoker invoker(src, dst, coeffs, mode, borderType, borderValue, ippFunc, &ok);
            parallel_for_(range, invoker, dst.total()/(double)(1<<16));
            if( ok )
                return;
        }
    }
#endif
A
Andrey Kamaev 已提交
4198

4199 4200
    Range range(0, dst.rows);
    warpPerspectiveInvoker invoker(src, dst, M, interpolation, borderType, borderValue);
4201
    parallel_for_(range, invoker, dst.total()/(double)(1<<16));
4202 4203 4204
}


4205
cv::Mat cv::getRotationMatrix2D( Point2f center, double angle, double scale )
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
{
    angle *= CV_PI/180;
    double alpha = cos(angle)*scale;
    double beta = sin(angle)*scale;

    Mat M(2, 3, CV_64F);
    double* m = (double*)M.data;

    m[0] = alpha;
    m[1] = beta;
    m[2] = (1-alpha)*center.x - beta*center.y;
    m[3] = -beta;
    m[4] = alpha;
    m[5] = beta*center.x + (1-alpha)*center.y;

    return M;
}

/* Calculates coefficients of perspective transformation
 * which maps (xi,yi) to (ui,vi), (i=1,2,3,4):
 *
 *      c00*xi + c01*yi + c02
 * ui = ---------------------
 *      c20*xi + c21*yi + c22
 *
 *      c10*xi + c11*yi + c12
 * vi = ---------------------
 *      c20*xi + c21*yi + c22
 *
 * Coefficients are calculated by solving linear system:
 * / x0 y0  1  0  0  0 -x0*u0 -y0*u0 \ /c00\ /u0\
 * | x1 y1  1  0  0  0 -x1*u1 -y1*u1 | |c01| |u1|
 * | x2 y2  1  0  0  0 -x2*u2 -y2*u2 | |c02| |u2|
 * | x3 y3  1  0  0  0 -x3*u3 -y3*u3 |.|c10|=|u3|,
 * |  0  0  0 x0 y0  1 -x0*v0 -y0*v0 | |c11| |v0|
 * |  0  0  0 x1 y1  1 -x1*v1 -y1*v1 | |c12| |v1|
 * |  0  0  0 x2 y2  1 -x2*v2 -y2*v2 | |c20| |v2|
 * \  0  0  0 x3 y3  1 -x3*v3 -y3*v3 / \c21/ \v3/
 *
 * where:
 *   cij - matrix coefficients, c22 = 1
 */
4248
cv::Mat cv::getPerspectiveTransform( const Point2f src[], const Point2f dst[] )
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
{
    Mat M(3, 3, CV_64F), X(8, 1, CV_64F, M.data);
    double a[8][8], b[8];
    Mat A(8, 8, CV_64F, a), B(8, 1, CV_64F, b);

    for( int i = 0; i < 4; ++i )
    {
        a[i][0] = a[i+4][3] = src[i].x;
        a[i][1] = a[i+4][4] = src[i].y;
        a[i][2] = a[i+4][5] = 1;
        a[i][3] = a[i][4] = a[i][5] =
        a[i+4][0] = a[i+4][1] = a[i+4][2] = 0;
        a[i][6] = -src[i].x*dst[i].x;
        a[i][7] = -src[i].y*dst[i].x;
        a[i+4][6] = -src[i].x*dst[i].y;
        a[i+4][7] = -src[i].y*dst[i].y;
        b[i] = dst[i].x;
        b[i+4] = dst[i].y;
    }

    solve( A, B, X, DECOMP_SVD );
    ((double*)M.data)[8] = 1.;

    return M;
}

/* Calculates coefficients of affine transformation
 * which maps (xi,yi) to (ui,vi), (i=1,2,3):
 *
 * ui = c00*xi + c01*yi + c02
 *
 * vi = c10*xi + c11*yi + c12
 *
 * Coefficients are calculated by solving linear system:
 * / x0 y0  1  0  0  0 \ /c00\ /u0\
 * | x1 y1  1  0  0  0 | |c01| |u1|
 * | x2 y2  1  0  0  0 | |c02| |u2|
 * |  0  0  0 x0 y0  1 | |c10| |v0|
 * |  0  0  0 x1 y1  1 | |c11| |v1|
 * \  0  0  0 x2 y2  1 / |c12| |v2|
 *
 * where:
 *   cij - matrix coefficients
 */
K
Kirill Kornyakov 已提交
4293

4294
cv::Mat cv::getAffineTransform( const Point2f src[], const Point2f dst[] )
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
{
    Mat M(2, 3, CV_64F), X(6, 1, CV_64F, M.data);
    double a[6*6], b[6];
    Mat A(6, 6, CV_64F, a), B(6, 1, CV_64F, b);

    for( int i = 0; i < 3; i++ )
    {
        int j = i*12;
        int k = i*12+6;
        a[j] = a[k+3] = src[i].x;
        a[j+1] = a[k+4] = src[i].y;
        a[j+2] = a[k+5] = 1;
        a[j+3] = a[j+4] = a[j+5] = 0;
        a[k] = a[k+1] = a[k+2] = 0;
        b[i*2] = dst[i].x;
        b[i*2+1] = dst[i].y;
    }

    solve( A, B, X );
    return M;
}
M
Marina Kolpakova 已提交
4316

4317
void cv::invertAffineTransform(InputArray _matM, OutputArray __iM)
4318
{
4319
    Mat matM = _matM.getMat();
4320
    CV_Assert(matM.rows == 2 && matM.cols == 3);
4321 4322
    __iM.create(2, 3, matM.type());
    Mat _iM = __iM.getMat();
M
Marina Kolpakova 已提交
4323

4324 4325 4326 4327
    if( matM.type() == CV_32F )
    {
        const float* M = (const float*)matM.data;
        float* iM = (float*)_iM.data;
4328
        int step = (int)(matM.step/sizeof(M[0])), istep = (int)(_iM.step/sizeof(iM[0]));
M
Marina Kolpakova 已提交
4329

4330 4331 4332 4333 4334
        double D = M[0]*M[step+1] - M[1]*M[step];
        D = D != 0 ? 1./D : 0;
        double A11 = M[step+1]*D, A22 = M[0]*D, A12 = -M[1]*D, A21 = -M[step]*D;
        double b1 = -A11*M[2] - A12*M[step+2];
        double b2 = -A21*M[2] - A22*M[step+2];
M
Marina Kolpakova 已提交
4335

4336 4337 4338 4339 4340 4341 4342
        iM[0] = (float)A11; iM[1] = (float)A12; iM[2] = (float)b1;
        iM[istep] = (float)A21; iM[istep+1] = (float)A22; iM[istep+2] = (float)b2;
    }
    else if( matM.type() == CV_64F )
    {
        const double* M = (const double*)matM.data;
        double* iM = (double*)_iM.data;
4343
        int step = (int)(matM.step/sizeof(M[0])), istep = (int)(_iM.step/sizeof(iM[0]));
M
Marina Kolpakova 已提交
4344

4345 4346 4347 4348 4349
        double D = M[0]*M[step+1] - M[1]*M[step];
        D = D != 0 ? 1./D : 0;
        double A11 = M[step+1]*D, A22 = M[0]*D, A12 = -M[1]*D, A21 = -M[step]*D;
        double b1 = -A11*M[2] - A12*M[step+2];
        double b2 = -A21*M[2] - A22*M[step+2];
M
Marina Kolpakova 已提交
4350

4351 4352 4353 4354 4355
        iM[0] = A11; iM[1] = A12; iM[2] = b1;
        iM[istep] = A21; iM[istep+1] = A22; iM[istep+2] = b2;
    }
    else
        CV_Error( CV_StsUnsupportedFormat, "" );
M
Marina Kolpakova 已提交
4356
}
4357

4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
cv::Mat cv::getPerspectiveTransform(InputArray _src, InputArray _dst)
{
    Mat src = _src.getMat(), dst = _dst.getMat();
    CV_Assert(src.checkVector(2, CV_32F) == 4 && dst.checkVector(2, CV_32F) == 4);
    return getPerspectiveTransform((const Point2f*)src.data, (const Point2f*)dst.data);
}

cv::Mat cv::getAffineTransform(InputArray _src, InputArray _dst)
{
    Mat src = _src.getMat(), dst = _dst.getMat();
    CV_Assert(src.checkVector(2, CV_32F) == 3 && dst.checkVector(2, CV_32F) == 3);
    return getAffineTransform((const Point2f*)src.data, (const Point2f*)dst.data);
}

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
CV_IMPL void
cvResize( const CvArr* srcarr, CvArr* dstarr, int method )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
    CV_Assert( src.type() == dst.type() );
    cv::resize( src, dst, dst.size(), (double)dst.cols/src.cols,
        (double)dst.rows/src.rows, method );
}


CV_IMPL void
cvWarpAffine( const CvArr* srcarr, CvArr* dstarr, const CvMat* marr,
              int flags, CvScalar fillval )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
    cv::Mat matrix = cv::cvarrToMat(marr);
    CV_Assert( src.type() == dst.type() );
    cv::warpAffine( src, dst, matrix, dst.size(), flags,
        (flags & CV_WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT,
        fillval );
}

CV_IMPL void
cvWarpPerspective( const CvArr* srcarr, CvArr* dstarr, const CvMat* marr,
                   int flags, CvScalar fillval )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
    cv::Mat matrix = cv::cvarrToMat(marr);
    CV_Assert( src.type() == dst.type() );
    cv::warpPerspective( src, dst, matrix, dst.size(), flags,
        (flags & CV_WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT,
        fillval );
}

CV_IMPL void
cvRemap( const CvArr* srcarr, CvArr* dstarr,
         const CvArr* _mapx, const CvArr* _mapy,
         int flags, CvScalar fillval )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst;
    cv::Mat mapx = cv::cvarrToMat(_mapx), mapy = cv::cvarrToMat(_mapy);
    CV_Assert( src.type() == dst.type() && dst.size() == mapx.size() );
    cv::remap( src, dst, mapx, mapy, flags & cv::INTER_MAX,
        (flags & CV_WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT,
        fillval );
    CV_Assert( dst0.data == dst.data );
}


CV_IMPL CvMat*
cv2DRotationMatrix( CvPoint2D32f center, double angle,
                    double scale, CvMat* matrix )
{
    cv::Mat M0 = cv::cvarrToMat(matrix), M = cv::getRotationMatrix2D(center, angle, scale);
4426
    CV_Assert( M.size() == M0.size() );
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
    M.convertTo(M0, M0.type());
    return matrix;
}


CV_IMPL CvMat*
cvGetPerspectiveTransform( const CvPoint2D32f* src,
                          const CvPoint2D32f* dst,
                          CvMat* matrix )
{
    cv::Mat M0 = cv::cvarrToMat(matrix),
        M = cv::getPerspectiveTransform((const cv::Point2f*)src, (const cv::Point2f*)dst);
4439
    CV_Assert( M.size() == M0.size() );
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
    M.convertTo(M0, M0.type());
    return matrix;
}


CV_IMPL CvMat*
cvGetAffineTransform( const CvPoint2D32f* src,
                          const CvPoint2D32f* dst,
                          CvMat* matrix )
{
    cv::Mat M0 = cv::cvarrToMat(matrix),
        M = cv::getAffineTransform((const cv::Point2f*)src, (const cv::Point2f*)dst);
    CV_Assert( M.size() == M0.size() );
    M.convertTo(M0, M0.type());
    return matrix;
}


CV_IMPL void
cvConvertMaps( const CvArr* arr1, const CvArr* arr2, CvArr* dstarr1, CvArr* dstarr2 )
{
    cv::Mat map1 = cv::cvarrToMat(arr1), map2;
    cv::Mat dstmap1 = cv::cvarrToMat(dstarr1), dstmap2;

    if( arr2 )
        map2 = cv::cvarrToMat(arr2);
    if( dstarr2 )
    {
        dstmap2 = cv::cvarrToMat(dstarr2);
        if( dstmap2.type() == CV_16SC1 )
            dstmap2 = cv::Mat(dstmap2.size(), CV_16UC1, dstmap2.data, dstmap2.step);
    }

    cv::convertMaps( map1, map2, dstmap1, dstmap2, dstmap1.type(), false );
}

/****************************************************************************************\
*                                   Log-Polar Transform                                  *
\****************************************************************************************/

/* now it is done via Remap; more correct implementation should use
   some super-sampling technique outside of the "fovea" circle */
CV_IMPL void
cvLogPolar( const CvArr* srcarr, CvArr* dstarr,
            CvPoint2D32f center, double M, int flags )
{
    cv::Ptr<CvMat> mapx, mapy;

    CvMat srcstub, *src = cvGetMat(srcarr, &srcstub);
    CvMat dststub, *dst = cvGetMat(dstarr, &dststub);
    CvSize ssize, dsize;

    if( !CV_ARE_TYPES_EQ( src, dst ))
        CV_Error( CV_StsUnmatchedFormats, "" );

    if( M <= 0 )
        CV_Error( CV_StsOutOfRange, "M should be >0" );

    ssize = cvGetMatSize(src);
    dsize = cvGetMatSize(dst);

R
Roman Donchenko 已提交
4501 4502
    mapx.reset(cvCreateMat( dsize.height, dsize.width, CV_32F ));
    mapy.reset(cvCreateMat( dsize.height, dsize.width, CV_32F ));
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576

    if( !(flags & CV_WARP_INVERSE_MAP) )
    {
        int phi, rho;
        cv::AutoBuffer<double> _exp_tab(dsize.width);
        double* exp_tab = _exp_tab;

        for( rho = 0; rho < dst->width; rho++ )
            exp_tab[rho] = std::exp(rho/M);

        for( phi = 0; phi < dsize.height; phi++ )
        {
            double cp = cos(phi*2*CV_PI/dsize.height);
            double sp = sin(phi*2*CV_PI/dsize.height);
            float* mx = (float*)(mapx->data.ptr + phi*mapx->step);
            float* my = (float*)(mapy->data.ptr + phi*mapy->step);

            for( rho = 0; rho < dsize.width; rho++ )
            {
                double r = exp_tab[rho];
                double x = r*cp + center.x;
                double y = r*sp + center.y;

                mx[rho] = (float)x;
                my[rho] = (float)y;
            }
        }
    }
    else
    {
        int x, y;
        CvMat bufx, bufy, bufp, bufa;
        double ascale = ssize.height/(2*CV_PI);
        cv::AutoBuffer<float> _buf(4*dsize.width);
        float* buf = _buf;

        bufx = cvMat( 1, dsize.width, CV_32F, buf );
        bufy = cvMat( 1, dsize.width, CV_32F, buf + dsize.width );
        bufp = cvMat( 1, dsize.width, CV_32F, buf + dsize.width*2 );
        bufa = cvMat( 1, dsize.width, CV_32F, buf + dsize.width*3 );

        for( x = 0; x < dsize.width; x++ )
            bufx.data.fl[x] = (float)x - center.x;

        for( y = 0; y < dsize.height; y++ )
        {
            float* mx = (float*)(mapx->data.ptr + y*mapx->step);
            float* my = (float*)(mapy->data.ptr + y*mapy->step);

            for( x = 0; x < dsize.width; x++ )
                bufy.data.fl[x] = (float)y - center.y;

#if 1
            cvCartToPolar( &bufx, &bufy, &bufp, &bufa );

            for( x = 0; x < dsize.width; x++ )
                bufp.data.fl[x] += 1.f;

            cvLog( &bufp, &bufp );

            for( x = 0; x < dsize.width; x++ )
            {
                double rho = bufp.data.fl[x]*M;
                double phi = bufa.data.fl[x]*ascale;

                mx[x] = (float)rho;
                my[x] = (float)phi;
            }
#else
            for( x = 0; x < dsize.width; x++ )
            {
                double xx = bufx.data.fl[x];
                double yy = bufy.data.fl[x];

4577
                double p = log(std::sqrt(xx*xx + yy*yy) + 1.)*M;
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
                double a = atan2(yy,xx);
                if( a < 0 )
                    a = 2*CV_PI + a;
                a *= ascale;

                mx[x] = (float)p;
                my[x] = (float)a;
            }
#endif
        }
    }

    cvRemap( src, dst, mapx, mapy, flags, cvScalarAll(0) );
}

4593 4594 4595 4596 4597 4598 4599 4600
void cv::logPolar( InputArray _src, OutputArray _dst,
                   Point2f center, double M, int flags )
{
    Mat src = _src.getMat();
    _dst.create( src.size(), src.type() );
    CvMat c_src = src, c_dst = _dst.getMat();
    cvLogPolar( &c_src, &c_dst, center, M, flags );
}
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621

/****************************************************************************************
                                   Linear-Polar Transform
  J.L. Blanco, Apr 2009
 ****************************************************************************************/
CV_IMPL
void cvLinearPolar( const CvArr* srcarr, CvArr* dstarr,
            CvPoint2D32f center, double maxRadius, int flags )
{
    cv::Ptr<CvMat> mapx, mapy;

    CvMat srcstub, *src = (CvMat*)srcarr;
    CvMat dststub, *dst = (CvMat*)dstarr;
    CvSize ssize, dsize;

    src = cvGetMat( srcarr, &srcstub,0,0 );
    dst = cvGetMat( dstarr, &dststub,0,0 );

    if( !CV_ARE_TYPES_EQ( src, dst ))
        CV_Error( CV_StsUnmatchedFormats, "" );

M
Marina Kolpakova 已提交
4622
    ssize.width = src->cols;
4623 4624 4625 4626
    ssize.height = src->rows;
    dsize.width = dst->cols;
    dsize.height = dst->rows;

R
Roman Donchenko 已提交
4627 4628
    mapx.reset(cvCreateMat( dsize.height, dsize.width, CV_32F ));
    mapy.reset(cvCreateMat( dsize.height, dsize.width, CV_32F ));
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695

    if( !(flags & CV_WARP_INVERSE_MAP) )
    {
        int phi, rho;

        for( phi = 0; phi < dsize.height; phi++ )
        {
            double cp = cos(phi*2*CV_PI/dsize.height);
            double sp = sin(phi*2*CV_PI/dsize.height);
            float* mx = (float*)(mapx->data.ptr + phi*mapx->step);
            float* my = (float*)(mapy->data.ptr + phi*mapy->step);

            for( rho = 0; rho < dsize.width; rho++ )
            {
                double r = maxRadius*(rho+1)/dsize.width;
                double x = r*cp + center.x;
                double y = r*sp + center.y;

                mx[rho] = (float)x;
                my[rho] = (float)y;
            }
        }
    }
    else
    {
        int x, y;
        CvMat bufx, bufy, bufp, bufa;
        const double ascale = ssize.height/(2*CV_PI);
        const double pscale = ssize.width/maxRadius;

        cv::AutoBuffer<float> _buf(4*dsize.width);
        float* buf = _buf;

        bufx = cvMat( 1, dsize.width, CV_32F, buf );
        bufy = cvMat( 1, dsize.width, CV_32F, buf + dsize.width );
        bufp = cvMat( 1, dsize.width, CV_32F, buf + dsize.width*2 );
        bufa = cvMat( 1, dsize.width, CV_32F, buf + dsize.width*3 );

        for( x = 0; x < dsize.width; x++ )
            bufx.data.fl[x] = (float)x - center.x;

        for( y = 0; y < dsize.height; y++ )
        {
            float* mx = (float*)(mapx->data.ptr + y*mapx->step);
            float* my = (float*)(mapy->data.ptr + y*mapy->step);

            for( x = 0; x < dsize.width; x++ )
                bufy.data.fl[x] = (float)y - center.y;

            cvCartToPolar( &bufx, &bufy, &bufp, &bufa, 0 );

            for( x = 0; x < dsize.width; x++ )
                bufp.data.fl[x] += 1.f;

            for( x = 0; x < dsize.width; x++ )
            {
                double rho = bufp.data.fl[x]*pscale;
                double phi = bufa.data.fl[x]*ascale;
                mx[x] = (float)rho;
                my[x] = (float)phi;
            }
        }
    }

    cvRemap( src, dst, mapx, mapy, flags, cvScalarAll(0) );
}

4696 4697 4698 4699 4700 4701 4702 4703
void cv::linearPolar( InputArray _src, OutputArray _dst,
                      Point2f center, double maxRadius, int flags )
{
    Mat src = _src.getMat();
    _dst.create( src.size(), src.type() );
    CvMat c_src = src, c_dst = _dst.getMat();
    cvLinearPolar( &c_src, &c_dst, center, maxRadius, flags );
}
4704 4705

/* End of file. */