ocl.cpp 122.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include <map>
44 45 46
#include <string>
#include <sstream>
#include <iostream> // std::cerr
47

I
Ilya Lavrenov 已提交
48
#include "opencv2/core/opencl/runtime/opencl_clamdblas.hpp"
I
Ilya Lavrenov 已提交
49
#include "opencv2/core/opencl/runtime/opencl_clamdfft.hpp"
I
Ilya Lavrenov 已提交
50

51 52 53 54 55
#ifdef HAVE_OPENCL
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
#else
// TODO FIXIT: This file can't be build without OPENCL

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
/*
  Part of the file is an extract from the standard OpenCL headers from Khronos site.
  Below is the original copyright.
*/

/*******************************************************************************
 * Copyright (c) 2008 - 2012 The Khronos Group Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and/or associated documentation files (the
 * "Materials"), to deal in the Materials without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Materials, and to
 * permit persons to whom the Materials are furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Materials.
 *
 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
 ******************************************************************************/

#if 0 //defined __APPLE__
#define HAVE_OPENCL 1
#else
#undef HAVE_OPENCL
#endif

#define OPENCV_CL_NOT_IMPLEMENTED -1000

#ifdef HAVE_OPENCL

#if defined __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/opencl.h>
#endif

static const bool g_haveOpenCL = true;

#else

extern "C" {

struct _cl_platform_id { int dummy; };
struct _cl_device_id { int dummy; };
struct _cl_context { int dummy; };
struct _cl_command_queue { int dummy; };
struct _cl_mem { int dummy; };
struct _cl_program { int dummy; };
struct _cl_kernel { int dummy; };
struct _cl_event { int dummy; };
struct _cl_sampler { int dummy; };

typedef struct _cl_platform_id *    cl_platform_id;
typedef struct _cl_device_id *      cl_device_id;
typedef struct _cl_context *        cl_context;
typedef struct _cl_command_queue *  cl_command_queue;
typedef struct _cl_mem *            cl_mem;
typedef struct _cl_program *        cl_program;
typedef struct _cl_kernel *         cl_kernel;
typedef struct _cl_event *          cl_event;
typedef struct _cl_sampler *        cl_sampler;

typedef int cl_int;
typedef unsigned cl_uint;
128 129 130 131 132 133 134
#if defined (_WIN32) && defined(_MSC_VER)
    typedef __int64 cl_long;
    typedef unsigned __int64 cl_ulong;
#else
    typedef long cl_long;
    typedef unsigned long cl_ulong;
#endif
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

typedef cl_uint             cl_bool; /* WARNING!  Unlike cl_ types in cl_platform.h, cl_bool is not guaranteed to be the same size as the bool in kernels. */
typedef cl_ulong            cl_bitfield;
typedef cl_bitfield         cl_device_type;
typedef cl_uint             cl_platform_info;
typedef cl_uint             cl_device_info;
typedef cl_bitfield         cl_device_fp_config;
typedef cl_uint             cl_device_mem_cache_type;
typedef cl_uint             cl_device_local_mem_type;
typedef cl_bitfield         cl_device_exec_capabilities;
typedef cl_bitfield         cl_command_queue_properties;
typedef intptr_t            cl_device_partition_property;
typedef cl_bitfield         cl_device_affinity_domain;

typedef intptr_t            cl_context_properties;
typedef cl_uint             cl_context_info;
typedef cl_uint             cl_command_queue_info;
typedef cl_uint             cl_channel_order;
typedef cl_uint             cl_channel_type;
typedef cl_bitfield         cl_mem_flags;
typedef cl_uint             cl_mem_object_type;
typedef cl_uint             cl_mem_info;
typedef cl_bitfield         cl_mem_migration_flags;
typedef cl_uint             cl_image_info;
typedef cl_uint             cl_buffer_create_type;
typedef cl_uint             cl_addressing_mode;
typedef cl_uint             cl_filter_mode;
typedef cl_uint             cl_sampler_info;
typedef cl_bitfield         cl_map_flags;
typedef cl_uint             cl_program_info;
typedef cl_uint             cl_program_build_info;
typedef cl_uint             cl_program_binary_type;
typedef cl_int              cl_build_status;
typedef cl_uint             cl_kernel_info;
typedef cl_uint             cl_kernel_arg_info;
typedef cl_uint             cl_kernel_arg_address_qualifier;
typedef cl_uint             cl_kernel_arg_access_qualifier;
typedef cl_bitfield         cl_kernel_arg_type_qualifier;
typedef cl_uint             cl_kernel_work_group_info;
typedef cl_uint             cl_event_info;
typedef cl_uint             cl_command_type;
typedef cl_uint             cl_profiling_info;


typedef struct _cl_image_format {
    cl_channel_order        image_channel_order;
    cl_channel_type         image_channel_data_type;
} cl_image_format;

typedef struct _cl_image_desc {
    cl_mem_object_type      image_type;
    size_t                  image_width;
    size_t                  image_height;
    size_t                  image_depth;
    size_t                  image_array_size;
    size_t                  image_row_pitch;
    size_t                  image_slice_pitch;
    cl_uint                 num_mip_levels;
    cl_uint                 num_samples;
    cl_mem                  buffer;
} cl_image_desc;

typedef struct _cl_buffer_region {
    size_t                  origin;
    size_t                  size;
} cl_buffer_region;


//////////////////////////////////////////////////////////

#define CL_SUCCESS                                  0
#define CL_DEVICE_NOT_FOUND                         -1
#define CL_DEVICE_NOT_AVAILABLE                     -2
#define CL_COMPILER_NOT_AVAILABLE                   -3
#define CL_MEM_OBJECT_ALLOCATION_FAILURE            -4
#define CL_OUT_OF_RESOURCES                         -5
#define CL_OUT_OF_HOST_MEMORY                       -6
#define CL_PROFILING_INFO_NOT_AVAILABLE             -7
#define CL_MEM_COPY_OVERLAP                         -8
#define CL_IMAGE_FORMAT_MISMATCH                    -9
#define CL_IMAGE_FORMAT_NOT_SUPPORTED               -10
#define CL_BUILD_PROGRAM_FAILURE                    -11
#define CL_MAP_FAILURE                              -12
#define CL_MISALIGNED_SUB_BUFFER_OFFSET             -13
#define CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST -14
#define CL_COMPILE_PROGRAM_FAILURE                  -15
#define CL_LINKER_NOT_AVAILABLE                     -16
#define CL_LINK_PROGRAM_FAILURE                     -17
#define CL_DEVICE_PARTITION_FAILED                  -18
#define CL_KERNEL_ARG_INFO_NOT_AVAILABLE            -19

#define CL_INVALID_VALUE                            -30
#define CL_INVALID_DEVICE_TYPE                      -31
#define CL_INVALID_PLATFORM                         -32
#define CL_INVALID_DEVICE                           -33
#define CL_INVALID_CONTEXT                          -34
#define CL_INVALID_QUEUE_PROPERTIES                 -35
#define CL_INVALID_COMMAND_QUEUE                    -36
#define CL_INVALID_HOST_PTR                         -37
#define CL_INVALID_MEM_OBJECT                       -38
#define CL_INVALID_IMAGE_FORMAT_DESCRIPTOR          -39
#define CL_INVALID_IMAGE_SIZE                       -40
#define CL_INVALID_SAMPLER                          -41
#define CL_INVALID_BINARY                           -42
#define CL_INVALID_BUILD_OPTIONS                    -43
#define CL_INVALID_PROGRAM                          -44
#define CL_INVALID_PROGRAM_EXECUTABLE               -45
#define CL_INVALID_KERNEL_NAME                      -46
#define CL_INVALID_KERNEL_DEFINITION                -47
#define CL_INVALID_KERNEL                           -48
#define CL_INVALID_ARG_INDEX                        -49
#define CL_INVALID_ARG_VALUE                        -50
#define CL_INVALID_ARG_SIZE                         -51
#define CL_INVALID_KERNEL_ARGS                      -52
#define CL_INVALID_WORK_DIMENSION                   -53
#define CL_INVALID_WORK_GROUP_SIZE                  -54
#define CL_INVALID_WORK_ITEM_SIZE                   -55
#define CL_INVALID_GLOBAL_OFFSET                    -56
#define CL_INVALID_EVENT_WAIT_LIST                  -57
#define CL_INVALID_EVENT                            -58
#define CL_INVALID_OPERATION                        -59
#define CL_INVALID_GL_OBJECT                        -60
#define CL_INVALID_BUFFER_SIZE                      -61
#define CL_INVALID_MIP_LEVEL                        -62
#define CL_INVALID_GLOBAL_WORK_SIZE                 -63
#define CL_INVALID_PROPERTY                         -64
#define CL_INVALID_IMAGE_DESCRIPTOR                 -65
#define CL_INVALID_COMPILER_OPTIONS                 -66
#define CL_INVALID_LINKER_OPTIONS                   -67
#define CL_INVALID_DEVICE_PARTITION_COUNT           -68

/*#define CL_VERSION_1_0                              1
#define CL_VERSION_1_1                              1
#define CL_VERSION_1_2                              1*/

#define CL_FALSE                                    0
#define CL_TRUE                                     1
#define CL_BLOCKING                                 CL_TRUE
#define CL_NON_BLOCKING                             CL_FALSE

#define CL_PLATFORM_PROFILE                         0x0900
#define CL_PLATFORM_VERSION                         0x0901
#define CL_PLATFORM_NAME                            0x0902
#define CL_PLATFORM_VENDOR                          0x0903
#define CL_PLATFORM_EXTENSIONS                      0x0904

#define CL_DEVICE_TYPE_DEFAULT                      (1 << 0)
#define CL_DEVICE_TYPE_CPU                          (1 << 1)
#define CL_DEVICE_TYPE_GPU                          (1 << 2)
#define CL_DEVICE_TYPE_ACCELERATOR                  (1 << 3)
#define CL_DEVICE_TYPE_CUSTOM                       (1 << 4)
#define CL_DEVICE_TYPE_ALL                          0xFFFFFFFF
#define CL_DEVICE_TYPE                              0x1000
#define CL_DEVICE_VENDOR_ID                         0x1001
#define CL_DEVICE_MAX_COMPUTE_UNITS                 0x1002
#define CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS          0x1003
#define CL_DEVICE_MAX_WORK_GROUP_SIZE               0x1004
#define CL_DEVICE_MAX_WORK_ITEM_SIZES               0x1005
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR       0x1006
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT      0x1007
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT        0x1008
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG       0x1009
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT      0x100A
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE     0x100B
#define CL_DEVICE_MAX_CLOCK_FREQUENCY               0x100C
#define CL_DEVICE_ADDRESS_BITS                      0x100D
#define CL_DEVICE_MAX_READ_IMAGE_ARGS               0x100E
#define CL_DEVICE_MAX_WRITE_IMAGE_ARGS              0x100F
#define CL_DEVICE_MAX_MEM_ALLOC_SIZE                0x1010
#define CL_DEVICE_IMAGE2D_MAX_WIDTH                 0x1011
#define CL_DEVICE_IMAGE2D_MAX_HEIGHT                0x1012
#define CL_DEVICE_IMAGE3D_MAX_WIDTH                 0x1013
#define CL_DEVICE_IMAGE3D_MAX_HEIGHT                0x1014
#define CL_DEVICE_IMAGE3D_MAX_DEPTH                 0x1015
#define CL_DEVICE_IMAGE_SUPPORT                     0x1016
#define CL_DEVICE_MAX_PARAMETER_SIZE                0x1017
#define CL_DEVICE_MAX_SAMPLERS                      0x1018
#define CL_DEVICE_MEM_BASE_ADDR_ALIGN               0x1019
#define CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE          0x101A
#define CL_DEVICE_SINGLE_FP_CONFIG                  0x101B
#define CL_DEVICE_GLOBAL_MEM_CACHE_TYPE             0x101C
#define CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE         0x101D
#define CL_DEVICE_GLOBAL_MEM_CACHE_SIZE             0x101E
#define CL_DEVICE_GLOBAL_MEM_SIZE                   0x101F
#define CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE          0x1020
#define CL_DEVICE_MAX_CONSTANT_ARGS                 0x1021
#define CL_DEVICE_LOCAL_MEM_TYPE                    0x1022
#define CL_DEVICE_LOCAL_MEM_SIZE                    0x1023
#define CL_DEVICE_ERROR_CORRECTION_SUPPORT          0x1024
#define CL_DEVICE_PROFILING_TIMER_RESOLUTION        0x1025
#define CL_DEVICE_ENDIAN_LITTLE                     0x1026
#define CL_DEVICE_AVAILABLE                         0x1027
#define CL_DEVICE_COMPILER_AVAILABLE                0x1028
#define CL_DEVICE_EXECUTION_CAPABILITIES            0x1029
#define CL_DEVICE_QUEUE_PROPERTIES                  0x102A
#define CL_DEVICE_NAME                              0x102B
#define CL_DEVICE_VENDOR                            0x102C
#define CL_DRIVER_VERSION                           0x102D
#define CL_DEVICE_PROFILE                           0x102E
#define CL_DEVICE_VERSION                           0x102F
#define CL_DEVICE_EXTENSIONS                        0x1030
#define CL_DEVICE_PLATFORM                          0x1031
#define CL_DEVICE_DOUBLE_FP_CONFIG                  0x1032
#define CL_DEVICE_HALF_FP_CONFIG                    0x1033
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF       0x1034
#define CL_DEVICE_HOST_UNIFIED_MEMORY               0x1035
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR          0x1036
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT         0x1037
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_INT           0x1038
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG          0x1039
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT         0x103A
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE        0x103B
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF          0x103C
#define CL_DEVICE_OPENCL_C_VERSION                  0x103D
#define CL_DEVICE_LINKER_AVAILABLE                  0x103E
#define CL_DEVICE_BUILT_IN_KERNELS                  0x103F
#define CL_DEVICE_IMAGE_MAX_BUFFER_SIZE             0x1040
#define CL_DEVICE_IMAGE_MAX_ARRAY_SIZE              0x1041
#define CL_DEVICE_PARENT_DEVICE                     0x1042
#define CL_DEVICE_PARTITION_MAX_SUB_DEVICES         0x1043
#define CL_DEVICE_PARTITION_PROPERTIES              0x1044
#define CL_DEVICE_PARTITION_AFFINITY_DOMAIN         0x1045
#define CL_DEVICE_PARTITION_TYPE                    0x1046
#define CL_DEVICE_REFERENCE_COUNT                   0x1047
#define CL_DEVICE_PREFERRED_INTEROP_USER_SYNC       0x1048
#define CL_DEVICE_PRINTF_BUFFER_SIZE                0x1049
#define CL_DEVICE_IMAGE_PITCH_ALIGNMENT             0x104A
#define CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT      0x104B

#define CL_FP_DENORM                                (1 << 0)
#define CL_FP_INF_NAN                               (1 << 1)
#define CL_FP_ROUND_TO_NEAREST                      (1 << 2)
#define CL_FP_ROUND_TO_ZERO                         (1 << 3)
#define CL_FP_ROUND_TO_INF                          (1 << 4)
#define CL_FP_FMA                                   (1 << 5)
#define CL_FP_SOFT_FLOAT                            (1 << 6)
#define CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT         (1 << 7)

#define CL_NONE                                     0x0
#define CL_READ_ONLY_CACHE                          0x1
#define CL_READ_WRITE_CACHE                         0x2
#define CL_LOCAL                                    0x1
#define CL_GLOBAL                                   0x2
#define CL_EXEC_KERNEL                              (1 << 0)
#define CL_EXEC_NATIVE_KERNEL                       (1 << 1)
#define CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE      (1 << 0)
#define CL_QUEUE_PROFILING_ENABLE                   (1 << 1)

#define CL_CONTEXT_REFERENCE_COUNT                  0x1080
#define CL_CONTEXT_DEVICES                          0x1081
#define CL_CONTEXT_PROPERTIES                       0x1082
#define CL_CONTEXT_NUM_DEVICES                      0x1083
#define CL_CONTEXT_PLATFORM                         0x1084
#define CL_CONTEXT_INTEROP_USER_SYNC                0x1085

#define CL_DEVICE_PARTITION_EQUALLY                 0x1086
#define CL_DEVICE_PARTITION_BY_COUNTS               0x1087
#define CL_DEVICE_PARTITION_BY_COUNTS_LIST_END      0x0
#define CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN      0x1088
#define CL_DEVICE_AFFINITY_DOMAIN_NUMA                     (1 << 0)
#define CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE                 (1 << 1)
#define CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE                 (1 << 2)
#define CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE                 (1 << 3)
#define CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE                 (1 << 4)
#define CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE       (1 << 5)
#define CL_QUEUE_CONTEXT                            0x1090
#define CL_QUEUE_DEVICE                             0x1091
#define CL_QUEUE_REFERENCE_COUNT                    0x1092
#define CL_QUEUE_PROPERTIES                         0x1093
#define CL_MEM_READ_WRITE                           (1 << 0)
#define CL_MEM_WRITE_ONLY                           (1 << 1)
#define CL_MEM_READ_ONLY                            (1 << 2)
#define CL_MEM_USE_HOST_PTR                         (1 << 3)
#define CL_MEM_ALLOC_HOST_PTR                       (1 << 4)
#define CL_MEM_COPY_HOST_PTR                        (1 << 5)
410
// reserved                                         (1 << 6)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
#define CL_MEM_HOST_WRITE_ONLY                      (1 << 7)
#define CL_MEM_HOST_READ_ONLY                       (1 << 8)
#define CL_MEM_HOST_NO_ACCESS                       (1 << 9)
#define CL_MIGRATE_MEM_OBJECT_HOST                  (1 << 0)
#define CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED     (1 << 1)

#define CL_R                                        0x10B0
#define CL_A                                        0x10B1
#define CL_RG                                       0x10B2
#define CL_RA                                       0x10B3
#define CL_RGB                                      0x10B4
#define CL_RGBA                                     0x10B5
#define CL_BGRA                                     0x10B6
#define CL_ARGB                                     0x10B7
#define CL_INTENSITY                                0x10B8
#define CL_LUMINANCE                                0x10B9
#define CL_Rx                                       0x10BA
#define CL_RGx                                      0x10BB
#define CL_RGBx                                     0x10BC
#define CL_DEPTH                                    0x10BD
#define CL_DEPTH_STENCIL                            0x10BE

#define CL_SNORM_INT8                               0x10D0
#define CL_SNORM_INT16                              0x10D1
#define CL_UNORM_INT8                               0x10D2
#define CL_UNORM_INT16                              0x10D3
#define CL_UNORM_SHORT_565                          0x10D4
#define CL_UNORM_SHORT_555                          0x10D5
#define CL_UNORM_INT_101010                         0x10D6
#define CL_SIGNED_INT8                              0x10D7
#define CL_SIGNED_INT16                             0x10D8
#define CL_SIGNED_INT32                             0x10D9
#define CL_UNSIGNED_INT8                            0x10DA
#define CL_UNSIGNED_INT16                           0x10DB
#define CL_UNSIGNED_INT32                           0x10DC
#define CL_HALF_FLOAT                               0x10DD
#define CL_FLOAT                                    0x10DE
#define CL_UNORM_INT24                              0x10DF

#define CL_MEM_OBJECT_BUFFER                        0x10F0
#define CL_MEM_OBJECT_IMAGE2D                       0x10F1
#define CL_MEM_OBJECT_IMAGE3D                       0x10F2
#define CL_MEM_OBJECT_IMAGE2D_ARRAY                 0x10F3
#define CL_MEM_OBJECT_IMAGE1D                       0x10F4
#define CL_MEM_OBJECT_IMAGE1D_ARRAY                 0x10F5
#define CL_MEM_OBJECT_IMAGE1D_BUFFER                0x10F6

#define CL_MEM_TYPE                                 0x1100
#define CL_MEM_FLAGS                                0x1101
#define CL_MEM_SIZE                                 0x1102
#define CL_MEM_HOST_PTR                             0x1103
#define CL_MEM_MAP_COUNT                            0x1104
#define CL_MEM_REFERENCE_COUNT                      0x1105
#define CL_MEM_CONTEXT                              0x1106
#define CL_MEM_ASSOCIATED_MEMOBJECT                 0x1107
#define CL_MEM_OFFSET                               0x1108

#define CL_IMAGE_FORMAT                             0x1110
#define CL_IMAGE_ELEMENT_SIZE                       0x1111
#define CL_IMAGE_ROW_PITCH                          0x1112
#define CL_IMAGE_SLICE_PITCH                        0x1113
#define CL_IMAGE_WIDTH                              0x1114
#define CL_IMAGE_HEIGHT                             0x1115
#define CL_IMAGE_DEPTH                              0x1116
#define CL_IMAGE_ARRAY_SIZE                         0x1117
#define CL_IMAGE_BUFFER                             0x1118
#define CL_IMAGE_NUM_MIP_LEVELS                     0x1119
#define CL_IMAGE_NUM_SAMPLES                        0x111A

#define CL_ADDRESS_NONE                             0x1130
#define CL_ADDRESS_CLAMP_TO_EDGE                    0x1131
#define CL_ADDRESS_CLAMP                            0x1132
#define CL_ADDRESS_REPEAT                           0x1133
#define CL_ADDRESS_MIRRORED_REPEAT                  0x1134

#define CL_FILTER_NEAREST                           0x1140
#define CL_FILTER_LINEAR                            0x1141

#define CL_SAMPLER_REFERENCE_COUNT                  0x1150
#define CL_SAMPLER_CONTEXT                          0x1151
#define CL_SAMPLER_NORMALIZED_COORDS                0x1152
#define CL_SAMPLER_ADDRESSING_MODE                  0x1153
#define CL_SAMPLER_FILTER_MODE                      0x1154

#define CL_MAP_READ                                 (1 << 0)
#define CL_MAP_WRITE                                (1 << 1)
#define CL_MAP_WRITE_INVALIDATE_REGION              (1 << 2)

#define CL_PROGRAM_REFERENCE_COUNT                  0x1160
#define CL_PROGRAM_CONTEXT                          0x1161
#define CL_PROGRAM_NUM_DEVICES                      0x1162
#define CL_PROGRAM_DEVICES                          0x1163
#define CL_PROGRAM_SOURCE                           0x1164
#define CL_PROGRAM_BINARY_SIZES                     0x1165
#define CL_PROGRAM_BINARIES                         0x1166
#define CL_PROGRAM_NUM_KERNELS                      0x1167
#define CL_PROGRAM_KERNEL_NAMES                     0x1168
#define CL_PROGRAM_BUILD_STATUS                     0x1181
#define CL_PROGRAM_BUILD_OPTIONS                    0x1182
#define CL_PROGRAM_BUILD_LOG                        0x1183
#define CL_PROGRAM_BINARY_TYPE                      0x1184
#define CL_PROGRAM_BINARY_TYPE_NONE                 0x0
#define CL_PROGRAM_BINARY_TYPE_COMPILED_OBJECT      0x1
#define CL_PROGRAM_BINARY_TYPE_LIBRARY              0x2
#define CL_PROGRAM_BINARY_TYPE_EXECUTABLE           0x4

#define CL_BUILD_SUCCESS                            0
#define CL_BUILD_NONE                               -1
#define CL_BUILD_ERROR                              -2
#define CL_BUILD_IN_PROGRESS                        -3

#define CL_KERNEL_FUNCTION_NAME                     0x1190
#define CL_KERNEL_NUM_ARGS                          0x1191
#define CL_KERNEL_REFERENCE_COUNT                   0x1192
#define CL_KERNEL_CONTEXT                           0x1193
#define CL_KERNEL_PROGRAM                           0x1194
#define CL_KERNEL_ATTRIBUTES                        0x1195
#define CL_KERNEL_ARG_ADDRESS_QUALIFIER             0x1196
#define CL_KERNEL_ARG_ACCESS_QUALIFIER              0x1197
#define CL_KERNEL_ARG_TYPE_NAME                     0x1198
#define CL_KERNEL_ARG_TYPE_QUALIFIER                0x1199
#define CL_KERNEL_ARG_NAME                          0x119A
#define CL_KERNEL_ARG_ADDRESS_GLOBAL                0x119B
#define CL_KERNEL_ARG_ADDRESS_LOCAL                 0x119C
#define CL_KERNEL_ARG_ADDRESS_CONSTANT              0x119D
#define CL_KERNEL_ARG_ADDRESS_PRIVATE               0x119E
#define CL_KERNEL_ARG_ACCESS_READ_ONLY              0x11A0
#define CL_KERNEL_ARG_ACCESS_WRITE_ONLY             0x11A1
#define CL_KERNEL_ARG_ACCESS_READ_WRITE             0x11A2
#define CL_KERNEL_ARG_ACCESS_NONE                   0x11A3
#define CL_KERNEL_ARG_TYPE_NONE                     0
#define CL_KERNEL_ARG_TYPE_CONST                    (1 << 0)
#define CL_KERNEL_ARG_TYPE_RESTRICT                 (1 << 1)
#define CL_KERNEL_ARG_TYPE_VOLATILE                 (1 << 2)
#define CL_KERNEL_WORK_GROUP_SIZE                   0x11B0
#define CL_KERNEL_COMPILE_WORK_GROUP_SIZE           0x11B1
#define CL_KERNEL_LOCAL_MEM_SIZE                    0x11B2
#define CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE 0x11B3
#define CL_KERNEL_PRIVATE_MEM_SIZE                  0x11B4
#define CL_KERNEL_GLOBAL_WORK_SIZE                  0x11B5

#define CL_EVENT_COMMAND_QUEUE                      0x11D0
#define CL_EVENT_COMMAND_TYPE                       0x11D1
#define CL_EVENT_REFERENCE_COUNT                    0x11D2
#define CL_EVENT_COMMAND_EXECUTION_STATUS           0x11D3
#define CL_EVENT_CONTEXT                            0x11D4

#define CL_COMMAND_NDRANGE_KERNEL                   0x11F0
#define CL_COMMAND_TASK                             0x11F1
#define CL_COMMAND_NATIVE_KERNEL                    0x11F2
#define CL_COMMAND_READ_BUFFER                      0x11F3
#define CL_COMMAND_WRITE_BUFFER                     0x11F4
#define CL_COMMAND_COPY_BUFFER                      0x11F5
#define CL_COMMAND_READ_IMAGE                       0x11F6
#define CL_COMMAND_WRITE_IMAGE                      0x11F7
#define CL_COMMAND_COPY_IMAGE                       0x11F8
#define CL_COMMAND_COPY_IMAGE_TO_BUFFER             0x11F9
#define CL_COMMAND_COPY_BUFFER_TO_IMAGE             0x11FA
#define CL_COMMAND_MAP_BUFFER                       0x11FB
#define CL_COMMAND_MAP_IMAGE                        0x11FC
#define CL_COMMAND_UNMAP_MEM_OBJECT                 0x11FD
#define CL_COMMAND_MARKER                           0x11FE
#define CL_COMMAND_ACQUIRE_GL_OBJECTS               0x11FF
#define CL_COMMAND_RELEASE_GL_OBJECTS               0x1200
#define CL_COMMAND_READ_BUFFER_RECT                 0x1201
#define CL_COMMAND_WRITE_BUFFER_RECT                0x1202
#define CL_COMMAND_COPY_BUFFER_RECT                 0x1203
#define CL_COMMAND_USER                             0x1204
#define CL_COMMAND_BARRIER                          0x1205
#define CL_COMMAND_MIGRATE_MEM_OBJECTS              0x1206
#define CL_COMMAND_FILL_BUFFER                      0x1207
#define CL_COMMAND_FILL_IMAGE                       0x1208

#define CL_COMPLETE                                 0x0
#define CL_RUNNING                                  0x1
#define CL_SUBMITTED                                0x2
#define CL_QUEUED                                   0x3
#define CL_BUFFER_CREATE_TYPE_REGION                0x1220

#define CL_PROFILING_COMMAND_QUEUED                 0x1280
#define CL_PROFILING_COMMAND_SUBMIT                 0x1281
#define CL_PROFILING_COMMAND_START                  0x1282
#define CL_PROFILING_COMMAND_END                    0x1283

#define CL_CALLBACK CV_STDCALL

static volatile bool g_haveOpenCL = false;
static const char* oclFuncToCheck = "clEnqueueReadBufferRect";

#if defined(__APPLE__)
#include <dlfcn.h>

static void* initOpenCLAndLoad(const char* funcname)
{
    static bool initialized = false;
    static void* handle = 0;
    if (!handle)
    {
        if(!initialized)
        {
611 612 613 614
            const char* oclpath = getenv("OPENCV_OPENCL_RUNTIME");
            oclpath = oclpath && strlen(oclpath) > 0 ? oclpath :
                "/System/Library/Frameworks/OpenCL.framework/Versions/Current/OpenCL";
            handle = dlopen(oclpath, RTLD_LAZY);
615 616
            initialized = true;
            g_haveOpenCL = handle != 0 && dlsym(handle, oclFuncToCheck) != 0;
617 618 619 620
            if( g_haveOpenCL )
                fprintf(stderr, "Succesffuly loaded OpenCL v1.1+ runtime from %s\n", oclpath);
            else
                fprintf(stderr, "Failed to load OpenCL runtime\n");
621 622 623 624 625
        }
        if(!handle)
            return 0;
    }

626
    return funcname && handle ? dlsym(handle, funcname) : 0;
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
}

#elif defined WIN32 || defined _WIN32

#ifndef _WIN32_WINNT           // This is needed for the declaration of TryEnterCriticalSection in winbase.h with Visual Studio 2005 (and older?)
  #define _WIN32_WINNT 0x0400  // http://msdn.microsoft.com/en-us/library/ms686857(VS.85).aspx
#endif
#include <windows.h>
#if (_WIN32_WINNT >= 0x0602)
  #include <synchapi.h>
#endif
#undef small
#undef min
#undef max
#undef abs

static void* initOpenCLAndLoad(const char* funcname)
{
    static bool initialized = false;
    static HMODULE handle = 0;
    if (!handle)
    {
        if(!initialized)
        {
            handle = LoadLibraryA("OpenCL.dll");
            initialized = true;
653
            g_haveOpenCL = handle != 0 && GetProcAddress(handle, oclFuncToCheck) != 0;
654 655 656 657
        }
        if(!handle)
            return 0;
    }
658 659

    return funcname ? (void*)GetProcAddress(handle, funcname) : 0;
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
}

#elif defined(__linux)

#include <dlfcn.h>
#include <stdio.h>

static void* initOpenCLAndLoad(const char* funcname)
{
    static bool initialized = false;
    static void* handle = 0;
    if (!handle)
    {
        if(!initialized)
        {
675
            handle = dlopen("libOpenCL.so", RTLD_LAZY);
676
            if(!handle)
677
                handle = dlopen("libCL.so", RTLD_LAZY);
678 679 680 681 682 683
            initialized = true;
            g_haveOpenCL = handle != 0 && dlsym(handle, oclFuncToCheck) != 0;
        }
        if(!handle)
            return 0;
    }
684

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
    return funcname ? (void*)dlsym(handle, funcname) : 0;
}

#else

static void* initOpenCLAndLoad(const char*)
{
    return 0;
}

#endif


#define OCL_FUNC(rettype, funcname, argsdecl, args) \
    typedef rettype (CV_STDCALL * funcname##_t) argsdecl; \
    static rettype funcname argsdecl \
    { \
        static funcname##_t funcname##_p = 0; \
        if( !funcname##_p ) \
        { \
            funcname##_p = (funcname##_t)initOpenCLAndLoad(#funcname); \
            if( !funcname##_p ) \
                return OPENCV_CL_NOT_IMPLEMENTED; \
        } \
        return funcname##_p args; \
    }


#define OCL_FUNC_P(rettype, funcname, argsdecl, args) \
    typedef rettype (CV_STDCALL * funcname##_t) argsdecl; \
    static rettype funcname argsdecl \
    { \
        static funcname##_t funcname##_p = 0; \
        if( !funcname##_p ) \
        { \
            funcname##_p = (funcname##_t)initOpenCLAndLoad(#funcname); \
            if( !funcname##_p ) \
            { \
                if( errcode_ret ) \
                    *errcode_ret = OPENCV_CL_NOT_IMPLEMENTED; \
                return 0; \
            } \
        } \
        return funcname##_p args; \
    }

OCL_FUNC(cl_int, clGetPlatformIDs,
    (cl_uint num_entries, cl_platform_id* platforms, cl_uint* num_platforms),
    (num_entries, platforms, num_platforms))

OCL_FUNC(cl_int, clGetPlatformInfo,
    (cl_platform_id platform, cl_platform_info param_name,
    size_t param_value_size, void * param_value,
    size_t * param_value_size_ret),
    (platform, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clGetDeviceInfo,
         (cl_device_id device,
          cl_device_info param_name,
          size_t param_value_size,
          void * param_value,
          size_t * param_value_size_ret),
         (device, param_name, param_value_size, param_value, param_value_size_ret))


OCL_FUNC(cl_int, clGetDeviceIDs,
    (cl_platform_id platform,
752 753 754
    cl_device_type device_type,
    cl_uint num_entries,
    cl_device_id * devices,
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
    cl_uint * num_devices),
    (platform, device_type, num_entries, devices, num_devices))

OCL_FUNC_P(cl_context, clCreateContext,
    (const cl_context_properties * properties,
    cl_uint num_devices,
    const cl_device_id * devices,
    void (CL_CALLBACK * pfn_notify)(const char *, const void *, size_t, void *),
    void * user_data,
    cl_int * errcode_ret),
    (properties, num_devices, devices, pfn_notify, user_data, errcode_ret))

OCL_FUNC(cl_int, clReleaseContext, (cl_context context), (context))

/*
OCL_FUNC(cl_int, clRetainContext, (cl_context context), (context))

OCL_FUNC_P(cl_context, clCreateContextFromType,
    (const cl_context_properties * properties,
    cl_device_type device_type,
    void (CL_CALLBACK * pfn_notify)(const char *, const void *, size_t, void *),
    void * user_data,
    cl_int * errcode_ret),
    (properties, device_type, pfn_notify, user_data, errcode_ret))

OCL_FUNC(cl_int, clGetContextInfo,
781 782 783 784
    (cl_context context,
    cl_context_info param_name,
    size_t param_value_size,
    void * param_value,
785
    size_t * param_value_size_ret),
786
    (context, param_name, param_value_size,
787 788 789
    param_value, param_value_size_ret))
*/
OCL_FUNC_P(cl_command_queue, clCreateCommandQueue,
790 791
    (cl_context context,
    cl_device_id device,
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
    cl_command_queue_properties properties,
    cl_int * errcode_ret),
    (context, device, properties, errcode_ret))

OCL_FUNC(cl_int, clReleaseCommandQueue, (cl_command_queue command_queue), (command_queue))

OCL_FUNC_P(cl_mem, clCreateBuffer,
    (cl_context context,
    cl_mem_flags flags,
    size_t size,
    void * host_ptr,
    cl_int * errcode_ret),
    (context, flags, size, host_ptr, errcode_ret))

/*
OCL_FUNC(cl_int, clRetainCommandQueue, (cl_command_queue command_queue), (command_queue))

OCL_FUNC(cl_int, clGetCommandQueueInfo,
 (cl_command_queue command_queue,
 cl_command_queue_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (command_queue, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC_P(cl_mem, clCreateSubBuffer,
    (cl_mem buffer,
    cl_mem_flags flags,
    cl_buffer_create_type buffer_create_type,
    const void * buffer_create_info,
    cl_int * errcode_ret),
    (buffer, flags, buffer_create_type, buffer_create_info, errcode_ret))
824
*/
825 826 827 828 829

OCL_FUNC_P(cl_mem, clCreateImage,
    (cl_context context,
    cl_mem_flags flags,
    const cl_image_format * image_format,
830
    const cl_image_desc * image_desc,
831 832 833 834
    void * host_ptr,
    cl_int * errcode_ret),
    (context, flags, image_format, image_desc, host_ptr, errcode_ret))

835 836 837 838 839 840 841 842 843 844 845 846
OCL_FUNC_P(cl_mem, clCreateImage2D,
    (cl_context context,
    cl_mem_flags flags,
    const cl_image_format * image_format,
    size_t image_width,
    size_t image_height,
    size_t image_row_pitch,
    void * host_ptr,
    cl_int *errcode_ret),
    (context, flags, image_format, image_width, image_height, image_row_pitch, host_ptr, errcode_ret))

/*
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
OCL_FUNC(cl_int, clGetSupportedImageFormats,
 (cl_context context,
 cl_mem_flags flags,
 cl_mem_object_type image_type,
 cl_uint num_entries,
 cl_image_format * image_formats,
 cl_uint * num_image_formats),
 (context, flags, image_type, num_entries, image_formats, num_image_formats))

OCL_FUNC(cl_int, clGetMemObjectInfo,
 (cl_mem memobj,
 cl_mem_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (memobj, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clGetImageInfo,
 (cl_mem image,
 cl_image_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (image, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clCreateKernelsInProgram,
 (cl_program program,
 cl_uint num_kernels,
 cl_kernel * kernels,
 cl_uint * num_kernels_ret),
 (program, num_kernels, kernels, num_kernels_ret))

OCL_FUNC(cl_int, clRetainKernel, (cl_kernel kernel), (kernel))

OCL_FUNC(cl_int, clGetKernelArgInfo,
 (cl_kernel kernel,
 cl_uint arg_indx,
 cl_kernel_arg_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (kernel, arg_indx, param_name, param_value_size, param_value, param_value_size_ret))
889

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
OCL_FUNC(cl_int, clEnqueueReadImage,
 (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_read,
 const size_t * origin[3],
 const size_t * region[3],
 size_t row_pitch,
 size_t slice_pitch,
 void * ptr,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, image, blocking_read, origin, region,
 row_pitch, slice_pitch,
 ptr,
 num_events_in_wait_list,
 event_wait_list,
 event))

OCL_FUNC(cl_int, clEnqueueWriteImage,
 (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_write,
 const size_t * origin[3],
 const size_t * region[3],
 size_t input_row_pitch,
 size_t input_slice_pitch,
 const void * ptr,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, image, blocking_write, origin, region, input_row_pitch,
 input_slice_pitch, ptr, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueFillImage,
 (cl_command_queue command_queue,
 cl_mem image,
 const void * fill_color,
 const size_t * origin[3],
 const size_t * region[3],
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, image, fill_color, origin, region,
 num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyImage,
 (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_image,
 const size_t * src_origin[3],
 const size_t * dst_origin[3],
 const size_t * region[3],
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, src_image, dst_image, src_origin, dst_origin,
 region, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyImageToBuffer,
 (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_buffer,
 const size_t * src_origin[3],
 const size_t * region[3],
 size_t dst_offset,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, src_image, dst_buffer, src_origin, region, dst_offset,
 num_events_in_wait_list, event_wait_list, event))
961
*/
962 963 964 965 966 967

OCL_FUNC(cl_int, clEnqueueCopyBufferToImage,
 (cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_image,
 size_t src_offset,
968 969
 const size_t dst_origin[3],
 const size_t region[3],
970 971 972 973 974 975
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, src_buffer, dst_image, src_offset, dst_origin,
 region, num_events_in_wait_list, event_wait_list, event))

976 977 978
 OCL_FUNC(cl_int, clFlush,
 (cl_command_queue command_queue),
 (command_queue))
979

980
/*
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
OCL_FUNC_P(void*, clEnqueueMapImage,
 (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_map,
 cl_map_flags map_flags,
 const size_t * origin[3],
 const size_t * region[3],
 size_t * image_row_pitch,
 size_t * image_slice_pitch,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event,
 cl_int * errcode_ret),
 (command_queue, image, blocking_map, map_flags, origin, region,
 image_row_pitch, image_slice_pitch, num_events_in_wait_list,
 event_wait_list, event, errcode_ret))
997
*/
998

999
/*
1000
OCL_FUNC(cl_int, clRetainProgram, (cl_program program), (program))
1001

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
OCL_FUNC(cl_int, clGetKernelInfo,
 (cl_kernel kernel,
 cl_kernel_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (kernel, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clRetainMemObject, (cl_mem memobj), (memobj))

*/

OCL_FUNC(cl_int, clReleaseMemObject, (cl_mem memobj), (memobj))


OCL_FUNC_P(cl_program, clCreateProgramWithSource,
    (cl_context context,
    cl_uint count,
    const char ** strings,
    const size_t * lengths,
    cl_int * errcode_ret),
    (context, count, strings, lengths, errcode_ret))

OCL_FUNC_P(cl_program, clCreateProgramWithBinary,
    (cl_context context,
    cl_uint num_devices,
    const cl_device_id * device_list,
    const size_t * lengths,
    const unsigned char ** binaries,
    cl_int * binary_status,
    cl_int * errcode_ret),
    (context, num_devices, device_list, lengths, binaries, binary_status, errcode_ret))

OCL_FUNC(cl_int, clReleaseProgram, (cl_program program), (program))

OCL_FUNC(cl_int, clBuildProgram,
    (cl_program program,
    cl_uint num_devices,
    const cl_device_id * device_list,
1041
    const char * options,
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
    void (CL_CALLBACK * pfn_notify)(cl_program, void *),
    void * user_data),
    (program, num_devices, device_list, options, pfn_notify, user_data))

OCL_FUNC(cl_int, clGetProgramInfo,
    (cl_program program,
    cl_program_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (program, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clGetProgramBuildInfo,
    (cl_program program,
    cl_device_id device,
    cl_program_build_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (program, device, param_name, param_value_size, param_value, param_value_size_ret))
1062

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
OCL_FUNC_P(cl_kernel, clCreateKernel,
    (cl_program program,
    const char * kernel_name,
    cl_int * errcode_ret),
    (program, kernel_name, errcode_ret))

OCL_FUNC(cl_int, clReleaseKernel, (cl_kernel kernel), (kernel))

OCL_FUNC(cl_int, clSetKernelArg,
    (cl_kernel kernel,
    cl_uint arg_index,
    size_t arg_size,
    const void * arg_value),
    (kernel, arg_index, arg_size, arg_value))

OCL_FUNC(cl_int, clGetKernelWorkGroupInfo,
    (cl_kernel kernel,
    cl_device_id device,
    cl_kernel_work_group_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (kernel, device, param_name, param_value_size, param_value, param_value_size_ret))
1086

1087 1088 1089 1090 1091 1092 1093
OCL_FUNC(cl_int, clFinish, (cl_command_queue command_queue), (command_queue))

OCL_FUNC(cl_int, clEnqueueReadBuffer,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_read,
    size_t offset,
1094
    size_t size,
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_read, offset, size, ptr,
    num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueReadBufferRect,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_read,
    const size_t * buffer_offset,
1107
    const size_t * host_offset,
1108 1109 1110 1111
    const size_t * region,
    size_t buffer_row_pitch,
    size_t buffer_slice_pitch,
    size_t host_row_pitch,
1112
    size_t host_slice_pitch,
1113 1114 1115 1116 1117 1118 1119 1120 1121
    void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_read, buffer_offset, host_offset, region, buffer_row_pitch,
    buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, num_events_in_wait_list,
    event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueWriteBuffer,
1122 1123 1124 1125 1126 1127 1128 1129
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_write,
    size_t offset,
    size_t size,
    const void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
1130 1131 1132 1133 1134 1135 1136 1137 1138
    cl_event * event),
    (command_queue, buffer, blocking_write, offset, size, ptr,
    num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueWriteBufferRect,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_write,
    const size_t * buffer_offset,
1139
    const size_t * host_offset,
1140 1141 1142 1143
    const size_t * region,
    size_t buffer_row_pitch,
    size_t buffer_slice_pitch,
    size_t host_row_pitch,
1144
    size_t host_slice_pitch,
1145 1146 1147 1148 1149 1150 1151 1152
    const void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_write, buffer_offset, host_offset,
    region, buffer_row_pitch, buffer_slice_pitch, host_row_pitch,
    host_slice_pitch, ptr, num_events_in_wait_list, event_wait_list, event))

1153
/*OCL_FUNC(cl_int, clEnqueueFillBuffer,
1154
    (cl_command_queue command_queue,
1155 1156 1157 1158 1159 1160 1161
    cl_mem buffer,
    const void * pattern,
    size_t pattern_size,
    size_t offset,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
1162
    cl_event * event),
1163 1164
    (command_queue, buffer, pattern, pattern_size, offset, size,
    num_events_in_wait_list, event_wait_list, event))*/
1165 1166

OCL_FUNC(cl_int, clEnqueueCopyBuffer,
1167
    (cl_command_queue command_queue,
1168
    cl_mem src_buffer,
1169
    cl_mem dst_buffer,
1170 1171
    size_t src_offset,
    size_t dst_offset,
1172
    size_t size,
1173 1174 1175 1176 1177 1178 1179
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, src_buffer, dst_buffer, src_offset, dst_offset,
    size, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyBufferRect,
1180
    (cl_command_queue command_queue,
1181
    cl_mem src_buffer,
1182
    cl_mem dst_buffer,
1183 1184
    const size_t * src_origin,
    const size_t * dst_origin,
1185
    const size_t * region,
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    size_t src_row_pitch,
    size_t src_slice_pitch,
    size_t dst_row_pitch,
    size_t dst_slice_pitch,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, src_buffer, dst_buffer, src_origin, dst_origin,
    region, src_row_pitch, src_slice_pitch, dst_row_pitch, dst_slice_pitch,
    num_events_in_wait_list, event_wait_list, event))

OCL_FUNC_P(void*, clEnqueueMapBuffer,
    (cl_command_queue command_queue,
    cl_mem buffer,
1200
    cl_bool blocking_map,
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    cl_map_flags map_flags,
    size_t offset,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event,
    cl_int * errcode_ret),
    (command_queue, buffer, blocking_map, map_flags, offset, size,
    num_events_in_wait_list, event_wait_list, event, errcode_ret))

OCL_FUNC(cl_int, clEnqueueUnmapMemObject,
    (cl_command_queue command_queue,
    cl_mem memobj,
    void * mapped_ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, memobj, mapped_ptr, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueNDRangeKernel,
    (cl_command_queue command_queue,
    cl_kernel kernel,
    cl_uint work_dim,
    const size_t * global_work_offset,
    const size_t * global_work_size,
    const size_t * local_work_size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, kernel, work_dim, global_work_offset, global_work_size,
    local_work_size, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueTask,
    (cl_command_queue command_queue,
    cl_kernel kernel,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, kernel, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clSetEventCallback,
    (cl_event event,
    cl_int command_exec_callback_type ,
    void (CL_CALLBACK  *pfn_event_notify) (cl_event event, cl_int event_command_exec_status, void *user_data),
    void *user_data),
    (event, command_exec_callback_type, pfn_event_notify, user_data))

OCL_FUNC(cl_int, clReleaseEvent, (cl_event event), (event))

}

#endif

1254 1255 1256 1257 1258 1259
#ifndef CL_VERSION_1_2
#define CL_VERSION_1_2
#endif

#endif

1260 1261
namespace cv { namespace ocl {

1262 1263
struct UMat2D
{
1264
    UMat2D(const UMat& m)
1265
    {
1266 1267
        offset = (int)m.offset;
        step = (int)m.step;
1268 1269 1270
        rows = m.rows;
        cols = m.cols;
    }
1271 1272
    int offset;
    int step;
1273 1274 1275 1276 1277 1278
    int rows;
    int cols;
};

struct UMat3D
{
1279
    UMat3D(const UMat& m)
1280
    {
1281 1282 1283 1284
        offset = (int)m.offset;
        step = (int)m.step.p[1];
        slicestep = (int)m.step.p[0];
        slices = (int)m.size.p[0];
1285 1286 1287
        rows = m.size.p[1];
        cols = m.size.p[2];
    }
1288 1289 1290
    int offset;
    int slicestep;
    int step;
1291 1292 1293 1294 1295
    int slices;
    int rows;
    int cols;
};

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
// Computes 64-bit "cyclic redundancy check" sum, as specified in ECMA-182
static uint64 crc64( const uchar* data, size_t size, uint64 crc0=0 )
{
    static uint64 table[256];
    static bool initialized = false;

    if( !initialized )
    {
        for( int i = 0; i < 256; i++ )
        {
            uint64 c = i;
            for( int j = 0; j < 8; j++ )
                c = ((c & 1) ? CV_BIG_UINT(0xc96c5795d7870f42) : 0) ^ (c >> 1);
            table[i] = c;
        }
        initialized = true;
    }

    uint64 crc = ~crc0;
    for( size_t idx = 0; idx < size; idx++ )
        crc = table[(uchar)crc ^ data[idx]] ^ (crc >> 8);

    return ~crc;
}

struct HashKey
{
    typedef uint64 part;
    HashKey(part _a, part _b) : a(_a), b(_b) {}
    part a, b;
};

inline bool operator == (const HashKey& h1, const HashKey& h2)
{
    return h1.a == h2.a && h1.b == h2.b;
}

inline bool operator < (const HashKey& h1, const HashKey& h2)
{
    return h1.a < h2.a || (h1.a == h2.a && h1.b < h2.b);
}

I
Ilya Lavrenov 已提交
1338
static bool g_isOpenCLInitialized = false;
1339
static bool g_isOpenCLAvailable = false;
I
Ilya Lavrenov 已提交
1340

1341 1342
bool haveOpenCL()
{
I
Ilya Lavrenov 已提交
1343
    if (!g_isOpenCLInitialized)
1344
    {
I
Ilya Lavrenov 已提交
1345
        try
1346
        {
I
Ilya Lavrenov 已提交
1347 1348
            cl_uint n = 0;
            g_isOpenCLAvailable = ::clGetPlatformIDs(0, NULL, &n) == CL_SUCCESS;
1349
        }
I
Ilya Lavrenov 已提交
1350 1351 1352
        catch (...)
        {
            g_isOpenCLAvailable = false;
1353
        }
I
Ilya Lavrenov 已提交
1354
        g_isOpenCLInitialized = true;
1355 1356
    }
    return g_isOpenCLAvailable;
1357 1358 1359 1360
}

bool useOpenCL()
{
1361
    CoreTLSData* data = coreTlsData.get();
1362 1363 1364 1365 1366
    if( data->useOpenCL < 0 )
        data->useOpenCL = (int)haveOpenCL();
    return data->useOpenCL > 0;
}

1367 1368 1369 1370
void setUseOpenCL(bool flag)
{
    if( haveOpenCL() )
    {
1371
        CoreTLSData* data = coreTlsData.get();
1372 1373 1374 1375
        data->useOpenCL = flag ? 1 : 0;
    }
}

I
Ilya Lavrenov 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
#ifdef HAVE_CLAMDBLAS

class AmdBlasHelper
{
public:
    static AmdBlasHelper & getInstance()
    {
        static AmdBlasHelper amdBlas;
        return amdBlas;
    }

    bool isAvailable() const
    {
        return g_isAmdBlasAvailable;
    }

    ~AmdBlasHelper()
    {
        try
        {
            clAmdBlasTeardown();
        }
        catch (...) { }
    }

protected:
    AmdBlasHelper()
    {
        if (!g_isAmdBlasInitialized)
        {
            AutoLock lock(m);

            if (!g_isAmdBlasInitialized && haveOpenCL())
            {
                try
                {
                    g_isAmdBlasAvailable = clAmdBlasSetup() == clAmdBlasSuccess;
                }
                catch (...)
                {
                    g_isAmdBlasAvailable = false;
                }
            }
            else
                g_isAmdBlasAvailable = false;

            g_isAmdBlasInitialized = true;
        }
    }

private:
    static Mutex m;
    static bool g_isAmdBlasInitialized;
    static bool g_isAmdBlasAvailable;
};

bool AmdBlasHelper::g_isAmdBlasAvailable = false;
bool AmdBlasHelper::g_isAmdBlasInitialized = false;
Mutex AmdBlasHelper::m;

bool haveAmdBlas()
{
    return AmdBlasHelper::getInstance().isAvailable();
}

#else

bool haveAmdBlas()
{
    return false;
}

#endif

I
Ilya Lavrenov 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
#ifdef HAVE_CLAMDFFT

class AmdFftHelper
{
public:
    static AmdFftHelper & getInstance()
    {
        static AmdFftHelper amdFft;
        return amdFft;
    }

    bool isAvailable() const
    {
        return g_isAmdFftAvailable;
    }

    ~AmdFftHelper()
    {
        try
        {
//            clAmdFftTeardown();
        }
        catch (...) { }
    }

protected:
    AmdFftHelper()
    {
        if (!g_isAmdFftInitialized)
        {
            AutoLock lock(m);

            if (!g_isAmdFftInitialized && haveOpenCL())
            {
                try
                {
                    CV_Assert(clAmdFftInitSetupData(&setupData) == CLFFT_SUCCESS);
                    g_isAmdFftAvailable = true;
                }
                catch (const Exception &)
                {
                    g_isAmdFftAvailable = false;
                }
            }
            else
                g_isAmdFftAvailable = false;

            g_isAmdFftInitialized = true;
        }
    }

private:
    static clAmdFftSetupData setupData;
    static Mutex m;
    static bool g_isAmdFftInitialized;
    static bool g_isAmdFftAvailable;
};

clAmdFftSetupData AmdFftHelper::setupData;
bool AmdFftHelper::g_isAmdFftAvailable = false;
bool AmdFftHelper::g_isAmdFftInitialized = false;
Mutex AmdFftHelper::m;

bool haveAmdFft()
{
    return AmdFftHelper::getInstance().isAvailable();
}

#else

bool haveAmdFft()
{
    return false;
}

#endif

1527
void finish2()
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
{
    Queue::getDefault().finish();
}

#define IMPLEMENT_REFCOUNTABLE() \
    void addref() { CV_XADD(&refcount, 1); } \
    void release() { if( CV_XADD(&refcount, -1) == 1 ) delete this; } \
    int refcount

struct Platform::Impl
{
    Impl()
    {
        refcount = 1;
        handle = 0;
        initialized = false;
    }

    ~Impl() {}

    void init()
    {
        if( !initialized )
        {
            //cl_uint num_entries
            cl_uint n = 0;
            if( clGetPlatformIDs(1, &handle, &n) < 0 || n == 0 )
                handle = 0;
            if( handle != 0 )
            {
                char buf[1000];
                size_t len = 0;
                clGetPlatformInfo(handle, CL_PLATFORM_VENDOR, sizeof(buf), buf, &len);
                buf[len] = '\0';
                vendor = String(buf);
            }

            initialized = true;
        }
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_platform_id handle;
    String vendor;
    bool initialized;
};

Platform::Platform()
{
    p = 0;
}

Platform::~Platform()
{
    if(p)
        p->release();
}

Platform::Platform(const Platform& pl)
{
    p = (Impl*)pl.p;
    if(p)
        p->addref();
}

Platform& Platform::operator = (const Platform& pl)
{
    Impl* newp = (Impl*)pl.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

void* Platform::ptr() const
{
    return p ? p->handle : 0;
}

Platform& Platform::getDefault()
{
    static Platform p;
    if( !p.p )
    {
        p.p = new Impl;
        p.p->init();
    }
    return p;
}

///////////////////////////////////////////////////////////////////////////////////

struct Device::Impl
{
    Impl(void* d)
    {
        handle = (cl_device_id)d;
A
Alexander Alekhin 已提交
1628
        refcount = 1;
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
    }

    template<typename _TpCL, typename _TpOut>
    _TpOut getProp(cl_device_info prop) const
    {
        _TpCL temp=_TpCL();
        size_t sz = 0;

        return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) >= 0 &&
            sz == sizeof(temp) ? _TpOut(temp) : _TpOut();
    }

1641 1642 1643 1644 1645 1646 1647 1648 1649
    bool getBoolProp(cl_device_info prop) const
    {
        cl_bool temp = CL_FALSE;
        size_t sz = 0;

        return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) >= 0 &&
            sz == sizeof(temp) ? temp != 0 : false;
    }

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
    String getStrProp(cl_device_info prop) const
    {
        char buf[1024];
        size_t sz=0;
        return clGetDeviceInfo(handle, prop, sizeof(buf)-16, buf, &sz) >= 0 &&
            sz < sizeof(buf) ? String(buf) : String();
    }

    IMPLEMENT_REFCOUNTABLE();
    cl_device_id handle;
};


Device::Device()
{
    p = 0;
}

Device::Device(void* d)
{
    p = 0;
    set(d);
}

Device::Device(const Device& d)
{
    p = d.p;
    if(p)
        p->addref();
}

Device& Device::operator = (const Device& d)
{
    Impl* newp = (Impl*)d.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Device::~Device()
{
    if(p)
        p->release();
}

void Device::set(void* d)
{
    if(p)
        p->release();
    p = new Impl(d);
}

void* Device::ptr() const
{
    return p ? p->handle : 0;
}

String Device::name() const
{ return p ? p->getStrProp(CL_DEVICE_NAME) : String(); }

String Device::extensions() const
{ return p ? p->getStrProp(CL_DEVICE_EXTENSIONS) : String(); }

K
Konstantin Matskevich 已提交
1716 1717 1718
String Device::version() const
{ return p ? p->getStrProp(CL_DEVICE_VERSION) : String(); }

1719 1720 1721 1722 1723 1724 1725 1726 1727
String Device::vendor() const
{ return p ? p->getStrProp(CL_DEVICE_VENDOR) : String(); }

String Device::OpenCL_C_Version() const
{ return p ? p->getStrProp(CL_DEVICE_OPENCL_C_VERSION) : String(); }

String Device::OpenCLVersion() const
{ return p ? p->getStrProp(CL_DEVICE_EXTENSIONS) : String(); }

1728 1729 1730
String Device::deviceVersion() const
{ return p ? p->getStrProp(CL_DEVICE_VERSION) : String(); }

1731
String Device::driverVersion() const
1732
{ return p ? p->getStrProp(CL_DRIVER_VERSION) : String(); }
1733 1734 1735 1736 1737 1738 1739 1740

int Device::type() const
{ return p ? p->getProp<cl_device_type, int>(CL_DEVICE_TYPE) : 0; }

int Device::addressBits() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_ADDRESS_BITS) : 0; }

bool Device::available() const
1741
{ return p ? p->getBoolProp(CL_DEVICE_AVAILABLE) : false; }
1742 1743

bool Device::compilerAvailable() const
1744
{ return p ? p->getBoolProp(CL_DEVICE_COMPILER_AVAILABLE) : false; }
1745 1746

bool Device::linkerAvailable() const
1747
#ifdef CL_VERSION_1_2
1748
{ return p ? p->getBoolProp(CL_DEVICE_LINKER_AVAILABLE) : false; }
1749 1750 1751
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
1752 1753 1754 1755 1756 1757 1758 1759

int Device::doubleFPConfig() const
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_DOUBLE_FP_CONFIG) : 0; }

int Device::singleFPConfig() const
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_SINGLE_FP_CONFIG) : 0; }

int Device::halfFPConfig() const
1760
#ifdef CL_VERSION_1_2
1761
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_HALF_FP_CONFIG) : 0; }
1762 1763 1764
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
1765 1766

bool Device::endianLittle() const
1767
{ return p ? p->getBoolProp(CL_DEVICE_ENDIAN_LITTLE) : false; }
1768 1769

bool Device::errorCorrectionSupport() const
1770
{ return p ? p->getBoolProp(CL_DEVICE_ERROR_CORRECTION_SUPPORT) : false; }
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

int Device::executionCapabilities() const
{ return p ? p->getProp<cl_device_exec_capabilities, int>(CL_DEVICE_EXECUTION_CAPABILITIES) : 0; }

size_t Device::globalMemCacheSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_CACHE_SIZE) : 0; }

int Device::globalMemCacheType() const
{ return p ? p->getProp<cl_device_mem_cache_type, int>(CL_DEVICE_GLOBAL_MEM_CACHE_TYPE) : 0; }

int Device::globalMemCacheLineSize() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE) : 0; }

size_t Device::globalMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_SIZE) : 0; }

size_t Device::localMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_LOCAL_MEM_SIZE) : 0; }

int Device::localMemType() const
{ return p ? p->getProp<cl_device_local_mem_type, int>(CL_DEVICE_LOCAL_MEM_TYPE) : 0; }

bool Device::hostUnifiedMemory() const
1794
{ return p ? p->getBoolProp(CL_DEVICE_HOST_UNIFIED_MEMORY) : false; }
1795 1796

bool Device::imageSupport() const
1797
{ return p ? p->getBoolProp(CL_DEVICE_IMAGE_SUPPORT) : false; }
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

size_t Device::image2DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_WIDTH) : 0; }

size_t Device::image2DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_HEIGHT) : 0; }

size_t Device::image3DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_WIDTH) : 0; }

size_t Device::image3DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_HEIGHT) : 0; }

size_t Device::image3DMaxDepth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_DEPTH) : 0; }

size_t Device::imageMaxBufferSize() const
1815
#ifdef CL_VERSION_1_2
1816
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_BUFFER_SIZE) : 0; }
1817 1818 1819
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
1820 1821

size_t Device::imageMaxArraySize() const
1822
#ifdef CL_VERSION_1_2
1823
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_ARRAY_SIZE) : 0; }
1824 1825 1826
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

int Device::maxClockFrequency() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CLOCK_FREQUENCY) : 0; }

int Device::maxComputeUnits() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_COMPUTE_UNITS) : 0; }

int Device::maxConstantArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CONSTANT_ARGS) : 0; }

size_t Device::maxConstantBufferSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE) : 0; }

size_t Device::maxMemAllocSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_MEM_ALLOC_SIZE) : 0; }

size_t Device::maxParameterSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_PARAMETER_SIZE) : 0; }

int Device::maxReadImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_READ_IMAGE_ARGS) : 0; }

int Device::maxWriteImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WRITE_IMAGE_ARGS) : 0; }

int Device::maxSamplers() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_SAMPLERS) : 0; }

size_t Device::maxWorkGroupSize() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_MAX_WORK_GROUP_SIZE) : 0; }

int Device::maxWorkItemDims() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS) : 0; }

void Device::maxWorkItemSizes(size_t* sizes) const
{
    if(p)
    {
        const int MAX_DIMS = 32;
        size_t retsz = 0;
        clGetDeviceInfo(p->handle, CL_DEVICE_MAX_WORK_ITEM_SIZES,
                MAX_DIMS*sizeof(sizes[0]), &sizes[0], &retsz);
    }
}

int Device::memBaseAddrAlign() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MEM_BASE_ADDR_ALIGN) : 0; }

int Device::nativeVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR) : 0; }

int Device::nativeVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT) : 0; }

int Device::nativeVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_INT) : 0; }

int Device::nativeVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG) : 0; }

int Device::nativeVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT) : 0; }

int Device::nativeVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE) : 0; }

int Device::nativeVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF) : 0; }

int Device::preferredVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR) : 0; }

int Device::preferredVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT) : 0; }

int Device::preferredVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT) : 0; }

int Device::preferredVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG) : 0; }

int Device::preferredVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT) : 0; }

int Device::preferredVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE) : 0; }

int Device::preferredVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF) : 0; }

size_t Device::printfBufferSize() const
1918
#ifdef CL_VERSION_1_2
1919
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PRINTF_BUFFER_SIZE) : 0; }
1920 1921 1922 1923
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif

1924 1925 1926 1927 1928 1929

size_t Device::profilingTimerResolution() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PROFILING_TIMER_RESOLUTION) : 0; }

const Device& Device::getDefault()
{
1930
    const Context2& ctx = Context2::getDefault();
1931
    int idx = coreTlsData.get()->device;
1932 1933 1934 1935 1936
    return ctx.device(idx);
}

/////////////////////////////////////////////////////////////////////////////////////////

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
template <typename Functor, typename ObjectType>
inline cl_int getStringInfo(Functor f, ObjectType obj, cl_uint name, std::string& param)
{
    ::size_t required;
    cl_int err = f(obj, name, 0, NULL, &required);
    if (err != CL_SUCCESS)
        return err;

    param.clear();
    if (required > 0)
    {
A
fixes  
Alexander Alekhin 已提交
1948 1949 1950
        AutoBuffer<char> buf(required + 1);
        char* ptr = (char*)buf; // cleanup is not needed
        err = f(obj, name, required, ptr, NULL);
1951 1952
        if (err != CL_SUCCESS)
            return err;
A
fixes  
Alexander Alekhin 已提交
1953
        param = ptr;
1954 1955 1956
    }

    return CL_SUCCESS;
1957
}
1958 1959

static void split(const std::string &s, char delim, std::vector<std::string> &elems) {
A
fixes  
Alexander Alekhin 已提交
1960 1961 1962 1963
    elems.clear();
    if (s.size() == 0)
        return;
    std::istringstream ss(s);
1964
    std::string item;
A
fixes  
Alexander Alekhin 已提交
1965 1966 1967
    while (!ss.eof())
    {
        std::getline(ss, item, delim);
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
        elems.push_back(item);
    }
}

// Layout: <Platform>:<CPU|GPU|ACCELERATOR|nothing=GPU/CPU>:<deviceName>
// Sample: AMD:GPU:
// Sample: AMD:GPU:Tahiti
// Sample: :GPU|CPU: = '' = ':' = '::'
static bool parseOpenCLDeviceConfiguration(const std::string& configurationStr,
        std::string& platform, std::vector<std::string>& deviceTypes, std::string& deviceNameOrID)
{
A
fixes  
Alexander Alekhin 已提交
1979 1980 1981
    std::vector<std::string> parts;
    split(configurationStr, ':', parts);
    if (parts.size() > 3)
1982
    {
A
fixes  
Alexander Alekhin 已提交
1983 1984 1985 1986 1987 1988 1989 1990
        std::cerr << "ERROR: Invalid configuration string for OpenCL device" << std::endl;
        return false;
    }
    if (parts.size() > 2)
        deviceNameOrID = parts[2];
    if (parts.size() > 1)
    {
        split(parts[1], '|', deviceTypes);
1991
    }
A
fixes  
Alexander Alekhin 已提交
1992
    if (parts.size() > 0)
1993
    {
A
fixes  
Alexander Alekhin 已提交
1994
        platform = parts[0];
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
    }
    return true;
}

static cl_device_id selectOpenCLDevice()
{
    std::string platform;
    std::vector<std::string> deviceTypes;
    std::string deviceName;
    const char* configuration = getenv("OPENCV_OPENCL_DEVICE");
    if (configuration)
    {
        if (!parseOpenCLDeviceConfiguration(std::string(configuration), platform, deviceTypes, deviceName))
            return NULL;
    }

    bool isID = false;
    int deviceID = -1;
    if (deviceName.length() == 1)
    // We limit ID range to 0..9, because we want to write:
    // - '2500' to mean i5-2500
    // - '8350' to mean AMD FX-8350
    // - '650' to mean GeForce 650
    // To extend ID range change condition to '> 0'
    {
        isID = true;
        for (size_t i = 0; i < deviceName.length(); i++)
        {
            if (!isdigit(deviceName[i]))
            {
                isID = false;
                break;
            }
        }
        if (isID)
        {
            deviceID = atoi(deviceName.c_str());
            CV_Assert(deviceID >= 0);
        }
    }

A
fixes  
Alexander Alekhin 已提交
2036
    cl_int status = CL_SUCCESS;
2037
    std::vector<cl_platform_id> platforms;
A
fixes  
Alexander Alekhin 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
    {
        cl_uint numPlatforms = 0;
        status = clGetPlatformIDs(0, NULL, &numPlatforms);
        CV_Assert(status == CL_SUCCESS);
        if (numPlatforms == 0)
            return NULL;
        platforms.resize((size_t)numPlatforms);
        status = clGetPlatformIDs(numPlatforms, &platforms[0], &numPlatforms);
        CV_Assert(status == CL_SUCCESS);
        platforms.resize(numPlatforms);
    }
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149

    int selectedPlatform = -1;
    if (platform.length() > 0)
    {
        for (size_t i = 0; i < platforms.size(); i++)
        {
            std::string name;
            status = getStringInfo(clGetPlatformInfo, platforms[i], CL_PLATFORM_NAME, name);
            CV_Assert(status == CL_SUCCESS);
            if (name.find(platform) != std::string::npos)
            {
                selectedPlatform = (int)i;
                break;
            }
        }
        if (selectedPlatform == -1)
        {
            std::cerr << "ERROR: Can't find OpenCL platform by name: " << platform << std::endl;
            goto not_found;
        }
    }

    if (deviceTypes.size() == 0)
    {
        if (!isID)
        {
            deviceTypes.push_back("GPU");
            deviceTypes.push_back("CPU");
        }
        else
        {
            deviceTypes.push_back("ALL");
        }
    }
    for (size_t t = 0; t < deviceTypes.size(); t++)
    {
        int deviceType = 0;
        if (deviceTypes[t] == "GPU")
        {
            deviceType = Device::TYPE_GPU;
        }
        else if (deviceTypes[t] == "CPU")
        {
            deviceType = Device::TYPE_CPU;
        }
        else if (deviceTypes[t] == "ACCELERATOR")
        {
            deviceType = Device::TYPE_ACCELERATOR;
        }
        else if (deviceTypes[t] == "ALL")
        {
            deviceType = Device::TYPE_ALL;
        }
        else
        {
            std::cerr << "ERROR: Unsupported device type for OpenCL device (GPU, CPU, ACCELERATOR): " << deviceTypes[t] << std::endl;
            goto not_found;
        }

        std::vector<cl_device_id> devices; // TODO Use clReleaseDevice to cleanup
        for (int i = selectedPlatform >= 0 ? selectedPlatform : 0;
                (selectedPlatform >= 0 ? i == selectedPlatform : true) && (i < (int)platforms.size());
                i++)
        {
            cl_uint count = 0;
            status = clGetDeviceIDs(platforms[i], deviceType, 0, NULL, &count);
            CV_Assert(status == CL_SUCCESS || status == CL_DEVICE_NOT_FOUND);
            if (count == 0)
                continue;
            size_t base = devices.size();
            devices.resize(base + count);
            status = clGetDeviceIDs(platforms[i], deviceType, count, &devices[base], &count);
            CV_Assert(status == CL_SUCCESS || status == CL_DEVICE_NOT_FOUND);
        }

        for (size_t i = (isID ? deviceID : 0);
             (isID ? (i == (size_t)deviceID) : true) && (i < devices.size());
             i++)
        {
            std::string name;
            status = getStringInfo(clGetDeviceInfo, devices[i], CL_DEVICE_NAME, name);
            CV_Assert(status == CL_SUCCESS);
            if (isID || name.find(deviceName) != std::string::npos)
            {
                // TODO check for OpenCL 1.1
                return devices[i];
            }
        }
    }
not_found:
    std::cerr << "ERROR: Required OpenCL device not found, check configuration: " << (configuration == NULL ? "" : configuration) << std::endl
            << "    Platform: " << (platform.length() == 0 ? "any" : platform) << std::endl
            << "    Device types: ";
    for (size_t t = 0; t < deviceTypes.size(); t++)
    {
        std::cerr << deviceTypes[t] << " ";
    }
    std::cerr << std::endl << "    Device name: " << (deviceName.length() == 0 ? "any" : deviceName) << std::endl;
    return NULL;
}

2150
struct Context2::Impl
2151
{
2152 2153 2154 2155 2156 2157
    Impl()
    {
        refcount = 1;
        handle = 0;
    }

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
    void setDefault()
    {
        CV_Assert(handle == NULL);

        cl_device_id d = selectOpenCLDevice();

        if (d == NULL)
            return;

        cl_platform_id pl = NULL;
        cl_int status = clGetDeviceInfo(d, CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &pl, NULL);
        CV_Assert(status == CL_SUCCESS);

        cl_context_properties prop[] =
        {
            CL_CONTEXT_PLATFORM, (cl_context_properties)pl,
            0
        };

        // !!! in the current implementation force the number of devices to 1 !!!
        int nd = 1;

        handle = clCreateContext(prop, nd, &d, 0, 0, &status);
        CV_Assert(status == CL_SUCCESS);
        bool ok = handle != 0 && status >= 0;
        if( ok )
        {
            devices.resize(nd);
            devices[0].set(d);
        }
        else
        {
            handle = NULL;
        }
    }

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
    Impl(int dtype0)
    {
        refcount = 1;
        handle = 0;

        cl_int retval = 0;
        cl_platform_id pl = (cl_platform_id)Platform::getDefault().ptr();
        cl_context_properties prop[] =
        {
            CL_CONTEXT_PLATFORM, (cl_context_properties)pl,
            0
        };

        cl_uint i, nd0 = 0, nd = 0;
        int dtype = dtype0 & 15;
        clGetDeviceIDs( pl, dtype, 0, 0, &nd0 );
        if(retval < 0)
            return;
        AutoBuffer<void*> dlistbuf(nd0*2+1);
        cl_device_id* dlist = (cl_device_id*)(void**)dlistbuf;
        cl_device_id* dlist_new = dlist + nd0;
        clGetDeviceIDs(	pl, dtype, nd0, dlist, &nd0 );
        String name0;

        for(i = 0; i < nd0; i++)
        {
            Device d(dlist[i]);
            if( !d.available() || !d.compilerAvailable() )
                continue;
            if( dtype0 == Device::TYPE_DGPU && d.hostUnifiedMemory() )
                continue;
            if( dtype0 == Device::TYPE_IGPU && !d.hostUnifiedMemory() )
                continue;
            String name = d.name();
            if( nd != 0 && name != name0 )
                continue;
            name0 = name;
            dlist_new[nd++] = dlist[i];
        }

        if(nd == 0)
            return;

        // !!! in the current implementation force the number of devices to 1 !!!
        nd = 1;

        handle = clCreateContext(prop, nd, dlist_new, 0, 0, &retval);
        bool ok = handle != 0 && retval >= 0;
        if( ok )
        {
            devices.resize(nd);
            for( i = 0; i < nd; i++ )
                devices[i].set(dlist_new[i]);
        }
    }

    ~Impl()
    {
        if(handle)
            clReleaseContext(handle);
        devices.clear();
    }

2257
    Program getProg(const ProgramSource2& src,
2258 2259 2260 2261 2262 2263 2264 2265 2266
                    const String& buildflags, String& errmsg)
    {
        String prefix = Program::getPrefix(buildflags);
        HashKey k(src.hash(), crc64((const uchar*)prefix.c_str(), prefix.size()));
        phash_t::iterator it = phash.find(k);
        if( it != phash.end() )
            return it->second;
        //String filename = format("%08x%08x_%08x%08x.clb2",
        Program prog(src, buildflags, errmsg);
2267 2268
        if(prog.ptr())
            phash.insert(std::pair<HashKey,Program>(k, prog));
2269 2270 2271 2272 2273 2274 2275 2276
        return prog;
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_context handle;
    std::vector<Device> devices;

2277
    typedef ProgramSource2::hash_t hash_t;
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

    struct HashKey
    {
        HashKey(hash_t _a, hash_t _b) : a(_a), b(_b) {}
        bool operator < (const HashKey& k) const { return a < k.a || (a == k.a && b < k.b); }
        bool operator == (const HashKey& k) const { return a == k.a && b == k.b; }
        bool operator != (const HashKey& k) const { return a != k.a || b != k.b; }
        hash_t a, b;
    };
    typedef std::map<HashKey, Program> phash_t;
    phash_t phash;
};


2292
Context2::Context2()
2293 2294 2295 2296
{
    p = 0;
}

2297
Context2::Context2(int dtype)
2298 2299 2300 2301 2302
{
    p = 0;
    create(dtype);
}

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
bool Context2::create()
{
    if( !haveOpenCL() )
        return false;
    if(p)
        p->release();
    p = new Impl();
    if(!p->handle)
    {
        delete p;
        p = 0;
    }
    return p != 0;
}

2318
bool Context2::create(int dtype0)
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
{
    if( !haveOpenCL() )
        return false;
    if(p)
        p->release();
    p = new Impl(dtype0);
    if(!p->handle)
    {
        delete p;
        p = 0;
    }
    return p != 0;
}

2333
Context2::~Context2()
2334
{
2335 2336 2337 2338 2339
    if (p)
    {
        p->release();
        p = NULL;
    }
2340 2341
}

2342
Context2::Context2(const Context2& c)
2343 2344 2345 2346 2347 2348
{
    p = (Impl*)c.p;
    if(p)
        p->addref();
}

2349
Context2& Context2::operator = (const Context2& c)
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
{
    Impl* newp = (Impl*)c.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

2360
void* Context2::ptr() const
2361
{
2362
    return p == NULL ? NULL : p->handle;
2363 2364
}

2365
size_t Context2::ndevices() const
2366 2367 2368 2369
{
    return p ? p->devices.size() : 0;
}

2370
const Device& Context2::device(size_t idx) const
2371 2372 2373 2374 2375
{
    static Device dummy;
    return !p || idx >= p->devices.size() ? dummy : p->devices[idx];
}

2376
Context2& Context2::getDefault(bool initialize)
2377
{
2378
    static Context2 ctx;
2379
    if(!ctx.p && haveOpenCL())
2380
    {
2381 2382
        if (!ctx.p)
            ctx.p = new Impl();
2383 2384 2385 2386 2387 2388
        if (initialize)
        {
            // do not create new Context2 right away.
            // First, try to retrieve existing context of the same type.
            // In its turn, Platform::getContext() may call Context2::create()
            // if there is no such context.
2389 2390
            if (ctx.p->handle == NULL)
                ctx.p->setDefault();
2391
        }
2392 2393 2394 2395 2396
    }

    return ctx;
}

2397
Program Context2::getProg(const ProgramSource2& prog,
2398 2399 2400 2401 2402
                         const String& buildopts, String& errmsg)
{
    return p ? p->getProg(prog, buildopts, errmsg) : Program();
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
void initializeContextFromHandle(Context2& ctx, void* platform, void* _context, void* _device)
{
    cl_context context = (cl_context)_context;
    cl_device_id device = (cl_device_id)_device;

    // cleanup old context
    Context2::Impl* impl = ctx._getImpl();
    if (impl->handle)
    {
        cl_int status = clReleaseContext(impl->handle);
        (void)status;
    }
    impl->devices.clear();

    impl->handle = context;
    impl->devices.resize(1);
    impl->devices[0].set(device);

    Platform& p = Platform::getDefault();
    Platform::Impl* pImpl = p._getImpl();
    pImpl->handle = (cl_platform_id)platform;
}


2427 2428
struct Queue::Impl
{
2429
    Impl(const Context2& c, const Device& d)
2430 2431
    {
        refcount = 1;
2432
        const Context2* pc = &c;
2433 2434 2435
        cl_context ch = (cl_context)pc->ptr();
        if( !ch )
        {
2436
            pc = &Context2::getDefault();
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
            ch = (cl_context)pc->ptr();
        }
        cl_device_id dh = (cl_device_id)d.ptr();
        if( !dh )
            dh = (cl_device_id)pc->device(0).ptr();
        cl_int retval = 0;
        handle = clCreateCommandQueue(ch, dh, 0, &retval);
    }

    ~Impl()
    {
2448 2449 2450
#ifdef _WIN32
        if (!cv::__termination)
#endif
2451
        {
2452 2453 2454 2455 2456
            if(handle)
            {
                clFinish(handle);
                clReleaseCommandQueue(handle);
            }
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
        }
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_command_queue handle;
    bool initialized;
};

Queue::Queue()
{
    p = 0;
}

2471
Queue::Queue(const Context2& c, const Device& d)
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
{
    p = 0;
    create(c, d);
}

Queue::Queue(const Queue& q)
{
    p = q.p;
    if(p)
        p->addref();
}

Queue& Queue::operator = (const Queue& q)
{
    Impl* newp = (Impl*)q.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Queue::~Queue()
{
    if(p)
        p->release();
}

2501
bool Queue::create(const Context2& c, const Device& d)
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
{
    if(p)
        p->release();
    p = new Impl(c, d);
    return p->handle != 0;
}

void Queue::finish()
{
    if(p && p->handle)
        clFinish(p->handle);
}

void* Queue::ptr() const
{
    return p ? p->handle : 0;
}

Queue& Queue::getDefault()
{
2522
    Queue& q = coreTlsData.get()->oclQueue;
2523
    if( !q.p && haveOpenCL() )
2524
        q.create(Context2::getDefault());
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
    return q;
}

static cl_command_queue getQueue(const Queue& q)
{
    cl_command_queue qq = (cl_command_queue)q.ptr();
    if(!qq)
        qq = (cl_command_queue)Queue::getDefault().ptr();
    return qq;
}

2536 2537 2538 2539 2540 2541 2542
KernelArg::KernelArg()
    : flags(0), m(0), obj(0), sz(0), wscale(1)
{
}

KernelArg::KernelArg(int _flags, UMat* _m, int _wscale, const void* _obj, size_t _sz)
    : flags(_flags), m(_m), obj(_obj), sz(_sz), wscale(_wscale)
2543 2544 2545 2546 2547 2548
{
}

KernelArg KernelArg::Constant(const Mat& m)
{
    CV_Assert(m.isContinuous());
2549
    return KernelArg(CONSTANT, 0, 1, m.data, m.total()*m.elemSize());
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
}


struct Kernel::Impl
{
    Impl(const char* kname, const Program& prog)
    {
        e = 0; refcount = 1;
        cl_program ph = (cl_program)prog.ptr();
        cl_int retval = 0;
        handle = ph != 0 ?
            clCreateKernel(ph, kname, &retval) : 0;
2562 2563
        for( int i = 0; i < MAX_ARRS; i++ )
            u[i] = 0;
2564
        haveTempDstUMats = false;
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
    }

    void cleanupUMats()
    {
        for( int i = 0; i < MAX_ARRS; i++ )
            if( u[i] )
            {
                if( CV_XADD(&u[i]->urefcount, -1) == 1 )
                    u[i]->currAllocator->deallocate(u[i]);
                u[i] = 0;
            }
        nu = 0;
2577
        haveTempDstUMats = false;
2578 2579
    }

2580
    void addUMat(const UMat& m, bool dst)
2581 2582 2583 2584 2585
    {
        CV_Assert(nu < MAX_ARRS && m.u && m.u->urefcount > 0);
        u[nu] = m.u;
        CV_XADD(&m.u->urefcount, 1);
        nu++;
2586 2587
        if(dst && m.u->tempUMat())
            haveTempDstUMats = true;
2588
    }
2589

2590 2591
    void finit()
    {
2592
        cleanupUMats();
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
        if(e) { clReleaseEvent(e); e = 0; }
        release();
    }

    ~Impl()
    {
        if(handle)
            clReleaseKernel(handle);
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_kernel handle;
    cl_event e;
2607 2608 2609
    enum { MAX_ARRS = 16 };
    UMatData* u[MAX_ARRS];
    int nu;
2610
    bool haveTempDstUMats;
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
};

}}

extern "C"
{
static void CL_CALLBACK oclCleanupCallback(cl_event, cl_int, void *p)
{
    ((cv::ocl::Kernel::Impl*)p)->finit();
}

}

namespace cv { namespace ocl {

Kernel::Kernel()
{
    p = 0;
}

Kernel::Kernel(const char* kname, const Program& prog)
{
    p = 0;
    create(kname, prog);
}

2637 2638
Kernel::Kernel(const char* kname, const ProgramSource2& src,
               const String& buildopts, String* errmsg)
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
{
    p = 0;
    create(kname, src, buildopts, errmsg);
}

Kernel::Kernel(const Kernel& k)
{
    p = k.p;
    if(p)
        p->addref();
}

Kernel& Kernel::operator = (const Kernel& k)
{
    Impl* newp = (Impl*)k.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Kernel::~Kernel()
{
    if(p)
        p->release();
}

bool Kernel::create(const char* kname, const Program& prog)
{
    if(p)
        p->release();
    p = new Impl(kname, prog);
    if(p->handle == 0)
    {
        p->release();
        p = 0;
    }
    return p != 0;
}

2681 2682
bool Kernel::create(const char* kname, const ProgramSource2& src,
                    const String& buildopts, String* errmsg)
2683 2684 2685 2686 2687 2688
{
    if(p)
    {
        p->release();
        p = 0;
    }
2689 2690 2691
    String tempmsg;
    if( !errmsg ) errmsg = &tempmsg;
    const Program& prog = Context2::getDefault().getProg(src, buildopts, *errmsg);
2692 2693 2694 2695 2696 2697 2698 2699
    return create(kname, prog);
}

void* Kernel::ptr() const
{
    return p ? p->handle : 0;
}

2700
bool Kernel::empty() const
2701
{
2702 2703 2704 2705 2706 2707
    return ptr() == 0;
}

int Kernel::set(int i, const void* value, size_t sz)
{
    CV_Assert(i >= 0);
2708 2709
    if( i == 0 )
        p->cleanupUMats();
2710 2711 2712
    if( !p || !p->handle || clSetKernelArg(p->handle, (cl_uint)i, sz, value) < 0 )
        return -1;
    return i+1;
2713 2714
}

2715 2716 2717 2718 2719 2720
int Kernel::set(int i, const Image2D& image2D)
{
    cl_mem h = (cl_mem)image2D.ptr();
    return set(i, &h, sizeof(h));
}

2721
int Kernel::set(int i, const UMat& m)
2722
{
2723
    return set(i, KernelArg(KernelArg::READ_WRITE, (UMat*)&m, 0, 0));
2724 2725
}

2726
int Kernel::set(int i, const KernelArg& arg)
2727
{
2728 2729 2730
    CV_Assert( i >= 0 );
    if( !p || !p->handle )
        return -1;
2731 2732
    if( i == 0 )
        p->cleanupUMats();
2733 2734
    if( arg.m )
    {
2735 2736
        int accessFlags = ((arg.flags & KernelArg::READ_ONLY) ? ACCESS_READ : 0) +
                          ((arg.flags & KernelArg::WRITE_ONLY) ? ACCESS_WRITE : 0);
I
Ilya Lavrenov 已提交
2737
        bool ptronly = (arg.flags & KernelArg::PTR_ONLY) != 0;
2738 2739
        cl_mem h = (cl_mem)arg.m->handle(accessFlags);

I
Ilya Lavrenov 已提交
2740 2741 2742
        if (ptronly)
            clSetKernelArg(p->handle, (cl_uint)i++, sizeof(h), &h);
        else if( arg.m->dims <= 2 )
2743
        {
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
            UMat2D u2d(*arg.m);
            clSetKernelArg(p->handle, (cl_uint)i, sizeof(h), &h);
            clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u2d.step), &u2d.step);
            clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u2d.offset), &u2d.offset);
            i += 3;

            if( !(arg.flags & KernelArg::NO_SIZE) )
            {
                int cols = u2d.cols*arg.wscale;
                clSetKernelArg(p->handle, (cl_uint)i, sizeof(u2d.rows), &u2d.rows);
2754
                clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(cols), &cols);
2755 2756
                i += 2;
            }
2757 2758 2759
        }
        else
        {
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
            UMat3D u3d(*arg.m);
            clSetKernelArg(p->handle, (cl_uint)i, sizeof(h), &h);
            clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.slicestep), &u3d.slicestep);
            clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.step), &u3d.step);
            clSetKernelArg(p->handle, (cl_uint)(i+3), sizeof(u3d.offset), &u3d.offset);
            i += 4;
            if( !(arg.flags & KernelArg::NO_SIZE) )
            {
                int cols = u3d.cols*arg.wscale;
                clSetKernelArg(p->handle, (cl_uint)i, sizeof(u3d.slices), &u3d.rows);
                clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.rows), &u3d.rows);
                clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.cols), &cols);
                i += 3;
            }
2774
        }
2775
        p->addUMat(*arg.m, (accessFlags & ACCESS_WRITE) != 0);
2776
        return i;
2777
    }
2778 2779
    clSetKernelArg(p->handle, (cl_uint)i, arg.sz, arg.obj);
    return i+1;
2780 2781 2782
}


2783
bool Kernel::run(int dims, size_t _globalsize[], size_t _localsize[],
2784
                 bool sync, const Queue& q)
2785
{
2786 2787
    if(!p || !p->handle || p->e != 0)
        return false;
2788

2789
    cl_command_queue qq = getQueue(q);
2790
    size_t offset[CV_MAX_DIM] = {0}, globalsize[CV_MAX_DIM] = {1,1,1};
2791
    size_t total = 1;
2792
    CV_Assert(_globalsize != 0);
2793 2794
    for (int i = 0; i < dims; i++)
    {
2795 2796
        size_t val = _localsize ? _localsize[i] :
            dims == 1 ? 64 : dims == 2 ? (16>>i) : dims == 3 ? (8>>(int)(i>0)) : 1;
2797
        CV_Assert( val > 0 );
2798 2799 2800 2801 2802
        total *= _globalsize[i];
        globalsize[i] = ((_globalsize[i] + val - 1)/val)*val;
    }
    if( total == 0 )
        return true;
2803 2804
    if( p->haveTempDstUMats )
        sync = true;
2805
    cl_int retval = clEnqueueNDRangeKernel(qq, p->handle, (cl_uint)dims,
2806
                                           offset, globalsize, _localsize, 0, 0,
2807 2808
                                           sync ? 0 : &p->e);
    if( sync || retval < 0 )
2809 2810
    {
        clFinish(qq);
2811
        p->cleanupUMats();
2812 2813 2814 2815 2816 2817
    }
    else
    {
        p->addref();
        clSetEventCallback(p->e, CL_COMPLETE, oclCleanupCallback, p);
    }
2818
    return retval >= 0;
2819 2820
}

2821
bool Kernel::runTask(bool sync, const Queue& q)
2822
{
2823 2824 2825
    if(!p || !p->handle || p->e != 0)
        return false;

2826
    cl_command_queue qq = getQueue(q);
2827 2828
    cl_int retval = clEnqueueTask(qq, p->handle, 0, 0, sync ? 0 : &p->e);
    if( sync || retval < 0 )
2829 2830
    {
        clFinish(qq);
2831
        p->cleanupUMats();
2832 2833 2834 2835 2836 2837
    }
    else
    {
        p->addref();
        clSetEventCallback(p->e, CL_COMPLETE, oclCleanupCallback, p);
    }
2838
    return retval >= 0;
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
}


size_t Kernel::workGroupSize() const
{
    if(!p)
        return 0;
    size_t val = 0, retsz = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_WORK_GROUP_SIZE,
                                    sizeof(val), &val, &retsz) >= 0 ? val : 0;
}

K
fix  
Konstantin Matskevich 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
size_t Kernel::preferedWorkGroupSizeMultiple() const
{
    if(!p)
        return 0;
    size_t val = 0, retsz = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE,
                                    sizeof(val), &val, &retsz) >= 0 ? val : 0;
}

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
bool Kernel::compileWorkGroupSize(size_t wsz[]) const
{
    if(!p || !wsz)
        return 0;
    size_t retsz = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_COMPILE_WORK_GROUP_SIZE,
                                    sizeof(wsz[0]*3), wsz, &retsz) >= 0;
}

size_t Kernel::localMemSize() const
{
    if(!p)
        return 0;
    size_t retsz = 0;
    cl_ulong val = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_LOCAL_MEM_SIZE,
                                    sizeof(val), &val, &retsz) >= 0 ? (size_t)val : 0;
}

////////////////////////////////////////////////////////////////////////////////////////

struct Program::Impl
{
2887
    Impl(const ProgramSource2& _src,
2888 2889 2890
         const String& _buildflags, String& errmsg)
    {
        refcount = 1;
2891
        const Context2& ctx = Context2::getDefault();
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
        src = _src;
        buildflags = _buildflags;
        const String& srcstr = src.source();
        const char* srcptr = srcstr.c_str();
        size_t srclen = srcstr.size();
        cl_int retval = 0;

        handle = clCreateProgramWithSource((cl_context)ctx.ptr(), 1, &srcptr, &srclen, &retval);
        if( handle && retval >= 0 )
        {
I
Ilya Lavrenov 已提交
2902
            int i, n = (int)ctx.ndevices();
2903 2904 2905 2906
            AutoBuffer<void*> deviceListBuf(n+1);
            void** deviceList = deviceListBuf;
            for( i = 0; i < n; i++ )
                deviceList[i] = ctx.device(i).ptr();
2907

2908 2909 2910
            retval = clBuildProgram(handle, n,
                                    (const cl_device_id*)deviceList,
                                    buildflags.c_str(), 0, 0);
2911
            if( retval < 0 )
2912 2913
            {
                size_t retsz = 0;
2914 2915
                retval = clGetProgramBuildInfo(handle, (cl_device_id)deviceList[0],
                                               CL_PROGRAM_BUILD_LOG, 0, 0, &retsz);
I
Ilya Lavrenov 已提交
2916
                if( retval >= 0 && retsz > 1 )
2917 2918 2919 2920 2921 2922 2923 2924
                {
                    AutoBuffer<char> bufbuf(retsz + 16);
                    char* buf = bufbuf;
                    retval = clGetProgramBuildInfo(handle, (cl_device_id)deviceList[0],
                                                   CL_PROGRAM_BUILD_LOG, retsz+1, buf, &retsz);
                    if( retval >= 0 )
                    {
                        errmsg = String(buf);
I
Ilya Lavrenov 已提交
2925
                        printf("OpenCL program can not be built: %s", errmsg.c_str());
2926 2927
                    }
                }
I
Ilya Lavrenov 已提交
2928 2929 2930 2931 2932 2933

                if( handle )
                {
                    clReleaseProgram(handle);
                    handle = NULL;
                }
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
            }
        }
    }

    Impl(const String& _buf, const String& _buildflags)
    {
        refcount = 1;
        handle = 0;
        buildflags = _buildflags;
        if(_buf.empty())
            return;
        String prefix0 = Program::getPrefix(buildflags);
2946
        const Context2& ctx = Context2::getDefault();
2947 2948
        const Device& dev = Device::getDefault();
        const char* pos0 = _buf.c_str();
2949
        const char* pos1 = strchr(pos0, '\n');
2950 2951
        if(!pos1)
            return;
2952
        const char* pos2 = strchr(pos1+1, '\n');
2953 2954
        if(!pos2)
            return;
2955
        const char* pos3 = strchr(pos2+1, '\n');
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
        if(!pos3)
            return;
        size_t prefixlen = (pos3 - pos0)+1;
        String prefix(pos0, prefixlen);
        if( prefix != prefix0 )
            return;
        const uchar* bin = (uchar*)(pos3+1);
        void* devid = dev.ptr();
        size_t codelen = _buf.length() - prefixlen;
        cl_int binstatus = 0, retval = 0;
        handle = clCreateProgramWithBinary((cl_context)ctx.ptr(), 1, (cl_device_id*)&devid,
                                           &codelen, &bin, &binstatus, &retval);
    }

    String store()
    {
        if(!handle)
            return String();
        size_t progsz = 0, retsz = 0;
        String prefix = Program::getPrefix(buildflags);
        size_t prefixlen = prefix.length();
        if(clGetProgramInfo(handle, CL_PROGRAM_BINARY_SIZES, sizeof(progsz), &progsz, &retsz) < 0)
            return String();
        AutoBuffer<uchar> bufbuf(prefixlen + progsz + 16);
        uchar* buf = bufbuf;
        memcpy(buf, prefix.c_str(), prefixlen);
        buf += prefixlen;
        if(clGetProgramInfo(handle, CL_PROGRAM_BINARIES, sizeof(buf), &buf, &retsz) < 0)
            return String();
        buf[progsz] = (uchar)'\0';
        return String((const char*)(uchar*)bufbuf, prefixlen + progsz);
    }

    ~Impl()
    {
        if( handle )
            clReleaseProgram(handle);
    }

    IMPLEMENT_REFCOUNTABLE();

2997
    ProgramSource2 src;
2998 2999 3000 3001 3002 3003 3004
    String buildflags;
    cl_program handle;
};


Program::Program() { p = 0; }

3005
Program::Program(const ProgramSource2& src,
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
        const String& buildflags, String& errmsg)
{
    p = 0;
    create(src, buildflags, errmsg);
}

Program::Program(const Program& prog)
{
    p = prog.p;
    if(p)
        p->addref();
}

Program& Program::operator = (const Program& prog)
{
    Impl* newp = (Impl*)prog.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Program::~Program()
{
    if(p)
        p->release();
}

3036
bool Program::create(const ProgramSource2& src,
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
            const String& buildflags, String& errmsg)
{
    if(p)
        p->release();
    p = new Impl(src, buildflags, errmsg);
    if(!p->handle)
    {
        p->release();
        p = 0;
    }
    return p != 0;
}

3050
const ProgramSource2& Program::source() const
3051
{
3052
    static ProgramSource2 dummy;
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
    return p ? p->src : dummy;
}

void* Program::ptr() const
{
    return p ? p->handle : 0;
}

bool Program::read(const String& bin, const String& buildflags)
{
    if(p)
        p->release();
    p = new Impl(bin, buildflags);
    return p->handle != 0;
}

bool Program::write(String& bin) const
{
    if(!p)
        return false;
    bin = p->store();
    return !bin.empty();
}

String Program::getPrefix() const
{
    if(!p)
        return String();
    return getPrefix(p->buildflags);
}

String Program::getPrefix(const String& buildflags)
{
3086
    const Context2& ctx = Context2::getDefault();
3087 3088 3089 3090 3091 3092 3093
    const Device& dev = ctx.device(0);
    return format("name=%s\ndriver=%s\nbuildflags=%s\n",
                  dev.name().c_str(), dev.driverVersion().c_str(), buildflags.c_str());
}

////////////////////////////////////////////////////////////////////////////////////////

3094
struct ProgramSource2::Impl
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
{
    Impl(const char* _src)
    {
        init(String(_src));
    }
    Impl(const String& _src)
    {
        init(_src);
    }
    void init(const String& _src)
    {
        refcount = 1;
        src = _src;
        h = crc64((uchar*)src.c_str(), src.size());
    }

    IMPLEMENT_REFCOUNTABLE();
    String src;
3113
    ProgramSource2::hash_t h;
3114 3115 3116
};


3117
ProgramSource2::ProgramSource2()
3118 3119 3120 3121
{
    p = 0;
}

3122
ProgramSource2::ProgramSource2(const char* prog)
3123 3124 3125 3126
{
    p = new Impl(prog);
}

3127
ProgramSource2::ProgramSource2(const String& prog)
3128 3129 3130 3131
{
    p = new Impl(prog);
}

3132
ProgramSource2::~ProgramSource2()
3133 3134 3135 3136 3137
{
    if(p)
        p->release();
}

3138
ProgramSource2::ProgramSource2(const ProgramSource2& prog)
3139 3140 3141 3142 3143 3144
{
    p = prog.p;
    if(p)
        p->addref();
}

3145
ProgramSource2& ProgramSource2::operator = (const ProgramSource2& prog)
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
{
    Impl* newp = (Impl*)prog.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

3156
const String& ProgramSource2::source() const
3157 3158 3159 3160 3161
{
    static String dummy;
    return p ? p->src : dummy;
}

3162
ProgramSource2::hash_t ProgramSource2::hash() const
3163 3164 3165 3166 3167 3168 3169 3170 3171
{
    return p ? p->h : 0;
}

//////////////////////////////////////////////////////////////////////////////////////////////

class OpenCLAllocator : public MatAllocator
{
public:
3172
    OpenCLAllocator() { matStdAllocator = Mat::getStdAllocator(); }
3173

3174
    UMatData* defaultAllocate(int dims, const int* sizes, int type, void* data, size_t* step, int flags) const
3175
    {
3176
        UMatData* u = matStdAllocator->allocate(dims, sizes, type, data, step, flags);
3177 3178 3179
        return u;
    }

3180
    void getBestFlags(const Context2& ctx, int /*flags*/, int& createFlags, int& flags0) const
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
    {
        const Device& dev = ctx.device(0);
        createFlags = CL_MEM_READ_WRITE;

        if( dev.hostUnifiedMemory() )
            flags0 = 0;
        else
            flags0 = UMatData::COPY_ON_MAP;
    }

3191 3192
    UMatData* allocate(int dims, const int* sizes, int type,
                       void* data, size_t* step, int flags) const
3193 3194
    {
        if(!useOpenCL())
3195 3196
            return defaultAllocate(dims, sizes, type, data, step, flags);
        CV_Assert(data == 0);
3197 3198 3199 3200 3201 3202 3203 3204
        size_t total = CV_ELEM_SIZE(type);
        for( int i = dims-1; i >= 0; i-- )
        {
            if( step )
                step[i] = total;
            total *= sizes[i];
        }

3205
        Context2& ctx = Context2::getDefault();
3206
        int createFlags = 0, flags0 = 0;
3207
        getBestFlags(ctx, flags, createFlags, flags0);
3208 3209 3210 3211 3212

        cl_int retval = 0;
        void* handle = clCreateBuffer((cl_context)ctx.ptr(),
                                      createFlags, total, 0, &retval);
        if( !handle || retval < 0 )
3213
            return defaultAllocate(dims, sizes, type, data, step, flags);
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
        UMatData* u = new UMatData(this);
        u->data = 0;
        u->size = total;
        u->handle = handle;
        u->flags = flags0;

        return u;
    }

    bool allocate(UMatData* u, int accessFlags) const
    {
        if(!u)
            return false;

        UMatDataAutoLock lock(u);

        if(u->handle == 0)
        {
            CV_Assert(u->origdata != 0);
3233
            Context2& ctx = Context2::getDefault();
3234
            int createFlags = 0, flags0 = 0;
3235
            getBestFlags(ctx, accessFlags, createFlags, flags0);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

            cl_context ctx_handle = (cl_context)ctx.ptr();
            cl_int retval = 0;
            int tempUMatFlags = UMatData::TEMP_UMAT;
            u->handle = clCreateBuffer(ctx_handle, CL_MEM_USE_HOST_PTR|createFlags,
                                       u->size, u->origdata, &retval);
            if((!u->handle || retval < 0) && !(accessFlags & ACCESS_FAST))
            {
                u->handle = clCreateBuffer(ctx_handle, CL_MEM_COPY_HOST_PTR|createFlags,
                                           u->size, u->origdata, &retval);
                tempUMatFlags = UMatData::TEMP_COPIED_UMAT;
            }
            if(!u->handle || retval < 0)
                return false;
            u->prevAllocator = u->currAllocator;
            u->currAllocator = this;
            u->flags |= tempUMatFlags;
        }
        if(accessFlags & ACCESS_WRITE)
            u->markHostCopyObsolete(true);
        return true;
    }

3259
    /*void sync(UMatData* u) const
3260 3261
    {
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
3262 3263
        UMatDataAutoLock lock(u);

3264
        if( u->hostCopyObsolete() && u->handle && u->refcount > 0 && u->origdata)
3265
        {
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
            if( u->tempCopiedUMat() )
            {
                clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                    u->size, u->origdata, 0, 0, 0);
            }
            else
            {
                cl_int retval = 0;
                void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                                (CL_MAP_READ | CL_MAP_WRITE),
                                                0, u->size, 0, 0, 0, &retval);
                clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0);
                clFinish(q);
            }
3280 3281 3282 3283 3284 3285 3286
            u->markHostCopyObsolete(false);
        }
        else if( u->copyOnMap() && u->deviceCopyObsolete() && u->data )
        {
            clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                 u->size, u->data, 0, 0, 0);
        }
3287
    }*/
3288

3289 3290 3291 3292 3293
    void deallocate(UMatData* u) const
    {
        if(!u)
            return;

A
Alexander Alekhin 已提交
3294 3295 3296
        CV_Assert(u->urefcount >= 0);
        CV_Assert(u->refcount >= 0);

3297
        // TODO: !!! when we add Shared Virtual Memory Support,
3298
        // this function (as well as the others) should be corrected
3299 3300 3301
        CV_Assert(u->handle != 0 && u->urefcount == 0);
        if(u->tempUMat())
        {
I
async  
Ilya Lavrenov 已提交
3302
//            UMatDataAutoLock lock(u);
3303
            if( u->hostCopyObsolete() && u->refcount > 0 )
3304
            {
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
                cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
                if( u->tempCopiedUMat() )
                {
                    clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                        u->size, u->origdata, 0, 0, 0);
                }
                else
                {
                    cl_int retval = 0;
                    void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                                    (CL_MAP_READ | CL_MAP_WRITE),
                                                    0, u->size, 0, 0, 0, &retval);
                    clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0);
                    clFinish(q);
                }
3320 3321 3322
            }
            u->markHostCopyObsolete(false);
            clReleaseMemObject((cl_mem)u->handle);
K
Konstantin Matskevich 已提交
3323
            u->handle = 0;
3324
            u->currAllocator = u->prevAllocator;
3325
            if(u->data && u->copyOnMap() && !(u->flags & UMatData::USER_ALLOCATED))
3326 3327
                fastFree(u->data);
            u->data = u->origdata;
3328 3329 3330 3331 3332
            if(u->refcount == 0)
                u->currAllocator->deallocate(u);
        }
        else
        {
3333
            CV_Assert(u->refcount == 0);
3334 3335
            if(u->data && u->copyOnMap() && !(u->flags & UMatData::USER_ALLOCATED))
            {
3336
                fastFree(u->data);
3337 3338
                u->data = 0;
            }
3339
            clReleaseMemObject((cl_mem)u->handle);
K
Konstantin Matskevich 已提交
3340
            u->handle = 0;
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
            delete u;
        }
    }

    void map(UMatData* u, int accessFlags) const
    {
        if(!u)
            return;

        CV_Assert( u->handle != 0 );

        UMatDataAutoLock autolock(u);

        if(accessFlags & ACCESS_WRITE)
            u->markDeviceCopyObsolete(true);

        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

        if( u->refcount == 0 )
        {
            if( !u->copyOnMap() )
            {
                CV_Assert(u->data == 0);
                // because there can be other map requests for the same UMat with different access flags,
                // we use the universal (read-write) access mode.
                cl_int retval = 0;
                u->data = (uchar*)clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                                     (CL_MAP_READ | CL_MAP_WRITE),
                                                     0, u->size, 0, 0, 0, &retval);
                if(u->data && retval >= 0)
                {
                    u->markHostCopyObsolete(false);
                    return;
                }

                // if map failed, switch to copy-on-map mode for the particular buffer
                u->flags |= UMatData::COPY_ON_MAP;
            }

            if(!u->data)
            {
                u->data = (uchar*)fastMalloc(u->size);
                u->markHostCopyObsolete(true);
            }
        }

        if( (accessFlags & ACCESS_READ) != 0 && u->hostCopyObsolete() )
        {
            CV_Assert( clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                           u->size, u->data, 0, 0, 0) >= 0 );
            u->markHostCopyObsolete(false);
        }
    }

    void unmap(UMatData* u) const
    {
        if(!u)
            return;

        CV_Assert(u->handle != 0);

        UMatDataAutoLock autolock(u);

        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
3405
        cl_int retval = 0;
3406 3407
        if( !u->copyOnMap() && u->data )
        {
3408 3409 3410
            CV_Assert( (retval = clEnqueueUnmapMemObject(q,
                                (cl_mem)u->handle, u->data, 0, 0, 0)) >= 0 );
            clFinish(q);
3411 3412 3413 3414
            u->data = 0;
        }
        else if( u->copyOnMap() && u->deviceCopyObsolete() )
        {
3415 3416
            CV_Assert( (retval = clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                u->size, u->data, 0, 0, 0)) >= 0 );
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
        }
        u->markDeviceCopyObsolete(false);
        u->markHostCopyObsolete(false);
    }

    bool checkContinuous(int dims, const size_t sz[],
                         const size_t srcofs[], const size_t srcstep[],
                         const size_t dstofs[], const size_t dststep[],
                         size_t& total, size_t new_sz[],
                         size_t& srcrawofs, size_t new_srcofs[], size_t new_srcstep[],
                         size_t& dstrawofs, size_t new_dstofs[], size_t new_dststep[]) const
    {
        bool iscontinuous = true;
        srcrawofs = srcofs ? srcofs[dims-1] : 0;
        dstrawofs = dstofs ? dstofs[dims-1] : 0;
        total = sz[dims-1];
        for( int i = dims-2; i >= 0; i-- )
        {
3435
            if( i >= 0 && (total != srcstep[i] || total != dststep[i]) )
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
                iscontinuous = false;
            total *= sz[i];
            if( srcofs )
                srcrawofs += srcofs[i]*srcstep[i];
            if( dstofs )
                dstrawofs += dstofs[i]*dststep[i];
        }

        if( !iscontinuous )
        {
            // OpenCL uses {x, y, z} order while OpenCV uses {z, y, x} order.
            if( dims == 2 )
            {
                new_sz[0] = sz[1]; new_sz[1] = sz[0]; new_sz[2] = 1;
                // we assume that new_... arrays are initialized by caller
                // with 0's, so there is no else branch
                if( srcofs )
                {
                    new_srcofs[0] = srcofs[1];
                    new_srcofs[1] = srcofs[0];
                    new_srcofs[2] = 0;
                }

                if( dstofs )
                {
                    new_dstofs[0] = dstofs[1];
                    new_dstofs[1] = dstofs[0];
                    new_dstofs[2] = 0;
                }

                new_srcstep[0] = srcstep[0]; new_srcstep[1] = 0;
                new_dststep[0] = dststep[0]; new_dststep[1] = 0;
            }
            else
            {
                // we could check for dims == 3 here,
                // but from user perspective this one is more informative
                CV_Assert(dims <= 3);
                new_sz[0] = sz[2]; new_sz[1] = sz[1]; new_sz[2] = sz[0];
                if( srcofs )
                {
                    new_srcofs[0] = srcofs[2];
                    new_srcofs[1] = srcofs[1];
                    new_srcofs[2] = srcofs[0];
                }

                if( dstofs )
                {
                    new_dstofs[0] = dstofs[2];
                    new_dstofs[1] = dstofs[1];
                    new_dstofs[2] = dstofs[0];
                }

                new_srcstep[0] = srcstep[1]; new_srcstep[1] = srcstep[0];
                new_dststep[0] = dststep[1]; new_dststep[1] = dststep[0];
            }
        }
        return iscontinuous;
    }

    void download(UMatData* u, void* dstptr, int dims, const size_t sz[],
                  const size_t srcofs[], const size_t srcstep[],
                  const size_t dststep[]) const
    {
        if(!u)
            return;
        UMatDataAutoLock autolock(u);

        if( u->data && !u->hostCopyObsolete() )
        {
            Mat::getStdAllocator()->download(u, dstptr, dims, sz, srcofs, srcstep, dststep);
            return;
        }
        CV_Assert( u->handle != 0 );

        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

        size_t total = 0, new_sz[] = {0, 0, 0};
        size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
        size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};

        bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, 0, dststep,
                                            total, new_sz,
                                            srcrawofs, new_srcofs, new_srcstep,
                                            dstrawofs, new_dstofs, new_dststep);
        if( iscontinuous )
        {
            CV_Assert( clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                           srcrawofs, total, dstptr, 0, 0, 0) >= 0 );
        }
        else
        {
            CV_Assert( clEnqueueReadBufferRect(q, (cl_mem)u->handle, CL_TRUE,
                            new_srcofs, new_dstofs, new_sz, new_srcstep[0], new_srcstep[1],
                            new_dststep[0], new_dststep[1], dstptr, 0, 0, 0) >= 0 );
        }
    }

    void upload(UMatData* u, const void* srcptr, int dims, const size_t sz[],
                const size_t dstofs[], const size_t dststep[],
                const size_t srcstep[]) const
    {
        if(!u)
            return;

        // there should be no user-visible CPU copies of the UMat which we are going to copy to
3542
        CV_Assert(u->refcount == 0 || u->tempUMat());
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559

        size_t total = 0, new_sz[] = {0, 0, 0};
        size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
        size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};

        bool iscontinuous = checkContinuous(dims, sz, 0, srcstep, dstofs, dststep,
                                            total, new_sz,
                                            srcrawofs, new_srcofs, new_srcstep,
                                            dstrawofs, new_dstofs, new_dststep);

        UMatDataAutoLock autolock(u);

        // if there is cached CPU copy of the GPU matrix,
        // we could use it as a destination.
        // we can do it in 2 cases:
        //    1. we overwrite the whole content
        //    2. we overwrite part of the matrix, but the GPU copy is out-of-date
I
Ilya Lavrenov 已提交
3560
        if( u->data && (u->hostCopyObsolete() < u->deviceCopyObsolete() || total == u->size))
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
        {
            Mat::getStdAllocator()->upload(u, srcptr, dims, sz, dstofs, dststep, srcstep);
            u->markHostCopyObsolete(false);
            u->markDeviceCopyObsolete(true);
            return;
        }

        CV_Assert( u->handle != 0 );
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

        if( iscontinuous )
        {
            CV_Assert( clEnqueueWriteBuffer(q, (cl_mem)u->handle,
                CL_TRUE, dstrawofs, total, srcptr, 0, 0, 0) >= 0 );
        }
        else
        {
            CV_Assert( clEnqueueWriteBufferRect(q, (cl_mem)u->handle, CL_TRUE,
                new_dstofs, new_srcofs, new_sz, new_dststep[0], new_dststep[1],
                new_srcstep[0], new_srcstep[1], srcptr, 0, 0, 0) >= 0 );
        }

        u->markHostCopyObsolete(true);
        u->markDeviceCopyObsolete(false);

        clFinish(q);
    }

    void copy(UMatData* src, UMatData* dst, int dims, const size_t sz[],
              const size_t srcofs[], const size_t srcstep[],
3591
              const size_t dstofs[], const size_t dststep[], bool _sync) const
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
    {
        if(!src || !dst)
            return;

        size_t total = 0, new_sz[] = {0, 0, 0};
        size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
        size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};

        bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, dstofs, dststep,
                                            total, new_sz,
                                            srcrawofs, new_srcofs, new_srcstep,
                                            dstrawofs, new_dstofs, new_dststep);

        UMatDataAutoLock src_autolock(src);
        UMatDataAutoLock dst_autolock(dst);

I
Ilya Lavrenov 已提交
3608
        if( !src->handle || (src->data && src->hostCopyObsolete() < src->deviceCopyObsolete()) )
3609 3610 3611 3612
        {
            upload(dst, src->data + srcrawofs, dims, sz, dstofs, dststep, srcstep);
            return;
        }
I
Ilya Lavrenov 已提交
3613
        if( !dst->handle || (dst->data && dst->hostCopyObsolete() < dst->deviceCopyObsolete()) )
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
        {
            download(src, dst->data + dstrawofs, dims, sz, srcofs, srcstep, dststep);
            dst->markHostCopyObsolete(false);
            dst->markDeviceCopyObsolete(true);
            return;
        }

        // there should be no user-visible CPU copies of the UMat which we are going to copy to
        CV_Assert(dst->refcount == 0);
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

        if( iscontinuous )
        {
            CV_Assert( clEnqueueCopyBuffer(q, (cl_mem)src->handle, (cl_mem)dst->handle,
                                           srcrawofs, dstrawofs, total, 0, 0, 0) >= 0 );
        }
        else
        {
3632 3633
            cl_int retval;
            CV_Assert( (retval = clEnqueueCopyBufferRect(q, (cl_mem)src->handle, (cl_mem)dst->handle,
3634
                                               new_srcofs, new_dstofs, new_sz,
3635 3636
                                               new_srcstep[0], new_srcstep[1],
                                               new_dststep[0], new_dststep[1],
3637
                                               0, 0, 0)) >= 0 );
3638 3639 3640 3641 3642
        }

        dst->markHostCopyObsolete(true);
        dst->markDeviceCopyObsolete(false);

3643
        if( _sync )
3644 3645
            clFinish(q);
    }
3646 3647

    MatAllocator* matStdAllocator;
3648 3649 3650 3651 3652 3653 3654 3655
};

MatAllocator* getOpenCLAllocator()
{
    static OpenCLAllocator allocator;
    return &allocator;
}

K
Konstantin Matskevich 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

static void getDevices(std::vector<cl_device_id>& devices,cl_platform_id& platform)
{
    cl_int status = CL_SUCCESS;
    cl_uint numDevices = 0;
    status = clGetDeviceIDs(platform, (cl_device_type)Device::TYPE_ALL, 0, NULL, &numDevices);
    CV_Assert(status == CL_SUCCESS);
    if (numDevices == 0)
        return;
    devices.resize((size_t)numDevices);
    status = clGetDeviceIDs(platform, (cl_device_type)Device::TYPE_ALL, numDevices, &devices[0], &numDevices);
    CV_Assert(status == CL_SUCCESS);
    devices.resize(numDevices);
}

K
fixes  
Konstantin Matskevich 已提交
3672
struct PlatformInfo2::Impl
K
Konstantin Matskevich 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
{
    Impl(void* id)
    {
        handle = *(cl_platform_id*)id;
        getDevices(devices, handle);
    }

    String getStrProp(cl_device_info prop) const
    {
        char buf[1024];
        size_t sz=0;
        return clGetPlatformInfo(handle, prop, sizeof(buf)-16, buf, &sz) >= 0 &&
            sz < sizeof(buf) ? String(buf) : String();
    }

    IMPLEMENT_REFCOUNTABLE();
    std::vector<cl_device_id> devices;
    cl_platform_id handle;
};

K
fixes  
Konstantin Matskevich 已提交
3693
PlatformInfo2::PlatformInfo2()
K
Konstantin Matskevich 已提交
3694 3695 3696 3697
{
    p = 0;
}

K
fixes  
Konstantin Matskevich 已提交
3698
PlatformInfo2::PlatformInfo2(void* platform_id)
K
Konstantin Matskevich 已提交
3699 3700 3701 3702
{
    p = new Impl(platform_id);
}

K
fixes  
Konstantin Matskevich 已提交
3703
PlatformInfo2::~PlatformInfo2()
K
Konstantin Matskevich 已提交
3704 3705 3706 3707 3708
{
    if(p)
        p->release();
}

K
fixes  
Konstantin Matskevich 已提交
3709
int PlatformInfo2::deviceNumber() const
K
Konstantin Matskevich 已提交
3710 3711 3712 3713
{
    return p ? (int)p->devices.size() : 0;
}

K
fixes  
Konstantin Matskevich 已提交
3714
void PlatformInfo2::getDevice(Device& device, int d) const
K
Konstantin Matskevich 已提交
3715 3716 3717 3718 3719 3720
{
    CV_Assert(d < (int)p->devices.size() );
    if(p)
        device.set(p->devices[d]);
}

K
fixes  
Konstantin Matskevich 已提交
3721
String PlatformInfo2::name() const
K
Konstantin Matskevich 已提交
3722 3723 3724 3725
{
    return p ? p->getStrProp(CL_PLATFORM_NAME) : String();
}

K
fixes  
Konstantin Matskevich 已提交
3726
String PlatformInfo2::vendor() const
K
Konstantin Matskevich 已提交
3727 3728 3729 3730
{
    return p ? p->getStrProp(CL_PLATFORM_VENDOR) : String();
}

K
fixes  
Konstantin Matskevich 已提交
3731
String PlatformInfo2::version() const
K
Konstantin Matskevich 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
{
    return p ? p->getStrProp(CL_PLATFORM_VERSION) : String();
}

static void getPlatforms(std::vector<cl_platform_id>& platforms)
{
    cl_int status = CL_SUCCESS;
    cl_uint numPlatforms = 0;
    status = clGetPlatformIDs(0, NULL, &numPlatforms);
    CV_Assert(status == CL_SUCCESS);
    if (numPlatforms == 0)
        return;
    platforms.resize((size_t)numPlatforms);
    status = clGetPlatformIDs(numPlatforms, &platforms[0], &numPlatforms);
    CV_Assert(status == CL_SUCCESS);
    platforms.resize(numPlatforms);
}

K
fixes  
Konstantin Matskevich 已提交
3750
void getPlatfomsInfo(std::vector<PlatformInfo2>& platformsInfo)
K
Konstantin Matskevich 已提交
3751 3752 3753 3754 3755
{
    std::vector<cl_platform_id> platforms;
    getPlatforms(platforms);
    for (size_t i = 0; i < platforms.size(); i++)
    {
K
fixes  
Konstantin Matskevich 已提交
3756
        platformsInfo.push_back( PlatformInfo2((void*)&platforms[i]) );
K
Konstantin Matskevich 已提交
3757 3758 3759
    }
}

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
const char* typeToStr(int t)
{
    static const char* tab[]=
    {
        "uchar", "uchar2", "uchar3", "uchar4",
        "char", "char2", "char3", "char4",
        "ushort", "ushort2", "ushort3", "ushort4",
        "short", "short2", "short3", "short4",
        "int", "int2", "int3", "int4",
        "float", "float2", "float3", "float4",
        "double", "double2", "double3", "double4",
        "?", "?", "?", "?"
    };
    int cn = CV_MAT_CN(t);
V
Vadim Pisarevsky 已提交
3774
    return cn > 4 ? "?" : tab[CV_MAT_DEPTH(t)*4 + cn-1];
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
}

const char* memopTypeToStr(int t)
{
    static const char* tab[]=
    {
        "uchar", "uchar2", "uchar3", "uchar4",
        "uchar", "uchar2", "uchar3", "uchar4",
        "ushort", "ushort2", "ushort3", "ushort4",
        "ushort", "ushort2", "ushort3", "ushort4",
        "int", "int2", "int3", "int4",
        "int", "int2", "int3", "int4",
3787
        "int2", "int4", "?", "int8",
3788 3789 3790
        "?", "?", "?", "?"
    };
    int cn = CV_MAT_CN(t);
V
Vadim Pisarevsky 已提交
3791
    return cn > 4 ? "?" : tab[CV_MAT_DEPTH(t)*4 + cn-1];
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
}

const char* convertTypeStr(int sdepth, int ddepth, int cn, char* buf)
{
    if( sdepth == ddepth )
        return "noconvert";
    const char *typestr = typeToStr(CV_MAKETYPE(ddepth, cn));
    if( ddepth >= CV_32F ||
        (ddepth == CV_32S && sdepth < CV_32S) ||
        (ddepth == CV_16S && sdepth <= CV_8S) ||
        (ddepth == CV_16U && sdepth == CV_8U))
    {
        sprintf(buf, "convert_%s", typestr);
    }
    else if( sdepth >= CV_32F )
    {
        sprintf(buf, "convert_%s%s_rte", typestr, (ddepth < CV_32S ? "_sat" : ""));
    }
    else
    {
        sprintf(buf, "convert_%s_sat", typestr);
    }
    return buf;
}

I
Ilya Lavrenov 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
template <typename T>
static std::string kerToStr(const Mat & k)
{
    int width = k.cols - 1, depth = k.depth();
    const T * const data = reinterpret_cast<const T *>(k.data);

    std::ostringstream stream;
    stream.precision(10);

    if (depth <= CV_8S)
    {
        for (int i = 0; i < width; ++i)
            stream << (int)data[i] << ", ";
        stream << (int)data[width];
    }
    else if (depth == CV_32F)
    {
        stream.setf(std::ios_base::showpoint);
        for (int i = 0; i < width; ++i)
            stream << data[i] << "f, ";
        stream << data[width] << "f";
    }
    else
    {
        for (int i = 0; i < width; ++i)
            stream << data[i] << ", ";
    }

    return stream.str();
}

String kernelToStr(InputArray _kernel, int ddepth)
{
    Mat kernel = _kernel.getMat().reshape(1, 1);

    int depth = kernel.depth();
    if (ddepth < 0)
        ddepth = depth;

    if (ddepth != depth)
        kernel.convertTo(kernel, ddepth);

    typedef std::string (*func_t)(const Mat &);
    static const func_t funcs[] = { kerToStr<uchar>, kerToStr<char>, kerToStr<ushort>,kerToStr<short>,
                                    kerToStr<int>, kerToStr<float>, kerToStr<double>, 0 };
    const func_t func = funcs[depth];
    CV_Assert(func != 0);

    return cv::format(" -D COEFF=%s", func(kernel).c_str());
}

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
///////////////////////////////////////////////////////////////////////////////////////////////
// deviceVersion has format
//   OpenCL<space><major_version.minor_version><space><vendor-specific information>
// by specification
//   http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clGetDeviceInfo.html
//   http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clGetDeviceInfo.html
static void parseDeviceVersion(const String &deviceVersion, int &major, int &minor)
{
    major = minor = 0;
    if (10 >= deviceVersion.length())
        return;
    const char *pstr = deviceVersion.c_str();
    if (0 != strncmp(pstr, "OpenCL ", 7))
        return;
    size_t ppos = deviceVersion.find('.', 7);
    if (String::npos == ppos)
        return;
    String temp = deviceVersion.substr(7, ppos - 7);
    major = atoi(temp.c_str());
    temp = deviceVersion.substr(ppos + 1);
    minor = atoi(temp.c_str());
}

struct Image2D::Impl
{
    Impl(const UMat &src)
    {
3895 3896
        handle = 0;
        refcount = 1;
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
        init(src);
    }
    ~Impl()
    {
        if (handle)
            clReleaseMemObject(handle);
    }
    void init(const UMat &src)
    {
        cl_image_format format;
        int err;
        int depth    = src.depth();
        int channels = src.channels();

        switch(depth)
        {
        case CV_8U:
            format.image_channel_data_type = CL_UNSIGNED_INT8;
            break;
        case CV_32S:
            format.image_channel_data_type = CL_UNSIGNED_INT32;
            break;
        case CV_32F:
            format.image_channel_data_type = CL_FLOAT;
            break;
        default:
            CV_Error(-1, "Image forma is not supported");
            break;
        }
        switch(channels)
        {
        case 1:
            format.image_channel_order     = CL_R;
            break;
        case 3:
            format.image_channel_order     = CL_RGB;
            break;
        case 4:
            format.image_channel_order     = CL_RGBA;
            break;
        default:
            CV_Error(-1, "Image format is not supported");
            break;
        }
#ifdef CL_VERSION_1_2
        //this enables backwards portability to
        //run on OpenCL 1.1 platform if library binaries are compiled with OpenCL 1.2 support
        int minor, major;
        parseDeviceVersion(Device::getDefault().deviceVersion(), major, minor);
        if ((1 < major) || ((1 == major) && (2 <= minor)))
        {
            cl_image_desc desc;
            desc.image_type       = CL_MEM_OBJECT_IMAGE2D;
            desc.image_width      = src.cols;
            desc.image_height     = src.rows;
            desc.image_depth      = 0;
            desc.image_array_size = 1;
            desc.image_row_pitch  = 0;
            desc.image_slice_pitch = 0;
            desc.buffer           = NULL;
            desc.num_mip_levels   = 0;
            desc.num_samples      = 0;
            handle = clCreateImage((cl_context)Context2::getDefault().ptr(), CL_MEM_READ_WRITE, &format, &desc, NULL, &err);
        }
        else
#endif
        {
            handle = clCreateImage2D((cl_context)Context2::getDefault().ptr(), CL_MEM_READ_WRITE, &format, src.cols, src.rows, 0, NULL, &err);
        }
        size_t origin[] = { 0, 0, 0 };
        size_t region[] = { src.cols, src.rows, 1 };

        cl_mem devData;
        if (!src.isContinuous())
        {
            devData = clCreateBuffer((cl_context)Context2::getDefault().ptr(), CL_MEM_READ_ONLY, src.cols * src.rows * src.elemSize(), NULL, NULL);
            const size_t roi[3] = {src.cols * src.elemSize(), src.rows, 1};
            clEnqueueCopyBufferRect((cl_command_queue)Queue::getDefault().ptr(), (cl_mem)src.handle(ACCESS_READ), devData, origin, origin,
                roi, src.step, 0, src.cols * src.elemSize(), 0, 0, NULL, NULL);
            clFlush((cl_command_queue)Queue::getDefault().ptr());
        }
        else
        {
            devData = (cl_mem)src.handle(ACCESS_READ);
        }

        clEnqueueCopyBufferToImage((cl_command_queue)Queue::getDefault().ptr(), devData, handle, 0, origin, region, 0, NULL, 0);
        if (!src.isContinuous())
        {
            clFlush((cl_command_queue)Queue::getDefault().ptr());
            clReleaseMemObject(devData);
        }
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_mem handle;
};

Image2D::Image2D()
{
    p = NULL;
}
Image2D::Image2D(const UMat &src)
{
    p = new Impl(src);
}
Image2D::~Image2D()
{
    if (p)
        p->release();
}

void* Image2D::ptr() const
{
    return p ? p->handle : 0;
}

4015
}}