calib3d.hpp 38.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_CALIB3D_HPP__
#define __OPENCV_CALIB3D_HPP__

46 47
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

#ifdef __cplusplus
extern "C" {
#endif

/****************************************************************************************\
*                      Camera Calibration, Pose Estimation and Stereo                    *
\****************************************************************************************/

typedef struct CvPOSITObject CvPOSITObject;

/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */
CVAPI(CvPOSITObject*)  cvCreatePOSITObject( CvPoint3D32f* points, int point_count );


/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of
   an object given its model and projection in a weak-perspective case */
CVAPI(void)  cvPOSIT(  CvPOSITObject* posit_object, CvPoint2D32f* image_points,
                       double focal_length, CvTermCriteria criteria,
                       float* rotation_matrix, float* translation_vector);

/* Releases CvPOSITObject structure */
CVAPI(void)  cvReleasePOSITObject( CvPOSITObject**  posit_object );

/* updates the number of RANSAC iterations */
CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob,
                                   int model_points, int max_iters );

CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst );

/* Calculates fundamental matrix given a set of corresponding points */
#define CV_FM_7POINT 1
#define CV_FM_8POINT 2
81 82 83

#define CV_LMEDS 4
#define CV_RANSAC 8
84

85 86 87 88
#define CV_FM_LMEDS_ONLY  CV_LMEDS
#define CV_FM_RANSAC_ONLY CV_RANSAC
#define CV_FM_LMEDS CV_LMEDS
#define CV_FM_RANSAC CV_RANSAC
A
Alexander Shishkov 已提交
89 90 91 92 93

enum
{
    CV_ITERATIVE = 0,
    CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
94
    CV_P3P = 2 // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
A
Alexander Shishkov 已提交
95
};
96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2,
                                 CvMat* fundamental_matrix,
                                 int method CV_DEFAULT(CV_FM_RANSAC),
                                 double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99),
                                 CvMat* status CV_DEFAULT(NULL) );

/* For each input point on one of images
   computes parameters of the corresponding
   epipolar line on the other image */
CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points,
                                         int which_image,
                                         const CvMat* fundamental_matrix,
                                         CvMat* correspondent_lines );

/* Triangulation functions */

CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2,
                                CvMat* projPoints1, CvMat* projPoints2,
                                CvMat* points4D);

CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2,
                             CvMat* new_points1, CvMat* new_points2);

120

121 122 123 124 125 126 127 128 129
/* Computes the optimal new camera matrix according to the free scaling parameter alpha:
   alpha=0 - only valid pixels will be retained in the undistorted image
   alpha=1 - all the source image pixels will be retained in the undistorted image
*/
CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix,
                                         const CvMat* dist_coeffs,
                                         CvSize image_size, double alpha,
                                         CvMat* new_camera_matrix,
                                         CvSize new_imag_size CV_DEFAULT(cvSize(0,0)),
130 131
                                         CvRect* valid_pixel_ROI CV_DEFAULT(0),
                                         int center_principal_point CV_DEFAULT(0));
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

/* Converts rotation vector to rotation matrix or vice versa */
CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst,
                         CvMat* jacobian CV_DEFAULT(0) );

/* Finds perspective transformation between the object plane and image (view) plane */
CVAPI(int) cvFindHomography( const CvMat* src_points,
                             const CvMat* dst_points,
                             CvMat* homography,
                             int method CV_DEFAULT(0),
                             double ransacReprojThreshold CV_DEFAULT(3),
                             CvMat* mask CV_DEFAULT(0));

/* Computes RQ decomposition for 3x3 matrices */
CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,
                           CvMat *matrixQx CV_DEFAULT(NULL),
                           CvMat *matrixQy CV_DEFAULT(NULL),
                           CvMat *matrixQz CV_DEFAULT(NULL),
                           CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));

/* Computes projection matrix decomposition */
CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,
                                         CvMat *rotMatr, CvMat *posVect,
                                         CvMat *rotMatrX CV_DEFAULT(NULL),
                                         CvMat *rotMatrY CV_DEFAULT(NULL),
                                         CvMat *rotMatrZ CV_DEFAULT(NULL),
                                         CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));

/* Computes d(AB)/dA and d(AB)/dB */
CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB );

/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)),
   t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */
CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1,
                         const CvMat* _rvec2, const CvMat* _tvec2,
                         CvMat* _rvec3, CvMat* _tvec3,
                         CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0),
                         CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0),
                         CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0),
                         CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) );

/* Projects object points to the view plane using
   the specified extrinsic and intrinsic camera parameters */
CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector,
                              const CvMat* translation_vector, const CvMat* camera_matrix,
                              const CvMat* distortion_coeffs, CvMat* image_points,
                              CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL),
                              CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL),
                              CvMat* dpddist CV_DEFAULT(NULL),
                              double aspect_ratio CV_DEFAULT(0));

/* Finds extrinsic camera parameters from
   a few known corresponding point pairs and intrinsic parameters */
CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points,
                                          const CvMat* image_points,
                                          const CvMat* camera_matrix,
                                          const CvMat* distortion_coeffs,
                                          CvMat* rotation_vector,
                                          CvMat* translation_vector,
                                          int use_extrinsic_guess CV_DEFAULT(0) );

/* Computes initial estimate of the intrinsic camera parameters
   in case of planar calibration target (e.g. chessboard) */
CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points,
                                     const CvMat* image_points,
                                     const CvMat* npoints, CvSize image_size,
                                     CvMat* camera_matrix,
                                     double aspect_ratio CV_DEFAULT(1.) );

#define CV_CALIB_CB_ADAPTIVE_THRESH  1
#define CV_CALIB_CB_NORMALIZE_IMAGE  2
#define CV_CALIB_CB_FILTER_QUADS     4
#define CV_CALIB_CB_FAST_CHECK       8

206
// Performs a fast check if a chessboard is in the input image. This is a workaround to
207 208 209
// a problem of cvFindChessboardCorners being slow on images with no chessboard
// - src: input image
// - size: chessboard size
210
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
211 212
// 0 if there is no chessboard, -1 in case of error
CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size);
213

214 215 216 217
    /* Detects corners on a chessboard calibration pattern */
CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size,
                                    CvPoint2D32f* corners,
                                    int* corner_count CV_DEFAULT(NULL),
218
                                    int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) );
219 220 221 222 223 224 225 226 227 228 229 230 231 232

/* Draws individual chessboard corners or the whole chessboard detected */
CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size,
                                     CvPoint2D32f* corners,
                                     int count, int pattern_was_found );

#define CV_CALIB_USE_INTRINSIC_GUESS  1
#define CV_CALIB_FIX_ASPECT_RATIO     2
#define CV_CALIB_FIX_PRINCIPAL_POINT  4
#define CV_CALIB_ZERO_TANGENT_DIST    8
#define CV_CALIB_FIX_FOCAL_LENGTH 16
#define CV_CALIB_FIX_K1  32
#define CV_CALIB_FIX_K2  64
#define CV_CALIB_FIX_K3  128
233 234 235
#define CV_CALIB_FIX_K4  2048
#define CV_CALIB_FIX_K5  4096
#define CV_CALIB_FIX_K6  8192
236
#define CV_CALIB_RATIONAL_MODEL 16384
A
alegarda 已提交
237 238 239
#define CV_CALIB_THIN_PRISM_MODEL 32768
#define CV_CALIB_FIX_S1_S2_S3_S4  65536

240 241 242 243 244 245 246 247 248 249 250

/* Finds intrinsic and extrinsic camera parameters
   from a few views of known calibration pattern */
CVAPI(double) cvCalibrateCamera2( const CvMat* object_points,
                                const CvMat* image_points,
                                const CvMat* point_counts,
                                CvSize image_size,
                                CvMat* camera_matrix,
                                CvMat* distortion_coeffs,
                                CvMat* rotation_vectors CV_DEFAULT(NULL),
                                CvMat* translation_vectors CV_DEFAULT(NULL),
251 252 253
                                int flags CV_DEFAULT(0),
                                CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
                                    CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) );
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

/* Computes various useful characteristics of the camera from the data computed by
   cvCalibrateCamera2 */
CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix,
                                CvSize image_size,
                                double aperture_width CV_DEFAULT(0),
                                double aperture_height CV_DEFAULT(0),
                                double *fovx CV_DEFAULT(NULL),
                                double *fovy CV_DEFAULT(NULL),
                                double *focal_length CV_DEFAULT(NULL),
                                CvPoint2D64f *principal_point CV_DEFAULT(NULL),
                                double *pixel_aspect_ratio CV_DEFAULT(NULL));

#define CV_CALIB_FIX_INTRINSIC  256
#define CV_CALIB_SAME_FOCAL_LENGTH 512

/* Computes the transformation from one camera coordinate system to another one
   from a few correspondent views of the same calibration target. Optionally, calibrates
   both cameras */
CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1,
                               const CvMat* image_points2, const CvMat* npoints,
                               CvMat* camera_matrix1, CvMat* dist_coeffs1,
                               CvMat* camera_matrix2, CvMat* dist_coeffs2,
                               CvSize image_size, CvMat* R, CvMat* T,
                               CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0),
                               CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
                                   CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)),
                               int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC));

#define CV_CALIB_ZERO_DISPARITY 1024

/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both
   views parallel (=> to make all the epipolar lines horizontal or vertical) */
CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2,
                             const CvMat* dist_coeffs1, const CvMat* dist_coeffs2,
                             CvSize image_size, const CvMat* R, const CvMat* T,
                             CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2,
                             CvMat* Q CV_DEFAULT(0),
                             int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY),
                             double alpha CV_DEFAULT(-1),
                             CvSize new_image_size CV_DEFAULT(cvSize(0,0)),
                             CvRect* valid_pix_ROI1 CV_DEFAULT(0),
                             CvRect* valid_pix_ROI2 CV_DEFAULT(0));

/* Computes rectification transformations for uncalibrated pair of images using a set
   of point correspondences */
CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2,
                                        const CvMat* F, CvSize img_size,
                                        CvMat* H1, CvMat* H2,
                                        double threshold CV_DEFAULT(5));



/* stereo correspondence parameters and functions */

#define CV_STEREO_BM_NORMALIZED_RESPONSE  0
#define CV_STEREO_BM_XSOBEL               1

/* Block matching algorithm structure */
typedef struct CvStereoBMState
{
    // pre-filtering (normalization of input images)
    int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now
    int preFilterSize; // averaging window size: ~5x5..21x21
    int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap]

    // correspondence using Sum of Absolute Difference (SAD)
    int SADWindowSize; // ~5x5..21x21
    int minDisparity;  // minimum disparity (can be negative)
    int numberOfDisparities; // maximum disparity - minimum disparity (> 0)

    // post-filtering
    int textureThreshold;  // the disparity is only computed for pixels
                           // with textured enough neighborhood
    int uniquenessRatio;   // accept the computed disparity d* only if
                           // SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.)
                           // for any d != d*+/-1 within the search range.
    int speckleWindowSize; // disparity variation window
    int speckleRange; // acceptable range of variation in window

    int trySmallerWindows; // if 1, the results may be more accurate,
335
                           // at the expense of slower processing
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    CvRect roi1, roi2;
    int disp12MaxDiff;

    // temporary buffers
    CvMat* preFilteredImg0;
    CvMat* preFilteredImg1;
    CvMat* slidingSumBuf;
    CvMat* cost;
    CvMat* disp;
} CvStereoBMState;

#define CV_STEREO_BM_BASIC 0
#define CV_STEREO_BM_FISH_EYE 1
#define CV_STEREO_BM_NARROW 2

CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC),
                                              int numberOfDisparities CV_DEFAULT(0));

CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state );

CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right,
                                          CvArr* disparity, CvStereoBMState* state );
358

359 360
CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
                                      int numberOfDisparities, int SADWindowSize );
361

362 363
CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost,
                                 int minDisparity, int numberOfDisparities,
364
                                 int disp12MaxDiff CV_DEFAULT(1) );
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */
CVAPI(void)  cvReprojectImageTo3D( const CvArr* disparityImage,
                                   CvArr* _3dImage, const CvMat* Q,
                                   int handleMissingValues CV_DEFAULT(0) );


#ifdef __cplusplus
}

//////////////////////////////////////////////////////////////////////////////////////////
class CV_EXPORTS CvLevMarq
{
public:
    CvLevMarq();
    CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
              bool completeSymmFlag=false );
    ~CvLevMarq();
    void init( int nparams, int nerrs, CvTermCriteria criteria=
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
              bool completeSymmFlag=false );
    bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
    bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
389

390 391 392
    void clear();
    void step();
    enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    cv::Ptr<CvMat> mask;
    cv::Ptr<CvMat> prevParam;
    cv::Ptr<CvMat> param;
    cv::Ptr<CvMat> J;
    cv::Ptr<CvMat> err;
    cv::Ptr<CvMat> JtJ;
    cv::Ptr<CvMat> JtJN;
    cv::Ptr<CvMat> JtErr;
    cv::Ptr<CvMat> JtJV;
    cv::Ptr<CvMat> JtJW;
    double prevErrNorm, errNorm;
    int lambdaLg10;
    CvTermCriteria criteria;
    int state;
    int iters;
    bool completeSymmFlag;
};

namespace cv
{
414
//! converts rotation vector to rotation matrix or vice versa using Rodrigues transformation
415
CV_EXPORTS_W void Rodrigues(InputArray src, OutputArray dst, OutputArray jacobian=noArray());
416

417 418 419
//! type of the robust estimation algorithm
enum
{
420 421
    LMEDS=CV_LMEDS, //!< least-median algorithm
    RANSAC=CV_RANSAC //!< RANSAC algorithm
422
};
423

424
//! computes the best-fit perspective transformation mapping srcPoints to dstPoints.
425
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
426
                                 int method=0, double ransacReprojThreshold=3,
427
                                 OutputArray mask=noArray());
428 429

//! variant of findHomography for backward compatibility
430
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
431
                               OutputArray mask, int method=0, double ransacReprojThreshold=3);
432

433
//! Computes RQ decomposition of 3x3 matrix
434
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
435 436 437
                                OutputArray Qx=noArray(),
                                OutputArray Qy=noArray(),
                                OutputArray Qz=noArray());
438

439
//! Decomposes the projection matrix into camera matrix and the rotation martix and the translation vector
440
CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
441
                                             OutputArray rotMatrix, OutputArray transVect,
442 443 444
                                             OutputArray rotMatrixX=noArray(),
                                             OutputArray rotMatrixY=noArray(),
                                             OutputArray rotMatrixZ=noArray(),
445
                                             OutputArray eulerAngles=noArray() );
446

447
//! computes derivatives of the matrix product w.r.t each of the multiplied matrix coefficients
448
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B,
449 450
                               OutputArray dABdA,
                               OutputArray dABdB );
451

452
//! composes 2 [R|t] transformations together. Also computes the derivatives of the result w.r.t the arguments
453 454
CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
                             InputArray rvec2, InputArray tvec2,
455
                             OutputArray rvec3, OutputArray tvec3,
456 457 458 459
                             OutputArray dr3dr1=noArray(), OutputArray dr3dt1=noArray(),
                             OutputArray dr3dr2=noArray(), OutputArray dr3dt2=noArray(),
                             OutputArray dt3dr1=noArray(), OutputArray dt3dt1=noArray(),
                             OutputArray dt3dr2=noArray(), OutputArray dt3dt2=noArray() );
460

461
//! projects points from the model coordinate space to the image coordinates. Also computes derivatives of the image coordinates w.r.t the intrinsic and extrinsic camera parameters
462 463 464
CV_EXPORTS_W void projectPoints( InputArray objectPoints,
                                 InputArray rvec, InputArray tvec,
                                 InputArray cameraMatrix, InputArray distCoeffs,
465
                                 OutputArray imagePoints,
466
                                 OutputArray jacobian=noArray(),
467
                                 double aspectRatio=0 );
468

469
//! computes the camera pose from a few 3D points and the corresponding projections. The outliers are not handled.
A
Alexander Shishkov 已提交
470 471
enum
{
472
    ITERATIVE=CV_ITERATIVE,
A
Alexander Shishkov 已提交
473
    EPNP=CV_EPNP,
474
    P3P=CV_P3P
A
Alexander Shishkov 已提交
475 476
};
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
477
                            InputArray cameraMatrix, InputArray distCoeffs,
478
                            OutputArray rvec, OutputArray tvec,
479
                            bool useExtrinsicGuess=false, int flags=ITERATIVE);
480

A
Alexander Shishkov 已提交
481
//! computes the camera pose from a few 3D points and the corresponding projections. The outliers are possible.
482 483 484 485
CV_EXPORTS_W void solvePnPRansac( InputArray objectPoints,
                                  InputArray imagePoints,
                                  InputArray cameraMatrix,
                                  InputArray distCoeffs,
486 487
                                  OutputArray rvec,
                                  OutputArray tvec,
488
                                  bool useExtrinsicGuess = false,
A
Alexander Shishkov 已提交
489 490 491
                                  int iterationsCount = 100,
                                  float reprojectionError = 8.0,
                                  int minInliersCount = 100,
A
Alexander Shishkov 已提交
492
                                  OutputArray inliers = noArray(),
493
                                  int flags = ITERATIVE);
A
Alexander Shishkov 已提交
494

495
//! initializes camera matrix from a few 3D points and the corresponding projections.
496 497
CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints,
498
                                     Size imageSize, double aspectRatio=1. );
499

500 501 502
enum { CALIB_CB_ADAPTIVE_THRESH = 1, CALIB_CB_NORMALIZE_IMAGE = 2,
       CALIB_CB_FILTER_QUADS = 4, CALIB_CB_FAST_CHECK = 8 };

503
//! finds checkerboard pattern of the specified size in the image
504
CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize,
505
                                         OutputArray corners,
506
                                         int flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE );
507

508
//! finds subpixel-accurate positions of the chessboard corners
509
CV_EXPORTS bool find4QuadCornerSubpix(InputArray img, InputOutputArray corners, Size region_size);
510

511
//! draws the checkerboard pattern (found or partly found) in the image
512
CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
513
                                         InputArray corners, bool patternWasFound );
514

515
enum { CALIB_CB_SYMMETRIC_GRID = 1, CALIB_CB_ASYMMETRIC_GRID = 2,
516
       CALIB_CB_CLUSTERING = 4 };
517

518
//! finds circles' grid pattern of the specified size in the image
519
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
520 521
                                 OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID,
                                 const Ptr<FeatureDetector> &blobDetector = new SimpleBlobDetector());
522

523 524 525
//! the deprecated function. Use findCirclesGrid() instead of it.
CV_EXPORTS_W bool findCirclesGridDefault( InputArray image, Size patternSize,
                                          OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID );
526 527
enum
{
528 529 530 531 532
    CALIB_USE_INTRINSIC_GUESS = CV_CALIB_USE_INTRINSIC_GUESS,
    CALIB_FIX_ASPECT_RATIO = CV_CALIB_FIX_ASPECT_RATIO,
    CALIB_FIX_PRINCIPAL_POINT = CV_CALIB_FIX_PRINCIPAL_POINT,
    CALIB_ZERO_TANGENT_DIST = CV_CALIB_ZERO_TANGENT_DIST,
    CALIB_FIX_FOCAL_LENGTH = CV_CALIB_FIX_FOCAL_LENGTH,
533 534 535 536 537 538 539
    CALIB_FIX_K1 = CV_CALIB_FIX_K1,
    CALIB_FIX_K2 = CV_CALIB_FIX_K2,
    CALIB_FIX_K3 = CV_CALIB_FIX_K3,
    CALIB_FIX_K4 = CV_CALIB_FIX_K4,
    CALIB_FIX_K5 = CV_CALIB_FIX_K5,
    CALIB_FIX_K6 = CV_CALIB_FIX_K6,
    CALIB_RATIONAL_MODEL = CV_CALIB_RATIONAL_MODEL,
A
alegarda 已提交
540 541
    CALIB_THIN_PRISM_MODEL = CV_CALIB_THIN_PRISM_MODEL,
    CALIB_FIX_S1_S2_S3_S4=CV_CALIB_FIX_S1_S2_S3_S4,
542
    // only for stereo
543 544
    CALIB_FIX_INTRINSIC = CV_CALIB_FIX_INTRINSIC,
    CALIB_SAME_FOCAL_LENGTH = CV_CALIB_SAME_FOCAL_LENGTH,
545
    // for stereo rectification
546
    CALIB_ZERO_DISPARITY = CV_CALIB_ZERO_DISPARITY
547 548
};

549
//! finds intrinsic and extrinsic camera parameters from several fews of a known calibration pattern.
550 551
CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints,
552
                                     Size imageSize,
553 554
                                     InputOutputArray cameraMatrix,
                                     InputOutputArray distCoeffs,
555
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
556 557
                                     int flags=0, TermCriteria criteria = TermCriteria(
                                         TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON) );
558

559
//! computes several useful camera characteristics from the camera matrix, camera frame resolution and the physical sensor size.
560
CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix,
561 562 563
                                Size imageSize,
                                double apertureWidth,
                                double apertureHeight,
564 565 566 567 568
                                CV_OUT double& fovx,
                                CV_OUT double& fovy,
                                CV_OUT double& focalLength,
                                CV_OUT Point2d& principalPoint,
                                CV_OUT double& aspectRatio );
569 570

//! finds intrinsic and extrinsic parameters of a stereo camera
571 572 573
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints1,
                                     InputArrayOfArrays imagePoints2,
574 575 576 577
                                     InputOutputArray cameraMatrix1,
                                     InputOutputArray distCoeffs1,
                                     InputOutputArray cameraMatrix2,
                                     InputOutputArray distCoeffs2,
578 579
                                     Size imageSize, OutputArray R,
                                     OutputArray T, OutputArray E, OutputArray F,
580
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6),
581
                                     int flags=CALIB_FIX_INTRINSIC );
582

583

584
//! computes the rectification transformation for a stereo camera from its intrinsic and extrinsic parameters
585
CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
586 587
                               InputArray cameraMatrix2, InputArray distCoeffs2,
                               Size imageSize, InputArray R, InputArray T,
588 589 590 591 592
                               OutputArray R1, OutputArray R2,
                               OutputArray P1, OutputArray P2,
                               OutputArray Q, int flags=CALIB_ZERO_DISPARITY,
                               double alpha=-1, Size newImageSize=Size(),
                               CV_OUT Rect* validPixROI1=0, CV_OUT Rect* validPixROI2=0 );
593

594
//! computes the rectification transformation for an uncalibrated stereo camera (zero distortion is assumed)
595 596
CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
                                             InputArray F, Size imgSize,
597
                                             OutputArray H1, OutputArray H2,
598 599 600
                                             double threshold=5 );

//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
601 602 603 604 605 606
CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
                                      InputArray cameraMatrix2, InputArray distCoeffs2,
                                      InputArray cameraMatrix3, InputArray distCoeffs3,
                                      InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
                                      Size imageSize, InputArray R12, InputArray T12,
                                      InputArray R13, InputArray T13,
607 608 609
                                      OutputArray R1, OutputArray R2, OutputArray R3,
                                      OutputArray P1, OutputArray P2, OutputArray P3,
                                      OutputArray Q, double alpha, Size newImgSize,
610
                                      CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
611

612
//! returns the optimal new camera matrix
613
CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
614
                                            Size imageSize, double alpha, Size newImgSize=Size(),
615
                                            CV_OUT Rect* validPixROI=0, bool centerPrincipalPoint=false);
V
Vadim Pisarevsky 已提交
616

617
//! converts point coordinates from normal pixel coordinates to homogeneous coordinates ((x,y)->(x,y,1))
618
CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
619

620
//! converts point coordinates from homogeneous to normal pixel coordinates ((x,y,z)->(x/z, y/z))
621
CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
622

623
//! for backward compatibility
624
CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
625

626
//! the algorithm for finding fundamental matrix
627
enum
628
{
629 630 631 632
    FM_7POINT = CV_FM_7POINT, //!< 7-point algorithm
    FM_8POINT = CV_FM_8POINT, //!< 8-point algorithm
    FM_LMEDS = CV_FM_LMEDS,  //!< least-median algorithm
    FM_RANSAC = CV_FM_RANSAC  //!< RANSAC algorithm
633 634
};

635
//! finds fundamental matrix from a set of corresponding 2D points
636
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
637
                                     int method=FM_RANSAC,
638
                                     double param1=3., double param2=0.99,
639
                                     OutputArray mask=noArray());
640

641
//! variant of findFundamentalMat for backward compatibility
642
CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
643 644 645
                                   OutputArray mask, int method=FM_RANSAC,
                                   double param1=3., double param2=0.99);

646
//! finds essential matrix from a set of corresponding 2D points using five-point algorithm
647 648 649
CV_EXPORTS Mat findEssentialMat( InputArray points1, InputArray points2, double focal = 1.0, Point2d pp = Point2d(0, 0),
                                 int method = CV_RANSAC,
                                 double prob = 0.999, double threshold = 1.0, OutputArray mask = noArray() );
650 651

//! decompose essential matrix to possible rotation matrix and one translation vector
652
CV_EXPORTS void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
653 654

//! recover relative camera pose from a set of corresponding 2D points
655 656 657 658
CV_EXPORTS int recoverPose( InputArray E, InputArray points1, InputArray points2, OutputArray R, OutputArray t,
                            double focal = 1.0, Point2d pp = Point2d(0, 0),
                            InputOutputArray mask = noArray());

659

660
//! finds coordinates of epipolar lines corresponding the specified points
661
CV_EXPORTS void computeCorrespondEpilines( InputArray points,
662
                                           int whichImage, InputArray F,
663
                                           OutputArray lines );
664

665 666 667 668
CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
                                     InputArray projPoints1, InputArray projPoints2,
                                     OutputArray points4D );

669 670 671
CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
                                  OutputArray newPoints1, OutputArray newPoints2 );

672

V
Vadim Pisarevsky 已提交
673 674 675 676 677 678
class CV_EXPORTS_W StereoMatcher : public Algorithm
{
public:
    CV_WRAP virtual void compute( InputArray left, InputArray right,
                                  OutputArray disparity ) = 0;
};
679

680
enum { STEREO_DISP_SCALE=16, STEREO_PREFILTER_NORMALIZED_RESPONSE = 0, STEREO_PREFILTER_XSOBEL = 1 };
V
Vadim Pisarevsky 已提交
681

682
CV_EXPORTS Ptr<StereoMatcher> createStereoBM(int numDisparities=0, int SADWindowSize=21);
683

V
Vadim Pisarevsky 已提交
684 685 686 687 688 689 690 691 692
CV_EXPORTS Ptr<StereoMatcher> createStereoSGBM(int minDisparity, int numDisparities, int SADWindowSize,
                                               int P1=0, int P2=0, int disp12MaxDiff=0,
                                               int preFilterCap=0, int uniquenessRatio=0,
                                               int speckleWindowSize=0, int speckleRange=0,
                                               bool fullDP=false);

template<> CV_EXPORTS void Ptr<CvStereoBMState>::delete_obj();

// to be moved to "compat" module
693
class CV_EXPORTS_W StereoBM
694 695 696
{
public:
    enum { PREFILTER_NORMALIZED_RESPONSE = 0, PREFILTER_XSOBEL = 1,
697
           BASIC_PRESET=0, FISH_EYE_PRESET=1, NARROW_PRESET=2 };
698

699
    //! the default constructor
700
    CV_WRAP StereoBM();
701
    //! the full constructor taking the camera-specific preset, number of disparities and the SAD window size
702
    CV_WRAP StereoBM(int preset, int ndisparities=0, int SADWindowSize=21);
703
    //! the method that reinitializes the state. The previous content is destroyed
704
    void init(int preset, int ndisparities=0, int SADWindowSize=21);
705
    //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
706
    CV_WRAP_AS(compute) void operator()( InputArray left, InputArray right,
707
                                         OutputArray disparity, int disptype=CV_16S );
708

709
    //! pointer to the underlying CvStereoBMState
710 711 712 713
    Ptr<CvStereoBMState> state;
};


V
Vadim Pisarevsky 已提交
714
// to be moved to "compat" module
715
class CV_EXPORTS_W StereoSGBM
716 717 718 719
{
public:
    enum { DISP_SHIFT=4, DISP_SCALE = (1<<DISP_SHIFT) };

720
    //! the default constructor
721
    CV_WRAP StereoSGBM();
722

723
    //! the full constructor taking all the necessary algorithm parameters
724
    CV_WRAP StereoSGBM(int minDisparity, int numDisparities, int SADWindowSize,
725 726 727 728
               int P1=0, int P2=0, int disp12MaxDiff=0,
               int preFilterCap=0, int uniquenessRatio=0,
               int speckleWindowSize=0, int speckleRange=0,
               bool fullDP=false);
729
    //! the destructor
730 731
    virtual ~StereoSGBM();

732
    //! the stereo correspondence operator that computes disparity map for the specified rectified stereo pair
733
    CV_WRAP_AS(compute) virtual void operator()(InputArray left, InputArray right,
734
                                                OutputArray disp);
735 736 737 738 739 740 741 742 743 744 745 746

    CV_PROP_RW int minDisparity;
    CV_PROP_RW int numberOfDisparities;
    CV_PROP_RW int SADWindowSize;
    CV_PROP_RW int preFilterCap;
    CV_PROP_RW int uniquenessRatio;
    CV_PROP_RW int P1;
    CV_PROP_RW int P2;
    CV_PROP_RW int speckleWindowSize;
    CV_PROP_RW int speckleRange;
    CV_PROP_RW int disp12MaxDiff;
    CV_PROP_RW bool fullDP;
747 748

protected:
V
Vadim Pisarevsky 已提交
749
    Ptr<StereoMatcher> sm;
750 751
};

752
//! filters off speckles (small regions of incorrectly computed disparity)
753
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal, int maxSpeckleSize, double maxDiff,
754
                                  InputOutputArray buf=noArray() );
755

756
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
757 758 759
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
                                        int minDisparity, int numberOfDisparities,
                                        int SADWindowSize );
760

761
//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
762
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
763 764
                                     int minDisparity, int numberOfDisparities,
                                     int disp12MaxDisp=1 );
765

766
//! reprojects disparity image to 3D: (x,y,d)->(X,Y,Z) using the matrix Q returned by cv::stereoRectify
767 768
CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
                                      OutputArray _3dImage, InputArray Q,
769 770
                                      bool handleMissingValues=false,
                                      int ddepth=-1 );
771 772 773 774 775

CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
                                   OutputArray out, OutputArray inliers,
                                   double ransacThreshold=3, double confidence=0.99);

776 777 778 779 780
}

#endif

#endif