lkpyramid.cpp 57.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
10
//                           License Agreement
11 12 13
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
14
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
15 16 17 18 19 20 21 22 23 24 25 26
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
27
//   * The name of the copyright holders may not be used to endorse or promote products
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <float.h>
#include <stdio.h>
45
#include "lkpyramid.hpp"
A
Alexander Alekhin 已提交
46
#include "opencl_kernels_video.hpp"
47

48 49
#define  CV_DESCALE(x,n)     (((x) + (1 << ((n)-1))) >> (n))

50
namespace
51
{
52
static void calcSharrDeriv(const cv::Mat& src, cv::Mat& dst)
53
{
54 55
    using namespace cv;
    using cv::detail::deriv_type;
56 57 58
    int rows = src.rows, cols = src.cols, cn = src.channels(), colsn = cols*cn, depth = src.depth();
    CV_Assert(depth == CV_8U);
    dst.create(rows, cols, CV_MAKETYPE(DataType<deriv_type>::depth, cn*2));
59

60
#ifdef HAVE_TEGRA_OPTIMIZATION
61
    if (tegra::useTegra() && tegra::calcSharrDeriv(src, dst))
62
        return;
63 64
#endif

65 66 67
    int x, y, delta = (int)alignSize((cols + 2)*cn, 16);
    AutoBuffer<deriv_type> _tempBuf(delta*2 + 64);
    deriv_type *trow0 = alignPtr(_tempBuf + cn, 16), *trow1 = alignPtr(trow0 + delta, 16);
68

69 70 71
#if CV_SSE2
    __m128i z = _mm_setzero_si128(), c3 = _mm_set1_epi16(3), c10 = _mm_set1_epi16(10);
#endif
72

73 74 75 76 77 78 79 80
#if CV_NEON
    const uint16x8_t q8 = vdupq_n_u16(3);
    const uint8x8_t d18 = vdup_n_u8(10);

    const int16x8_t q8i = vdupq_n_s16(3);
    const int16x8_t q9 = vdupq_n_s16(10);
#endif

81
    for( y = 0; y < rows; y++ )
82
    {
83 84 85 86
        const uchar* srow0 = src.ptr<uchar>(y > 0 ? y-1 : rows > 1 ? 1 : 0);
        const uchar* srow1 = src.ptr<uchar>(y);
        const uchar* srow2 = src.ptr<uchar>(y < rows-1 ? y+1 : rows > 1 ? rows-2 : 0);
        deriv_type* drow = dst.ptr<deriv_type>(y);
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101
        // do vertical convolution
        x = 0;
#if CV_SSE2
        for( ; x <= colsn - 8; x += 8 )
        {
            __m128i s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow0 + x)), z);
            __m128i s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow1 + x)), z);
            __m128i s2 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow2 + x)), z);
            __m128i t0 = _mm_add_epi16(_mm_mullo_epi16(_mm_add_epi16(s0, s2), c3), _mm_mullo_epi16(s1, c10));
            __m128i t1 = _mm_sub_epi16(s2, s0);
            _mm_store_si128((__m128i*)(trow0 + x), t0);
            _mm_store_si128((__m128i*)(trow1 + x), t1);
        }
#endif
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

#if CV_NEON
        for( ; x <= colsn - 8; x += 8)
        {
            uint8x8_t d0 = vld1_u8((const uint8_t*)&srow0[x]);
            uint8x8_t d1 = vld1_u8((const uint8_t*)&srow1[x]);
            uint8x8_t d2 = vld1_u8((const uint8_t*)&srow2[x]);
            uint16x8_t q4 = vaddl_u8(d0, d2);
            uint16x8_t q11 = vsubl_u8(d2, d0);
            uint16x8_t q5 = vmulq_u16(q4, q8);
            uint16x8_t q6 = vmull_u8(d1, d18);
            uint16x8_t q10 = vaddq_u16(q6, q5);
            vst1q_u16((uint16_t*)&trow0[x], q10);
            vst1q_u16((uint16_t*)&trow1[x], q11);

        }
#endif

120 121 122 123 124 125 126
        for( ; x < colsn; x++ )
        {
            int t0 = (srow0[x] + srow2[x])*3 + srow1[x]*10;
            int t1 = srow2[x] - srow0[x];
            trow0[x] = (deriv_type)t0;
            trow1[x] = (deriv_type)t1;
        }
127

128 129 130 131 132 133 134
        // make border
        int x0 = (cols > 1 ? 1 : 0)*cn, x1 = (cols > 1 ? cols-2 : 0)*cn;
        for( int k = 0; k < cn; k++ )
        {
            trow0[-cn + k] = trow0[x0 + k]; trow0[colsn + k] = trow0[x1 + k];
            trow1[-cn + k] = trow1[x0 + k]; trow1[colsn + k] = trow1[x1 + k];
        }
135

136 137 138 139 140 141 142 143 144 145
        // do horizontal convolution, interleave the results and store them to dst
        x = 0;
#if CV_SSE2
        for( ; x <= colsn - 8; x += 8 )
        {
            __m128i s0 = _mm_loadu_si128((const __m128i*)(trow0 + x - cn));
            __m128i s1 = _mm_loadu_si128((const __m128i*)(trow0 + x + cn));
            __m128i s2 = _mm_loadu_si128((const __m128i*)(trow1 + x - cn));
            __m128i s3 = _mm_load_si128((const __m128i*)(trow1 + x));
            __m128i s4 = _mm_loadu_si128((const __m128i*)(trow1 + x + cn));
146

147 148 149 150 151 152 153 154
            __m128i t0 = _mm_sub_epi16(s1, s0);
            __m128i t1 = _mm_add_epi16(_mm_mullo_epi16(_mm_add_epi16(s2, s4), c3), _mm_mullo_epi16(s3, c10));
            __m128i t2 = _mm_unpacklo_epi16(t0, t1);
            t0 = _mm_unpackhi_epi16(t0, t1);
            // this can probably be replaced with aligned stores if we aligned dst properly.
            _mm_storeu_si128((__m128i*)(drow + x*2), t2);
            _mm_storeu_si128((__m128i*)(drow + x*2 + 8), t0);
        }
155
#endif
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

#if CV_NEON
        for( ; x <= colsn - 8; x += 8 )
        {

            int16x8_t q0 = vld1q_s16((const int16_t*)&trow0[x+cn]);
            int16x8_t q1 = vld1q_s16((const int16_t*)&trow0[x-cn]);
            int16x8_t q2 = vld1q_s16((const int16_t*)&trow1[x+cn]);
            int16x8_t q3 = vld1q_s16((const int16_t*)&trow1[x-cn]);
            int16x8_t q5 = vsubq_s16(q0, q1);
            int16x8_t q6 = vaddq_s16(q2, q3);
            int16x8_t q4 = vld1q_s16((const int16_t*)&trow1[x]);
            int16x8_t q7 = vmulq_s16(q6, q8i);
            int16x8_t q10 = vmulq_s16(q4, q9);
            int16x8_t q11 = vaddq_s16(q7, q10);
            int16x4_t d22 = vget_low_s16(q11);
            int16x4_t d23 = vget_high_s16(q11);
            int16x4_t d11 = vget_high_s16(q5);
            int16x4_t d10 = vget_low_s16(q5);
            int16x4x2_t q5x2, q11x2;
            q5x2.val[0] = d10; q5x2.val[1] = d22;
            q11x2.val[0] = d11; q11x2.val[1] = d23;
            vst2_s16((int16_t*)&drow[x*2], q5x2);
            vst2_s16((int16_t*)&drow[(x*2)+8], q11x2);

        }
#endif
183 184 185 186 187 188
        for( ; x < colsn; x++ )
        {
            deriv_type t0 = (deriv_type)(trow0[x+cn] - trow0[x-cn]);
            deriv_type t1 = (deriv_type)((trow1[x+cn] + trow1[x-cn])*3 + trow1[x]*10);
            drow[x*2] = t0; drow[x*2+1] = t1;
        }
189
    }
190
}
191

192
}//namespace
193

194 195
cv::detail::LKTrackerInvoker::LKTrackerInvoker(
                      const Mat& _prevImg, const Mat& _prevDeriv, const Mat& _nextImg,
196 197 198
                      const Point2f* _prevPts, Point2f* _nextPts,
                      uchar* _status, float* _err,
                      Size _winSize, TermCriteria _criteria,
199
                      int _level, int _maxLevel, int _flags, float _minEigThreshold )
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
{
    prevImg = &_prevImg;
    prevDeriv = &_prevDeriv;
    nextImg = &_nextImg;
    prevPts = _prevPts;
    nextPts = _nextPts;
    status = _status;
    err = _err;
    winSize = _winSize;
    criteria = _criteria;
    level = _level;
    maxLevel = _maxLevel;
    flags = _flags;
    minEigThreshold = _minEigThreshold;
}

216 217 218 219 220 221 222 223
#if defined __arm__ && !CV_NEON
typedef int64 acctype;
typedef int itemtype;
#else
typedef float acctype;
typedef float itemtype;
#endif

224
void cv::detail::LKTrackerInvoker::operator()(const Range& range) const
225 226 227 228 229
{
    Point2f halfWin((winSize.width-1)*0.5f, (winSize.height-1)*0.5f);
    const Mat& I = *prevImg;
    const Mat& J = *nextImg;
    const Mat& derivI = *prevDeriv;
230

231 232 233
    int j, cn = I.channels(), cn2 = cn*2;
    cv::AutoBuffer<deriv_type> _buf(winSize.area()*(cn + cn2));
    int derivDepth = DataType<deriv_type>::depth;
234

235 236
    Mat IWinBuf(winSize, CV_MAKETYPE(derivDepth, cn), (deriv_type*)_buf);
    Mat derivIWinBuf(winSize, CV_MAKETYPE(derivDepth, cn2), (deriv_type*)_buf + winSize.area()*cn);
237

238
    for( int ptidx = range.start; ptidx < range.end; ptidx++ )
239
    {
240 241 242 243 244 245 246 247 248 249 250 251
        Point2f prevPt = prevPts[ptidx]*(float)(1./(1 << level));
        Point2f nextPt;
        if( level == maxLevel )
        {
            if( flags & OPTFLOW_USE_INITIAL_FLOW )
                nextPt = nextPts[ptidx]*(float)(1./(1 << level));
            else
                nextPt = prevPt;
        }
        else
            nextPt = nextPts[ptidx]*2.f;
        nextPts[ptidx] = nextPt;
252

253 254 255 256
        Point2i iprevPt, inextPt;
        prevPt -= halfWin;
        iprevPt.x = cvFloor(prevPt.x);
        iprevPt.y = cvFloor(prevPt.y);
257

258 259
        if( iprevPt.x < -winSize.width || iprevPt.x >= derivI.cols ||
            iprevPt.y < -winSize.height || iprevPt.y >= derivI.rows )
260
        {
261
            if( level == 0 )
262
            {
263 264 265 266
                if( status )
                    status[ptidx] = false;
                if( err )
                    err[ptidx] = 0;
267
            }
268 269
            continue;
        }
270

271 272 273 274 275 276 277 278
        float a = prevPt.x - iprevPt.x;
        float b = prevPt.y - iprevPt.y;
        const int W_BITS = 14, W_BITS1 = 14;
        const float FLT_SCALE = 1.f/(1 << 20);
        int iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
        int iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
        int iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
        int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
279

280
        int dstep = (int)(derivI.step/derivI.elemSize1());
281 282
        int stepI = (int)(I.step/I.elemSize1());
        int stepJ = (int)(J.step/J.elemSize1());
283 284
        acctype iA11 = 0, iA12 = 0, iA22 = 0;
        float A11, A12, A22;
285

286 287 288 289 290 291 292 293
#if CV_SSE2
        __m128i qw0 = _mm_set1_epi32(iw00 + (iw01 << 16));
        __m128i qw1 = _mm_set1_epi32(iw10 + (iw11 << 16));
        __m128i z = _mm_setzero_si128();
        __m128i qdelta_d = _mm_set1_epi32(1 << (W_BITS1-1));
        __m128i qdelta = _mm_set1_epi32(1 << (W_BITS1-5-1));
        __m128 qA11 = _mm_setzero_ps(), qA12 = _mm_setzero_ps(), qA22 = _mm_setzero_ps();
#endif
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
#if CV_NEON

        int CV_DECL_ALIGNED(16) nA11[] = {0, 0, 0, 0}, nA12[] = {0, 0, 0, 0}, nA22[] = {0, 0, 0, 0};
        const int shifter1 = -(W_BITS - 5); //negative so it shifts right
        const int shifter2 = -(W_BITS);

        const int16x4_t d26 = vdup_n_s16((int16_t)iw00);
        const int16x4_t d27 = vdup_n_s16((int16_t)iw01);
        const int16x4_t d28 = vdup_n_s16((int16_t)iw10);
        const int16x4_t d29 = vdup_n_s16((int16_t)iw11);
        const int32x4_t q11 = vdupq_n_s32((int32_t)shifter1);
        const int32x4_t q12 = vdupq_n_s32((int32_t)shifter2);

#endif

310 311 312 313
        // extract the patch from the first image, compute covariation matrix of derivatives
        int x, y;
        for( y = 0; y < winSize.height; y++ )
        {
314 315
            const uchar* src = I.ptr() + (y + iprevPt.y)*stepI + iprevPt.x*cn;
            const deriv_type* dsrc = derivI.ptr<deriv_type>() + (y + iprevPt.y)*dstep + iprevPt.x*cn2;
316

317 318
            deriv_type* Iptr = IWinBuf.ptr<deriv_type>(y);
            deriv_type* dIptr = derivIWinBuf.ptr<deriv_type>(y);
319

320
            x = 0;
321

322 323
#if CV_SSE2
            for( ; x <= winSize.width*cn - 4; x += 4, dsrc += 4*2, dIptr += 4*2 )
324
            {
325
                __m128i v00, v01, v10, v11, t0, t1;
326

327 328
                v00 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x)), z);
                v01 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + cn)), z);
329 330
                v10 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + stepI)), z);
                v11 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + stepI + cn)), z);
331

332 333 334 335
                t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
                                   _mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
                t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5);
                _mm_storel_epi64((__m128i*)(Iptr + x), _mm_packs_epi32(t0,t0));
336

337 338 339 340
                v00 = _mm_loadu_si128((const __m128i*)(dsrc));
                v01 = _mm_loadu_si128((const __m128i*)(dsrc + cn2));
                v10 = _mm_loadu_si128((const __m128i*)(dsrc + dstep));
                v11 = _mm_loadu_si128((const __m128i*)(dsrc + dstep + cn2));
341

342 343 344 345 346 347 348
                t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
                                   _mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
                t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0),
                                   _mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1));
                t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta_d), W_BITS1);
                t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta_d), W_BITS1);
                v00 = _mm_packs_epi32(t0, t1); // Ix0 Iy0 Ix1 Iy1 ...
349

350 351 352
                _mm_storeu_si128((__m128i*)dIptr, v00);
                t0 = _mm_srai_epi32(v00, 16); // Iy0 Iy1 Iy2 Iy3
                t1 = _mm_srai_epi32(_mm_slli_epi32(v00, 16), 16); // Ix0 Ix1 Ix2 Ix3
353

354 355
                __m128 fy = _mm_cvtepi32_ps(t0);
                __m128 fx = _mm_cvtepi32_ps(t1);
356

357 358 359
                qA22 = _mm_add_ps(qA22, _mm_mul_ps(fy, fy));
                qA12 = _mm_add_ps(qA12, _mm_mul_ps(fx, fy));
                qA11 = _mm_add_ps(qA11, _mm_mul_ps(fx, fx));
360
            }
361
#endif
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
#if CV_NEON
            for( ; x <= winSize.width*cn - 4; x += 4, dsrc += 4*2, dIptr += 4*2 )
            {

                uint8x8_t d0 = vld1_u8(&src[x]);
                uint8x8_t d2 = vld1_u8(&src[x+cn]);
                uint16x8_t q0 = vmovl_u8(d0);
                uint16x8_t q1 = vmovl_u8(d2);

                int32x4_t q5 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q0)), d26);
                int32x4_t q6 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q1)), d27);

                uint8x8_t d4 = vld1_u8(&src[x + stepI]);
                uint8x8_t d6 = vld1_u8(&src[x + stepI + cn]);
                uint16x8_t q2 = vmovl_u8(d4);
                uint16x8_t q3 = vmovl_u8(d6);

                int32x4_t q7 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q2)), d28);
                int32x4_t q8 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q3)), d29);

                q5 = vaddq_s32(q5, q6);
                q7 = vaddq_s32(q7, q8);
                q5 = vaddq_s32(q5, q7);

                int16x4x2_t d0d1 = vld2_s16(dsrc);
                int16x4x2_t d2d3 = vld2_s16(&dsrc[cn2]);

                q5 = vqrshlq_s32(q5, q11);

                int32x4_t q4 = vmull_s16(d0d1.val[0], d26);
                q6 = vmull_s16(d0d1.val[1], d26);

                int16x4_t nd0 = vmovn_s32(q5);

                q7 = vmull_s16(d2d3.val[0], d27);
                q8 = vmull_s16(d2d3.val[1], d27);

                vst1_s16(&Iptr[x], nd0);

                int16x4x2_t d4d5 = vld2_s16(&dsrc[dstep]);
                int16x4x2_t d6d7 = vld2_s16(&dsrc[dstep+cn2]);

                q4 = vaddq_s32(q4, q7);
                q6 = vaddq_s32(q6, q8);

                q7 = vmull_s16(d4d5.val[0], d28);
                int32x4_t nq0 = vmull_s16(d4d5.val[1], d28);
                q8 = vmull_s16(d6d7.val[0], d29);
                int32x4_t q15 = vmull_s16(d6d7.val[1], d29);

                q7 = vaddq_s32(q7, q8);
                nq0 = vaddq_s32(nq0, q15);

                q4 = vaddq_s32(q4, q7);
                q6 = vaddq_s32(q6, nq0);

                int32x4_t nq1 = vld1q_s32(nA12);
                int32x4_t nq2 = vld1q_s32(nA22);
                nq0 = vld1q_s32(nA11);

                q4 = vqrshlq_s32(q4, q12);
                q6 = vqrshlq_s32(q6, q12);

                q7 = vmulq_s32(q4, q4);
                q8 = vmulq_s32(q4, q6);
                q15 = vmulq_s32(q6, q6);

                nq0 = vaddq_s32(nq0, q7);
                nq1 = vaddq_s32(nq1, q8);
                nq2 = vaddq_s32(nq2, q15);

                vst1q_s32(nA11, nq0);
                vst1q_s32(nA12, nq1);
                vst1q_s32(nA22, nq2);

                int16x4_t d8 = vmovn_s32(q4);
                int16x4_t d12 = vmovn_s32(q6);

                int16x4x2_t d8d12;
                d8d12.val[0] = d8; d8d12.val[1] = d12;
                vst2_s16(dIptr, d8d12);
            }
#endif

447 448 449
            for( ; x < winSize.width*cn; x++, dsrc += 2, dIptr += 2 )
            {
                int ival = CV_DESCALE(src[x]*iw00 + src[x+cn]*iw01 +
450
                                      src[x+stepI]*iw10 + src[x+stepI+cn]*iw11, W_BITS1-5);
451 452 453 454
                int ixval = CV_DESCALE(dsrc[0]*iw00 + dsrc[cn2]*iw01 +
                                       dsrc[dstep]*iw10 + dsrc[dstep+cn2]*iw11, W_BITS1);
                int iyval = CV_DESCALE(dsrc[1]*iw00 + dsrc[cn2+1]*iw01 + dsrc[dstep+1]*iw10 +
                                       dsrc[dstep+cn2+1]*iw11, W_BITS1);
455

456 457 458
                Iptr[x] = (short)ival;
                dIptr[0] = (short)ixval;
                dIptr[1] = (short)iyval;
459

460 461 462
                iA11 += (itemtype)(ixval*ixval);
                iA12 += (itemtype)(ixval*iyval);
                iA22 += (itemtype)(iyval*iyval);
463 464
            }
        }
465

466 467 468 469 470
#if CV_SSE2
        float CV_DECL_ALIGNED(16) A11buf[4], A12buf[4], A22buf[4];
        _mm_store_ps(A11buf, qA11);
        _mm_store_ps(A12buf, qA12);
        _mm_store_ps(A22buf, qA22);
471 472 473
        iA11 += A11buf[0] + A11buf[1] + A11buf[2] + A11buf[3];
        iA12 += A12buf[0] + A12buf[1] + A12buf[2] + A12buf[3];
        iA22 += A22buf[0] + A22buf[1] + A22buf[2] + A22buf[3];
474
#endif
475

476 477 478 479 480 481
#if CV_NEON
        iA11 += (float)(nA11[0] + nA11[1] + nA11[2] + nA11[3]);
        iA12 += (float)(nA12[0] + nA12[1] + nA12[2] + nA12[3]);
        iA22 += (float)(nA22[0] + nA22[1] + nA22[2] + nA22[3]);
#endif

482 483 484
        A11 = iA11*FLT_SCALE;
        A12 = iA12*FLT_SCALE;
        A22 = iA22*FLT_SCALE;
485

486 487 488
        float D = A11*A22 - A12*A12;
        float minEig = (A22 + A11 - std::sqrt((A11-A22)*(A11-A22) +
                        4.f*A12*A12))/(2*winSize.width*winSize.height);
489

490
        if( err && (flags & OPTFLOW_LK_GET_MIN_EIGENVALS) != 0 )
491
            err[ptidx] = (float)minEig;
492

493 494 495 496 497 498
        if( minEig < minEigThreshold || D < FLT_EPSILON )
        {
            if( level == 0 && status )
                status[ptidx] = false;
            continue;
        }
499

500
        D = 1.f/D;
501

502 503
        nextPt -= halfWin;
        Point2f prevDelta;
504

505 506 507 508
        for( j = 0; j < criteria.maxCount; j++ )
        {
            inextPt.x = cvFloor(nextPt.x);
            inextPt.y = cvFloor(nextPt.y);
509

510 511 512 513 514 515 516
            if( inextPt.x < -winSize.width || inextPt.x >= J.cols ||
               inextPt.y < -winSize.height || inextPt.y >= J.rows )
            {
                if( level == 0 && status )
                    status[ptidx] = false;
                break;
            }
517

518 519 520 521 522 523
            a = nextPt.x - inextPt.x;
            b = nextPt.y - inextPt.y;
            iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
            iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
            iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
            iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
524 525
            acctype ib1 = 0, ib2 = 0;
            float b1, b2;
526
#if CV_SSE2
527 528 529
            qw0 = _mm_set1_epi32(iw00 + (iw01 << 16));
            qw1 = _mm_set1_epi32(iw10 + (iw11 << 16));
            __m128 qb0 = _mm_setzero_ps(), qb1 = _mm_setzero_ps();
530
#endif
531

532 533 534 535 536 537 538 539 540 541
#if CV_NEON
            int CV_DECL_ALIGNED(16) nB1[] = {0,0,0,0}, nB2[] = {0,0,0,0};

            const int16x4_t d26_2 = vdup_n_s16((int16_t)iw00);
            const int16x4_t d27_2 = vdup_n_s16((int16_t)iw01);
            const int16x4_t d28_2 = vdup_n_s16((int16_t)iw10);
            const int16x4_t d29_2 = vdup_n_s16((int16_t)iw11);

#endif

542 543
            for( y = 0; y < winSize.height; y++ )
            {
544 545 546
                const uchar* Jptr = J.ptr() + (y + inextPt.y)*stepJ + inextPt.x*cn;
                const deriv_type* Iptr = IWinBuf.ptr<deriv_type>(y);
                const deriv_type* dIptr = derivIWinBuf.ptr<deriv_type>(y);
547

548
                x = 0;
549

550
#if CV_SSE2
551
                for( ; x <= winSize.width*cn - 8; x += 8, dIptr += 8*2 )
552
                {
553 554 555
                    __m128i diff0 = _mm_loadu_si128((const __m128i*)(Iptr + x)), diff1;
                    __m128i v00 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x)), z);
                    __m128i v01 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + cn)), z);
556 557
                    __m128i v10 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + stepJ)), z);
                    __m128i v11 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + stepJ + cn)), z);
558

559 560 561 562
                    __m128i t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
                                               _mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
                    __m128i t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0),
                                               _mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1));
563
                    t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5);
564 565 566 567
                    t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta), W_BITS1-5);
                    diff0 = _mm_subs_epi16(_mm_packs_epi32(t0, t1), diff0);
                    diff1 = _mm_unpackhi_epi16(diff0, diff0);
                    diff0 = _mm_unpacklo_epi16(diff0, diff0); // It0 It0 It1 It1 ...
568
                    v00 = _mm_loadu_si128((const __m128i*)(dIptr)); // Ix0 Iy0 Ix1 Iy1 ...
569
                    v01 = _mm_loadu_si128((const __m128i*)(dIptr + 8));
570 571 572 573 574 575
                    v10 = _mm_unpacklo_epi16(v00, v01);
                    v11 = _mm_unpackhi_epi16(v00, v01);
                    v00 = _mm_unpacklo_epi16(diff0, diff1);
                    v01 = _mm_unpackhi_epi16(diff0, diff1);
                    v00 = _mm_madd_epi16(v00, v10);
                    v11 = _mm_madd_epi16(v01, v11);
576
                    qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00));
577
                    qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v11));
578 579
                }
#endif
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
#if CV_NEON
                for( ; x <= winSize.width*cn - 8; x += 8, dIptr += 8*2 )
                {

                    uint8x8_t d0 = vld1_u8(&Jptr[x]);
                    uint8x8_t d2 = vld1_u8(&Jptr[x+cn]);
                    uint8x8_t d4 = vld1_u8(&Jptr[x+stepJ]);
                    uint8x8_t d6 = vld1_u8(&Jptr[x+stepJ+cn]);

                    uint16x8_t q0 = vmovl_u8(d0);
                    uint16x8_t q1 = vmovl_u8(d2);
                    uint16x8_t q2 = vmovl_u8(d4);
                    uint16x8_t q3 = vmovl_u8(d6);

                    int32x4_t nq4 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q0)), d26_2);
                    int32x4_t nq5 = vmull_s16(vget_high_s16(vreinterpretq_s16_u16(q0)), d26_2);

                    int32x4_t nq6 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q1)), d27_2);
                    int32x4_t nq7 = vmull_s16(vget_high_s16(vreinterpretq_s16_u16(q1)), d27_2);

                    int32x4_t nq8 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q2)), d28_2);
                    int32x4_t nq9 = vmull_s16(vget_high_s16(vreinterpretq_s16_u16(q2)), d28_2);

                    int32x4_t nq10 = vmull_s16(vget_low_s16(vreinterpretq_s16_u16(q3)), d29_2);
                    int32x4_t nq11 = vmull_s16(vget_high_s16(vreinterpretq_s16_u16(q3)), d29_2);

                    nq4 = vaddq_s32(nq4, nq6);
                    nq5 = vaddq_s32(nq5, nq7);
                    nq8 = vaddq_s32(nq8, nq10);
                    nq9 = vaddq_s32(nq9, nq11);

                    int16x8_t q6 = vld1q_s16(&Iptr[x]);

                    nq4 = vaddq_s32(nq4, nq8);
                    nq5 = vaddq_s32(nq5, nq9);

                    nq8 = vmovl_s16(vget_high_s16(q6));
                    nq6 = vmovl_s16(vget_low_s16(q6));

                    nq4 = vqrshlq_s32(nq4, q11);
                    nq5 = vqrshlq_s32(nq5, q11);

                    int16x8x2_t q0q1 = vld2q_s16(dIptr);
                    nq11 = vld1q_s32(nB1);
                    int32x4_t nq15 = vld1q_s32(nB2);

                    nq4 = vsubq_s32(nq4, nq6);
                    nq5 = vsubq_s32(nq5, nq8);

                    int32x4_t nq2 = vmovl_s16(vget_low_s16(q0q1.val[0]));
                    int32x4_t nq3 = vmovl_s16(vget_high_s16(q0q1.val[0]));

                    nq7 = vmovl_s16(vget_low_s16(q0q1.val[1]));
                    nq8 = vmovl_s16(vget_high_s16(q0q1.val[1]));

                    nq9 = vmulq_s32(nq4, nq2);
                    nq10 = vmulq_s32(nq5, nq3);

                    nq4 = vmulq_s32(nq4, nq7);
                    nq5 = vmulq_s32(nq5, nq8);

                    nq9 = vaddq_s32(nq9, nq10);
                    nq4 = vaddq_s32(nq4, nq5);

                    nq11 = vaddq_s32(nq11, nq9);
                    nq15 = vaddq_s32(nq15, nq4);

                    vst1q_s32(nB1, nq11);
                    vst1q_s32(nB2, nq15);
                }
#endif

653
                for( ; x < winSize.width*cn; x++, dIptr += 2 )
654
                {
655
                    int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
656
                                          Jptr[x+stepJ]*iw10 + Jptr[x+stepJ+cn]*iw11,
657
                                          W_BITS1-5) - Iptr[x];
658 659
                    ib1 += (itemtype)(diff*dIptr[0]);
                    ib2 += (itemtype)(diff*dIptr[1]);
660 661
                }
            }
662

663
#if CV_SSE2
664 665
            float CV_DECL_ALIGNED(16) bbuf[4];
            _mm_store_ps(bbuf, _mm_add_ps(qb0, qb1));
666 667
            ib1 += bbuf[0] + bbuf[2];
            ib2 += bbuf[1] + bbuf[3];
668
#endif
669

670 671 672 673 674 675
#if CV_NEON

            ib1 += (float)(nB1[0] + nB1[1] + nB1[2] + nB1[3]);
            ib2 += (float)(nB2[0] + nB2[1] + nB2[2] + nB2[3]);
#endif

676 677
            b1 = ib1*FLT_SCALE;
            b2 = ib2*FLT_SCALE;
678

679 680 681
            Point2f delta( (float)((A12*b2 - A22*b1) * D),
                          (float)((A12*b1 - A11*b2) * D));
            //delta = -delta;
682

683 684
            nextPt += delta;
            nextPts[ptidx] = nextPt + halfWin;
685

686 687
            if( delta.ddot(delta) <= criteria.epsilon )
                break;
688

689 690
            if( j > 0 && std::abs(delta.x + prevDelta.x) < 0.01 &&
               std::abs(delta.y + prevDelta.y) < 0.01 )
691
            {
692 693
                nextPts[ptidx] -= delta*0.5f;
                break;
694
            }
695 696
            prevDelta = delta;
        }
697

698
        if( status[ptidx] && err && level == 0 && (flags & OPTFLOW_LK_GET_MIN_EIGENVALS) == 0 )
699
        {
700 701 702 703 704 705 706 707
            Point2f nextPoint = nextPts[ptidx] - halfWin;
            Point inextPoint;

            inextPoint.x = cvFloor(nextPoint.x);
            inextPoint.y = cvFloor(nextPoint.y);

            if( inextPoint.x < -winSize.width || inextPoint.x >= J.cols ||
                inextPoint.y < -winSize.height || inextPoint.y >= J.rows )
708
            {
709 710 711
                if( status )
                    status[ptidx] = false;
                continue;
712
            }
713 714 715 716 717 718

            float aa = nextPoint.x - inextPoint.x;
            float bb = nextPoint.y - inextPoint.y;
            iw00 = cvRound((1.f - aa)*(1.f - bb)*(1 << W_BITS));
            iw01 = cvRound(aa*(1.f - bb)*(1 << W_BITS));
            iw10 = cvRound((1.f - aa)*bb*(1 << W_BITS));
719 720
            iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
            float errval = 0.f;
721

722
            for( y = 0; y < winSize.height; y++ )
723
            {
724 725
                const uchar* Jptr = J.ptr() + (y + inextPoint.y)*stepJ + inextPoint.x*cn;
                const deriv_type* Iptr = IWinBuf.ptr<deriv_type>(y);
726

727
                for( x = 0; x < winSize.width*cn; x++ )
728
                {
729
                    int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
730
                                          Jptr[x+stepJ]*iw10 + Jptr[x+stepJ+cn]*iw11,
731 732
                                          W_BITS1-5) - Iptr[x];
                    errval += std::abs((float)diff);
733 734
                }
            }
735
            err[ptidx] = errval * 1.f/(32*winSize.width*cn*winSize.height);
736 737 738
        }
    }
}
739

A
Andrey Kamaev 已提交
740 741 742 743 744 745 746 747 748
int cv::buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives,
                                int pyrBorder, int derivBorder, bool tryReuseInputImage)
{
    Mat img = _img.getMat();
    CV_Assert(img.depth() == CV_8U && winSize.width > 2 && winSize.height > 2 );
    int pyrstep = withDerivatives ? 2 : 1;

    pyramid.create(1, (maxLevel + 1) * pyrstep, 0 /*type*/, -1, true, 0);

749
    int derivType = CV_MAKETYPE(DataType<cv::detail::deriv_type>::depth, img.channels() * 2);
A
Andrey Kamaev 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769

    //level 0
    bool lvl0IsSet = false;
    if(tryReuseInputImage && img.isSubmatrix() && (pyrBorder & BORDER_ISOLATED) == 0)
    {
        Size wholeSize;
        Point ofs;
        img.locateROI(wholeSize, ofs);
        if (ofs.x >= winSize.width && ofs.y >= winSize.height
              && ofs.x + img.cols + winSize.width <= wholeSize.width
              && ofs.y + img.rows + winSize.height <= wholeSize.height)
        {
            pyramid.getMatRef(0) = img;
            lvl0IsSet = true;
        }
    }

    if(!lvl0IsSet)
    {
        Mat& temp = pyramid.getMatRef(0);
770

A
Andrey Kamaev 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        if(!temp.empty())
            temp.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
        if(temp.type() != img.type() || temp.cols != winSize.width*2 + img.cols || temp.rows != winSize.height * 2 + img.rows)
            temp.create(img.rows + winSize.height*2, img.cols + winSize.width*2, img.type());

        if(pyrBorder == BORDER_TRANSPARENT)
            img.copyTo(temp(Rect(winSize.width, winSize.height, img.cols, img.rows)));
        else
            copyMakeBorder(img, temp, winSize.height, winSize.height, winSize.width, winSize.width, pyrBorder);
        temp.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width);
    }

    Size sz = img.size();
    Mat prevLevel = pyramid.getMatRef(0);
    Mat thisLevel = prevLevel;

    for(int level = 0; level <= maxLevel; ++level)
    {
        if (level != 0)
        {
            Mat& temp = pyramid.getMatRef(level * pyrstep);
792

A
Andrey Kamaev 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
            if(!temp.empty())
                temp.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
            if(temp.type() != img.type() || temp.cols != winSize.width*2 + sz.width || temp.rows != winSize.height * 2 + sz.height)
                temp.create(sz.height + winSize.height*2, sz.width + winSize.width*2, img.type());

            thisLevel = temp(Rect(winSize.width, winSize.height, sz.width, sz.height));
            pyrDown(prevLevel, thisLevel, sz);

            if(pyrBorder != BORDER_TRANSPARENT)
                copyMakeBorder(thisLevel, temp, winSize.height, winSize.height, winSize.width, winSize.width, pyrBorder|BORDER_ISOLATED);
            temp.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width);
        }

        if(withDerivatives)
        {
            Mat& deriv = pyramid.getMatRef(level * pyrstep + 1);

            if(!deriv.empty())
                deriv.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
            if(deriv.type() != derivType || deriv.cols != winSize.width*2 + sz.width || deriv.rows != winSize.height * 2 + sz.height)
                deriv.create(sz.height + winSize.height*2, sz.width + winSize.width*2, derivType);

            Mat derivI = deriv(Rect(winSize.width, winSize.height, sz.width, sz.height));
            calcSharrDeriv(thisLevel, derivI);

            if(derivBorder != BORDER_TRANSPARENT)
                copyMakeBorder(derivI, deriv, winSize.height, winSize.height, winSize.width, winSize.width, derivBorder|BORDER_ISOLATED);
            deriv.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width);
        }

        sz = Size((sz.width+1)/2, (sz.height+1)/2);
        if( sz.width <= winSize.width || sz.height <= winSize.height )
        {
            pyramid.create(1, (level + 1) * pyrstep, 0 /*type*/, -1, true, 0);//check this
            return level;
        }

        prevLevel = thisLevel;
    }

    return maxLevel;
}

836 837
namespace cv
{
838 839 840
namespace
{
    class SparsePyrLKOpticalFlowImpl : public SparsePyrLKOpticalFlow
841 842 843 844
    {
        struct dim3
        {
            unsigned int x, y, z;
A
Alexander Alekhin 已提交
845
            dim3() : x(0), y(0), z(0) { }
846 847
        };
    public:
848 849 850 851 852 853 854 855 856
        SparsePyrLKOpticalFlowImpl(Size winSize_ = Size(21,21),
                         int maxLevel_ = 3,
                         TermCriteria criteria_ = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
                         int flags_ = 0,
                         double minEigThreshold_ = 1e-4) :
          winSize(winSize_), maxLevel(maxLevel_), criteria(criteria_), flags(flags_), minEigThreshold(minEigThreshold_)
#ifdef HAVE_OPENCL
          , iters(criteria_.maxCount), derivLambda(criteria_.epsilon), useInitialFlow(0 != (flags_ & OPTFLOW_LK_GET_MIN_EIGENVALS)), waveSize(0)
#endif
857 858 859
        {
        }

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
        virtual Size getWinSize() const {return winSize;}
        virtual void setWinSize(Size winSize_){winSize = winSize_;}

        virtual int getMaxLevel() const {return maxLevel;}
        virtual void setMaxLevel(int maxLevel_){maxLevel = maxLevel_;}

        virtual TermCriteria getTermCriteria() const {return criteria;}
        virtual void setTermCriteria(TermCriteria& crit_){criteria=crit_;}

        virtual int getFlags() const {return flags; }
        virtual void setFlags(int flags_){flags=flags_;}

        virtual double getMinEigThreshold() const {return minEigThreshold;}
        virtual void setMinEigThreshold(double minEigThreshold_){minEigThreshold=minEigThreshold_;}

        virtual void calc(InputArray prevImg, InputArray nextImg,
                          InputArray prevPts, InputOutputArray nextPts,
                          OutputArray status,
                          OutputArray err = cv::noArray());

    private:
#ifdef HAVE_OPENCL
882
        bool checkParam()
883
        {
884
            iters = std::min(std::max(iters, 0), 100);
885 886 887 888 889 890

            derivLambda = std::min(std::max(derivLambda, 0.0), 1.0);
            if (derivLambda < 0)
                return false;
            if (maxLevel < 0 || winSize.width <= 2 || winSize.height <= 2)
                return false;
V
vbystricky 已提交
891
            calcPatchSize();
892 893 894 895
            if (patch.x <= 0 || patch.x >= 6 || patch.y <= 0 || patch.y >= 6)
                return false;
            if (!initWaveSize())
                return false;
896 897 898 899 900 901 902
            return true;
        }

        bool sparse(const UMat &prevImg, const UMat &nextImg, const UMat &prevPts, UMat &nextPts, UMat &status, UMat &err)
        {
            if (!checkParam())
                return false;
903 904 905 906 907 908 909 910 911 912 913

            UMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1);
            UMat temp2 = nextPts.reshape(1);
            multiply(1.0f / (1 << maxLevel) /2.0f, temp1, temp2);

            status.setTo(Scalar::all(1));

            // build the image pyramids.
            std::vector<UMat> prevPyr; prevPyr.resize(maxLevel + 1);
            std::vector<UMat> nextPyr; nextPyr.resize(maxLevel + 1);

914 915 916 917 918
            // allocate buffers with aligned pitch to be able to use cl_khr_image2d_from_buffer extention
            // This is the required pitch alignment in pixels
            int pitchAlign = (int)ocl::Device::getDefault().imagePitchAlignment();
            if (pitchAlign>0)
            {
K
krodyush 已提交
919 920
                prevPyr[0] = UMat(prevImg.rows,(prevImg.cols+pitchAlign-1)&(-pitchAlign),CV_32FC1).colRange(0,prevImg.cols);
                nextPyr[0] = UMat(nextImg.rows,(nextImg.cols+pitchAlign-1)&(-pitchAlign),CV_32FC1).colRange(0,nextImg.cols);
921 922 923 924 925 926 927 928 929 930 931 932 933
                for (int level = 1; level <= maxLevel; ++level)
                {
                    int cols,rows;
                    // allocate buffers with aligned pitch to be able to use image on buffer extention
                    cols = (prevPyr[level - 1].cols+1)/2;
                    rows = (prevPyr[level - 1].rows+1)/2;
                    prevPyr[level] = UMat(rows,(cols+pitchAlign-1)&(-pitchAlign),prevPyr[level-1].type()).colRange(0,cols);
                    cols = (nextPyr[level - 1].cols+1)/2;
                    rows = (nextPyr[level - 1].rows+1)/2;
                    nextPyr[level] = UMat(rows,(cols+pitchAlign-1)&(-pitchAlign),nextPyr[level-1].type()).colRange(0,cols);
                }
            }

934 935 936 937 938 939 940 941 942 943 944 945
            prevImg.convertTo(prevPyr[0], CV_32F);
            nextImg.convertTo(nextPyr[0], CV_32F);

            for (int level = 1; level <= maxLevel; ++level)
            {
                pyrDown(prevPyr[level - 1], prevPyr[level]);
                pyrDown(nextPyr[level - 1], nextPyr[level]);
            }

            // dI/dx ~ Ix, dI/dy ~ Iy
            for (int level = maxLevel; level >= 0; level--)
            {
946 947
                if (!lkSparse_run(prevPyr[level], nextPyr[level], prevPts,
                                  nextPts, status, err,
V
vbystricky 已提交
948
                                  prevPts.cols, level))
949
                    return false;
950 951 952
            }
            return true;
        }
953
#endif
954 955 956

        Size winSize;
        int maxLevel;
957 958 959 960
        TermCriteria criteria;
        int flags;
        double minEigThreshold;
#ifdef HAVE_OPENCL
961 962 963
        int iters;
        double derivLambda;
        bool useInitialFlow;
V
vbystricky 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
        int waveSize;
        bool initWaveSize()
        {
            waveSize = 1;
            if (isDeviceCPU())
                return true;

            ocl::Kernel kernel;
            if (!kernel.create("lkSparse", cv::ocl::video::pyrlk_oclsrc, ""))
                return false;
            waveSize = (int)kernel.preferedWorkGroupSizeMultiple();
            return true;
        }
        dim3 patch;
        void calcPatchSize()
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
        {
            dim3 block;

            if (winSize.width > 32 && winSize.width > 2 * winSize.height)
            {
                block.x = 32;
                block.y = 8;
            }
            else
            {
                block.x = 16;
                block.y = 16;
            }

            patch.x = (winSize.width  + block.x - 1) / block.x;
            patch.y = (winSize.height + block.y - 1) / block.y;

            block.z = patch.z = 1;
        }

        bool lkSparse_run(UMat &I, UMat &J, const UMat &prevPts, UMat &nextPts, UMat &status, UMat& err,
V
vbystricky 已提交
1000
            int ptcount, int level)
1001 1002
        {
            size_t localThreads[3]  = { 8, 8};
1003
            size_t globalThreads[3] = { 8 * (size_t)ptcount, 8};
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
            char calcErr = (0 == level) ? 1 : 0;

            cv::String build_options;
            if (isDeviceCPU())
                build_options = " -D CPU";
            else
                build_options = cv::format("-D WAVE_SIZE=%d", waveSize);

            ocl::Kernel kernel;
            if (!kernel.create("lkSparse", cv::ocl::video::pyrlk_oclsrc, build_options))
                return false;

1016 1017 1018 1019
            CV_Assert(I.depth() == CV_32F && J.depth() == CV_32F);
            ocl::Image2D imageI(I, false, ocl::Image2D::canCreateAlias(I));
            ocl::Image2D imageJ(J, false, ocl::Image2D::canCreateAlias(J));

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
            int idxArg = 0;
            idxArg = kernel.set(idxArg, imageI); //image2d_t I
            idxArg = kernel.set(idxArg, imageJ); //image2d_t J
            idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(prevPts)); // __global const float2* prevPts
            idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(nextPts)); // __global const float2* nextPts
            idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(status)); // __global uchar* status
            idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadWrite(err)); // __global float* err
            idxArg = kernel.set(idxArg, (int)level); // const int level
            idxArg = kernel.set(idxArg, (int)I.rows); // const int rows
            idxArg = kernel.set(idxArg, (int)I.cols); // const int cols
            idxArg = kernel.set(idxArg, (int)patch.x); // int PATCH_X
            idxArg = kernel.set(idxArg, (int)patch.y); // int PATCH_Y
            idxArg = kernel.set(idxArg, (int)winSize.width); // int c_winSize_x
            idxArg = kernel.set(idxArg, (int)winSize.height); // int c_winSize_y
            idxArg = kernel.set(idxArg, (int)iters); // int c_iters
            idxArg = kernel.set(idxArg, (char)calcErr); //char calcErr
1036
            return kernel.run(2, globalThreads, localThreads, true); // sync=true because ocl::Image2D lifetime is not handled well for temp UMat
1037 1038 1039 1040 1041 1042 1043 1044
        }
    private:
        inline static bool isDeviceCPU()
        {
            return (cv::ocl::Device::TYPE_CPU == cv::ocl::Device::getDefault().type());
        }


1045 1046 1047
    bool ocl_calcOpticalFlowPyrLK(InputArray _prevImg, InputArray _nextImg,
                                         InputArray _prevPts, InputOutputArray _nextPts,
                                         OutputArray _status, OutputArray _err)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
    {
        if (0 != (OPTFLOW_LK_GET_MIN_EIGENVALS & flags))
            return false;
        if (!cv::ocl::Device::getDefault().imageSupport())
            return false;
        if (_nextImg.size() != _prevImg.size())
            return false;
        int typePrev = _prevImg.type();
        int typeNext = _nextImg.type();
        if ((1 != CV_MAT_CN(typePrev)) || (1 != CV_MAT_CN(typeNext)))
            return false;
        if ((0 != CV_MAT_DEPTH(typePrev)) || (0 != CV_MAT_DEPTH(typeNext)))
            return false;

1062
        if (_prevPts.empty() || _prevPts.type() != CV_32FC2 || (!_prevPts.isContinuous()))
1063
            return false;
1064 1065 1066
        if ((1 != _prevPts.size().height) && (1 != _prevPts.size().width))
            return false;
        size_t npoints = _prevPts.total();
1067 1068
        if (useInitialFlow)
        {
1069 1070 1071 1072 1073
            if (_nextPts.empty() || _nextPts.type() != CV_32FC2 || (!_prevPts.isContinuous()))
                return false;
            if ((1 != _nextPts.size().height) && (1 != _nextPts.size().width))
                return false;
            if (_nextPts.total() != npoints)
1074 1075
                return false;
        }
1076 1077 1078 1079
        else
        {
            _nextPts.create(_prevPts.size(), _prevPts.type());
        }
1080

1081
        if (!checkParam())
1082
            return false;
1083 1084 1085 1086

        UMat umatErr;
        if (_err.needed())
        {
1087
            _err.create((int)npoints, 1, CV_32FC1);
1088 1089
            umatErr = _err.getUMat();
        }
1090
        else
1091
            umatErr.create((int)npoints, 1, CV_32FC1);
1092

1093
        _status.create((int)npoints, 1, CV_8UC1);
1094 1095
        UMat umatNextPts = _nextPts.getUMat();
        UMat umatStatus = _status.getUMat();
1096
        return sparse(_prevImg.getUMat(), _nextImg.getUMat(), _prevPts.getUMat(), umatNextPts, umatStatus, umatErr);
1097
    }
1098
#endif
1099
};
1100

1101
void SparsePyrLKOpticalFlowImpl::calc( InputArray _prevImg, InputArray _nextImg,
1102
                           InputArray _prevPts, InputOutputArray _nextPts,
1103
                           OutputArray _status, OutputArray _err)
1104
{
1105 1106 1107 1108
    CV_OCL_RUN(ocl::useOpenCL() &&
               (_prevImg.isUMat() || _nextImg.isUMat()) &&
               ocl::Image2D::isFormatSupported(CV_32F, 1, false),
               ocl_calcOpticalFlowPyrLK(_prevImg, _nextImg, _prevPts, _nextPts, _status, _err))
1109

A
Andrey Kamaev 已提交
1110
    Mat prevPtsMat = _prevPts.getMat();
1111
    const int derivDepth = DataType<cv::detail::deriv_type>::depth;
1112

1113
    CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 );
1114

A
Andrey Kamaev 已提交
1115
    int level=0, i, npoints;
1116
    CV_Assert( (npoints = prevPtsMat.checkVector(2, CV_32F, true)) >= 0 );
1117

1118 1119 1120 1121 1122 1123 1124
    if( npoints == 0 )
    {
        _nextPts.release();
        _status.release();
        _err.release();
        return;
    }
1125

1126 1127
    if( !(flags & OPTFLOW_USE_INITIAL_FLOW) )
        _nextPts.create(prevPtsMat.size(), prevPtsMat.type(), -1, true);
1128

1129 1130
    Mat nextPtsMat = _nextPts.getMat();
    CV_Assert( nextPtsMat.checkVector(2, CV_32F, true) == npoints );
1131

1132 1133
    const Point2f* prevPts = prevPtsMat.ptr<Point2f>();
    Point2f* nextPts = nextPtsMat.ptr<Point2f>();
1134

1135 1136 1137
    _status.create((int)npoints, 1, CV_8U, -1, true);
    Mat statusMat = _status.getMat(), errMat;
    CV_Assert( statusMat.isContinuous() );
1138
    uchar* status = statusMat.ptr();
1139
    float* err = 0;
1140

1141 1142
    for( i = 0; i < npoints; i++ )
        status[i] = true;
1143

1144 1145 1146 1147 1148
    if( _err.needed() )
    {
        _err.create((int)npoints, 1, CV_32F, -1, true);
        errMat = _err.getMat();
        CV_Assert( errMat.isContinuous() );
1149
        err = errMat.ptr<float>();
1150
    }
1151

1152
    std::vector<Mat> prevPyr, nextPyr;
A
Andrey Kamaev 已提交
1153 1154 1155 1156 1157 1158
    int levels1 = -1;
    int lvlStep1 = 1;
    int levels2 = -1;
    int lvlStep2 = 1;

    if(_prevImg.kind() == _InputArray::STD_VECTOR_MAT)
1159
    {
A
Andrey Kamaev 已提交
1160 1161 1162 1163 1164 1165
        _prevImg.getMatVector(prevPyr);

        levels1 = int(prevPyr.size()) - 1;
        CV_Assert(levels1 >= 0);

        if (levels1 % 2 == 1 && prevPyr[0].channels() * 2 == prevPyr[1].channels() && prevPyr[1].depth() == derivDepth)
1166
        {
A
Andrey Kamaev 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
            lvlStep1 = 2;
            levels1 /= 2;
        }

        // ensure that pyramid has reqired padding
        if(levels1 > 0)
        {
            Size fullSize;
            Point ofs;
            prevPyr[lvlStep1].locateROI(fullSize, ofs);
            CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
                && ofs.x + prevPyr[lvlStep1].cols + winSize.width <= fullSize.width
                && ofs.y + prevPyr[lvlStep1].rows + winSize.height <= fullSize.height);
1180
        }
1181 1182 1183

        if(levels1 < maxLevel)
            maxLevel = levels1;
1184
    }
A
Andrey Kamaev 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

    if(_nextImg.kind() == _InputArray::STD_VECTOR_MAT)
    {
        _nextImg.getMatVector(nextPyr);

        levels2 = int(nextPyr.size()) - 1;
        CV_Assert(levels2 >= 0);

        if (levels2 % 2 == 1 && nextPyr[0].channels() * 2 == nextPyr[1].channels() && nextPyr[1].depth() == derivDepth)
        {
            lvlStep2 = 2;
            levels2 /= 2;
        }

        // ensure that pyramid has reqired padding
        if(levels2 > 0)
        {
            Size fullSize;
            Point ofs;
            nextPyr[lvlStep2].locateROI(fullSize, ofs);
            CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
                && ofs.x + nextPyr[lvlStep2].cols + winSize.width <= fullSize.width
                && ofs.y + nextPyr[lvlStep2].rows + winSize.height <= fullSize.height);
        }

1210 1211 1212
        if(levels2 < maxLevel)
            maxLevel = levels2;
    }
A
Andrey Kamaev 已提交
1213 1214

    if (levels1 < 0)
1215
        maxLevel = buildOpticalFlowPyramid(_prevImg, prevPyr, winSize, maxLevel, false);
A
Andrey Kamaev 已提交
1216 1217

    if (levels2 < 0)
1218
        maxLevel = buildOpticalFlowPyramid(_nextImg, nextPyr, winSize, maxLevel, false);
1219

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    if( (criteria.type & TermCriteria::COUNT) == 0 )
        criteria.maxCount = 30;
    else
        criteria.maxCount = std::min(std::max(criteria.maxCount, 0), 100);
    if( (criteria.type & TermCriteria::EPS) == 0 )
        criteria.epsilon = 0.01;
    else
        criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.);
    criteria.epsilon *= criteria.epsilon;

A
Andrey Kamaev 已提交
1230 1231 1232 1233 1234
    // dI/dx ~ Ix, dI/dy ~ Iy
    Mat derivIBuf;
    if(lvlStep1 == 1)
        derivIBuf.create(prevPyr[0].rows + winSize.height*2, prevPyr[0].cols + winSize.width*2, CV_MAKETYPE(derivDepth, prevPyr[0].channels() * 2));

1235 1236
    for( level = maxLevel; level >= 0; level-- )
    {
A
Andrey Kamaev 已提交
1237 1238 1239 1240 1241
        Mat derivI;
        if(lvlStep1 == 1)
        {
            Size imgSize = prevPyr[level * lvlStep1].size();
            Mat _derivI( imgSize.height + winSize.height*2,
1242
                imgSize.width + winSize.width*2, derivIBuf.type(), derivIBuf.ptr() );
A
Andrey Kamaev 已提交
1243 1244 1245 1246 1247 1248
            derivI = _derivI(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
            calcSharrDeriv(prevPyr[level * lvlStep1], derivI);
            copyMakeBorder(derivI, _derivI, winSize.height, winSize.height, winSize.width, winSize.width, BORDER_CONSTANT|BORDER_ISOLATED);
        }
        else
            derivI = prevPyr[level * lvlStep1 + 1];
1249

A
Andrey Kamaev 已提交
1250 1251 1252
        CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size());
        CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type());

1253 1254 1255
#ifdef HAVE_TEGRA_OPTIMIZATION
        typedef tegra::LKTrackerInvoker<cv::detail::LKTrackerInvoker> LKTrackerInvoker;
#else
1256
        typedef cv::detail::LKTrackerInvoker LKTrackerInvoker;
1257 1258
#endif

1259 1260 1261 1262 1263
        parallel_for_(Range(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI,
                                                          nextPyr[level * lvlStep2], prevPts, nextPts,
                                                          status, err,
                                                          winSize, criteria, level, maxLevel,
                                                          flags, (float)minEigThreshold));
1264
    }
1265 1266
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
} // namespace
} // namespace cv
cv::Ptr<cv::SparsePyrLKOpticalFlow> cv::SparsePyrLKOpticalFlow::create(Size winSize, int maxLevel, TermCriteria crit, int flags, double minEigThreshold){
    return makePtr<SparsePyrLKOpticalFlowImpl>(winSize,maxLevel,crit,flags,minEigThreshold);
}
void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
                               InputArray _prevPts, InputOutputArray _nextPts,
                               OutputArray _status, OutputArray _err,
                               Size winSize, int maxLevel,
                               TermCriteria criteria,
                               int flags, double minEigThreshold )
{
    Ptr<cv::SparsePyrLKOpticalFlow> optflow = cv::SparsePyrLKOpticalFlow::create(winSize,maxLevel,criteria,flags,minEigThreshold);
    optflow->calc(_prevImg,_nextImg,_prevPts,_nextPts,_status,_err);
}

1283
namespace cv
1284 1285 1286
{

static void
1287 1288
getRTMatrix( const Point2f* a, const Point2f* b,
             int count, Mat& M, bool fullAffine )
1289
{
1290
    CV_Assert( M.isContinuous() );
1291

1292
    if( fullAffine )
1293
    {
1294 1295 1296
        double sa[6][6]={{0.}}, sb[6]={0.};
        Mat A( 6, 6, CV_64F, &sa[0][0] ), B( 6, 1, CV_64F, sb );
        Mat MM = M.reshape(1, 6);
1297

1298
        for( int i = 0; i < count; i++ )
1299
        {
1300 1301 1302
            sa[0][0] += a[i].x*a[i].x;
            sa[0][1] += a[i].y*a[i].x;
            sa[0][2] += a[i].x;
1303

1304 1305
            sa[1][1] += a[i].y*a[i].y;
            sa[1][2] += a[i].y;
1306

1307
            sa[2][2] += 1;
1308 1309 1310 1311 1312 1313 1314 1315 1316

            sb[0] += a[i].x*b[i].x;
            sb[1] += a[i].y*b[i].x;
            sb[2] += b[i].x;
            sb[3] += a[i].x*b[i].y;
            sb[4] += a[i].y*b[i].y;
            sb[5] += b[i].y;
        }

1317 1318 1319 1320 1321 1322 1323 1324 1325
        sa[3][4] = sa[4][3] = sa[1][0] = sa[0][1];
        sa[3][5] = sa[5][3] = sa[2][0] = sa[0][2];
        sa[4][5] = sa[5][4] = sa[2][1] = sa[1][2];

        sa[3][3] = sa[0][0];
        sa[4][4] = sa[1][1];
        sa[5][5] = sa[2][2];

        solve( A, B, MM, DECOMP_EIG );
1326 1327 1328
    }
    else
    {
1329 1330 1331
        double sa[4][4]={{0.}}, sb[4]={0.}, m[4];
        Mat A( 4, 4, CV_64F, sa ), B( 4, 1, CV_64F, sb );
        Mat MM( 4, 1, CV_64F, m );
1332

1333 1334 1335 1336 1337
        for( int i = 0; i < count; i++ )
        {
            sa[0][0] += a[i].x*a[i].x + a[i].y*a[i].y;
            sa[0][2] += a[i].x;
            sa[0][3] += a[i].y;
1338 1339


1340 1341 1342 1343 1344 1345
            sa[2][1] += -a[i].y;
            sa[2][2] += 1;

            sa[3][0] += a[i].y;
            sa[3][1] += a[i].x;
            sa[3][3] += 1;
1346 1347 1348 1349 1350 1351 1352

            sb[0] += a[i].x*b[i].x + a[i].y*b[i].y;
            sb[1] += a[i].x*b[i].y - a[i].y*b[i].x;
            sb[2] += b[i].x;
            sb[3] += b[i].y;
        }

1353 1354 1355 1356 1357 1358 1359
        sa[1][1] = sa[0][0];
        sa[2][1] = sa[1][2] = -sa[0][3];
        sa[3][1] = sa[1][3] = sa[2][0] = sa[0][2];
        sa[2][2] = sa[3][3] = count;
        sa[3][0] = sa[0][3];

        solve( A, B, MM, DECOMP_EIG );
1360

1361
        double* om = M.ptr<double>();
1362 1363 1364 1365 1366 1367 1368 1369
        om[0] = om[4] = m[0];
        om[1] = -m[1];
        om[3] = m[1];
        om[2] = m[2];
        om[5] = m[3];
    }
}

1370
}
1371

1372
cv::Mat cv::estimateRigidTransform( InputArray src1, InputArray src2, bool fullAffine )
1373
{
1374 1375
    Mat M(2, 3, CV_64F), A = src1.getMat(), B = src2.getMat();

1376 1377 1378 1379 1380 1381
    const int COUNT = 15;
    const int WIDTH = 160, HEIGHT = 120;
    const int RANSAC_MAX_ITERS = 500;
    const int RANSAC_SIZE0 = 3;
    const double RANSAC_GOOD_RATIO = 0.5;

1382 1383 1384
    std::vector<Point2f> pA, pB;
    std::vector<int> good_idx;
    std::vector<uchar> status;
1385

1386
    double scale = 1.;
1387 1388
    int i, j, k, k1;

1389 1390
    RNG rng((uint64)-1);
    int good_count = 0;
1391

1392
    if( A.size() != B.size() )
1393
        CV_Error( Error::StsUnmatchedSizes, "Both input images must have the same size" );
1394

1395
    if( A.type() != B.type() )
1396
        CV_Error( Error::StsUnmatchedFormats, "Both input images must have the same data type" );
1397

1398 1399 1400
    int count = A.checkVector(2);

    if( count > 0 )
1401
    {
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        A.reshape(2, count).convertTo(pA, CV_32F);
        B.reshape(2, count).convertTo(pB, CV_32F);
    }
    else if( A.depth() == CV_8U )
    {
        int cn = A.channels();
        CV_Assert( cn == 1 || cn == 3 || cn == 4 );
        Size sz0 = A.size();
        Size sz1(WIDTH, HEIGHT);

        scale = std::max(1., std::max( (double)sz1.width/sz0.width, (double)sz1.height/sz0.height ));
1413 1414 1415 1416

        sz1.width = cvRound( sz0.width * scale );
        sz1.height = cvRound( sz0.height * scale );

1417
        bool equalSizes = sz1.width == sz0.width && sz1.height == sz0.height;
1418

1419
        if( !equalSizes || cn != 1 )
1420
        {
1421
            Mat sA, sB;
1422 1423 1424

            if( cn != 1 )
            {
1425 1426 1427 1428 1429
                Mat gray;
                cvtColor(A, gray, COLOR_BGR2GRAY);
                resize(gray, sA, sz1, 0., 0., INTER_AREA);
                cvtColor(B, gray, COLOR_BGR2GRAY);
                resize(gray, sB, sz1, 0., 0., INTER_AREA);
1430 1431 1432
            }
            else
            {
1433 1434
                resize(A, sA, sz1, 0., 0., INTER_AREA);
                resize(B, sB, sz1, 0., 0., INTER_AREA);
1435
            }
1436

1437 1438 1439 1440
            A = sA;
            B = sB;
        }

1441 1442
        int count_y = COUNT;
        int count_x = cvRound((double)COUNT*sz1.width/sz1.height);
1443 1444
        count = count_x * count_y;

1445 1446 1447
        pA.resize(count);
        pB.resize(count);
        status.resize(count);
1448 1449 1450 1451 1452 1453 1454 1455 1456

        for( i = 0, k = 0; i < count_y; i++ )
            for( j = 0; j < count_x; j++, k++ )
            {
                pA[k].x = (j+0.5f)*sz1.width/count_x;
                pA[k].y = (i+0.5f)*sz1.height/count_y;
            }

        // find the corresponding points in B
1457 1458
        calcOpticalFlowPyrLK(A, B, pA, pB, status, noArray(), Size(21, 21), 3,
                             TermCriteria(TermCriteria::MAX_ITER,40,0.1));
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

        // repack the remained points
        for( i = 0, k = 0; i < count; i++ )
            if( status[i] )
            {
                if( i > k )
                {
                    pA[k] = pA[i];
                    pB[k] = pB[i];
                }
                k++;
            }
        count = k;
1472 1473
        pA.resize(count);
        pB.resize(count);
1474 1475
    }
    else
1476
        CV_Error( Error::StsUnsupportedFormat, "Both input images must have either 8uC1 or 8uC3 type" );
1477

1478
    good_idx.resize(count);
1479 1480

    if( count < RANSAC_SIZE0 )
1481
        return Mat();
1482

1483
    Rect brect = boundingRect(pB);
1484 1485 1486 1487 1488 1489

    // RANSAC stuff:
    // 1. find the consensus
    for( k = 0; k < RANSAC_MAX_ITERS; k++ )
    {
        int idx[RANSAC_SIZE0];
1490 1491
        Point2f a[RANSAC_SIZE0];
        Point2f b[RANSAC_SIZE0];
1492 1493 1494 1495 1496 1497

        // choose random 3 non-complanar points from A & B
        for( i = 0; i < RANSAC_SIZE0; i++ )
        {
            for( k1 = 0; k1 < RANSAC_MAX_ITERS; k1++ )
            {
1498
                idx[i] = rng.uniform(0, count);
1499

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
                for( j = 0; j < i; j++ )
                {
                    if( idx[j] == idx[i] )
                        break;
                    // check that the points are not very close one each other
                    if( fabs(pA[idx[i]].x - pA[idx[j]].x) +
                        fabs(pA[idx[i]].y - pA[idx[j]].y) < FLT_EPSILON )
                        break;
                    if( fabs(pB[idx[i]].x - pB[idx[j]].x) +
                        fabs(pB[idx[i]].y - pB[idx[j]].y) < FLT_EPSILON )
                        break;
                }

                if( j < i )
                    continue;

                if( i+1 == RANSAC_SIZE0 )
                {
                    // additional check for non-complanar vectors
                    a[0] = pA[idx[0]];
                    a[1] = pA[idx[1]];
                    a[2] = pA[idx[2]];

                    b[0] = pB[idx[0]];
                    b[1] = pB[idx[1]];
                    b[2] = pB[idx[2]];
1526

1527 1528
                    double dax1 = a[1].x - a[0].x, day1 = a[1].y - a[0].y;
                    double dax2 = a[2].x - a[0].x, day2 = a[2].y - a[0].y;
1529
                    double dbx1 = b[1].x - b[0].x, dby1 = b[1].y - b[0].y;
1530 1531 1532
                    double dbx2 = b[2].x - b[0].x, dby2 = b[2].y - b[0].y;
                    const double eps = 0.01;

1533 1534
                    if( fabs(dax1*day2 - day1*dax2) < eps*std::sqrt(dax1*dax1+day1*day1)*std::sqrt(dax2*dax2+day2*day2) ||
                        fabs(dbx1*dby2 - dby1*dbx2) < eps*std::sqrt(dbx1*dbx1+dby1*dby1)*std::sqrt(dbx2*dbx2+dby2*dby2) )
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
                        continue;
                }
                break;
            }

            if( k1 >= RANSAC_MAX_ITERS )
                break;
        }

        if( i < RANSAC_SIZE0 )
            continue;

        // estimate the transformation using 3 points
1548
        getRTMatrix( a, b, 3, M, fullAffine );
1549

1550
        const double* m = M.ptr<double>();
1551 1552
        for( i = 0, good_count = 0; i < count; i++ )
        {
1553 1554
            if( std::abs( m[0]*pA[i].x + m[1]*pA[i].y + m[2] - pB[i].x ) +
                std::abs( m[3]*pA[i].x + m[4]*pA[i].y + m[5] - pB[i].y ) < std::max(brect.width,brect.height)*0.05 )
1555 1556 1557 1558 1559 1560 1561 1562
                good_idx[good_count++] = i;
        }

        if( good_count >= count*RANSAC_GOOD_RATIO )
            break;
    }

    if( k >= RANSAC_MAX_ITERS )
1563
        return Mat();
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

    if( good_count < count )
    {
        for( i = 0; i < good_count; i++ )
        {
            j = good_idx[i];
            pA[i] = pA[j];
            pB[i] = pB[j];
        }
    }

1575 1576 1577
    getRTMatrix( &pA[0], &pB[0], good_count, M, fullAffine );
    M.at<double>(0, 2) /= scale;
    M.at<double>(1, 2) /= scale;
1578

1579
    return M;
1580 1581 1582
}

/* End of file. */