ocl.cpp 105.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include <map>

I
Ilya Lavrenov 已提交
45
#include "opencv2/core/opencl/runtime/opencl_clamdblas.hpp"
I
Ilya Lavrenov 已提交
46
#include "opencv2/core/opencl/runtime/opencl_clamdfft.hpp"
I
Ilya Lavrenov 已提交
47

48 49 50 51 52
#ifdef HAVE_OPENCL
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
#else
// TODO FIXIT: This file can't be build without OPENCL

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
  Part of the file is an extract from the standard OpenCL headers from Khronos site.
  Below is the original copyright.
*/

/*******************************************************************************
 * Copyright (c) 2008 - 2012 The Khronos Group Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and/or associated documentation files (the
 * "Materials"), to deal in the Materials without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Materials, and to
 * permit persons to whom the Materials are furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Materials.
 *
 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
 ******************************************************************************/

#if 0 //defined __APPLE__
#define HAVE_OPENCL 1
#else
#undef HAVE_OPENCL
#endif

#define OPENCV_CL_NOT_IMPLEMENTED -1000

#ifdef HAVE_OPENCL

#if defined __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/opencl.h>
#endif

static const bool g_haveOpenCL = true;

#else

extern "C" {

struct _cl_platform_id { int dummy; };
struct _cl_device_id { int dummy; };
struct _cl_context { int dummy; };
struct _cl_command_queue { int dummy; };
struct _cl_mem { int dummy; };
struct _cl_program { int dummy; };
struct _cl_kernel { int dummy; };
struct _cl_event { int dummy; };
struct _cl_sampler { int dummy; };

typedef struct _cl_platform_id *    cl_platform_id;
typedef struct _cl_device_id *      cl_device_id;
typedef struct _cl_context *        cl_context;
typedef struct _cl_command_queue *  cl_command_queue;
typedef struct _cl_mem *            cl_mem;
typedef struct _cl_program *        cl_program;
typedef struct _cl_kernel *         cl_kernel;
typedef struct _cl_event *          cl_event;
typedef struct _cl_sampler *        cl_sampler;

typedef int cl_int;
typedef unsigned cl_uint;
125 126 127 128 129 130 131
#if defined (_WIN32) && defined(_MSC_VER)
    typedef __int64 cl_long;
    typedef unsigned __int64 cl_ulong;
#else
    typedef long cl_long;
    typedef unsigned long cl_ulong;
#endif
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

typedef cl_uint             cl_bool; /* WARNING!  Unlike cl_ types in cl_platform.h, cl_bool is not guaranteed to be the same size as the bool in kernels. */
typedef cl_ulong            cl_bitfield;
typedef cl_bitfield         cl_device_type;
typedef cl_uint             cl_platform_info;
typedef cl_uint             cl_device_info;
typedef cl_bitfield         cl_device_fp_config;
typedef cl_uint             cl_device_mem_cache_type;
typedef cl_uint             cl_device_local_mem_type;
typedef cl_bitfield         cl_device_exec_capabilities;
typedef cl_bitfield         cl_command_queue_properties;
typedef intptr_t            cl_device_partition_property;
typedef cl_bitfield         cl_device_affinity_domain;

typedef intptr_t            cl_context_properties;
typedef cl_uint             cl_context_info;
typedef cl_uint             cl_command_queue_info;
typedef cl_uint             cl_channel_order;
typedef cl_uint             cl_channel_type;
typedef cl_bitfield         cl_mem_flags;
typedef cl_uint             cl_mem_object_type;
typedef cl_uint             cl_mem_info;
typedef cl_bitfield         cl_mem_migration_flags;
typedef cl_uint             cl_image_info;
typedef cl_uint             cl_buffer_create_type;
typedef cl_uint             cl_addressing_mode;
typedef cl_uint             cl_filter_mode;
typedef cl_uint             cl_sampler_info;
typedef cl_bitfield         cl_map_flags;
typedef cl_uint             cl_program_info;
typedef cl_uint             cl_program_build_info;
typedef cl_uint             cl_program_binary_type;
typedef cl_int              cl_build_status;
typedef cl_uint             cl_kernel_info;
typedef cl_uint             cl_kernel_arg_info;
typedef cl_uint             cl_kernel_arg_address_qualifier;
typedef cl_uint             cl_kernel_arg_access_qualifier;
typedef cl_bitfield         cl_kernel_arg_type_qualifier;
typedef cl_uint             cl_kernel_work_group_info;
typedef cl_uint             cl_event_info;
typedef cl_uint             cl_command_type;
typedef cl_uint             cl_profiling_info;


typedef struct _cl_image_format {
    cl_channel_order        image_channel_order;
    cl_channel_type         image_channel_data_type;
} cl_image_format;

typedef struct _cl_image_desc {
    cl_mem_object_type      image_type;
    size_t                  image_width;
    size_t                  image_height;
    size_t                  image_depth;
    size_t                  image_array_size;
    size_t                  image_row_pitch;
    size_t                  image_slice_pitch;
    cl_uint                 num_mip_levels;
    cl_uint                 num_samples;
    cl_mem                  buffer;
} cl_image_desc;

typedef struct _cl_buffer_region {
    size_t                  origin;
    size_t                  size;
} cl_buffer_region;


//////////////////////////////////////////////////////////

#define CL_SUCCESS                                  0
#define CL_DEVICE_NOT_FOUND                         -1
#define CL_DEVICE_NOT_AVAILABLE                     -2
#define CL_COMPILER_NOT_AVAILABLE                   -3
#define CL_MEM_OBJECT_ALLOCATION_FAILURE            -4
#define CL_OUT_OF_RESOURCES                         -5
#define CL_OUT_OF_HOST_MEMORY                       -6
#define CL_PROFILING_INFO_NOT_AVAILABLE             -7
#define CL_MEM_COPY_OVERLAP                         -8
#define CL_IMAGE_FORMAT_MISMATCH                    -9
#define CL_IMAGE_FORMAT_NOT_SUPPORTED               -10
#define CL_BUILD_PROGRAM_FAILURE                    -11
#define CL_MAP_FAILURE                              -12
#define CL_MISALIGNED_SUB_BUFFER_OFFSET             -13
#define CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST -14
#define CL_COMPILE_PROGRAM_FAILURE                  -15
#define CL_LINKER_NOT_AVAILABLE                     -16
#define CL_LINK_PROGRAM_FAILURE                     -17
#define CL_DEVICE_PARTITION_FAILED                  -18
#define CL_KERNEL_ARG_INFO_NOT_AVAILABLE            -19

#define CL_INVALID_VALUE                            -30
#define CL_INVALID_DEVICE_TYPE                      -31
#define CL_INVALID_PLATFORM                         -32
#define CL_INVALID_DEVICE                           -33
#define CL_INVALID_CONTEXT                          -34
#define CL_INVALID_QUEUE_PROPERTIES                 -35
#define CL_INVALID_COMMAND_QUEUE                    -36
#define CL_INVALID_HOST_PTR                         -37
#define CL_INVALID_MEM_OBJECT                       -38
#define CL_INVALID_IMAGE_FORMAT_DESCRIPTOR          -39
#define CL_INVALID_IMAGE_SIZE                       -40
#define CL_INVALID_SAMPLER                          -41
#define CL_INVALID_BINARY                           -42
#define CL_INVALID_BUILD_OPTIONS                    -43
#define CL_INVALID_PROGRAM                          -44
#define CL_INVALID_PROGRAM_EXECUTABLE               -45
#define CL_INVALID_KERNEL_NAME                      -46
#define CL_INVALID_KERNEL_DEFINITION                -47
#define CL_INVALID_KERNEL                           -48
#define CL_INVALID_ARG_INDEX                        -49
#define CL_INVALID_ARG_VALUE                        -50
#define CL_INVALID_ARG_SIZE                         -51
#define CL_INVALID_KERNEL_ARGS                      -52
#define CL_INVALID_WORK_DIMENSION                   -53
#define CL_INVALID_WORK_GROUP_SIZE                  -54
#define CL_INVALID_WORK_ITEM_SIZE                   -55
#define CL_INVALID_GLOBAL_OFFSET                    -56
#define CL_INVALID_EVENT_WAIT_LIST                  -57
#define CL_INVALID_EVENT                            -58
#define CL_INVALID_OPERATION                        -59
#define CL_INVALID_GL_OBJECT                        -60
#define CL_INVALID_BUFFER_SIZE                      -61
#define CL_INVALID_MIP_LEVEL                        -62
#define CL_INVALID_GLOBAL_WORK_SIZE                 -63
#define CL_INVALID_PROPERTY                         -64
#define CL_INVALID_IMAGE_DESCRIPTOR                 -65
#define CL_INVALID_COMPILER_OPTIONS                 -66
#define CL_INVALID_LINKER_OPTIONS                   -67
#define CL_INVALID_DEVICE_PARTITION_COUNT           -68

/*#define CL_VERSION_1_0                              1
#define CL_VERSION_1_1                              1
#define CL_VERSION_1_2                              1*/

#define CL_FALSE                                    0
#define CL_TRUE                                     1
#define CL_BLOCKING                                 CL_TRUE
#define CL_NON_BLOCKING                             CL_FALSE

#define CL_PLATFORM_PROFILE                         0x0900
#define CL_PLATFORM_VERSION                         0x0901
#define CL_PLATFORM_NAME                            0x0902
#define CL_PLATFORM_VENDOR                          0x0903
#define CL_PLATFORM_EXTENSIONS                      0x0904

#define CL_DEVICE_TYPE_DEFAULT                      (1 << 0)
#define CL_DEVICE_TYPE_CPU                          (1 << 1)
#define CL_DEVICE_TYPE_GPU                          (1 << 2)
#define CL_DEVICE_TYPE_ACCELERATOR                  (1 << 3)
#define CL_DEVICE_TYPE_CUSTOM                       (1 << 4)
#define CL_DEVICE_TYPE_ALL                          0xFFFFFFFF
#define CL_DEVICE_TYPE                              0x1000
#define CL_DEVICE_VENDOR_ID                         0x1001
#define CL_DEVICE_MAX_COMPUTE_UNITS                 0x1002
#define CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS          0x1003
#define CL_DEVICE_MAX_WORK_GROUP_SIZE               0x1004
#define CL_DEVICE_MAX_WORK_ITEM_SIZES               0x1005
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR       0x1006
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT      0x1007
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT        0x1008
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG       0x1009
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT      0x100A
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE     0x100B
#define CL_DEVICE_MAX_CLOCK_FREQUENCY               0x100C
#define CL_DEVICE_ADDRESS_BITS                      0x100D
#define CL_DEVICE_MAX_READ_IMAGE_ARGS               0x100E
#define CL_DEVICE_MAX_WRITE_IMAGE_ARGS              0x100F
#define CL_DEVICE_MAX_MEM_ALLOC_SIZE                0x1010
#define CL_DEVICE_IMAGE2D_MAX_WIDTH                 0x1011
#define CL_DEVICE_IMAGE2D_MAX_HEIGHT                0x1012
#define CL_DEVICE_IMAGE3D_MAX_WIDTH                 0x1013
#define CL_DEVICE_IMAGE3D_MAX_HEIGHT                0x1014
#define CL_DEVICE_IMAGE3D_MAX_DEPTH                 0x1015
#define CL_DEVICE_IMAGE_SUPPORT                     0x1016
#define CL_DEVICE_MAX_PARAMETER_SIZE                0x1017
#define CL_DEVICE_MAX_SAMPLERS                      0x1018
#define CL_DEVICE_MEM_BASE_ADDR_ALIGN               0x1019
#define CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE          0x101A
#define CL_DEVICE_SINGLE_FP_CONFIG                  0x101B
#define CL_DEVICE_GLOBAL_MEM_CACHE_TYPE             0x101C
#define CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE         0x101D
#define CL_DEVICE_GLOBAL_MEM_CACHE_SIZE             0x101E
#define CL_DEVICE_GLOBAL_MEM_SIZE                   0x101F
#define CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE          0x1020
#define CL_DEVICE_MAX_CONSTANT_ARGS                 0x1021
#define CL_DEVICE_LOCAL_MEM_TYPE                    0x1022
#define CL_DEVICE_LOCAL_MEM_SIZE                    0x1023
#define CL_DEVICE_ERROR_CORRECTION_SUPPORT          0x1024
#define CL_DEVICE_PROFILING_TIMER_RESOLUTION        0x1025
#define CL_DEVICE_ENDIAN_LITTLE                     0x1026
#define CL_DEVICE_AVAILABLE                         0x1027
#define CL_DEVICE_COMPILER_AVAILABLE                0x1028
#define CL_DEVICE_EXECUTION_CAPABILITIES            0x1029
#define CL_DEVICE_QUEUE_PROPERTIES                  0x102A
#define CL_DEVICE_NAME                              0x102B
#define CL_DEVICE_VENDOR                            0x102C
#define CL_DRIVER_VERSION                           0x102D
#define CL_DEVICE_PROFILE                           0x102E
#define CL_DEVICE_VERSION                           0x102F
#define CL_DEVICE_EXTENSIONS                        0x1030
#define CL_DEVICE_PLATFORM                          0x1031
#define CL_DEVICE_DOUBLE_FP_CONFIG                  0x1032
#define CL_DEVICE_HALF_FP_CONFIG                    0x1033
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF       0x1034
#define CL_DEVICE_HOST_UNIFIED_MEMORY               0x1035
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR          0x1036
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT         0x1037
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_INT           0x1038
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG          0x1039
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT         0x103A
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE        0x103B
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF          0x103C
#define CL_DEVICE_OPENCL_C_VERSION                  0x103D
#define CL_DEVICE_LINKER_AVAILABLE                  0x103E
#define CL_DEVICE_BUILT_IN_KERNELS                  0x103F
#define CL_DEVICE_IMAGE_MAX_BUFFER_SIZE             0x1040
#define CL_DEVICE_IMAGE_MAX_ARRAY_SIZE              0x1041
#define CL_DEVICE_PARENT_DEVICE                     0x1042
#define CL_DEVICE_PARTITION_MAX_SUB_DEVICES         0x1043
#define CL_DEVICE_PARTITION_PROPERTIES              0x1044
#define CL_DEVICE_PARTITION_AFFINITY_DOMAIN         0x1045
#define CL_DEVICE_PARTITION_TYPE                    0x1046
#define CL_DEVICE_REFERENCE_COUNT                   0x1047
#define CL_DEVICE_PREFERRED_INTEROP_USER_SYNC       0x1048
#define CL_DEVICE_PRINTF_BUFFER_SIZE                0x1049
#define CL_DEVICE_IMAGE_PITCH_ALIGNMENT             0x104A
#define CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT      0x104B

#define CL_FP_DENORM                                (1 << 0)
#define CL_FP_INF_NAN                               (1 << 1)
#define CL_FP_ROUND_TO_NEAREST                      (1 << 2)
#define CL_FP_ROUND_TO_ZERO                         (1 << 3)
#define CL_FP_ROUND_TO_INF                          (1 << 4)
#define CL_FP_FMA                                   (1 << 5)
#define CL_FP_SOFT_FLOAT                            (1 << 6)
#define CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT         (1 << 7)

#define CL_NONE                                     0x0
#define CL_READ_ONLY_CACHE                          0x1
#define CL_READ_WRITE_CACHE                         0x2
#define CL_LOCAL                                    0x1
#define CL_GLOBAL                                   0x2
#define CL_EXEC_KERNEL                              (1 << 0)
#define CL_EXEC_NATIVE_KERNEL                       (1 << 1)
#define CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE      (1 << 0)
#define CL_QUEUE_PROFILING_ENABLE                   (1 << 1)

#define CL_CONTEXT_REFERENCE_COUNT                  0x1080
#define CL_CONTEXT_DEVICES                          0x1081
#define CL_CONTEXT_PROPERTIES                       0x1082
#define CL_CONTEXT_NUM_DEVICES                      0x1083
#define CL_CONTEXT_PLATFORM                         0x1084
#define CL_CONTEXT_INTEROP_USER_SYNC                0x1085

#define CL_DEVICE_PARTITION_EQUALLY                 0x1086
#define CL_DEVICE_PARTITION_BY_COUNTS               0x1087
#define CL_DEVICE_PARTITION_BY_COUNTS_LIST_END      0x0
#define CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN      0x1088
#define CL_DEVICE_AFFINITY_DOMAIN_NUMA                     (1 << 0)
#define CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE                 (1 << 1)
#define CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE                 (1 << 2)
#define CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE                 (1 << 3)
#define CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE                 (1 << 4)
#define CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE       (1 << 5)
#define CL_QUEUE_CONTEXT                            0x1090
#define CL_QUEUE_DEVICE                             0x1091
#define CL_QUEUE_REFERENCE_COUNT                    0x1092
#define CL_QUEUE_PROPERTIES                         0x1093
#define CL_MEM_READ_WRITE                           (1 << 0)
#define CL_MEM_WRITE_ONLY                           (1 << 1)
#define CL_MEM_READ_ONLY                            (1 << 2)
#define CL_MEM_USE_HOST_PTR                         (1 << 3)
#define CL_MEM_ALLOC_HOST_PTR                       (1 << 4)
#define CL_MEM_COPY_HOST_PTR                        (1 << 5)
407
// reserved                                         (1 << 6)
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
#define CL_MEM_HOST_WRITE_ONLY                      (1 << 7)
#define CL_MEM_HOST_READ_ONLY                       (1 << 8)
#define CL_MEM_HOST_NO_ACCESS                       (1 << 9)
#define CL_MIGRATE_MEM_OBJECT_HOST                  (1 << 0)
#define CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED     (1 << 1)

#define CL_R                                        0x10B0
#define CL_A                                        0x10B1
#define CL_RG                                       0x10B2
#define CL_RA                                       0x10B3
#define CL_RGB                                      0x10B4
#define CL_RGBA                                     0x10B5
#define CL_BGRA                                     0x10B6
#define CL_ARGB                                     0x10B7
#define CL_INTENSITY                                0x10B8
#define CL_LUMINANCE                                0x10B9
#define CL_Rx                                       0x10BA
#define CL_RGx                                      0x10BB
#define CL_RGBx                                     0x10BC
#define CL_DEPTH                                    0x10BD
#define CL_DEPTH_STENCIL                            0x10BE

#define CL_SNORM_INT8                               0x10D0
#define CL_SNORM_INT16                              0x10D1
#define CL_UNORM_INT8                               0x10D2
#define CL_UNORM_INT16                              0x10D3
#define CL_UNORM_SHORT_565                          0x10D4
#define CL_UNORM_SHORT_555                          0x10D5
#define CL_UNORM_INT_101010                         0x10D6
#define CL_SIGNED_INT8                              0x10D7
#define CL_SIGNED_INT16                             0x10D8
#define CL_SIGNED_INT32                             0x10D9
#define CL_UNSIGNED_INT8                            0x10DA
#define CL_UNSIGNED_INT16                           0x10DB
#define CL_UNSIGNED_INT32                           0x10DC
#define CL_HALF_FLOAT                               0x10DD
#define CL_FLOAT                                    0x10DE
#define CL_UNORM_INT24                              0x10DF

#define CL_MEM_OBJECT_BUFFER                        0x10F0
#define CL_MEM_OBJECT_IMAGE2D                       0x10F1
#define CL_MEM_OBJECT_IMAGE3D                       0x10F2
#define CL_MEM_OBJECT_IMAGE2D_ARRAY                 0x10F3
#define CL_MEM_OBJECT_IMAGE1D                       0x10F4
#define CL_MEM_OBJECT_IMAGE1D_ARRAY                 0x10F5
#define CL_MEM_OBJECT_IMAGE1D_BUFFER                0x10F6

#define CL_MEM_TYPE                                 0x1100
#define CL_MEM_FLAGS                                0x1101
#define CL_MEM_SIZE                                 0x1102
#define CL_MEM_HOST_PTR                             0x1103
#define CL_MEM_MAP_COUNT                            0x1104
#define CL_MEM_REFERENCE_COUNT                      0x1105
#define CL_MEM_CONTEXT                              0x1106
#define CL_MEM_ASSOCIATED_MEMOBJECT                 0x1107
#define CL_MEM_OFFSET                               0x1108

#define CL_IMAGE_FORMAT                             0x1110
#define CL_IMAGE_ELEMENT_SIZE                       0x1111
#define CL_IMAGE_ROW_PITCH                          0x1112
#define CL_IMAGE_SLICE_PITCH                        0x1113
#define CL_IMAGE_WIDTH                              0x1114
#define CL_IMAGE_HEIGHT                             0x1115
#define CL_IMAGE_DEPTH                              0x1116
#define CL_IMAGE_ARRAY_SIZE                         0x1117
#define CL_IMAGE_BUFFER                             0x1118
#define CL_IMAGE_NUM_MIP_LEVELS                     0x1119
#define CL_IMAGE_NUM_SAMPLES                        0x111A

#define CL_ADDRESS_NONE                             0x1130
#define CL_ADDRESS_CLAMP_TO_EDGE                    0x1131
#define CL_ADDRESS_CLAMP                            0x1132
#define CL_ADDRESS_REPEAT                           0x1133
#define CL_ADDRESS_MIRRORED_REPEAT                  0x1134

#define CL_FILTER_NEAREST                           0x1140
#define CL_FILTER_LINEAR                            0x1141

#define CL_SAMPLER_REFERENCE_COUNT                  0x1150
#define CL_SAMPLER_CONTEXT                          0x1151
#define CL_SAMPLER_NORMALIZED_COORDS                0x1152
#define CL_SAMPLER_ADDRESSING_MODE                  0x1153
#define CL_SAMPLER_FILTER_MODE                      0x1154

#define CL_MAP_READ                                 (1 << 0)
#define CL_MAP_WRITE                                (1 << 1)
#define CL_MAP_WRITE_INVALIDATE_REGION              (1 << 2)

#define CL_PROGRAM_REFERENCE_COUNT                  0x1160
#define CL_PROGRAM_CONTEXT                          0x1161
#define CL_PROGRAM_NUM_DEVICES                      0x1162
#define CL_PROGRAM_DEVICES                          0x1163
#define CL_PROGRAM_SOURCE                           0x1164
#define CL_PROGRAM_BINARY_SIZES                     0x1165
#define CL_PROGRAM_BINARIES                         0x1166
#define CL_PROGRAM_NUM_KERNELS                      0x1167
#define CL_PROGRAM_KERNEL_NAMES                     0x1168
#define CL_PROGRAM_BUILD_STATUS                     0x1181
#define CL_PROGRAM_BUILD_OPTIONS                    0x1182
#define CL_PROGRAM_BUILD_LOG                        0x1183
#define CL_PROGRAM_BINARY_TYPE                      0x1184
#define CL_PROGRAM_BINARY_TYPE_NONE                 0x0
#define CL_PROGRAM_BINARY_TYPE_COMPILED_OBJECT      0x1
#define CL_PROGRAM_BINARY_TYPE_LIBRARY              0x2
#define CL_PROGRAM_BINARY_TYPE_EXECUTABLE           0x4

#define CL_BUILD_SUCCESS                            0
#define CL_BUILD_NONE                               -1
#define CL_BUILD_ERROR                              -2
#define CL_BUILD_IN_PROGRESS                        -3

#define CL_KERNEL_FUNCTION_NAME                     0x1190
#define CL_KERNEL_NUM_ARGS                          0x1191
#define CL_KERNEL_REFERENCE_COUNT                   0x1192
#define CL_KERNEL_CONTEXT                           0x1193
#define CL_KERNEL_PROGRAM                           0x1194
#define CL_KERNEL_ATTRIBUTES                        0x1195
#define CL_KERNEL_ARG_ADDRESS_QUALIFIER             0x1196
#define CL_KERNEL_ARG_ACCESS_QUALIFIER              0x1197
#define CL_KERNEL_ARG_TYPE_NAME                     0x1198
#define CL_KERNEL_ARG_TYPE_QUALIFIER                0x1199
#define CL_KERNEL_ARG_NAME                          0x119A
#define CL_KERNEL_ARG_ADDRESS_GLOBAL                0x119B
#define CL_KERNEL_ARG_ADDRESS_LOCAL                 0x119C
#define CL_KERNEL_ARG_ADDRESS_CONSTANT              0x119D
#define CL_KERNEL_ARG_ADDRESS_PRIVATE               0x119E
#define CL_KERNEL_ARG_ACCESS_READ_ONLY              0x11A0
#define CL_KERNEL_ARG_ACCESS_WRITE_ONLY             0x11A1
#define CL_KERNEL_ARG_ACCESS_READ_WRITE             0x11A2
#define CL_KERNEL_ARG_ACCESS_NONE                   0x11A3
#define CL_KERNEL_ARG_TYPE_NONE                     0
#define CL_KERNEL_ARG_TYPE_CONST                    (1 << 0)
#define CL_KERNEL_ARG_TYPE_RESTRICT                 (1 << 1)
#define CL_KERNEL_ARG_TYPE_VOLATILE                 (1 << 2)
#define CL_KERNEL_WORK_GROUP_SIZE                   0x11B0
#define CL_KERNEL_COMPILE_WORK_GROUP_SIZE           0x11B1
#define CL_KERNEL_LOCAL_MEM_SIZE                    0x11B2
#define CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE 0x11B3
#define CL_KERNEL_PRIVATE_MEM_SIZE                  0x11B4
#define CL_KERNEL_GLOBAL_WORK_SIZE                  0x11B5

#define CL_EVENT_COMMAND_QUEUE                      0x11D0
#define CL_EVENT_COMMAND_TYPE                       0x11D1
#define CL_EVENT_REFERENCE_COUNT                    0x11D2
#define CL_EVENT_COMMAND_EXECUTION_STATUS           0x11D3
#define CL_EVENT_CONTEXT                            0x11D4

#define CL_COMMAND_NDRANGE_KERNEL                   0x11F0
#define CL_COMMAND_TASK                             0x11F1
#define CL_COMMAND_NATIVE_KERNEL                    0x11F2
#define CL_COMMAND_READ_BUFFER                      0x11F3
#define CL_COMMAND_WRITE_BUFFER                     0x11F4
#define CL_COMMAND_COPY_BUFFER                      0x11F5
#define CL_COMMAND_READ_IMAGE                       0x11F6
#define CL_COMMAND_WRITE_IMAGE                      0x11F7
#define CL_COMMAND_COPY_IMAGE                       0x11F8
#define CL_COMMAND_COPY_IMAGE_TO_BUFFER             0x11F9
#define CL_COMMAND_COPY_BUFFER_TO_IMAGE             0x11FA
#define CL_COMMAND_MAP_BUFFER                       0x11FB
#define CL_COMMAND_MAP_IMAGE                        0x11FC
#define CL_COMMAND_UNMAP_MEM_OBJECT                 0x11FD
#define CL_COMMAND_MARKER                           0x11FE
#define CL_COMMAND_ACQUIRE_GL_OBJECTS               0x11FF
#define CL_COMMAND_RELEASE_GL_OBJECTS               0x1200
#define CL_COMMAND_READ_BUFFER_RECT                 0x1201
#define CL_COMMAND_WRITE_BUFFER_RECT                0x1202
#define CL_COMMAND_COPY_BUFFER_RECT                 0x1203
#define CL_COMMAND_USER                             0x1204
#define CL_COMMAND_BARRIER                          0x1205
#define CL_COMMAND_MIGRATE_MEM_OBJECTS              0x1206
#define CL_COMMAND_FILL_BUFFER                      0x1207
#define CL_COMMAND_FILL_IMAGE                       0x1208

#define CL_COMPLETE                                 0x0
#define CL_RUNNING                                  0x1
#define CL_SUBMITTED                                0x2
#define CL_QUEUED                                   0x3
#define CL_BUFFER_CREATE_TYPE_REGION                0x1220

#define CL_PROFILING_COMMAND_QUEUED                 0x1280
#define CL_PROFILING_COMMAND_SUBMIT                 0x1281
#define CL_PROFILING_COMMAND_START                  0x1282
#define CL_PROFILING_COMMAND_END                    0x1283

#define CL_CALLBACK CV_STDCALL

static volatile bool g_haveOpenCL = false;
static const char* oclFuncToCheck = "clEnqueueReadBufferRect";

#if defined(__APPLE__)
#include <dlfcn.h>

static void* initOpenCLAndLoad(const char* funcname)
{
    static bool initialized = false;
    static void* handle = 0;
    if (!handle)
    {
        if(!initialized)
        {
608 609 610 611
            const char* oclpath = getenv("OPENCV_OPENCL_RUNTIME");
            oclpath = oclpath && strlen(oclpath) > 0 ? oclpath :
                "/System/Library/Frameworks/OpenCL.framework/Versions/Current/OpenCL";
            handle = dlopen(oclpath, RTLD_LAZY);
612 613
            initialized = true;
            g_haveOpenCL = handle != 0 && dlsym(handle, oclFuncToCheck) != 0;
614 615 616 617
            if( g_haveOpenCL )
                fprintf(stderr, "Succesffuly loaded OpenCL v1.1+ runtime from %s\n", oclpath);
            else
                fprintf(stderr, "Failed to load OpenCL runtime\n");
618 619 620 621 622
        }
        if(!handle)
            return 0;
    }

623
    return funcname && handle ? dlsym(handle, funcname) : 0;
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
}

#elif defined WIN32 || defined _WIN32

#ifndef _WIN32_WINNT           // This is needed for the declaration of TryEnterCriticalSection in winbase.h with Visual Studio 2005 (and older?)
  #define _WIN32_WINNT 0x0400  // http://msdn.microsoft.com/en-us/library/ms686857(VS.85).aspx
#endif
#include <windows.h>
#if (_WIN32_WINNT >= 0x0602)
  #include <synchapi.h>
#endif
#undef small
#undef min
#undef max
#undef abs

static void* initOpenCLAndLoad(const char* funcname)
{
    static bool initialized = false;
    static HMODULE handle = 0;
    if (!handle)
    {
        if(!initialized)
        {
            handle = LoadLibraryA("OpenCL.dll");
            initialized = true;
650
            g_haveOpenCL = handle != 0 && GetProcAddress(handle, oclFuncToCheck) != 0;
651 652 653 654
        }
        if(!handle)
            return 0;
    }
655 656

    return funcname ? (void*)GetProcAddress(handle, funcname) : 0;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
}

#elif defined(__linux)

#include <dlfcn.h>
#include <stdio.h>

static void* initOpenCLAndLoad(const char* funcname)
{
    static bool initialized = false;
    static void* handle = 0;
    if (!handle)
    {
        if(!initialized)
        {
672
            handle = dlopen("libOpenCL.so", RTLD_LAZY);
673
            if(!handle)
674
                handle = dlopen("libCL.so", RTLD_LAZY);
675 676 677 678 679 680
            initialized = true;
            g_haveOpenCL = handle != 0 && dlsym(handle, oclFuncToCheck) != 0;
        }
        if(!handle)
            return 0;
    }
681

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    return funcname ? (void*)dlsym(handle, funcname) : 0;
}

#else

static void* initOpenCLAndLoad(const char*)
{
    return 0;
}

#endif


#define OCL_FUNC(rettype, funcname, argsdecl, args) \
    typedef rettype (CV_STDCALL * funcname##_t) argsdecl; \
    static rettype funcname argsdecl \
    { \
        static funcname##_t funcname##_p = 0; \
        if( !funcname##_p ) \
        { \
            funcname##_p = (funcname##_t)initOpenCLAndLoad(#funcname); \
            if( !funcname##_p ) \
                return OPENCV_CL_NOT_IMPLEMENTED; \
        } \
        return funcname##_p args; \
    }


#define OCL_FUNC_P(rettype, funcname, argsdecl, args) \
    typedef rettype (CV_STDCALL * funcname##_t) argsdecl; \
    static rettype funcname argsdecl \
    { \
        static funcname##_t funcname##_p = 0; \
        if( !funcname##_p ) \
        { \
            funcname##_p = (funcname##_t)initOpenCLAndLoad(#funcname); \
            if( !funcname##_p ) \
            { \
                if( errcode_ret ) \
                    *errcode_ret = OPENCV_CL_NOT_IMPLEMENTED; \
                return 0; \
            } \
        } \
        return funcname##_p args; \
    }

OCL_FUNC(cl_int, clGetPlatformIDs,
    (cl_uint num_entries, cl_platform_id* platforms, cl_uint* num_platforms),
    (num_entries, platforms, num_platforms))

OCL_FUNC(cl_int, clGetPlatformInfo,
    (cl_platform_id platform, cl_platform_info param_name,
    size_t param_value_size, void * param_value,
    size_t * param_value_size_ret),
    (platform, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clGetDeviceInfo,
         (cl_device_id device,
          cl_device_info param_name,
          size_t param_value_size,
          void * param_value,
          size_t * param_value_size_ret),
         (device, param_name, param_value_size, param_value, param_value_size_ret))


OCL_FUNC(cl_int, clGetDeviceIDs,
    (cl_platform_id platform,
749 750 751
    cl_device_type device_type,
    cl_uint num_entries,
    cl_device_id * devices,
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
    cl_uint * num_devices),
    (platform, device_type, num_entries, devices, num_devices))

OCL_FUNC_P(cl_context, clCreateContext,
    (const cl_context_properties * properties,
    cl_uint num_devices,
    const cl_device_id * devices,
    void (CL_CALLBACK * pfn_notify)(const char *, const void *, size_t, void *),
    void * user_data,
    cl_int * errcode_ret),
    (properties, num_devices, devices, pfn_notify, user_data, errcode_ret))

OCL_FUNC(cl_int, clReleaseContext, (cl_context context), (context))

/*
OCL_FUNC(cl_int, clRetainContext, (cl_context context), (context))

OCL_FUNC_P(cl_context, clCreateContextFromType,
    (const cl_context_properties * properties,
    cl_device_type device_type,
    void (CL_CALLBACK * pfn_notify)(const char *, const void *, size_t, void *),
    void * user_data,
    cl_int * errcode_ret),
    (properties, device_type, pfn_notify, user_data, errcode_ret))

OCL_FUNC(cl_int, clGetContextInfo,
778 779 780 781
    (cl_context context,
    cl_context_info param_name,
    size_t param_value_size,
    void * param_value,
782
    size_t * param_value_size_ret),
783
    (context, param_name, param_value_size,
784 785 786
    param_value, param_value_size_ret))
*/
OCL_FUNC_P(cl_command_queue, clCreateCommandQueue,
787 788
    (cl_context context,
    cl_device_id device,
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
    cl_command_queue_properties properties,
    cl_int * errcode_ret),
    (context, device, properties, errcode_ret))

OCL_FUNC(cl_int, clReleaseCommandQueue, (cl_command_queue command_queue), (command_queue))

OCL_FUNC_P(cl_mem, clCreateBuffer,
    (cl_context context,
    cl_mem_flags flags,
    size_t size,
    void * host_ptr,
    cl_int * errcode_ret),
    (context, flags, size, host_ptr, errcode_ret))

/*
OCL_FUNC(cl_int, clRetainCommandQueue, (cl_command_queue command_queue), (command_queue))

OCL_FUNC(cl_int, clGetCommandQueueInfo,
 (cl_command_queue command_queue,
 cl_command_queue_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (command_queue, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC_P(cl_mem, clCreateSubBuffer,
    (cl_mem buffer,
    cl_mem_flags flags,
    cl_buffer_create_type buffer_create_type,
    const void * buffer_create_info,
    cl_int * errcode_ret),
    (buffer, flags, buffer_create_type, buffer_create_info, errcode_ret))

OCL_FUNC_P(cl_mem, clCreateImage,
    (cl_context context,
    cl_mem_flags flags,
    const cl_image_format * image_format,
826
    const cl_image_desc * image_desc,
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
    void * host_ptr,
    cl_int * errcode_ret),
    (context, flags, image_format, image_desc, host_ptr, errcode_ret))

OCL_FUNC(cl_int, clGetSupportedImageFormats,
 (cl_context context,
 cl_mem_flags flags,
 cl_mem_object_type image_type,
 cl_uint num_entries,
 cl_image_format * image_formats,
 cl_uint * num_image_formats),
 (context, flags, image_type, num_entries, image_formats, num_image_formats))

OCL_FUNC(cl_int, clGetMemObjectInfo,
 (cl_mem memobj,
 cl_mem_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (memobj, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clGetImageInfo,
 (cl_mem image,
 cl_image_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (image, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clCreateKernelsInProgram,
 (cl_program program,
 cl_uint num_kernels,
 cl_kernel * kernels,
 cl_uint * num_kernels_ret),
 (program, num_kernels, kernels, num_kernels_ret))

OCL_FUNC(cl_int, clRetainKernel, (cl_kernel kernel), (kernel))

OCL_FUNC(cl_int, clGetKernelArgInfo,
 (cl_kernel kernel,
 cl_uint arg_indx,
 cl_kernel_arg_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (kernel, arg_indx, param_name, param_value_size, param_value, param_value_size_ret))
873

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
OCL_FUNC(cl_int, clEnqueueReadImage,
 (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_read,
 const size_t * origin[3],
 const size_t * region[3],
 size_t row_pitch,
 size_t slice_pitch,
 void * ptr,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, image, blocking_read, origin, region,
 row_pitch, slice_pitch,
 ptr,
 num_events_in_wait_list,
 event_wait_list,
 event))

OCL_FUNC(cl_int, clEnqueueWriteImage,
 (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_write,
 const size_t * origin[3],
 const size_t * region[3],
 size_t input_row_pitch,
 size_t input_slice_pitch,
 const void * ptr,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, image, blocking_write, origin, region, input_row_pitch,
 input_slice_pitch, ptr, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueFillImage,
 (cl_command_queue command_queue,
 cl_mem image,
 const void * fill_color,
 const size_t * origin[3],
 const size_t * region[3],
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, image, fill_color, origin, region,
 num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyImage,
 (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_image,
 const size_t * src_origin[3],
 const size_t * dst_origin[3],
 const size_t * region[3],
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, src_image, dst_image, src_origin, dst_origin,
 region, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyImageToBuffer,
 (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_buffer,
 const size_t * src_origin[3],
 const size_t * region[3],
 size_t dst_offset,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, src_image, dst_buffer, src_origin, region, dst_offset,
 num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyBufferToImage,
 (cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_image,
 size_t src_offset,
 const size_t * dst_origin[3],
 const size_t * region[3],
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, src_buffer, dst_image, src_offset, dst_origin,
 region, num_events_in_wait_list, event_wait_list, event))


OCL_FUNC_P(void*, clEnqueueMapImage,
 (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_map,
 cl_map_flags map_flags,
 const size_t * origin[3],
 const size_t * region[3],
 size_t * image_row_pitch,
 size_t * image_slice_pitch,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event,
 cl_int * errcode_ret),
 (command_queue, image, blocking_map, map_flags, origin, region,
 image_row_pitch, image_slice_pitch, num_events_in_wait_list,
 event_wait_list, event, errcode_ret))

OCL_FUNC(cl_int, clRetainProgram, (cl_program program), (program))
978

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
OCL_FUNC(cl_int, clGetKernelInfo,
 (cl_kernel kernel,
 cl_kernel_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (kernel, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clRetainMemObject, (cl_mem memobj), (memobj))

*/

OCL_FUNC(cl_int, clReleaseMemObject, (cl_mem memobj), (memobj))


OCL_FUNC_P(cl_program, clCreateProgramWithSource,
    (cl_context context,
    cl_uint count,
    const char ** strings,
    const size_t * lengths,
    cl_int * errcode_ret),
    (context, count, strings, lengths, errcode_ret))

OCL_FUNC_P(cl_program, clCreateProgramWithBinary,
    (cl_context context,
    cl_uint num_devices,
    const cl_device_id * device_list,
    const size_t * lengths,
    const unsigned char ** binaries,
    cl_int * binary_status,
    cl_int * errcode_ret),
    (context, num_devices, device_list, lengths, binaries, binary_status, errcode_ret))

OCL_FUNC(cl_int, clReleaseProgram, (cl_program program), (program))

OCL_FUNC(cl_int, clBuildProgram,
    (cl_program program,
    cl_uint num_devices,
    const cl_device_id * device_list,
1018
    const char * options,
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
    void (CL_CALLBACK * pfn_notify)(cl_program, void *),
    void * user_data),
    (program, num_devices, device_list, options, pfn_notify, user_data))

OCL_FUNC(cl_int, clGetProgramInfo,
    (cl_program program,
    cl_program_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (program, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clGetProgramBuildInfo,
    (cl_program program,
    cl_device_id device,
    cl_program_build_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (program, device, param_name, param_value_size, param_value, param_value_size_ret))
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
OCL_FUNC_P(cl_kernel, clCreateKernel,
    (cl_program program,
    const char * kernel_name,
    cl_int * errcode_ret),
    (program, kernel_name, errcode_ret))

OCL_FUNC(cl_int, clReleaseKernel, (cl_kernel kernel), (kernel))

OCL_FUNC(cl_int, clSetKernelArg,
    (cl_kernel kernel,
    cl_uint arg_index,
    size_t arg_size,
    const void * arg_value),
    (kernel, arg_index, arg_size, arg_value))

OCL_FUNC(cl_int, clGetKernelWorkGroupInfo,
    (cl_kernel kernel,
    cl_device_id device,
    cl_kernel_work_group_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (kernel, device, param_name, param_value_size, param_value, param_value_size_ret))
1063

1064 1065 1066 1067 1068 1069 1070
OCL_FUNC(cl_int, clFinish, (cl_command_queue command_queue), (command_queue))

OCL_FUNC(cl_int, clEnqueueReadBuffer,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_read,
    size_t offset,
1071
    size_t size,
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_read, offset, size, ptr,
    num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueReadBufferRect,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_read,
    const size_t * buffer_offset,
1084
    const size_t * host_offset,
1085 1086 1087 1088
    const size_t * region,
    size_t buffer_row_pitch,
    size_t buffer_slice_pitch,
    size_t host_row_pitch,
1089
    size_t host_slice_pitch,
1090 1091 1092 1093 1094 1095 1096 1097 1098
    void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_read, buffer_offset, host_offset, region, buffer_row_pitch,
    buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, num_events_in_wait_list,
    event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueWriteBuffer,
1099 1100 1101 1102 1103 1104 1105 1106
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_write,
    size_t offset,
    size_t size,
    const void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
1107 1108 1109 1110 1111 1112 1113 1114 1115
    cl_event * event),
    (command_queue, buffer, blocking_write, offset, size, ptr,
    num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueWriteBufferRect,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_write,
    const size_t * buffer_offset,
1116
    const size_t * host_offset,
1117 1118 1119 1120
    const size_t * region,
    size_t buffer_row_pitch,
    size_t buffer_slice_pitch,
    size_t host_row_pitch,
1121
    size_t host_slice_pitch,
1122 1123 1124 1125 1126 1127 1128 1129
    const void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_write, buffer_offset, host_offset,
    region, buffer_row_pitch, buffer_slice_pitch, host_row_pitch,
    host_slice_pitch, ptr, num_events_in_wait_list, event_wait_list, event))

1130
/*OCL_FUNC(cl_int, clEnqueueFillBuffer,
1131
    (cl_command_queue command_queue,
1132 1133 1134 1135 1136 1137 1138
    cl_mem buffer,
    const void * pattern,
    size_t pattern_size,
    size_t offset,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
1139
    cl_event * event),
1140 1141
    (command_queue, buffer, pattern, pattern_size, offset, size,
    num_events_in_wait_list, event_wait_list, event))*/
1142 1143

OCL_FUNC(cl_int, clEnqueueCopyBuffer,
1144
    (cl_command_queue command_queue,
1145
    cl_mem src_buffer,
1146
    cl_mem dst_buffer,
1147 1148
    size_t src_offset,
    size_t dst_offset,
1149
    size_t size,
1150 1151 1152 1153 1154 1155 1156
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, src_buffer, dst_buffer, src_offset, dst_offset,
    size, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyBufferRect,
1157
    (cl_command_queue command_queue,
1158
    cl_mem src_buffer,
1159
    cl_mem dst_buffer,
1160 1161
    const size_t * src_origin,
    const size_t * dst_origin,
1162
    const size_t * region,
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    size_t src_row_pitch,
    size_t src_slice_pitch,
    size_t dst_row_pitch,
    size_t dst_slice_pitch,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, src_buffer, dst_buffer, src_origin, dst_origin,
    region, src_row_pitch, src_slice_pitch, dst_row_pitch, dst_slice_pitch,
    num_events_in_wait_list, event_wait_list, event))

OCL_FUNC_P(void*, clEnqueueMapBuffer,
    (cl_command_queue command_queue,
    cl_mem buffer,
1177
    cl_bool blocking_map,
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    cl_map_flags map_flags,
    size_t offset,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event,
    cl_int * errcode_ret),
    (command_queue, buffer, blocking_map, map_flags, offset, size,
    num_events_in_wait_list, event_wait_list, event, errcode_ret))

OCL_FUNC(cl_int, clEnqueueUnmapMemObject,
    (cl_command_queue command_queue,
    cl_mem memobj,
    void * mapped_ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, memobj, mapped_ptr, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueNDRangeKernel,
    (cl_command_queue command_queue,
    cl_kernel kernel,
    cl_uint work_dim,
    const size_t * global_work_offset,
    const size_t * global_work_size,
    const size_t * local_work_size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, kernel, work_dim, global_work_offset, global_work_size,
    local_work_size, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueTask,
    (cl_command_queue command_queue,
    cl_kernel kernel,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, kernel, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clSetEventCallback,
    (cl_event event,
    cl_int command_exec_callback_type ,
    void (CL_CALLBACK  *pfn_event_notify) (cl_event event, cl_int event_command_exec_status, void *user_data),
    void *user_data),
    (event, command_exec_callback_type, pfn_event_notify, user_data))

OCL_FUNC(cl_int, clReleaseEvent, (cl_event event), (event))

}

#endif

1231 1232 1233 1234 1235 1236
#ifndef CL_VERSION_1_2
#define CL_VERSION_1_2
#endif

#endif

1237 1238
namespace cv { namespace ocl {

1239 1240
struct UMat2D
{
1241
    UMat2D(const UMat& m)
1242
    {
1243 1244
        offset = (int)m.offset;
        step = (int)m.step;
1245 1246 1247
        rows = m.rows;
        cols = m.cols;
    }
1248 1249
    int offset;
    int step;
1250 1251 1252 1253 1254 1255
    int rows;
    int cols;
};

struct UMat3D
{
1256
    UMat3D(const UMat& m)
1257
    {
1258 1259 1260 1261
        offset = (int)m.offset;
        step = (int)m.step.p[1];
        slicestep = (int)m.step.p[0];
        slices = (int)m.size.p[0];
1262 1263 1264
        rows = m.size.p[1];
        cols = m.size.p[2];
    }
1265 1266 1267
    int offset;
    int slicestep;
    int step;
1268 1269 1270 1271 1272
    int slices;
    int rows;
    int cols;
};

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
// Computes 64-bit "cyclic redundancy check" sum, as specified in ECMA-182
static uint64 crc64( const uchar* data, size_t size, uint64 crc0=0 )
{
    static uint64 table[256];
    static bool initialized = false;

    if( !initialized )
    {
        for( int i = 0; i < 256; i++ )
        {
            uint64 c = i;
            for( int j = 0; j < 8; j++ )
                c = ((c & 1) ? CV_BIG_UINT(0xc96c5795d7870f42) : 0) ^ (c >> 1);
            table[i] = c;
        }
        initialized = true;
    }

    uint64 crc = ~crc0;
    for( size_t idx = 0; idx < size; idx++ )
        crc = table[(uchar)crc ^ data[idx]] ^ (crc >> 8);

    return ~crc;
}

struct HashKey
{
    typedef uint64 part;
    HashKey(part _a, part _b) : a(_a), b(_b) {}
    part a, b;
};

inline bool operator == (const HashKey& h1, const HashKey& h2)
{
    return h1.a == h2.a && h1.b == h2.b;
}

inline bool operator < (const HashKey& h1, const HashKey& h2)
{
    return h1.a < h2.a || (h1.a == h2.a && h1.b < h2.b);
}

I
Ilya Lavrenov 已提交
1315
static bool g_isOpenCLInitialized = false;
1316
static bool g_isOpenCLAvailable = false;
I
Ilya Lavrenov 已提交
1317

1318 1319
bool haveOpenCL()
{
I
Ilya Lavrenov 已提交
1320
    if (!g_isOpenCLInitialized)
1321
    {
I
Ilya Lavrenov 已提交
1322
        try
1323
        {
I
Ilya Lavrenov 已提交
1324 1325
            cl_uint n = 0;
            g_isOpenCLAvailable = ::clGetPlatformIDs(0, NULL, &n) == CL_SUCCESS;
1326
        }
I
Ilya Lavrenov 已提交
1327 1328 1329
        catch (...)
        {
            g_isOpenCLAvailable = false;
1330
        }
I
Ilya Lavrenov 已提交
1331
        g_isOpenCLInitialized = true;
1332 1333
    }
    return g_isOpenCLAvailable;
1334 1335 1336 1337
}

bool useOpenCL()
{
1338
    CoreTLSData* data = coreTlsData.get();
1339 1340 1341 1342 1343
    if( data->useOpenCL < 0 )
        data->useOpenCL = (int)haveOpenCL();
    return data->useOpenCL > 0;
}

1344 1345 1346 1347
void setUseOpenCL(bool flag)
{
    if( haveOpenCL() )
    {
1348
        CoreTLSData* data = coreTlsData.get();
1349 1350 1351 1352
        data->useOpenCL = flag ? 1 : 0;
    }
}

I
Ilya Lavrenov 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
#ifdef HAVE_CLAMDBLAS

class AmdBlasHelper
{
public:
    static AmdBlasHelper & getInstance()
    {
        static AmdBlasHelper amdBlas;
        return amdBlas;
    }

    bool isAvailable() const
    {
        return g_isAmdBlasAvailable;
    }

    ~AmdBlasHelper()
    {
        try
        {
            clAmdBlasTeardown();
        }
        catch (...) { }
    }

protected:
    AmdBlasHelper()
    {
        if (!g_isAmdBlasInitialized)
        {
            AutoLock lock(m);

            if (!g_isAmdBlasInitialized && haveOpenCL())
            {
                try
                {
                    g_isAmdBlasAvailable = clAmdBlasSetup() == clAmdBlasSuccess;
                }
                catch (...)
                {
                    g_isAmdBlasAvailable = false;
                }
            }
            else
                g_isAmdBlasAvailable = false;

            g_isAmdBlasInitialized = true;
        }
    }

private:
    static Mutex m;
    static bool g_isAmdBlasInitialized;
    static bool g_isAmdBlasAvailable;
};

bool AmdBlasHelper::g_isAmdBlasAvailable = false;
bool AmdBlasHelper::g_isAmdBlasInitialized = false;
Mutex AmdBlasHelper::m;

bool haveAmdBlas()
{
    return AmdBlasHelper::getInstance().isAvailable();
}

#else

bool haveAmdBlas()
{
    return false;
}

#endif

I
Ilya Lavrenov 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
#ifdef HAVE_CLAMDFFT

class AmdFftHelper
{
public:
    static AmdFftHelper & getInstance()
    {
        static AmdFftHelper amdFft;
        return amdFft;
    }

    bool isAvailable() const
    {
        return g_isAmdFftAvailable;
    }

    ~AmdFftHelper()
    {
        try
        {
//            clAmdFftTeardown();
        }
        catch (...) { }
    }

protected:
    AmdFftHelper()
    {
        if (!g_isAmdFftInitialized)
        {
            AutoLock lock(m);

            if (!g_isAmdFftInitialized && haveOpenCL())
            {
                try
                {
                    CV_Assert(clAmdFftInitSetupData(&setupData) == CLFFT_SUCCESS);
                    g_isAmdFftAvailable = true;
                }
                catch (const Exception &)
                {
                    g_isAmdFftAvailable = false;
                }
            }
            else
                g_isAmdFftAvailable = false;

            g_isAmdFftInitialized = true;
        }
    }

private:
    static clAmdFftSetupData setupData;
    static Mutex m;
    static bool g_isAmdFftInitialized;
    static bool g_isAmdFftAvailable;
};

clAmdFftSetupData AmdFftHelper::setupData;
bool AmdFftHelper::g_isAmdFftAvailable = false;
bool AmdFftHelper::g_isAmdFftInitialized = false;
Mutex AmdFftHelper::m;

bool haveAmdFft()
{
    return AmdFftHelper::getInstance().isAvailable();
}

#else

bool haveAmdFft()
{
    return false;
}

#endif

1504
void finish2()
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
{
    Queue::getDefault().finish();
}

#define IMPLEMENT_REFCOUNTABLE() \
    void addref() { CV_XADD(&refcount, 1); } \
    void release() { if( CV_XADD(&refcount, -1) == 1 ) delete this; } \
    int refcount

struct Platform::Impl
{
    Impl()
    {
        refcount = 1;
        handle = 0;
        initialized = false;
    }

    ~Impl() {}

    void init()
    {
        if( !initialized )
        {
            //cl_uint num_entries
            cl_uint n = 0;
            if( clGetPlatformIDs(1, &handle, &n) < 0 || n == 0 )
                handle = 0;
            if( handle != 0 )
            {
                char buf[1000];
                size_t len = 0;
                clGetPlatformInfo(handle, CL_PLATFORM_VENDOR, sizeof(buf), buf, &len);
                buf[len] = '\0';
                vendor = String(buf);
            }

            initialized = true;
        }
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_platform_id handle;
    String vendor;
    bool initialized;
};

Platform::Platform()
{
    p = 0;
}

Platform::~Platform()
{
    if(p)
        p->release();
}

Platform::Platform(const Platform& pl)
{
    p = (Impl*)pl.p;
    if(p)
        p->addref();
}

Platform& Platform::operator = (const Platform& pl)
{
    Impl* newp = (Impl*)pl.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

void* Platform::ptr() const
{
    return p ? p->handle : 0;
}

Platform& Platform::getDefault()
{
    static Platform p;
    if( !p.p )
    {
        p.p = new Impl;
        p.p->init();
    }
    return p;
}

///////////////////////////////////////////////////////////////////////////////////

struct Device::Impl
{
    Impl(void* d)
    {
        handle = (cl_device_id)d;
A
Alexander Alekhin 已提交
1605
        refcount = 1;
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
    }

    template<typename _TpCL, typename _TpOut>
    _TpOut getProp(cl_device_info prop) const
    {
        _TpCL temp=_TpCL();
        size_t sz = 0;

        return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) >= 0 &&
            sz == sizeof(temp) ? _TpOut(temp) : _TpOut();
    }

1618 1619 1620 1621 1622 1623 1624 1625 1626
    bool getBoolProp(cl_device_info prop) const
    {
        cl_bool temp = CL_FALSE;
        size_t sz = 0;

        return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) >= 0 &&
            sz == sizeof(temp) ? temp != 0 : false;
    }

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
    String getStrProp(cl_device_info prop) const
    {
        char buf[1024];
        size_t sz=0;
        return clGetDeviceInfo(handle, prop, sizeof(buf)-16, buf, &sz) >= 0 &&
            sz < sizeof(buf) ? String(buf) : String();
    }

    IMPLEMENT_REFCOUNTABLE();
    cl_device_id handle;
};


Device::Device()
{
    p = 0;
}

Device::Device(void* d)
{
    p = 0;
    set(d);
}

Device::Device(const Device& d)
{
    p = d.p;
    if(p)
        p->addref();
}

Device& Device::operator = (const Device& d)
{
    Impl* newp = (Impl*)d.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Device::~Device()
{
    if(p)
        p->release();
}

void Device::set(void* d)
{
    if(p)
        p->release();
    p = new Impl(d);
}

void* Device::ptr() const
{
    return p ? p->handle : 0;
}

String Device::name() const
{ return p ? p->getStrProp(CL_DEVICE_NAME) : String(); }

String Device::extensions() const
{ return p ? p->getStrProp(CL_DEVICE_EXTENSIONS) : String(); }

String Device::vendor() const
{ return p ? p->getStrProp(CL_DEVICE_VENDOR) : String(); }

String Device::OpenCL_C_Version() const
{ return p ? p->getStrProp(CL_DEVICE_OPENCL_C_VERSION) : String(); }

String Device::OpenCLVersion() const
{ return p ? p->getStrProp(CL_DEVICE_EXTENSIONS) : String(); }

String Device::driverVersion() const
1703
{ return p ? p->getStrProp(CL_DRIVER_VERSION) : String(); }
1704 1705 1706 1707 1708 1709 1710 1711

int Device::type() const
{ return p ? p->getProp<cl_device_type, int>(CL_DEVICE_TYPE) : 0; }

int Device::addressBits() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_ADDRESS_BITS) : 0; }

bool Device::available() const
1712
{ return p ? p->getBoolProp(CL_DEVICE_AVAILABLE) : false; }
1713 1714

bool Device::compilerAvailable() const
1715
{ return p ? p->getBoolProp(CL_DEVICE_COMPILER_AVAILABLE) : false; }
1716 1717

bool Device::linkerAvailable() const
1718
#ifdef CL_VERSION_1_2
1719
{ return p ? p->getBoolProp(CL_DEVICE_LINKER_AVAILABLE) : false; }
1720 1721 1722
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
1723 1724 1725 1726 1727 1728 1729 1730

int Device::doubleFPConfig() const
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_DOUBLE_FP_CONFIG) : 0; }

int Device::singleFPConfig() const
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_SINGLE_FP_CONFIG) : 0; }

int Device::halfFPConfig() const
1731
#ifdef CL_VERSION_1_2
1732
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_HALF_FP_CONFIG) : 0; }
1733 1734 1735
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
1736 1737

bool Device::endianLittle() const
1738
{ return p ? p->getBoolProp(CL_DEVICE_ENDIAN_LITTLE) : false; }
1739 1740

bool Device::errorCorrectionSupport() const
1741
{ return p ? p->getBoolProp(CL_DEVICE_ERROR_CORRECTION_SUPPORT) : false; }
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

int Device::executionCapabilities() const
{ return p ? p->getProp<cl_device_exec_capabilities, int>(CL_DEVICE_EXECUTION_CAPABILITIES) : 0; }

size_t Device::globalMemCacheSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_CACHE_SIZE) : 0; }

int Device::globalMemCacheType() const
{ return p ? p->getProp<cl_device_mem_cache_type, int>(CL_DEVICE_GLOBAL_MEM_CACHE_TYPE) : 0; }

int Device::globalMemCacheLineSize() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE) : 0; }

size_t Device::globalMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_SIZE) : 0; }

size_t Device::localMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_LOCAL_MEM_SIZE) : 0; }

int Device::localMemType() const
{ return p ? p->getProp<cl_device_local_mem_type, int>(CL_DEVICE_LOCAL_MEM_TYPE) : 0; }

bool Device::hostUnifiedMemory() const
1765
{ return p ? p->getBoolProp(CL_DEVICE_HOST_UNIFIED_MEMORY) : false; }
1766 1767

bool Device::imageSupport() const
1768
{ return p ? p->getBoolProp(CL_DEVICE_IMAGE_SUPPORT) : false; }
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

size_t Device::image2DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_WIDTH) : 0; }

size_t Device::image2DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_HEIGHT) : 0; }

size_t Device::image3DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_WIDTH) : 0; }

size_t Device::image3DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_HEIGHT) : 0; }

size_t Device::image3DMaxDepth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_DEPTH) : 0; }

size_t Device::imageMaxBufferSize() const
1786
#ifdef CL_VERSION_1_2
1787
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_BUFFER_SIZE) : 0; }
1788 1789 1790
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
1791 1792

size_t Device::imageMaxArraySize() const
1793
#ifdef CL_VERSION_1_2
1794
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_ARRAY_SIZE) : 0; }
1795 1796 1797
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

int Device::maxClockFrequency() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CLOCK_FREQUENCY) : 0; }

int Device::maxComputeUnits() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_COMPUTE_UNITS) : 0; }

int Device::maxConstantArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CONSTANT_ARGS) : 0; }

size_t Device::maxConstantBufferSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE) : 0; }

size_t Device::maxMemAllocSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_MEM_ALLOC_SIZE) : 0; }

size_t Device::maxParameterSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_PARAMETER_SIZE) : 0; }

int Device::maxReadImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_READ_IMAGE_ARGS) : 0; }

int Device::maxWriteImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WRITE_IMAGE_ARGS) : 0; }

int Device::maxSamplers() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_SAMPLERS) : 0; }

size_t Device::maxWorkGroupSize() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_MAX_WORK_GROUP_SIZE) : 0; }

int Device::maxWorkItemDims() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS) : 0; }

void Device::maxWorkItemSizes(size_t* sizes) const
{
    if(p)
    {
        const int MAX_DIMS = 32;
        size_t retsz = 0;
        clGetDeviceInfo(p->handle, CL_DEVICE_MAX_WORK_ITEM_SIZES,
                MAX_DIMS*sizeof(sizes[0]), &sizes[0], &retsz);
    }
}

int Device::memBaseAddrAlign() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MEM_BASE_ADDR_ALIGN) : 0; }

int Device::nativeVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR) : 0; }

int Device::nativeVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT) : 0; }

int Device::nativeVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_INT) : 0; }

int Device::nativeVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG) : 0; }

int Device::nativeVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT) : 0; }

int Device::nativeVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE) : 0; }

int Device::nativeVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF) : 0; }

int Device::preferredVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR) : 0; }

int Device::preferredVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT) : 0; }

int Device::preferredVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT) : 0; }

int Device::preferredVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG) : 0; }

int Device::preferredVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT) : 0; }

int Device::preferredVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE) : 0; }

int Device::preferredVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF) : 0; }

size_t Device::printfBufferSize() const
1889
#ifdef CL_VERSION_1_2
1890
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PRINTF_BUFFER_SIZE) : 0; }
1891 1892 1893 1894
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif

1895 1896 1897 1898 1899 1900

size_t Device::profilingTimerResolution() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PROFILING_TIMER_RESOLUTION) : 0; }

const Device& Device::getDefault()
{
1901
    const Context2& ctx = Context2::getDefault();
1902
    int idx = coreTlsData.get()->device;
1903 1904 1905 1906 1907
    return ctx.device(idx);
}

/////////////////////////////////////////////////////////////////////////////////////////

1908
struct Context2::Impl
1909
{
1910 1911 1912 1913 1914 1915
    Impl()
    {
        refcount = 1;
        handle = 0;
    }

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
    Impl(int dtype0)
    {
        refcount = 1;
        handle = 0;

        cl_int retval = 0;
        cl_platform_id pl = (cl_platform_id)Platform::getDefault().ptr();
        cl_context_properties prop[] =
        {
            CL_CONTEXT_PLATFORM, (cl_context_properties)pl,
            0
        };

        cl_uint i, nd0 = 0, nd = 0;
        int dtype = dtype0 & 15;
        clGetDeviceIDs( pl, dtype, 0, 0, &nd0 );
        if(retval < 0)
            return;
        AutoBuffer<void*> dlistbuf(nd0*2+1);
        cl_device_id* dlist = (cl_device_id*)(void**)dlistbuf;
        cl_device_id* dlist_new = dlist + nd0;
        clGetDeviceIDs(	pl, dtype, nd0, dlist, &nd0 );
        String name0;

        for(i = 0; i < nd0; i++)
        {
            Device d(dlist[i]);
            if( !d.available() || !d.compilerAvailable() )
                continue;
            if( dtype0 == Device::TYPE_DGPU && d.hostUnifiedMemory() )
                continue;
            if( dtype0 == Device::TYPE_IGPU && !d.hostUnifiedMemory() )
                continue;
            String name = d.name();
            if( nd != 0 && name != name0 )
                continue;
            name0 = name;
            dlist_new[nd++] = dlist[i];
        }

        if(nd == 0)
            return;

        // !!! in the current implementation force the number of devices to 1 !!!
        nd = 1;

        handle = clCreateContext(prop, nd, dlist_new, 0, 0, &retval);
        bool ok = handle != 0 && retval >= 0;
        if( ok )
        {
            devices.resize(nd);
            for( i = 0; i < nd; i++ )
                devices[i].set(dlist_new[i]);
        }
    }

    ~Impl()
    {
        if(handle)
            clReleaseContext(handle);
        devices.clear();
    }

1979
    Program getProg(const ProgramSource2& src,
1980 1981 1982 1983 1984 1985 1986 1987 1988
                    const String& buildflags, String& errmsg)
    {
        String prefix = Program::getPrefix(buildflags);
        HashKey k(src.hash(), crc64((const uchar*)prefix.c_str(), prefix.size()));
        phash_t::iterator it = phash.find(k);
        if( it != phash.end() )
            return it->second;
        //String filename = format("%08x%08x_%08x%08x.clb2",
        Program prog(src, buildflags, errmsg);
1989 1990
        if(prog.ptr())
            phash.insert(std::pair<HashKey,Program>(k, prog));
1991 1992 1993 1994 1995 1996 1997 1998
        return prog;
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_context handle;
    std::vector<Device> devices;

1999
    typedef ProgramSource2::hash_t hash_t;
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

    struct HashKey
    {
        HashKey(hash_t _a, hash_t _b) : a(_a), b(_b) {}
        bool operator < (const HashKey& k) const { return a < k.a || (a == k.a && b < k.b); }
        bool operator == (const HashKey& k) const { return a == k.a && b == k.b; }
        bool operator != (const HashKey& k) const { return a != k.a || b != k.b; }
        hash_t a, b;
    };
    typedef std::map<HashKey, Program> phash_t;
    phash_t phash;
};


2014
Context2::Context2()
2015 2016 2017 2018
{
    p = 0;
}

2019
Context2::Context2(int dtype)
2020 2021 2022 2023 2024
{
    p = 0;
    create(dtype);
}

2025
bool Context2::create(int dtype0)
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
{
    if( !haveOpenCL() )
        return false;
    if(p)
        p->release();
    p = new Impl(dtype0);
    if(!p->handle)
    {
        delete p;
        p = 0;
    }
    return p != 0;
}

2040
Context2::~Context2()
2041 2042 2043 2044
{
    p->release();
}

2045
Context2::Context2(const Context2& c)
2046 2047 2048 2049 2050 2051
{
    p = (Impl*)c.p;
    if(p)
        p->addref();
}

2052
Context2& Context2::operator = (const Context2& c)
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
{
    Impl* newp = (Impl*)c.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

2063
void* Context2::ptr() const
2064 2065 2066 2067
{
    return p->handle;
}

2068
size_t Context2::ndevices() const
2069 2070 2071 2072
{
    return p ? p->devices.size() : 0;
}

2073
const Device& Context2::device(size_t idx) const
2074 2075 2076 2077 2078
{
    static Device dummy;
    return !p || idx >= p->devices.size() ? dummy : p->devices[idx];
}

2079
Context2& Context2::getDefault(bool initialize)
2080
{
2081
    static Context2 ctx;
2082
    if(!ctx.p && haveOpenCL())
2083
    {
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
        if (initialize)
        {
            // do not create new Context2 right away.
            // First, try to retrieve existing context of the same type.
            // In its turn, Platform::getContext() may call Context2::create()
            // if there is no such context.
            ctx.create(Device::TYPE_ACCELERATOR);
            if(!ctx.p)
                ctx.create(Device::TYPE_DGPU);
            if(!ctx.p)
                ctx.create(Device::TYPE_IGPU);
            if(!ctx.p)
                ctx.create(Device::TYPE_CPU);
        }
        else
        {
            ctx.p = new Impl();
        }
2102 2103 2104 2105 2106
    }

    return ctx;
}

2107
Program Context2::getProg(const ProgramSource2& prog,
2108 2109 2110 2111 2112
                         const String& buildopts, String& errmsg)
{
    return p ? p->getProg(prog, buildopts, errmsg) : Program();
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
void initializeContextFromHandle(Context2& ctx, void* platform, void* _context, void* _device)
{
    cl_context context = (cl_context)_context;
    cl_device_id device = (cl_device_id)_device;

    // cleanup old context
    Context2::Impl* impl = ctx._getImpl();
    if (impl->handle)
    {
        cl_int status = clReleaseContext(impl->handle);
        (void)status;
    }
    impl->devices.clear();

    impl->handle = context;
    impl->devices.resize(1);
    impl->devices[0].set(device);

    Platform& p = Platform::getDefault();
    Platform::Impl* pImpl = p._getImpl();
    pImpl->handle = (cl_platform_id)platform;
}


2137 2138
struct Queue::Impl
{
2139
    Impl(const Context2& c, const Device& d)
2140 2141
    {
        refcount = 1;
2142
        const Context2* pc = &c;
2143 2144 2145
        cl_context ch = (cl_context)pc->ptr();
        if( !ch )
        {
2146
            pc = &Context2::getDefault();
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
            ch = (cl_context)pc->ptr();
        }
        cl_device_id dh = (cl_device_id)d.ptr();
        if( !dh )
            dh = (cl_device_id)pc->device(0).ptr();
        cl_int retval = 0;
        handle = clCreateCommandQueue(ch, dh, 0, &retval);
    }

    ~Impl()
    {
2158 2159 2160
#ifdef _WIN32
        if (!cv::__termination)
#endif
2161
        {
2162 2163 2164 2165 2166
            if(handle)
            {
                clFinish(handle);
                clReleaseCommandQueue(handle);
            }
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
        }
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_command_queue handle;
    bool initialized;
};

Queue::Queue()
{
    p = 0;
}

2181
Queue::Queue(const Context2& c, const Device& d)
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
{
    p = 0;
    create(c, d);
}

Queue::Queue(const Queue& q)
{
    p = q.p;
    if(p)
        p->addref();
}

Queue& Queue::operator = (const Queue& q)
{
    Impl* newp = (Impl*)q.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Queue::~Queue()
{
    if(p)
        p->release();
}

2211
bool Queue::create(const Context2& c, const Device& d)
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
{
    if(p)
        p->release();
    p = new Impl(c, d);
    return p->handle != 0;
}

void Queue::finish()
{
    if(p && p->handle)
        clFinish(p->handle);
}

void* Queue::ptr() const
{
    return p ? p->handle : 0;
}

Queue& Queue::getDefault()
{
2232
    Queue& q = coreTlsData.get()->oclQueue;
2233
    if( !q.p && haveOpenCL() )
2234
        q.create(Context2::getDefault());
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
    return q;
}

static cl_command_queue getQueue(const Queue& q)
{
    cl_command_queue qq = (cl_command_queue)q.ptr();
    if(!qq)
        qq = (cl_command_queue)Queue::getDefault().ptr();
    return qq;
}

2246 2247 2248 2249 2250 2251 2252
KernelArg::KernelArg()
    : flags(0), m(0), obj(0), sz(0), wscale(1)
{
}

KernelArg::KernelArg(int _flags, UMat* _m, int _wscale, const void* _obj, size_t _sz)
    : flags(_flags), m(_m), obj(_obj), sz(_sz), wscale(_wscale)
2253 2254 2255 2256 2257 2258
{
}

KernelArg KernelArg::Constant(const Mat& m)
{
    CV_Assert(m.isContinuous());
2259
    return KernelArg(CONSTANT, 0, 1, m.data, m.total()*m.elemSize());
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
}


struct Kernel::Impl
{
    Impl(const char* kname, const Program& prog)
    {
        e = 0; refcount = 1;
        cl_program ph = (cl_program)prog.ptr();
        cl_int retval = 0;
        handle = ph != 0 ?
            clCreateKernel(ph, kname, &retval) : 0;
2272 2273
        for( int i = 0; i < MAX_ARRS; i++ )
            u[i] = 0;
2274
        haveTempDstUMats = false;
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
    }

    void cleanupUMats()
    {
        for( int i = 0; i < MAX_ARRS; i++ )
            if( u[i] )
            {
                if( CV_XADD(&u[i]->urefcount, -1) == 1 )
                    u[i]->currAllocator->deallocate(u[i]);
                u[i] = 0;
            }
        nu = 0;
2287
        haveTempDstUMats = false;
2288 2289
    }

2290
    void addUMat(const UMat& m, bool dst)
2291 2292 2293 2294 2295
    {
        CV_Assert(nu < MAX_ARRS && m.u && m.u->urefcount > 0);
        u[nu] = m.u;
        CV_XADD(&m.u->urefcount, 1);
        nu++;
2296 2297
        if(dst && m.u->tempUMat())
            haveTempDstUMats = true;
2298
    }
2299

2300 2301
    void finit()
    {
2302
        cleanupUMats();
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
        if(e) { clReleaseEvent(e); e = 0; }
        release();
    }

    ~Impl()
    {
        if(handle)
            clReleaseKernel(handle);
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_kernel handle;
    cl_event e;
2317 2318 2319
    enum { MAX_ARRS = 16 };
    UMatData* u[MAX_ARRS];
    int nu;
2320
    bool haveTempDstUMats;
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
};

}}

extern "C"
{
static void CL_CALLBACK oclCleanupCallback(cl_event, cl_int, void *p)
{
    ((cv::ocl::Kernel::Impl*)p)->finit();
}

}

namespace cv { namespace ocl {

Kernel::Kernel()
{
    p = 0;
}

Kernel::Kernel(const char* kname, const Program& prog)
{
    p = 0;
    create(kname, prog);
}

2347 2348
Kernel::Kernel(const char* kname, const ProgramSource2& src,
               const String& buildopts, String* errmsg)
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
{
    p = 0;
    create(kname, src, buildopts, errmsg);
}

Kernel::Kernel(const Kernel& k)
{
    p = k.p;
    if(p)
        p->addref();
}

Kernel& Kernel::operator = (const Kernel& k)
{
    Impl* newp = (Impl*)k.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Kernel::~Kernel()
{
    if(p)
        p->release();
}

bool Kernel::create(const char* kname, const Program& prog)
{
    if(p)
        p->release();
    p = new Impl(kname, prog);
    if(p->handle == 0)
    {
        p->release();
        p = 0;
    }
    return p != 0;
}

2391 2392
bool Kernel::create(const char* kname, const ProgramSource2& src,
                    const String& buildopts, String* errmsg)
2393 2394 2395 2396 2397 2398
{
    if(p)
    {
        p->release();
        p = 0;
    }
2399 2400 2401
    String tempmsg;
    if( !errmsg ) errmsg = &tempmsg;
    const Program& prog = Context2::getDefault().getProg(src, buildopts, *errmsg);
2402 2403 2404 2405 2406 2407 2408 2409
    return create(kname, prog);
}

void* Kernel::ptr() const
{
    return p ? p->handle : 0;
}

2410
bool Kernel::empty() const
2411
{
2412 2413 2414 2415 2416 2417
    return ptr() == 0;
}

int Kernel::set(int i, const void* value, size_t sz)
{
    CV_Assert(i >= 0);
2418 2419
    if( i == 0 )
        p->cleanupUMats();
2420 2421 2422
    if( !p || !p->handle || clSetKernelArg(p->handle, (cl_uint)i, sz, value) < 0 )
        return -1;
    return i+1;
2423 2424
}

2425
int Kernel::set(int i, const UMat& m)
2426
{
2427
    return set(i, KernelArg(KernelArg::READ_WRITE, (UMat*)&m, 0, 0));
2428 2429
}

2430
int Kernel::set(int i, const KernelArg& arg)
2431
{
2432 2433 2434
    CV_Assert( i >= 0 );
    if( !p || !p->handle )
        return -1;
2435 2436
    if( i == 0 )
        p->cleanupUMats();
2437 2438
    if( arg.m )
    {
2439 2440
        int accessFlags = ((arg.flags & KernelArg::READ_ONLY) ? ACCESS_READ : 0) +
                          ((arg.flags & KernelArg::WRITE_ONLY) ? ACCESS_WRITE : 0);
I
Ilya Lavrenov 已提交
2441
        bool ptronly = (arg.flags & KernelArg::PTR_ONLY) != 0;
2442 2443
        cl_mem h = (cl_mem)arg.m->handle(accessFlags);

I
Ilya Lavrenov 已提交
2444 2445 2446
        if (ptronly)
            clSetKernelArg(p->handle, (cl_uint)i++, sizeof(h), &h);
        else if( arg.m->dims <= 2 )
2447
        {
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
            UMat2D u2d(*arg.m);
            clSetKernelArg(p->handle, (cl_uint)i, sizeof(h), &h);
            clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u2d.step), &u2d.step);
            clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u2d.offset), &u2d.offset);
            i += 3;

            if( !(arg.flags & KernelArg::NO_SIZE) )
            {
                int cols = u2d.cols*arg.wscale;
                clSetKernelArg(p->handle, (cl_uint)i, sizeof(u2d.rows), &u2d.rows);
2458
                clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(cols), &cols);
2459 2460
                i += 2;
            }
2461 2462 2463
        }
        else
        {
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
            UMat3D u3d(*arg.m);
            clSetKernelArg(p->handle, (cl_uint)i, sizeof(h), &h);
            clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.slicestep), &u3d.slicestep);
            clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.step), &u3d.step);
            clSetKernelArg(p->handle, (cl_uint)(i+3), sizeof(u3d.offset), &u3d.offset);
            i += 4;
            if( !(arg.flags & KernelArg::NO_SIZE) )
            {
                int cols = u3d.cols*arg.wscale;
                clSetKernelArg(p->handle, (cl_uint)i, sizeof(u3d.slices), &u3d.rows);
                clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.rows), &u3d.rows);
                clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.cols), &cols);
                i += 3;
            }
2478
        }
2479
        p->addUMat(*arg.m, (accessFlags & ACCESS_WRITE) != 0);
2480
        return i;
2481
    }
2482 2483
    clSetKernelArg(p->handle, (cl_uint)i, arg.sz, arg.obj);
    return i+1;
2484 2485 2486
}


2487
bool Kernel::run(int dims, size_t _globalsize[], size_t _localsize[],
2488
                 bool sync, const Queue& q)
2489
{
2490 2491
    if(!p || !p->handle || p->e != 0)
        return false;
2492

2493
    cl_command_queue qq = getQueue(q);
2494
    size_t offset[CV_MAX_DIM] = {0}, globalsize[CV_MAX_DIM] = {1,1,1};
2495
    size_t total = 1;
2496
    CV_Assert(_globalsize != 0);
2497 2498
    for (int i = 0; i < dims; i++)
    {
2499 2500
        size_t val = _localsize ? _localsize[i] :
            dims == 1 ? 64 : dims == 2 ? (16>>i) : dims == 3 ? (8>>(int)(i>0)) : 1;
2501
        CV_Assert( val > 0 );
2502 2503 2504 2505 2506
        total *= _globalsize[i];
        globalsize[i] = ((_globalsize[i] + val - 1)/val)*val;
    }
    if( total == 0 )
        return true;
2507 2508
    if( p->haveTempDstUMats )
        sync = true;
2509
    cl_int retval = clEnqueueNDRangeKernel(qq, p->handle, (cl_uint)dims,
2510
                                           offset, globalsize, _localsize, 0, 0,
2511 2512
                                           sync ? 0 : &p->e);
    if( sync || retval < 0 )
2513 2514
    {
        clFinish(qq);
2515
        p->cleanupUMats();
2516 2517 2518 2519 2520 2521
    }
    else
    {
        p->addref();
        clSetEventCallback(p->e, CL_COMPLETE, oclCleanupCallback, p);
    }
2522
    return retval >= 0;
2523 2524
}

2525
bool Kernel::runTask(bool sync, const Queue& q)
2526
{
2527 2528 2529
    if(!p || !p->handle || p->e != 0)
        return false;

2530
    cl_command_queue qq = getQueue(q);
2531 2532
    cl_int retval = clEnqueueTask(qq, p->handle, 0, 0, sync ? 0 : &p->e);
    if( sync || retval < 0 )
2533 2534
    {
        clFinish(qq);
2535
        p->cleanupUMats();
2536 2537 2538 2539 2540 2541
    }
    else
    {
        p->addref();
        clSetEventCallback(p->e, CL_COMPLETE, oclCleanupCallback, p);
    }
2542
    return retval >= 0;
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
}


size_t Kernel::workGroupSize() const
{
    if(!p)
        return 0;
    size_t val = 0, retsz = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_WORK_GROUP_SIZE,
                                    sizeof(val), &val, &retsz) >= 0 ? val : 0;
}

bool Kernel::compileWorkGroupSize(size_t wsz[]) const
{
    if(!p || !wsz)
        return 0;
    size_t retsz = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_COMPILE_WORK_GROUP_SIZE,
                                    sizeof(wsz[0]*3), wsz, &retsz) >= 0;
}

size_t Kernel::localMemSize() const
{
    if(!p)
        return 0;
    size_t retsz = 0;
    cl_ulong val = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_LOCAL_MEM_SIZE,
                                    sizeof(val), &val, &retsz) >= 0 ? (size_t)val : 0;
}

////////////////////////////////////////////////////////////////////////////////////////

struct Program::Impl
{
2581
    Impl(const ProgramSource2& _src,
2582 2583 2584
         const String& _buildflags, String& errmsg)
    {
        refcount = 1;
2585
        const Context2& ctx = Context2::getDefault();
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
        src = _src;
        buildflags = _buildflags;
        const String& srcstr = src.source();
        const char* srcptr = srcstr.c_str();
        size_t srclen = srcstr.size();
        cl_int retval = 0;

        handle = clCreateProgramWithSource((cl_context)ctx.ptr(), 1, &srcptr, &srclen, &retval);
        if( handle && retval >= 0 )
        {
I
Ilya Lavrenov 已提交
2596
            int i, n = (int)ctx.ndevices();
2597 2598 2599 2600
            AutoBuffer<void*> deviceListBuf(n+1);
            void** deviceList = deviceListBuf;
            for( i = 0; i < n; i++ )
                deviceList[i] = ctx.device(i).ptr();
2601

2602 2603 2604
            retval = clBuildProgram(handle, n,
                                    (const cl_device_id*)deviceList,
                                    buildflags.c_str(), 0, 0);
2605
            if( retval < 0 )
2606 2607
            {
                size_t retsz = 0;
2608 2609
                retval = clGetProgramBuildInfo(handle, (cl_device_id)deviceList[0],
                                               CL_PROGRAM_BUILD_LOG, 0, 0, &retsz);
I
Ilya Lavrenov 已提交
2610
                if( retval >= 0 && retsz > 1 )
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
                {
                    AutoBuffer<char> bufbuf(retsz + 16);
                    char* buf = bufbuf;
                    retval = clGetProgramBuildInfo(handle, (cl_device_id)deviceList[0],
                                                   CL_PROGRAM_BUILD_LOG, retsz+1, buf, &retsz);
                    if( retval >= 0 )
                    {
                        errmsg = String(buf);
                        CV_Error_(Error::StsAssert, ("OpenCL program can not be built: %s", errmsg.c_str()));
                    }
                }
2622
            }
2623
            CV_Assert(retval >= 0);
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
        }
    }

    Impl(const String& _buf, const String& _buildflags)
    {
        refcount = 1;
        handle = 0;
        buildflags = _buildflags;
        if(_buf.empty())
            return;
        String prefix0 = Program::getPrefix(buildflags);
2635
        const Context2& ctx = Context2::getDefault();
2636 2637
        const Device& dev = Device::getDefault();
        const char* pos0 = _buf.c_str();
2638
        const char* pos1 = strchr(pos0, '\n');
2639 2640
        if(!pos1)
            return;
2641
        const char* pos2 = strchr(pos1+1, '\n');
2642 2643
        if(!pos2)
            return;
2644
        const char* pos3 = strchr(pos2+1, '\n');
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
        if(!pos3)
            return;
        size_t prefixlen = (pos3 - pos0)+1;
        String prefix(pos0, prefixlen);
        if( prefix != prefix0 )
            return;
        const uchar* bin = (uchar*)(pos3+1);
        void* devid = dev.ptr();
        size_t codelen = _buf.length() - prefixlen;
        cl_int binstatus = 0, retval = 0;
        handle = clCreateProgramWithBinary((cl_context)ctx.ptr(), 1, (cl_device_id*)&devid,
                                           &codelen, &bin, &binstatus, &retval);
    }

    String store()
    {
        if(!handle)
            return String();
        size_t progsz = 0, retsz = 0;
        String prefix = Program::getPrefix(buildflags);
        size_t prefixlen = prefix.length();
        if(clGetProgramInfo(handle, CL_PROGRAM_BINARY_SIZES, sizeof(progsz), &progsz, &retsz) < 0)
            return String();
        AutoBuffer<uchar> bufbuf(prefixlen + progsz + 16);
        uchar* buf = bufbuf;
        memcpy(buf, prefix.c_str(), prefixlen);
        buf += prefixlen;
        if(clGetProgramInfo(handle, CL_PROGRAM_BINARIES, sizeof(buf), &buf, &retsz) < 0)
            return String();
        buf[progsz] = (uchar)'\0';
        return String((const char*)(uchar*)bufbuf, prefixlen + progsz);
    }

    ~Impl()
    {
        if( handle )
            clReleaseProgram(handle);
    }

    IMPLEMENT_REFCOUNTABLE();

2686
    ProgramSource2 src;
2687 2688 2689 2690 2691 2692 2693
    String buildflags;
    cl_program handle;
};


Program::Program() { p = 0; }

2694
Program::Program(const ProgramSource2& src,
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
        const String& buildflags, String& errmsg)
{
    p = 0;
    create(src, buildflags, errmsg);
}

Program::Program(const Program& prog)
{
    p = prog.p;
    if(p)
        p->addref();
}

Program& Program::operator = (const Program& prog)
{
    Impl* newp = (Impl*)prog.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Program::~Program()
{
    if(p)
        p->release();
}

2725
bool Program::create(const ProgramSource2& src,
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
            const String& buildflags, String& errmsg)
{
    if(p)
        p->release();
    p = new Impl(src, buildflags, errmsg);
    if(!p->handle)
    {
        p->release();
        p = 0;
    }
    return p != 0;
}

2739
const ProgramSource2& Program::source() const
2740
{
2741
    static ProgramSource2 dummy;
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
    return p ? p->src : dummy;
}

void* Program::ptr() const
{
    return p ? p->handle : 0;
}

bool Program::read(const String& bin, const String& buildflags)
{
    if(p)
        p->release();
    p = new Impl(bin, buildflags);
    return p->handle != 0;
}

bool Program::write(String& bin) const
{
    if(!p)
        return false;
    bin = p->store();
    return !bin.empty();
}

String Program::getPrefix() const
{
    if(!p)
        return String();
    return getPrefix(p->buildflags);
}

String Program::getPrefix(const String& buildflags)
{
2775
    const Context2& ctx = Context2::getDefault();
2776 2777 2778 2779 2780 2781 2782
    const Device& dev = ctx.device(0);
    return format("name=%s\ndriver=%s\nbuildflags=%s\n",
                  dev.name().c_str(), dev.driverVersion().c_str(), buildflags.c_str());
}

////////////////////////////////////////////////////////////////////////////////////////

2783
struct ProgramSource2::Impl
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
{
    Impl(const char* _src)
    {
        init(String(_src));
    }
    Impl(const String& _src)
    {
        init(_src);
    }
    void init(const String& _src)
    {
        refcount = 1;
        src = _src;
        h = crc64((uchar*)src.c_str(), src.size());
    }

    IMPLEMENT_REFCOUNTABLE();
    String src;
2802
    ProgramSource2::hash_t h;
2803 2804 2805
};


2806
ProgramSource2::ProgramSource2()
2807 2808 2809 2810
{
    p = 0;
}

2811
ProgramSource2::ProgramSource2(const char* prog)
2812 2813 2814 2815
{
    p = new Impl(prog);
}

2816
ProgramSource2::ProgramSource2(const String& prog)
2817 2818 2819 2820
{
    p = new Impl(prog);
}

2821
ProgramSource2::~ProgramSource2()
2822 2823 2824 2825 2826
{
    if(p)
        p->release();
}

2827
ProgramSource2::ProgramSource2(const ProgramSource2& prog)
2828 2829 2830 2831 2832 2833
{
    p = prog.p;
    if(p)
        p->addref();
}

2834
ProgramSource2& ProgramSource2::operator = (const ProgramSource2& prog)
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
{
    Impl* newp = (Impl*)prog.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

2845
const String& ProgramSource2::source() const
2846 2847 2848 2849 2850
{
    static String dummy;
    return p ? p->src : dummy;
}

2851
ProgramSource2::hash_t ProgramSource2::hash() const
2852 2853 2854 2855 2856 2857 2858 2859 2860
{
    return p ? p->h : 0;
}

//////////////////////////////////////////////////////////////////////////////////////////////

class OpenCLAllocator : public MatAllocator
{
public:
2861
    OpenCLAllocator() { matStdAllocator = Mat::getStdAllocator(); }
2862

2863
    UMatData* defaultAllocate(int dims, const int* sizes, int type, void* data, size_t* step, int flags) const
2864
    {
2865
        UMatData* u = matStdAllocator->allocate(dims, sizes, type, data, step, flags);
2866 2867 2868
        return u;
    }

2869
    void getBestFlags(const Context2& ctx, int /*flags*/, int& createFlags, int& flags0) const
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
    {
        const Device& dev = ctx.device(0);
        createFlags = CL_MEM_READ_WRITE;

        if( dev.hostUnifiedMemory() )
            flags0 = 0;
        else
            flags0 = UMatData::COPY_ON_MAP;
    }

2880 2881
    UMatData* allocate(int dims, const int* sizes, int type,
                       void* data, size_t* step, int flags) const
2882 2883
    {
        if(!useOpenCL())
2884 2885
            return defaultAllocate(dims, sizes, type, data, step, flags);
        CV_Assert(data == 0);
2886 2887 2888 2889 2890 2891 2892 2893
        size_t total = CV_ELEM_SIZE(type);
        for( int i = dims-1; i >= 0; i-- )
        {
            if( step )
                step[i] = total;
            total *= sizes[i];
        }

2894
        Context2& ctx = Context2::getDefault();
2895
        int createFlags = 0, flags0 = 0;
2896
        getBestFlags(ctx, flags, createFlags, flags0);
2897 2898 2899 2900 2901

        cl_int retval = 0;
        void* handle = clCreateBuffer((cl_context)ctx.ptr(),
                                      createFlags, total, 0, &retval);
        if( !handle || retval < 0 )
2902
            return defaultAllocate(dims, sizes, type, data, step, flags);
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
        UMatData* u = new UMatData(this);
        u->data = 0;
        u->size = total;
        u->handle = handle;
        u->flags = flags0;

        return u;
    }

    bool allocate(UMatData* u, int accessFlags) const
    {
        if(!u)
            return false;

        UMatDataAutoLock lock(u);

        if(u->handle == 0)
        {
            CV_Assert(u->origdata != 0);
2922
            Context2& ctx = Context2::getDefault();
2923
            int createFlags = 0, flags0 = 0;
2924
            getBestFlags(ctx, accessFlags, createFlags, flags0);
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947

            cl_context ctx_handle = (cl_context)ctx.ptr();
            cl_int retval = 0;
            int tempUMatFlags = UMatData::TEMP_UMAT;
            u->handle = clCreateBuffer(ctx_handle, CL_MEM_USE_HOST_PTR|createFlags,
                                       u->size, u->origdata, &retval);
            if((!u->handle || retval < 0) && !(accessFlags & ACCESS_FAST))
            {
                u->handle = clCreateBuffer(ctx_handle, CL_MEM_COPY_HOST_PTR|createFlags,
                                           u->size, u->origdata, &retval);
                tempUMatFlags = UMatData::TEMP_COPIED_UMAT;
            }
            if(!u->handle || retval < 0)
                return false;
            u->prevAllocator = u->currAllocator;
            u->currAllocator = this;
            u->flags |= tempUMatFlags;
        }
        if(accessFlags & ACCESS_WRITE)
            u->markHostCopyObsolete(true);
        return true;
    }

2948
    /*void sync(UMatData* u) const
2949 2950
    {
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
2951 2952
        UMatDataAutoLock lock(u);

2953
        if( u->hostCopyObsolete() && u->handle && u->refcount > 0 && u->origdata)
2954
        {
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
            if( u->tempCopiedUMat() )
            {
                clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                    u->size, u->origdata, 0, 0, 0);
            }
            else
            {
                cl_int retval = 0;
                void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                                (CL_MAP_READ | CL_MAP_WRITE),
                                                0, u->size, 0, 0, 0, &retval);
                clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0);
                clFinish(q);
            }
2969 2970 2971 2972 2973 2974 2975
            u->markHostCopyObsolete(false);
        }
        else if( u->copyOnMap() && u->deviceCopyObsolete() && u->data )
        {
            clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                 u->size, u->data, 0, 0, 0);
        }
2976
    }*/
2977

2978 2979 2980 2981 2982
    void deallocate(UMatData* u) const
    {
        if(!u)
            return;

A
Alexander Alekhin 已提交
2983 2984 2985
        CV_Assert(u->urefcount >= 0);
        CV_Assert(u->refcount >= 0);

2986
        // TODO: !!! when we add Shared Virtual Memory Support,
2987
        // this function (as well as the others) should be corrected
2988 2989 2990
        CV_Assert(u->handle != 0 && u->urefcount == 0);
        if(u->tempUMat())
        {
2991
            UMatDataAutoLock lock(u);
2992
            if( u->hostCopyObsolete() && u->refcount > 0 )
2993
            {
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
                cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
                if( u->tempCopiedUMat() )
                {
                    clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                        u->size, u->origdata, 0, 0, 0);
                }
                else
                {
                    cl_int retval = 0;
                    void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                                    (CL_MAP_READ | CL_MAP_WRITE),
                                                    0, u->size, 0, 0, 0, &retval);
                    clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0);
                    clFinish(q);
                }
3009 3010 3011
            }
            u->markHostCopyObsolete(false);
            clReleaseMemObject((cl_mem)u->handle);
K
Konstantin Matskevich 已提交
3012
            u->handle = 0;
3013
            u->currAllocator = u->prevAllocator;
3014
            if(u->data && u->copyOnMap() && !(u->flags & UMatData::USER_ALLOCATED))
3015 3016
                fastFree(u->data);
            u->data = u->origdata;
3017 3018 3019 3020 3021
            if(u->refcount == 0)
                u->currAllocator->deallocate(u);
        }
        else
        {
3022
            CV_Assert(u->refcount == 0);
3023 3024
            if(u->data && u->copyOnMap() && !(u->flags & UMatData::USER_ALLOCATED))
            {
3025
                fastFree(u->data);
3026 3027
                u->data = 0;
            }
3028
            clReleaseMemObject((cl_mem)u->handle);
K
Konstantin Matskevich 已提交
3029
            u->handle = 0;
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
            delete u;
        }
    }

    void map(UMatData* u, int accessFlags) const
    {
        if(!u)
            return;

        CV_Assert( u->handle != 0 );

        UMatDataAutoLock autolock(u);

        if(accessFlags & ACCESS_WRITE)
            u->markDeviceCopyObsolete(true);

        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

        if( u->refcount == 0 )
        {
            if( !u->copyOnMap() )
            {
                CV_Assert(u->data == 0);
                // because there can be other map requests for the same UMat with different access flags,
                // we use the universal (read-write) access mode.
                cl_int retval = 0;
                u->data = (uchar*)clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                                     (CL_MAP_READ | CL_MAP_WRITE),
                                                     0, u->size, 0, 0, 0, &retval);
                if(u->data && retval >= 0)
                {
                    u->markHostCopyObsolete(false);
                    return;
                }

                // if map failed, switch to copy-on-map mode for the particular buffer
                u->flags |= UMatData::COPY_ON_MAP;
            }

            if(!u->data)
            {
                u->data = (uchar*)fastMalloc(u->size);
                u->markHostCopyObsolete(true);
            }
        }

        if( (accessFlags & ACCESS_READ) != 0 && u->hostCopyObsolete() )
        {
            CV_Assert( clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                           u->size, u->data, 0, 0, 0) >= 0 );
            u->markHostCopyObsolete(false);
        }
    }

    void unmap(UMatData* u) const
    {
        if(!u)
            return;

        CV_Assert(u->handle != 0);

        UMatDataAutoLock autolock(u);

        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
3094
        cl_int retval = 0;
3095 3096
        if( !u->copyOnMap() && u->data )
        {
3097 3098 3099
            CV_Assert( (retval = clEnqueueUnmapMemObject(q,
                                (cl_mem)u->handle, u->data, 0, 0, 0)) >= 0 );
            clFinish(q);
3100 3101 3102 3103
            u->data = 0;
        }
        else if( u->copyOnMap() && u->deviceCopyObsolete() )
        {
3104 3105
            CV_Assert( (retval = clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                u->size, u->data, 0, 0, 0)) >= 0 );
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
        }
        u->markDeviceCopyObsolete(false);
        u->markHostCopyObsolete(false);
    }

    bool checkContinuous(int dims, const size_t sz[],
                         const size_t srcofs[], const size_t srcstep[],
                         const size_t dstofs[], const size_t dststep[],
                         size_t& total, size_t new_sz[],
                         size_t& srcrawofs, size_t new_srcofs[], size_t new_srcstep[],
                         size_t& dstrawofs, size_t new_dstofs[], size_t new_dststep[]) const
    {
        bool iscontinuous = true;
        srcrawofs = srcofs ? srcofs[dims-1] : 0;
        dstrawofs = dstofs ? dstofs[dims-1] : 0;
        total = sz[dims-1];
        for( int i = dims-2; i >= 0; i-- )
        {
3124
            if( i >= 0 && (total != srcstep[i] || total != dststep[i]) )
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
                iscontinuous = false;
            total *= sz[i];
            if( srcofs )
                srcrawofs += srcofs[i]*srcstep[i];
            if( dstofs )
                dstrawofs += dstofs[i]*dststep[i];
        }

        if( !iscontinuous )
        {
            // OpenCL uses {x, y, z} order while OpenCV uses {z, y, x} order.
            if( dims == 2 )
            {
                new_sz[0] = sz[1]; new_sz[1] = sz[0]; new_sz[2] = 1;
                // we assume that new_... arrays are initialized by caller
                // with 0's, so there is no else branch
                if( srcofs )
                {
                    new_srcofs[0] = srcofs[1];
                    new_srcofs[1] = srcofs[0];
                    new_srcofs[2] = 0;
                }

                if( dstofs )
                {
                    new_dstofs[0] = dstofs[1];
                    new_dstofs[1] = dstofs[0];
                    new_dstofs[2] = 0;
                }

                new_srcstep[0] = srcstep[0]; new_srcstep[1] = 0;
                new_dststep[0] = dststep[0]; new_dststep[1] = 0;
            }
            else
            {
                // we could check for dims == 3 here,
                // but from user perspective this one is more informative
                CV_Assert(dims <= 3);
                new_sz[0] = sz[2]; new_sz[1] = sz[1]; new_sz[2] = sz[0];
                if( srcofs )
                {
                    new_srcofs[0] = srcofs[2];
                    new_srcofs[1] = srcofs[1];
                    new_srcofs[2] = srcofs[0];
                }

                if( dstofs )
                {
                    new_dstofs[0] = dstofs[2];
                    new_dstofs[1] = dstofs[1];
                    new_dstofs[2] = dstofs[0];
                }

                new_srcstep[0] = srcstep[1]; new_srcstep[1] = srcstep[0];
                new_dststep[0] = dststep[1]; new_dststep[1] = dststep[0];
            }
        }
        return iscontinuous;
    }

    void download(UMatData* u, void* dstptr, int dims, const size_t sz[],
                  const size_t srcofs[], const size_t srcstep[],
                  const size_t dststep[]) const
    {
        if(!u)
            return;
        UMatDataAutoLock autolock(u);

        if( u->data && !u->hostCopyObsolete() )
        {
            Mat::getStdAllocator()->download(u, dstptr, dims, sz, srcofs, srcstep, dststep);
            return;
        }
        CV_Assert( u->handle != 0 );

        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

        size_t total = 0, new_sz[] = {0, 0, 0};
        size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
        size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};

        bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, 0, dststep,
                                            total, new_sz,
                                            srcrawofs, new_srcofs, new_srcstep,
                                            dstrawofs, new_dstofs, new_dststep);
        if( iscontinuous )
        {
            CV_Assert( clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                           srcrawofs, total, dstptr, 0, 0, 0) >= 0 );
        }
        else
        {
            CV_Assert( clEnqueueReadBufferRect(q, (cl_mem)u->handle, CL_TRUE,
                            new_srcofs, new_dstofs, new_sz, new_srcstep[0], new_srcstep[1],
                            new_dststep[0], new_dststep[1], dstptr, 0, 0, 0) >= 0 );
        }
    }

    void upload(UMatData* u, const void* srcptr, int dims, const size_t sz[],
                const size_t dstofs[], const size_t dststep[],
                const size_t srcstep[]) const
    {
        if(!u)
            return;

        // there should be no user-visible CPU copies of the UMat which we are going to copy to
3231
        CV_Assert(u->refcount == 0 || u->tempUMat());
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261

        size_t total = 0, new_sz[] = {0, 0, 0};
        size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
        size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};

        bool iscontinuous = checkContinuous(dims, sz, 0, srcstep, dstofs, dststep,
                                            total, new_sz,
                                            srcrawofs, new_srcofs, new_srcstep,
                                            dstrawofs, new_dstofs, new_dststep);

        UMatDataAutoLock autolock(u);

        // if there is cached CPU copy of the GPU matrix,
        // we could use it as a destination.
        // we can do it in 2 cases:
        //    1. we overwrite the whole content
        //    2. we overwrite part of the matrix, but the GPU copy is out-of-date
        if( u->data && (u->hostCopyObsolete() <= u->deviceCopyObsolete() || total == u->size))
        {
            Mat::getStdAllocator()->upload(u, srcptr, dims, sz, dstofs, dststep, srcstep);
            u->markHostCopyObsolete(false);
            u->markDeviceCopyObsolete(true);
            return;
        }

        CV_Assert( u->handle != 0 );
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

        if( iscontinuous )
        {
3262 3263 3264
            int crc = 0;
            for( size_t i = 0; i < total; i++ )
                crc ^= ((uchar*)srcptr)[i];
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
            CV_Assert( clEnqueueWriteBuffer(q, (cl_mem)u->handle,
                CL_TRUE, dstrawofs, total, srcptr, 0, 0, 0) >= 0 );
        }
        else
        {
            CV_Assert( clEnqueueWriteBufferRect(q, (cl_mem)u->handle, CL_TRUE,
                new_dstofs, new_srcofs, new_sz, new_dststep[0], new_dststep[1],
                new_srcstep[0], new_srcstep[1], srcptr, 0, 0, 0) >= 0 );
        }

        u->markHostCopyObsolete(true);
        u->markDeviceCopyObsolete(false);

        clFinish(q);
    }

    void copy(UMatData* src, UMatData* dst, int dims, const size_t sz[],
              const size_t srcofs[], const size_t srcstep[],
3283
              const size_t dstofs[], const size_t dststep[], bool _sync) const
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
    {
        if(!src || !dst)
            return;

        size_t total = 0, new_sz[] = {0, 0, 0};
        size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
        size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};

        bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, dstofs, dststep,
                                            total, new_sz,
                                            srcrawofs, new_srcofs, new_srcstep,
                                            dstrawofs, new_dstofs, new_dststep);

        UMatDataAutoLock src_autolock(src);
        UMatDataAutoLock dst_autolock(dst);

        if( !src->handle || (src->data && src->hostCopyObsolete() <= src->deviceCopyObsolete()) )
        {
            upload(dst, src->data + srcrawofs, dims, sz, dstofs, dststep, srcstep);
            return;
        }
        if( !dst->handle || (dst->data && dst->hostCopyObsolete() <= dst->deviceCopyObsolete()) )
        {
            download(src, dst->data + dstrawofs, dims, sz, srcofs, srcstep, dststep);
            dst->markHostCopyObsolete(false);
            dst->markDeviceCopyObsolete(true);
            return;
        }

        // there should be no user-visible CPU copies of the UMat which we are going to copy to
        CV_Assert(dst->refcount == 0);
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

        if( iscontinuous )
        {
            CV_Assert( clEnqueueCopyBuffer(q, (cl_mem)src->handle, (cl_mem)dst->handle,
                                           srcrawofs, dstrawofs, total, 0, 0, 0) >= 0 );
        }
        else
        {
3324 3325
            cl_int retval;
            CV_Assert( (retval = clEnqueueCopyBufferRect(q, (cl_mem)src->handle, (cl_mem)dst->handle,
3326
                                               new_srcofs, new_dstofs, new_sz,
3327 3328
                                               new_srcstep[0], new_srcstep[1],
                                               new_dststep[0], new_dststep[1],
3329
                                               0, 0, 0)) >= 0 );
3330 3331 3332 3333 3334
        }

        dst->markHostCopyObsolete(true);
        dst->markDeviceCopyObsolete(false);

3335
        if( _sync )
3336 3337
            clFinish(q);
    }
3338 3339

    MatAllocator* matStdAllocator;
3340 3341 3342 3343 3344 3345 3346 3347
};

MatAllocator* getOpenCLAllocator()
{
    static OpenCLAllocator allocator;
    return &allocator;
}

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
const char* typeToStr(int t)
{
    static const char* tab[]=
    {
        "uchar", "uchar2", "uchar3", "uchar4",
        "char", "char2", "char3", "char4",
        "ushort", "ushort2", "ushort3", "ushort4",
        "short", "short2", "short3", "short4",
        "int", "int2", "int3", "int4",
        "float", "float2", "float3", "float4",
        "double", "double2", "double3", "double4",
        "?", "?", "?", "?"
    };
    int cn = CV_MAT_CN(t);
V
Vadim Pisarevsky 已提交
3362
    return cn > 4 ? "?" : tab[CV_MAT_DEPTH(t)*4 + cn-1];
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
}

const char* memopTypeToStr(int t)
{
    static const char* tab[]=
    {
        "uchar", "uchar2", "uchar3", "uchar4",
        "uchar", "uchar2", "uchar3", "uchar4",
        "ushort", "ushort2", "ushort3", "ushort4",
        "ushort", "ushort2", "ushort3", "ushort4",
        "int", "int2", "int3", "int4",
        "int", "int2", "int3", "int4",
3375
        "int2", "int4", "?", "int8",
3376 3377 3378
        "?", "?", "?", "?"
    };
    int cn = CV_MAT_CN(t);
V
Vadim Pisarevsky 已提交
3379
    return cn > 4 ? "?" : tab[CV_MAT_DEPTH(t)*4 + cn-1];
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
}

const char* convertTypeStr(int sdepth, int ddepth, int cn, char* buf)
{
    if( sdepth == ddepth )
        return "noconvert";
    const char *typestr = typeToStr(CV_MAKETYPE(ddepth, cn));
    if( ddepth >= CV_32F ||
        (ddepth == CV_32S && sdepth < CV_32S) ||
        (ddepth == CV_16S && sdepth <= CV_8S) ||
        (ddepth == CV_16U && sdepth == CV_8U))
    {
        sprintf(buf, "convert_%s", typestr);
    }
    else if( sdepth >= CV_32F )
    {
        sprintf(buf, "convert_%s%s_rte", typestr, (ddepth < CV_32S ? "_sat" : ""));
    }
    else
    {
        sprintf(buf, "convert_%s_sat", typestr);
    }
    return buf;
}

3405
}}