calib3d.hpp 38.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_CALIB3D_HPP__
#define __OPENCV_CALIB3D_HPP__

47 48
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

#ifdef __cplusplus
extern "C" {
#endif

/****************************************************************************************\
*                      Camera Calibration, Pose Estimation and Stereo                    *
\****************************************************************************************/

typedef struct CvPOSITObject CvPOSITObject;

/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */
CVAPI(CvPOSITObject*)  cvCreatePOSITObject( CvPoint3D32f* points, int point_count );


/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of
   an object given its model and projection in a weak-perspective case */
CVAPI(void)  cvPOSIT(  CvPOSITObject* posit_object, CvPoint2D32f* image_points,
                       double focal_length, CvTermCriteria criteria,
                       float* rotation_matrix, float* translation_vector);

/* Releases CvPOSITObject structure */
CVAPI(void)  cvReleasePOSITObject( CvPOSITObject**  posit_object );

/* updates the number of RANSAC iterations */
CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob,
                                   int model_points, int max_iters );

CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst );

/* Calculates fundamental matrix given a set of corresponding points */
#define CV_FM_7POINT 1
#define CV_FM_8POINT 2
82 83 84

#define CV_LMEDS 4
#define CV_RANSAC 8
85

86 87 88 89
#define CV_FM_LMEDS_ONLY  CV_LMEDS
#define CV_FM_RANSAC_ONLY CV_RANSAC
#define CV_FM_LMEDS CV_LMEDS
#define CV_FM_RANSAC CV_RANSAC
A
Alexander Shishkov 已提交
90 91 92 93 94

enum
{
    CV_ITERATIVE = 0,
    CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
95
    CV_P3P = 2 // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
A
Alexander Shishkov 已提交
96
};
97

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2,
                                 CvMat* fundamental_matrix,
                                 int method CV_DEFAULT(CV_FM_RANSAC),
                                 double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99),
                                 CvMat* status CV_DEFAULT(NULL) );

/* For each input point on one of images
   computes parameters of the corresponding
   epipolar line on the other image */
CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points,
                                         int which_image,
                                         const CvMat* fundamental_matrix,
                                         CvMat* correspondent_lines );

/* Triangulation functions */

CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2,
                                CvMat* projPoints1, CvMat* projPoints2,
                                CvMat* points4D);

CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2,
                             CvMat* new_points1, CvMat* new_points2);

121

122 123 124 125 126 127 128 129 130
/* Computes the optimal new camera matrix according to the free scaling parameter alpha:
   alpha=0 - only valid pixels will be retained in the undistorted image
   alpha=1 - all the source image pixels will be retained in the undistorted image
*/
CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix,
                                         const CvMat* dist_coeffs,
                                         CvSize image_size, double alpha,
                                         CvMat* new_camera_matrix,
                                         CvSize new_imag_size CV_DEFAULT(cvSize(0,0)),
131 132
                                         CvRect* valid_pixel_ROI CV_DEFAULT(0),
                                         int center_principal_point CV_DEFAULT(0));
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

/* Converts rotation vector to rotation matrix or vice versa */
CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst,
                         CvMat* jacobian CV_DEFAULT(0) );

/* Finds perspective transformation between the object plane and image (view) plane */
CVAPI(int) cvFindHomography( const CvMat* src_points,
                             const CvMat* dst_points,
                             CvMat* homography,
                             int method CV_DEFAULT(0),
                             double ransacReprojThreshold CV_DEFAULT(3),
                             CvMat* mask CV_DEFAULT(0));

/* Computes RQ decomposition for 3x3 matrices */
CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,
                           CvMat *matrixQx CV_DEFAULT(NULL),
                           CvMat *matrixQy CV_DEFAULT(NULL),
                           CvMat *matrixQz CV_DEFAULT(NULL),
                           CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));

/* Computes projection matrix decomposition */
CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,
                                         CvMat *rotMatr, CvMat *posVect,
                                         CvMat *rotMatrX CV_DEFAULT(NULL),
                                         CvMat *rotMatrY CV_DEFAULT(NULL),
                                         CvMat *rotMatrZ CV_DEFAULT(NULL),
                                         CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));

/* Computes d(AB)/dA and d(AB)/dB */
CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB );

/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)),
   t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */
CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1,
                         const CvMat* _rvec2, const CvMat* _tvec2,
                         CvMat* _rvec3, CvMat* _tvec3,
                         CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0),
                         CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0),
                         CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0),
                         CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) );

/* Projects object points to the view plane using
   the specified extrinsic and intrinsic camera parameters */
CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector,
                              const CvMat* translation_vector, const CvMat* camera_matrix,
                              const CvMat* distortion_coeffs, CvMat* image_points,
                              CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL),
                              CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL),
                              CvMat* dpddist CV_DEFAULT(NULL),
                              double aspect_ratio CV_DEFAULT(0));

/* Finds extrinsic camera parameters from
   a few known corresponding point pairs and intrinsic parameters */
CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points,
                                          const CvMat* image_points,
                                          const CvMat* camera_matrix,
                                          const CvMat* distortion_coeffs,
                                          CvMat* rotation_vector,
                                          CvMat* translation_vector,
                                          int use_extrinsic_guess CV_DEFAULT(0) );

/* Computes initial estimate of the intrinsic camera parameters
   in case of planar calibration target (e.g. chessboard) */
CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points,
                                     const CvMat* image_points,
                                     const CvMat* npoints, CvSize image_size,
                                     CvMat* camera_matrix,
                                     double aspect_ratio CV_DEFAULT(1.) );

#define CV_CALIB_CB_ADAPTIVE_THRESH  1
#define CV_CALIB_CB_NORMALIZE_IMAGE  2
#define CV_CALIB_CB_FILTER_QUADS     4
#define CV_CALIB_CB_FAST_CHECK       8

207
// Performs a fast check if a chessboard is in the input image. This is a workaround to
208 209 210
// a problem of cvFindChessboardCorners being slow on images with no chessboard
// - src: input image
// - size: chessboard size
211
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
212 213
// 0 if there is no chessboard, -1 in case of error
CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size);
214

215 216 217 218
    /* Detects corners on a chessboard calibration pattern */
CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size,
                                    CvPoint2D32f* corners,
                                    int* corner_count CV_DEFAULT(NULL),
219
                                    int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) );
220 221 222 223 224 225 226 227 228 229 230 231 232 233

/* Draws individual chessboard corners or the whole chessboard detected */
CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size,
                                     CvPoint2D32f* corners,
                                     int count, int pattern_was_found );

#define CV_CALIB_USE_INTRINSIC_GUESS  1
#define CV_CALIB_FIX_ASPECT_RATIO     2
#define CV_CALIB_FIX_PRINCIPAL_POINT  4
#define CV_CALIB_ZERO_TANGENT_DIST    8
#define CV_CALIB_FIX_FOCAL_LENGTH 16
#define CV_CALIB_FIX_K1  32
#define CV_CALIB_FIX_K2  64
#define CV_CALIB_FIX_K3  128
234 235 236
#define CV_CALIB_FIX_K4  2048
#define CV_CALIB_FIX_K5  4096
#define CV_CALIB_FIX_K6  8192
237
#define CV_CALIB_RATIONAL_MODEL 16384
A
alegarda 已提交
238 239 240
#define CV_CALIB_THIN_PRISM_MODEL 32768
#define CV_CALIB_FIX_S1_S2_S3_S4  65536

241 242 243 244 245 246 247 248 249 250 251

/* Finds intrinsic and extrinsic camera parameters
   from a few views of known calibration pattern */
CVAPI(double) cvCalibrateCamera2( const CvMat* object_points,
                                const CvMat* image_points,
                                const CvMat* point_counts,
                                CvSize image_size,
                                CvMat* camera_matrix,
                                CvMat* distortion_coeffs,
                                CvMat* rotation_vectors CV_DEFAULT(NULL),
                                CvMat* translation_vectors CV_DEFAULT(NULL),
252 253 254
                                int flags CV_DEFAULT(0),
                                CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
                                    CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) );
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

/* Computes various useful characteristics of the camera from the data computed by
   cvCalibrateCamera2 */
CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix,
                                CvSize image_size,
                                double aperture_width CV_DEFAULT(0),
                                double aperture_height CV_DEFAULT(0),
                                double *fovx CV_DEFAULT(NULL),
                                double *fovy CV_DEFAULT(NULL),
                                double *focal_length CV_DEFAULT(NULL),
                                CvPoint2D64f *principal_point CV_DEFAULT(NULL),
                                double *pixel_aspect_ratio CV_DEFAULT(NULL));

#define CV_CALIB_FIX_INTRINSIC  256
#define CV_CALIB_SAME_FOCAL_LENGTH 512

/* Computes the transformation from one camera coordinate system to another one
   from a few correspondent views of the same calibration target. Optionally, calibrates
   both cameras */
CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1,
                               const CvMat* image_points2, const CvMat* npoints,
                               CvMat* camera_matrix1, CvMat* dist_coeffs1,
                               CvMat* camera_matrix2, CvMat* dist_coeffs2,
                               CvSize image_size, CvMat* R, CvMat* T,
                               CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0),
                               CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
                                   CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)),
                               int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC));

#define CV_CALIB_ZERO_DISPARITY 1024

/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both
   views parallel (=> to make all the epipolar lines horizontal or vertical) */
CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2,
                             const CvMat* dist_coeffs1, const CvMat* dist_coeffs2,
                             CvSize image_size, const CvMat* R, const CvMat* T,
                             CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2,
                             CvMat* Q CV_DEFAULT(0),
                             int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY),
                             double alpha CV_DEFAULT(-1),
                             CvSize new_image_size CV_DEFAULT(cvSize(0,0)),
                             CvRect* valid_pix_ROI1 CV_DEFAULT(0),
                             CvRect* valid_pix_ROI2 CV_DEFAULT(0));

/* Computes rectification transformations for uncalibrated pair of images using a set
   of point correspondences */
CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2,
                                        const CvMat* F, CvSize img_size,
                                        CvMat* H1, CvMat* H2,
                                        double threshold CV_DEFAULT(5));



/* stereo correspondence parameters and functions */

#define CV_STEREO_BM_NORMALIZED_RESPONSE  0
#define CV_STEREO_BM_XSOBEL               1

/* Block matching algorithm structure */
typedef struct CvStereoBMState
{
    // pre-filtering (normalization of input images)
    int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now
    int preFilterSize; // averaging window size: ~5x5..21x21
    int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap]

    // correspondence using Sum of Absolute Difference (SAD)
    int SADWindowSize; // ~5x5..21x21
    int minDisparity;  // minimum disparity (can be negative)
    int numberOfDisparities; // maximum disparity - minimum disparity (> 0)

    // post-filtering
    int textureThreshold;  // the disparity is only computed for pixels
                           // with textured enough neighborhood
    int uniquenessRatio;   // accept the computed disparity d* only if
                           // SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.)
                           // for any d != d*+/-1 within the search range.
    int speckleWindowSize; // disparity variation window
    int speckleRange; // acceptable range of variation in window

    int trySmallerWindows; // if 1, the results may be more accurate,
336
                           // at the expense of slower processing
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    CvRect roi1, roi2;
    int disp12MaxDiff;

    // temporary buffers
    CvMat* preFilteredImg0;
    CvMat* preFilteredImg1;
    CvMat* slidingSumBuf;
    CvMat* cost;
    CvMat* disp;
} CvStereoBMState;

#define CV_STEREO_BM_BASIC 0
#define CV_STEREO_BM_FISH_EYE 1
#define CV_STEREO_BM_NARROW 2

CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC),
                                              int numberOfDisparities CV_DEFAULT(0));

CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state );

CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right,
                                          CvArr* disparity, CvStereoBMState* state );
359

360 361
CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
                                      int numberOfDisparities, int SADWindowSize );
362

363 364
CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost,
                                 int minDisparity, int numberOfDisparities,
365
                                 int disp12MaxDiff CV_DEFAULT(1) );
366 367 368 369 370 371 372 373 374 375

/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */
CVAPI(void)  cvReprojectImageTo3D( const CvArr* disparityImage,
                                   CvArr* _3dImage, const CvMat* Q,
                                   int handleMissingValues CV_DEFAULT(0) );


#ifdef __cplusplus
}

376 377
template<> CV_EXPORTS void cv::Ptr<CvStereoBMState>::delete_obj();

378 379 380 381 382 383 384 385 386 387 388 389 390 391
//////////////////////////////////////////////////////////////////////////////////////////
class CV_EXPORTS CvLevMarq
{
public:
    CvLevMarq();
    CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
              bool completeSymmFlag=false );
    ~CvLevMarq();
    void init( int nparams, int nerrs, CvTermCriteria criteria=
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
              bool completeSymmFlag=false );
    bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
    bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
392

393 394 395
    void clear();
    void step();
    enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    cv::Ptr<CvMat> mask;
    cv::Ptr<CvMat> prevParam;
    cv::Ptr<CvMat> param;
    cv::Ptr<CvMat> J;
    cv::Ptr<CvMat> err;
    cv::Ptr<CvMat> JtJ;
    cv::Ptr<CvMat> JtJN;
    cv::Ptr<CvMat> JtErr;
    cv::Ptr<CvMat> JtJV;
    cv::Ptr<CvMat> JtJW;
    double prevErrNorm, errNorm;
    int lambdaLg10;
    CvTermCriteria criteria;
    int state;
    int iters;
    bool completeSymmFlag;
};

namespace cv
{
417
//! converts rotation vector to rotation matrix or vice versa using Rodrigues transformation
418
CV_EXPORTS_W void Rodrigues(InputArray src, OutputArray dst, OutputArray jacobian=noArray());
419

420 421 422
//! type of the robust estimation algorithm
enum
{
423 424
    LMEDS=CV_LMEDS, //!< least-median algorithm
    RANSAC=CV_RANSAC //!< RANSAC algorithm
425
};
426

427
//! computes the best-fit perspective transformation mapping srcPoints to dstPoints.
428
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
429
                                 int method=0, double ransacReprojThreshold=3,
430
                                 OutputArray mask=noArray());
431 432

//! variant of findHomography for backward compatibility
433
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
434
                               OutputArray mask, int method=0, double ransacReprojThreshold=3);
435

436
//! Computes RQ decomposition of 3x3 matrix
437
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
438 439 440
                                OutputArray Qx=noArray(),
                                OutputArray Qy=noArray(),
                                OutputArray Qz=noArray());
441

442
//! Decomposes the projection matrix into camera matrix and the rotation martix and the translation vector
443
CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
444
                                             OutputArray rotMatrix, OutputArray transVect,
445 446 447
                                             OutputArray rotMatrixX=noArray(),
                                             OutputArray rotMatrixY=noArray(),
                                             OutputArray rotMatrixZ=noArray(),
448
                                             OutputArray eulerAngles=noArray() );
449

450
//! computes derivatives of the matrix product w.r.t each of the multiplied matrix coefficients
451
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B,
452 453
                               OutputArray dABdA,
                               OutputArray dABdB );
454

455
//! composes 2 [R|t] transformations together. Also computes the derivatives of the result w.r.t the arguments
456 457
CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
                             InputArray rvec2, InputArray tvec2,
458
                             OutputArray rvec3, OutputArray tvec3,
459 460 461 462
                             OutputArray dr3dr1=noArray(), OutputArray dr3dt1=noArray(),
                             OutputArray dr3dr2=noArray(), OutputArray dr3dt2=noArray(),
                             OutputArray dt3dr1=noArray(), OutputArray dt3dt1=noArray(),
                             OutputArray dt3dr2=noArray(), OutputArray dt3dt2=noArray() );
463

464
//! projects points from the model coordinate space to the image coordinates. Also computes derivatives of the image coordinates w.r.t the intrinsic and extrinsic camera parameters
465 466 467
CV_EXPORTS_W void projectPoints( InputArray objectPoints,
                                 InputArray rvec, InputArray tvec,
                                 InputArray cameraMatrix, InputArray distCoeffs,
468
                                 OutputArray imagePoints,
469
                                 OutputArray jacobian=noArray(),
470
                                 double aspectRatio=0 );
471

472
//! computes the camera pose from a few 3D points and the corresponding projections. The outliers are not handled.
A
Alexander Shishkov 已提交
473 474
enum
{
475
    ITERATIVE=CV_ITERATIVE,
A
Alexander Shishkov 已提交
476
    EPNP=CV_EPNP,
477
    P3P=CV_P3P
A
Alexander Shishkov 已提交
478 479
};
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
480
                            InputArray cameraMatrix, InputArray distCoeffs,
481
                            OutputArray rvec, OutputArray tvec,
482
                            bool useExtrinsicGuess=false, int flags=ITERATIVE);
483

A
Alexander Shishkov 已提交
484
//! computes the camera pose from a few 3D points and the corresponding projections. The outliers are possible.
485 486 487 488
CV_EXPORTS_W void solvePnPRansac( InputArray objectPoints,
                                  InputArray imagePoints,
                                  InputArray cameraMatrix,
                                  InputArray distCoeffs,
489 490
                                  OutputArray rvec,
                                  OutputArray tvec,
491
                                  bool useExtrinsicGuess = false,
A
Alexander Shishkov 已提交
492 493 494
                                  int iterationsCount = 100,
                                  float reprojectionError = 8.0,
                                  int minInliersCount = 100,
A
Alexander Shishkov 已提交
495
                                  OutputArray inliers = noArray(),
496
                                  int flags = ITERATIVE);
A
Alexander Shishkov 已提交
497

498
//! initializes camera matrix from a few 3D points and the corresponding projections.
499 500
CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints,
501
                                     Size imageSize, double aspectRatio=1. );
502

503 504 505
enum { CALIB_CB_ADAPTIVE_THRESH = 1, CALIB_CB_NORMALIZE_IMAGE = 2,
       CALIB_CB_FILTER_QUADS = 4, CALIB_CB_FAST_CHECK = 8 };

506
//! finds checkerboard pattern of the specified size in the image
507
CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize,
508
                                         OutputArray corners,
509
                                         int flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE );
510

511
//! finds subpixel-accurate positions of the chessboard corners
512
CV_EXPORTS bool find4QuadCornerSubpix(InputArray img, InputOutputArray corners, Size region_size);
513

514
//! draws the checkerboard pattern (found or partly found) in the image
515
CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
516
                                         InputArray corners, bool patternWasFound );
517

518
enum { CALIB_CB_SYMMETRIC_GRID = 1, CALIB_CB_ASYMMETRIC_GRID = 2,
519
       CALIB_CB_CLUSTERING = 4 };
520

521
//! finds circles' grid pattern of the specified size in the image
522
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
523 524
                                 OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID,
                                 const Ptr<FeatureDetector> &blobDetector = new SimpleBlobDetector());
525

526 527 528
//! the deprecated function. Use findCirclesGrid() instead of it.
CV_EXPORTS_W bool findCirclesGridDefault( InputArray image, Size patternSize,
                                          OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID );
529 530
enum
{
531 532 533 534 535
    CALIB_USE_INTRINSIC_GUESS = CV_CALIB_USE_INTRINSIC_GUESS,
    CALIB_FIX_ASPECT_RATIO = CV_CALIB_FIX_ASPECT_RATIO,
    CALIB_FIX_PRINCIPAL_POINT = CV_CALIB_FIX_PRINCIPAL_POINT,
    CALIB_ZERO_TANGENT_DIST = CV_CALIB_ZERO_TANGENT_DIST,
    CALIB_FIX_FOCAL_LENGTH = CV_CALIB_FIX_FOCAL_LENGTH,
536 537 538 539 540 541 542
    CALIB_FIX_K1 = CV_CALIB_FIX_K1,
    CALIB_FIX_K2 = CV_CALIB_FIX_K2,
    CALIB_FIX_K3 = CV_CALIB_FIX_K3,
    CALIB_FIX_K4 = CV_CALIB_FIX_K4,
    CALIB_FIX_K5 = CV_CALIB_FIX_K5,
    CALIB_FIX_K6 = CV_CALIB_FIX_K6,
    CALIB_RATIONAL_MODEL = CV_CALIB_RATIONAL_MODEL,
A
alegarda 已提交
543 544
    CALIB_THIN_PRISM_MODEL = CV_CALIB_THIN_PRISM_MODEL,
    CALIB_FIX_S1_S2_S3_S4=CV_CALIB_FIX_S1_S2_S3_S4,
545
    // only for stereo
546 547
    CALIB_FIX_INTRINSIC = CV_CALIB_FIX_INTRINSIC,
    CALIB_SAME_FOCAL_LENGTH = CV_CALIB_SAME_FOCAL_LENGTH,
548
    // for stereo rectification
549
    CALIB_ZERO_DISPARITY = CV_CALIB_ZERO_DISPARITY
550 551
};

552
//! finds intrinsic and extrinsic camera parameters from several fews of a known calibration pattern.
553 554
CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints,
555
                                     Size imageSize,
556 557
                                     InputOutputArray cameraMatrix,
                                     InputOutputArray distCoeffs,
558
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
559 560
                                     int flags=0, TermCriteria criteria = TermCriteria(
                                         TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON) );
561

562
//! computes several useful camera characteristics from the camera matrix, camera frame resolution and the physical sensor size.
563
CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix,
564 565 566
                                Size imageSize,
                                double apertureWidth,
                                double apertureHeight,
567 568 569 570 571
                                CV_OUT double& fovx,
                                CV_OUT double& fovy,
                                CV_OUT double& focalLength,
                                CV_OUT Point2d& principalPoint,
                                CV_OUT double& aspectRatio );
572 573

//! finds intrinsic and extrinsic parameters of a stereo camera
574 575 576
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints1,
                                     InputArrayOfArrays imagePoints2,
577 578 579 580
                                     InputOutputArray cameraMatrix1,
                                     InputOutputArray distCoeffs1,
                                     InputOutputArray cameraMatrix2,
                                     InputOutputArray distCoeffs2,
581 582
                                     Size imageSize, OutputArray R,
                                     OutputArray T, OutputArray E, OutputArray F,
583
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6),
584
                                     int flags=CALIB_FIX_INTRINSIC );
585

586

587
//! computes the rectification transformation for a stereo camera from its intrinsic and extrinsic parameters
588
CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
589 590
                               InputArray cameraMatrix2, InputArray distCoeffs2,
                               Size imageSize, InputArray R, InputArray T,
591 592 593 594 595
                               OutputArray R1, OutputArray R2,
                               OutputArray P1, OutputArray P2,
                               OutputArray Q, int flags=CALIB_ZERO_DISPARITY,
                               double alpha=-1, Size newImageSize=Size(),
                               CV_OUT Rect* validPixROI1=0, CV_OUT Rect* validPixROI2=0 );
596

597
//! computes the rectification transformation for an uncalibrated stereo camera (zero distortion is assumed)
598 599
CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
                                             InputArray F, Size imgSize,
600
                                             OutputArray H1, OutputArray H2,
601 602 603
                                             double threshold=5 );

//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
604 605 606 607 608 609
CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
                                      InputArray cameraMatrix2, InputArray distCoeffs2,
                                      InputArray cameraMatrix3, InputArray distCoeffs3,
                                      InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
                                      Size imageSize, InputArray R12, InputArray T12,
                                      InputArray R13, InputArray T13,
610 611 612
                                      OutputArray R1, OutputArray R2, OutputArray R3,
                                      OutputArray P1, OutputArray P2, OutputArray P3,
                                      OutputArray Q, double alpha, Size newImgSize,
613
                                      CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
614

615
//! returns the optimal new camera matrix
616
CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
617
                                            Size imageSize, double alpha, Size newImgSize=Size(),
618
                                            CV_OUT Rect* validPixROI=0, bool centerPrincipalPoint=false);
V
Vadim Pisarevsky 已提交
619

620
//! converts point coordinates from normal pixel coordinates to homogeneous coordinates ((x,y)->(x,y,1))
621
CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
622

623
//! converts point coordinates from homogeneous to normal pixel coordinates ((x,y,z)->(x/z, y/z))
624
CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
625

626
//! for backward compatibility
627
CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
628

629
//! the algorithm for finding fundamental matrix
630
enum
631
{
632 633 634 635
    FM_7POINT = CV_FM_7POINT, //!< 7-point algorithm
    FM_8POINT = CV_FM_8POINT, //!< 8-point algorithm
    FM_LMEDS = CV_FM_LMEDS,  //!< least-median algorithm
    FM_RANSAC = CV_FM_RANSAC  //!< RANSAC algorithm
636 637
};

638
//! finds fundamental matrix from a set of corresponding 2D points
639
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
640
                                     int method=FM_RANSAC,
641
                                     double param1=3., double param2=0.99,
642
                                     OutputArray mask=noArray());
643

644
//! variant of findFundamentalMat for backward compatibility
645
CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
646 647 648
                                   OutputArray mask, int method=FM_RANSAC,
                                   double param1=3., double param2=0.99);

649
//! finds essential matrix from a set of corresponding 2D points using five-point algorithm
650 651 652
CV_EXPORTS Mat findEssentialMat( InputArray points1, InputArray points2, double focal = 1.0, Point2d pp = Point2d(0, 0),
                                 int method = CV_RANSAC,
                                 double prob = 0.999, double threshold = 1.0, OutputArray mask = noArray() );
653 654

//! decompose essential matrix to possible rotation matrix and one translation vector
655
CV_EXPORTS void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
656 657

//! recover relative camera pose from a set of corresponding 2D points
658 659 660 661
CV_EXPORTS int recoverPose( InputArray E, InputArray points1, InputArray points2, OutputArray R, OutputArray t,
                            double focal = 1.0, Point2d pp = Point2d(0, 0),
                            InputOutputArray mask = noArray());

662

663
//! finds coordinates of epipolar lines corresponding the specified points
664
CV_EXPORTS void computeCorrespondEpilines( InputArray points,
665
                                           int whichImage, InputArray F,
666
                                           OutputArray lines );
667

668 669 670 671
CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
                                     InputArray projPoints1, InputArray projPoints2,
                                     OutputArray points4D );

672 673 674
CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
                                  OutputArray newPoints1, OutputArray newPoints2 );

675

V
Vadim Pisarevsky 已提交
676 677 678
class CV_EXPORTS_W StereoMatcher : public Algorithm
{
public:
679 680
    enum { DISP_SHIFT=4, DISP_SCALE=(1 << DISP_SHIFT) };

V
Vadim Pisarevsky 已提交
681 682
    CV_WRAP virtual void compute( InputArray left, InputArray right,
                                  OutputArray disparity ) = 0;
683

684 685
    CV_WRAP virtual int getMinDisparity() const = 0;
    CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
V
Vadim Pisarevsky 已提交
686

687 688
    CV_WRAP virtual int getNumDisparities() const = 0;
    CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
689

690 691
    CV_WRAP virtual int getBlockSize() const = 0;
    CV_WRAP virtual void setBlockSize(int blockSize) = 0;
V
Vadim Pisarevsky 已提交
692

693 694 695 696 697 698 699 700 701
    CV_WRAP virtual int getSpeckleWindowSize() const = 0;
    CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;

    CV_WRAP virtual int getSpeckleRange() const = 0;
    CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;

    CV_WRAP virtual int getDisp12MaxDiff() const = 0;
    CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
};
V
Vadim Pisarevsky 已提交
702

703 704
    
class CV_EXPORTS_W StereoBM : public StereoMatcher
705 706
{
public:
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
    enum { PREFILTER_NORMALIZED_RESPONSE = 0, PREFILTER_XSOBEL = 1 };

    CV_WRAP virtual int getPreFilterType() const = 0;
    CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;

    CV_WRAP virtual int getPreFilterSize() const = 0;
    CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;

    CV_WRAP virtual int getPreFilterCap() const = 0;
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;

    CV_WRAP virtual int getTextureThreshold() const = 0;
    CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;

    CV_WRAP virtual int getUniquenessRatio() const = 0;
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;

    CV_WRAP virtual int getSmallerBlockSize() const = 0;
    CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;

    CV_WRAP virtual Rect getROI1() const = 0;
    CV_WRAP virtual void setROI1(Rect roi1) = 0;

    CV_WRAP virtual Rect getROI2() const = 0;
    CV_WRAP virtual void setROI2(Rect roi2) = 0;
732 733
};

734
CV_EXPORTS Ptr<StereoBM> createStereoBM(int numDisparities=0, int blockSize=21);
735

736 737

class CV_EXPORTS_W StereoSGBM : public StereoMatcher
738 739
{
public:
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    enum { MODE_SGBM=0, MODE_HH=1 };

    CV_WRAP virtual int getPreFilterCap() const = 0;
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;

    CV_WRAP virtual int getUniquenessRatio() const = 0;
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;

    CV_WRAP virtual int getP1() const = 0;
    CV_WRAP virtual void setP1(int P1) = 0;

    CV_WRAP virtual int getP2() const = 0;
    CV_WRAP virtual void setP2(int P2) = 0;

    CV_WRAP virtual int getMode() const = 0;
    CV_WRAP virtual void setMode(int mode) = 0;
756 757
};

758 759 760 761 762 763 764

CV_EXPORTS Ptr<StereoSGBM> createStereoSGBM(int minDisparity, int numDisparities, int blockSize,
                                            int P1=0, int P2=0, int disp12MaxDiff=0,
                                            int preFilterCap=0, int uniquenessRatio=0,
                                            int speckleWindowSize=0, int speckleRange=0,
                                            int mode=StereoSGBM::MODE_SGBM);

765
//! filters off speckles (small regions of incorrectly computed disparity)
766 767
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
                                  int maxSpeckleSize, double maxDiff,
768
                                  InputOutputArray buf=noArray() );
769

770
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
771 772 773
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
                                        int minDisparity, int numberOfDisparities,
                                        int SADWindowSize );
774

775
//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
776
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
777 778
                                     int minDisparity, int numberOfDisparities,
                                     int disp12MaxDisp=1 );
779

780
//! reprojects disparity image to 3D: (x,y,d)->(X,Y,Z) using the matrix Q returned by cv::stereoRectify
781 782
CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
                                      OutputArray _3dImage, InputArray Q,
783 784
                                      bool handleMissingValues=false,
                                      int ddepth=-1 );
785 786 787 788 789

CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
                                   OutputArray out, OutputArray inliers,
                                   double ransacThreshold=3, double confidence=0.99);

790 791 792 793 794
}

#endif

#endif