lkpyramid.cpp 61.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <float.h>
#include <stdio.h>

45
namespace cv
46 47
{

48
typedef short deriv_type;
49
    
50 51 52 53 54
static void calcSharrDeriv(const Mat& src, Mat& dst)
{
    int rows = src.rows, cols = src.cols, cn = src.channels(), colsn = cols*cn, depth = src.depth();
    CV_Assert(depth == CV_8U);
    dst.create(rows, cols, CV_MAKETYPE(DataType<deriv_type>::depth, cn*2));
55
    
56 57 58
    int x, y, delta = (int)alignSize((cols + 2)*cn, 16);
    AutoBuffer<deriv_type> _tempBuf(delta*2 + 64);
    deriv_type *trow0 = alignPtr(_tempBuf + cn, 16), *trow1 = alignPtr(trow0 + delta, 16);
59
    
60 61 62
#if CV_SSE2
    __m128i z = _mm_setzero_si128(), c3 = _mm_set1_epi16(3), c10 = _mm_set1_epi16(10);
#endif
63
    
64
    for( y = 0; y < rows; y++ )
65
    {
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        const uchar* srow0 = src.ptr<uchar>(y > 0 ? y-1 : rows > 1 ? 1 : 0);
        const uchar* srow1 = src.ptr<uchar>(y);
        const uchar* srow2 = src.ptr<uchar>(y < rows-1 ? y+1 : rows > 1 ? rows-2 : 0);
        deriv_type* drow = dst.ptr<deriv_type>(y);
        
        // do vertical convolution
        x = 0;
#if CV_SSE2
        for( ; x <= colsn - 8; x += 8 )
        {
            __m128i s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow0 + x)), z);
            __m128i s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow1 + x)), z);
            __m128i s2 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow2 + x)), z);
            __m128i t0 = _mm_add_epi16(_mm_mullo_epi16(_mm_add_epi16(s0, s2), c3), _mm_mullo_epi16(s1, c10));
            __m128i t1 = _mm_sub_epi16(s2, s0);
            _mm_store_si128((__m128i*)(trow0 + x), t0);
            _mm_store_si128((__m128i*)(trow1 + x), t1);
        }
#endif
        for( ; x < colsn; x++ )
        {
            int t0 = (srow0[x] + srow2[x])*3 + srow1[x]*10;
            int t1 = srow2[x] - srow0[x];
            trow0[x] = (deriv_type)t0;
            trow1[x] = (deriv_type)t1;
        }
        
        // make border
        int x0 = (cols > 1 ? 1 : 0)*cn, x1 = (cols > 1 ? cols-2 : 0)*cn;
        for( int k = 0; k < cn; k++ )
        {
            trow0[-cn + k] = trow0[x0 + k]; trow0[colsn + k] = trow0[x1 + k];
            trow1[-cn + k] = trow1[x0 + k]; trow1[colsn + k] = trow1[x1 + k];
        }
            
        // do horizontal convolution, interleave the results and store them to dst
        x = 0;
#if CV_SSE2
        for( ; x <= colsn - 8; x += 8 )
        {
            __m128i s0 = _mm_loadu_si128((const __m128i*)(trow0 + x - cn));
            __m128i s1 = _mm_loadu_si128((const __m128i*)(trow0 + x + cn));
            __m128i s2 = _mm_loadu_si128((const __m128i*)(trow1 + x - cn));
            __m128i s3 = _mm_load_si128((const __m128i*)(trow1 + x));
            __m128i s4 = _mm_loadu_si128((const __m128i*)(trow1 + x + cn));
            
            __m128i t0 = _mm_sub_epi16(s1, s0);
            __m128i t1 = _mm_add_epi16(_mm_mullo_epi16(_mm_add_epi16(s2, s4), c3), _mm_mullo_epi16(s3, c10));
            __m128i t2 = _mm_unpacklo_epi16(t0, t1);
            t0 = _mm_unpackhi_epi16(t0, t1);
            // this can probably be replaced with aligned stores if we aligned dst properly.
            _mm_storeu_si128((__m128i*)(drow + x*2), t2);
            _mm_storeu_si128((__m128i*)(drow + x*2 + 8), t0);
        }
#endif        
        for( ; x < colsn; x++ )
        {
            deriv_type t0 = (deriv_type)(trow0[x+cn] - trow0[x-cn]);
            deriv_type t1 = (deriv_type)((trow1[x+cn] + trow1[x-cn])*3 + trow1[x]*10);
            drow[x*2] = t0; drow[x*2+1] = t1;
        }
127
    }
128
}
129

130 131 132 133 134 135 136 137
    
struct LKTrackerInvoker
{
    LKTrackerInvoker( const Mat& _prevImg, const Mat& _prevDeriv, const Mat& _nextImg,
                      const Point2f* _prevPts, Point2f* _nextPts,
                      uchar* _status, float* _err,
                      Size _winSize, TermCriteria _criteria,
                      int _level, int _maxLevel, int _flags )
138
    {
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        prevImg = &_prevImg;
        prevDeriv = &_prevDeriv;
        nextImg = &_nextImg;
        prevPts = _prevPts;
        nextPts = _nextPts;
        status = _status;
        err = _err;
        winSize = _winSize;
        criteria = _criteria;
        level = _level;
        maxLevel = _maxLevel;
        flags = _flags;
    }
    
    void operator()(const BlockedRange& range) const
    {
        Point2f halfWin((winSize.width-1)*0.5f, (winSize.height-1)*0.5f);
        const Mat& I = *prevImg;
        const Mat& J = *nextImg;
        const Mat& derivI = *prevDeriv;
        
        int j, cn = I.channels(), cn2 = cn*2;
        cv::AutoBuffer<deriv_type> _buf(winSize.area()*(cn + cn2));
        int derivDepth = DataType<deriv_type>::depth;
        
        Mat IWinBuf(winSize, CV_MAKETYPE(derivDepth, cn), (deriv_type*)_buf);
        Mat derivIWinBuf(winSize, CV_MAKETYPE(derivDepth, cn2), (deriv_type*)_buf + winSize.area()*cn);
        
        for( int ptidx = range.begin(); ptidx < range.end(); ptidx++ )
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        {
            Point2f prevPt = prevPts[ptidx]*(float)(1./(1 << level));
            Point2f nextPt;
            if( level == maxLevel )
            {
                if( flags & OPTFLOW_USE_INITIAL_FLOW )
                    nextPt = nextPts[ptidx]*(float)(1./(1 << level));
                else
                    nextPt = prevPt;
            }
            else
                nextPt = nextPts[ptidx]*2.f;
            nextPts[ptidx] = nextPt;
            
            Point2i iprevPt, inextPt;
            prevPt -= halfWin;
            iprevPt.x = cvFloor(prevPt.x);
            iprevPt.y = cvFloor(prevPt.y);
186
            
187 188 189 190 191
            if( iprevPt.x < -winSize.width || iprevPt.x >= derivI.cols ||
                iprevPt.y < -winSize.height || iprevPt.y >= derivI.rows )
            {
                if( level == 0 )
                {
192 193 194 195
                    if( status )
                        status[ptidx] = false;
                    if( err )
                        err[ptidx] = 0;
196 197 198 199 200 201
                }
                continue;
            }
            
            float a = prevPt.x - iprevPt.x;
            float b = prevPt.y - iprevPt.y;
202 203 204 205 206 207 208 209 210 211 212
            const int W_BITS = 14, W_BITS1 = 14;
            const float FLT_SCALE = 1.f/(1 << 20);
            int iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
            int iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
            int iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
            int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
            
            int dstep = (int)(derivI.step/derivI.elemSize1());
            int step = (int)(I.step/I.elemSize1());
            CV_Assert( step == (int)(J.step/J.elemSize1()) );
            float A11 = 0, A12 = 0, A22 = 0;
213
            
214 215 216 217 218 219 220 221 222 223
#if CV_SSE2
            __m128i qw0 = _mm_set1_epi32(iw00 + (iw01 << 16));
            __m128i qw1 = _mm_set1_epi32(iw10 + (iw11 << 16));
            __m128i z = _mm_setzero_si128();
            __m128i qdelta_d = _mm_set1_epi32(1 << (W_BITS1-1));
            __m128i qdelta = _mm_set1_epi32(1 << (W_BITS1-5-1));
            __m128 qA11 = _mm_setzero_ps(), qA12 = _mm_setzero_ps(), qA22 = _mm_setzero_ps();
#endif
            
            // extract the patch from the first image, compute covariation matrix of derivatives
224 225 226
            int x, y;
            for( y = 0; y < winSize.height; y++ )
            {
227 228 229 230 231 232 233 234 235 236
                const uchar* src = (const uchar*)I.data + (y + iprevPt.y)*step + iprevPt.x*cn;
                const deriv_type* dsrc = (const deriv_type*)derivI.data + (y + iprevPt.y)*dstep + iprevPt.x*cn2;
                
                deriv_type* Iptr = (deriv_type*)(IWinBuf.data + y*IWinBuf.step);
                deriv_type* dIptr = (deriv_type*)(derivIWinBuf.data + y*derivIWinBuf.step);
                
                x = 0;
                
#if CV_SSE2
                for( ; x <= winSize.width*cn - 4; x += 4, dsrc += 4*2, dIptr += 4*2 )
237
                {
238
                    __m128i v00, v01, v10, v11, t0, t1;
239
                    
240 241 242 243
                    v00 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x)), z);
                    v01 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + cn)), z);
                    v10 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + step)), z);
                    v11 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + step + cn)), z);
244
                    
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
                    t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
                                       _mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
                    t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5);
                    _mm_storel_epi64((__m128i*)(Iptr + x), _mm_packs_epi32(t0,t0));
                    
                    v00 = _mm_loadu_si128((const __m128i*)(dsrc));
                    v01 = _mm_loadu_si128((const __m128i*)(dsrc + cn2));
                    v10 = _mm_loadu_si128((const __m128i*)(dsrc + dstep));
                    v11 = _mm_loadu_si128((const __m128i*)(dsrc + dstep + cn2));
                    
                    t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
                                       _mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
                    t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0),
                                       _mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1));
                    t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta_d), W_BITS1);
                    t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta_d), W_BITS1);
                    v00 = _mm_packs_epi32(t0, t1); // Ix0 Iy0 Ix1 Iy1 ...
                    
                    _mm_storeu_si128((__m128i*)dIptr, v00);
                    t0 = _mm_srai_epi32(v00, 16); // Iy0 Iy1 Iy2 Iy3
                    t1 = _mm_srai_epi32(_mm_slli_epi32(v00, 16), 16); // Ix0 Ix1 Ix2 Ix3
                    
                    __m128 fy = _mm_cvtepi32_ps(t0);
                    __m128 fx = _mm_cvtepi32_ps(t1);
                    
                    qA22 = _mm_add_ps(qA22, _mm_mul_ps(fy, fy));
                    qA12 = _mm_add_ps(qA12, _mm_mul_ps(fx, fy));
                    qA11 = _mm_add_ps(qA11, _mm_mul_ps(fx, fx));
                }
#endif
                
                for( ; x < winSize.width*cn; x++, dsrc += 2, dIptr += 2 )
                {
                    int ival = CV_DESCALE(src[x]*iw00 + src[x+cn]*iw01 +
                                          src[x+step]*iw10 + src[x+step+cn]*iw11, W_BITS1-5);
                    int ixval = CV_DESCALE(dsrc[0]*iw00 + dsrc[cn2]*iw01 +
                                           dsrc[dstep]*iw10 + dsrc[dstep+cn2]*iw11, W_BITS1);
                    int iyval = CV_DESCALE(dsrc[1]*iw00 + dsrc[cn2+1]*iw01 + dsrc[dstep+1]*iw10 +
                                           dsrc[dstep+cn2+1]*iw11, W_BITS1);
                    
                    Iptr[x] = (short)ival;
                    dIptr[0] = (short)ixval;
                    dIptr[1] = (short)iyval;
                    
                    A11 += (float)(ixval*ixval);
                    A12 += (float)(ixval*iyval);
                    A22 += (float)(iyval*iyval);
292 293
                }
            }
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
            
#if CV_SSE2
            float CV_DECL_ALIGNED(16) A11buf[4], A12buf[4], A22buf[4];
            _mm_store_ps(A11buf, qA11);
            _mm_store_ps(A12buf, qA12);
            _mm_store_ps(A22buf, qA22);
            A11 += A11buf[0] + A11buf[1] + A11buf[2] + A11buf[3];
            A12 += A12buf[0] + A12buf[1] + A12buf[2] + A12buf[3];
            A22 += A22buf[0] + A22buf[1] + A22buf[2] + A22buf[3];
#endif
            
            A11 *= FLT_SCALE;
            A12 *= FLT_SCALE;
            A22 *= FLT_SCALE;
            
            float D = A11*A22 - A12*A12;
            float minEig = (A22 + A11 - std::sqrt((A11-A22)*(A11-A22) +
                                                  4.f*A12*A12))/(2*winSize.width*winSize.height);
312 313
            if( err )
                err[ptidx] = (float)minEig;
314 315
            
            if( D < FLT_EPSILON )
316
            {
317
                if( level == 0 && status )
318 319 320 321
                    status[ptidx] = false;
                continue;
            }
            
322 323
            D = 1.f/D;
            
324 325
            nextPt -= halfWin;
            Point2f prevDelta;
326 327
            
            for( j = 0; j < criteria.maxCount; j++ )
328 329 330
            {
                inextPt.x = cvFloor(nextPt.x);
                inextPt.y = cvFloor(nextPt.y);
331 332 333
                
                if( inextPt.x < -winSize.width || inextPt.x >= J.cols ||
                   inextPt.y < -winSize.height || inextPt.y >= J.rows )
334
                {
335
                    if( level == 0 && status )
336 337 338
                        status[ptidx] = false;
                    break;
                }
339
                
340 341
                a = nextPt.x - inextPt.x;
                b = nextPt.y - inextPt.y;
342 343 344 345 346 347 348 349 350 351 352
                iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
                iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
                iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
                iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
                float b1 = 0, b2 = 0;
#if CV_SSE2
                qw0 = _mm_set1_epi32(iw00 + (iw01 << 16));
                qw1 = _mm_set1_epi32(iw10 + (iw11 << 16));
                __m128 qb0 = _mm_setzero_ps(), qb1 = _mm_setzero_ps();
#endif
                
353 354
                for( y = 0; y < winSize.height; y++ )
                {
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
                    const uchar* Jptr = (const uchar*)J.data + (y + inextPt.y)*step + inextPt.x*cn;
                    const deriv_type* Iptr = (const deriv_type*)(IWinBuf.data + y*IWinBuf.step);
                    const deriv_type* dIptr = (const deriv_type*)(derivIWinBuf.data + y*derivIWinBuf.step);
                    
                    x = 0;
                    
#if CV_SSE2
                    for( ; x <= winSize.width*cn - 8; x += 8, dIptr += 8*2 )
                    {
                        __m128i diff0 = _mm_loadu_si128((const __m128i*)(Iptr + x)), diff1;
                        __m128i v00 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x)), z);
                        __m128i v01 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + cn)), z);
                        __m128i v10 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + step)), z);
                        __m128i v11 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + step + cn)), z);
                        
                        __m128i t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
                                                   _mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
                        __m128i t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0),
                                                   _mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1));
                        t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5);
                        t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta), W_BITS1-5);
                        diff0 = _mm_subs_epi16(_mm_packs_epi32(t0, t1), diff0);
                        diff1 = _mm_unpackhi_epi16(diff0, diff0);
                        diff0 = _mm_unpacklo_epi16(diff0, diff0); // It0 It0 It1 It1 ...
                        v00 = _mm_loadu_si128((const __m128i*)(dIptr)); // Ix0 Iy0 Ix1 Iy1 ... 
                        v01 = _mm_loadu_si128((const __m128i*)(dIptr + 8));
                        v10 = _mm_mullo_epi16(v00, diff0);
                        v11 = _mm_mulhi_epi16(v00, diff0);
                        v00 = _mm_unpacklo_epi16(v10, v11);
                        v10 = _mm_unpackhi_epi16(v10, v11);
                        qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00));
                        qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v10));
                        v10 = _mm_mullo_epi16(v01, diff1);
                        v11 = _mm_mulhi_epi16(v01, diff1);
                        v00 = _mm_unpacklo_epi16(v10, v11);
                        v10 = _mm_unpackhi_epi16(v10, v11);
                        qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00));
                        qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v10));
                    }
#endif
                    
                    for( ; x < winSize.width*cn; x++, dIptr += 2 )
397
                    {
398 399 400 401 402
                        int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
                                              Jptr[x+step]*iw10 + Jptr[x+step+cn]*iw11,
                                              W_BITS1-5) - Iptr[x];
                        b1 += (float)(diff*dIptr[0]);
                        b2 += (float)(diff*dIptr[1]);
403 404
                    }
                }
405 406 407 408 409 410 411 412 413 414 415
                
#if CV_SSE2
                float CV_DECL_ALIGNED(16) bbuf[4];
                _mm_store_ps(bbuf, _mm_add_ps(qb0, qb1));
                b1 += bbuf[0] + bbuf[2];
                b2 += bbuf[1] + bbuf[3];
#endif
                
                b1 *= FLT_SCALE;
                b2 *= FLT_SCALE;
                
416
                Point2f delta( (float)((A12*b2 - A22*b1) * D),
417
                              (float)((A12*b1 - A11*b2) * D));
418
                //delta = -delta;
419
                
420 421
                nextPt += delta;
                nextPts[ptidx] = nextPt + halfWin;
422
                
423 424
                if( delta.ddot(delta) <= criteria.epsilon )
                    break;
425
                
426
                if( j > 0 && std::abs(delta.x + prevDelta.x) < 0.01 &&
427
                   std::abs(delta.y + prevDelta.y) < 0.01 )
428 429 430 431 432 433 434 435
                {
                    nextPts[ptidx] -= delta*0.5f;
                    break;
                }
                prevDelta = delta;
            }
        }
    }
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    
    const Mat* prevImg;
    const Mat* nextImg;
    const Mat* prevDeriv;
    const Point2f* prevPts;
    Point2f* nextPts;
    uchar* status;
    float* err;
    Size winSize;
    TermCriteria criteria;
    int level;
    int maxLevel;
    int flags;
};
    
451 452
}

453 454 455 456 457 458 459
void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
                           InputArray _prevPts, InputOutputArray _nextPts,
                           OutputArray _status, OutputArray _err,
                           Size winSize, int maxLevel,
                           TermCriteria criteria,
                           double derivLambda,
                           int flags )
460
{
461 462 463 464 465 466 467
#ifdef HAVE_TEGRA_OPTIMIZATION
    if (tegra::calcOpticalFlowPyrLK(_prevImg, _nextImg, _prevPts, _nextPts, _status, _err, winSize, maxLevel, criteria, derivLambda, flags))
        return;
#endif
    Mat prevImg = _prevImg.getMat(), nextImg = _nextImg.getMat(), prevPtsMat = _prevPts.getMat();
    derivLambda = std::min(std::max(derivLambda, 0.), 1.);
    const int derivDepth = DataType<deriv_type>::depth;
468

469 470 471 472
    CV_Assert( derivLambda >= 0 );
    CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 );
    CV_Assert( prevImg.size() == nextImg.size() &&
        prevImg.type() == nextImg.type() );
473

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    int level=0, i, k, npoints, cn = prevImg.channels(), cn2 = cn*2;
    CV_Assert( (npoints = prevPtsMat.checkVector(2, CV_32F, true)) >= 0 );
    
    if( npoints == 0 )
    {
        _nextPts.release();
        _status.release();
        _err.release();
        return;
    }
    
    if( !(flags & OPTFLOW_USE_INITIAL_FLOW) )
        _nextPts.create(prevPtsMat.size(), prevPtsMat.type(), -1, true);
    
    Mat nextPtsMat = _nextPts.getMat();
    CV_Assert( nextPtsMat.checkVector(2, CV_32F, true) == npoints );
    
    const Point2f* prevPts = (const Point2f*)prevPtsMat.data;
    Point2f* nextPts = (Point2f*)nextPtsMat.data;
    
    _status.create((int)npoints, 1, CV_8U, -1, true);
    Mat statusMat = _status.getMat(), errMat;
    CV_Assert( statusMat.isContinuous() );
    uchar* status = statusMat.data;
    float* err = 0;
    
    for( i = 0; i < npoints; i++ )
        status[i] = true;
    
    if( _err.needed() )
    {
        _err.create((int)npoints, 1, CV_32F, -1, true);
        errMat = _err.getMat();
        CV_Assert( errMat.isContinuous() );
        err = (float*)errMat.data;
    }
510

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    vector<Mat> prevPyr(maxLevel+1), nextPyr(maxLevel+1);
    
    // build the image pyramids.
    // we pad each level with +/-winSize.{width|height}
    // pixels to simplify the further patch extraction.
    // Thanks to the reference counting, "temp" mat (the pyramid layer + border)
    // will not be deallocated, since {prevPyr|nextPyr}[level] will be a ROI in "temp".
    for( k = 0; k < 2; k++ )
    {
        Size sz = prevImg.size();
        vector<Mat>& pyr = k == 0 ? prevPyr : nextPyr;
        Mat& img0 = k == 0 ? prevImg : nextImg;
        
        for( level = 0; level <= maxLevel; level++ )
        {
            Mat temp(sz.height + winSize.height*2,
                     sz.width + winSize.width*2,
                     img0.type());
            pyr[level] = temp(Rect(winSize.width, winSize.height, sz.width, sz.height));
            if( level == 0 )
                img0.copyTo(pyr[level]);
            else
                pyrDown(pyr[level-1], pyr[level], pyr[level].size());
            copyMakeBorder(pyr[level], temp, winSize.height, winSize.height,
                           winSize.width, winSize.width, BORDER_REFLECT_101);
            sz = Size((sz.width+1)/2, (sz.height+1)/2);
            if( sz.width <= winSize.width || sz.height <= winSize.height )
            {
                maxLevel = level;
                break;
            }
        }
    }
    // dI/dx ~ Ix, dI/dy ~ Iy
    Mat derivIBuf((prevImg.rows + winSize.height*2),
             (prevImg.cols + winSize.width*2),
             CV_MAKETYPE(derivDepth, cn2));
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    if( (criteria.type & TermCriteria::COUNT) == 0 )
        criteria.maxCount = 30;
    else
        criteria.maxCount = std::min(std::max(criteria.maxCount, 0), 100);
    if( (criteria.type & TermCriteria::EPS) == 0 )
        criteria.epsilon = 0.01;
    else
        criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.);
    criteria.epsilon *= criteria.epsilon;

    for( level = maxLevel; level >= 0; level-- )
    {
        Size imgSize = prevPyr[level].size();
        Mat _derivI( imgSize.height + winSize.height*2,
            imgSize.width + winSize.width*2, derivIBuf.type(), derivIBuf.data );
        Mat derivI = _derivI(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
        calcSharrDeriv(prevPyr[level], derivI);
        copyMakeBorder(derivI, _derivI, winSize.height, winSize.height, winSize.width, winSize.width, BORDER_CONSTANT);
        
        Mat I = prevPyr[level], J = nextPyr[level];
        
        parallel_for(BlockedRange(0, npoints), LKTrackerInvoker(prevPyr[level], derivI,
                                                                nextPyr[level], prevPts, nextPts,
                                                                status, err,
                                                                winSize, criteria, level, maxLevel, flags));
    }
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
}


static int icvMinimalPyramidSize( CvSize imgSize )
{
    return cvAlign(imgSize.width,8) * imgSize.height / 3;
}


static void
icvInitPyramidalAlgorithm( const CvMat* imgA, const CvMat* imgB,
                           CvMat* pyrA, CvMat* pyrB,
                           int level, CvTermCriteria * criteria,
                           int max_iters, int flags,
                           uchar *** imgI, uchar *** imgJ,
                           int **step, CvSize** size,
                           double **scale, cv::AutoBuffer<uchar>* buffer )
{
    const int ALIGN = 8;
    int pyrBytes, bufferBytes = 0, elem_size;
    int level1 = level + 1;

    int i;
    CvSize imgSize, levelSize;

    *imgI = *imgJ = 0;
    *step = 0;
    *scale = 0;
    *size = 0;

    /* check input arguments */
    if( ((flags & CV_LKFLOW_PYR_A_READY) != 0 && !pyrA) ||
        ((flags & CV_LKFLOW_PYR_B_READY) != 0 && !pyrB) )
        CV_Error( CV_StsNullPtr, "Some of the precomputed pyramids are missing" );

    if( level < 0 )
        CV_Error( CV_StsOutOfRange, "The number of pyramid levels is negative" );

    switch( criteria->type )
    {
    case CV_TERMCRIT_ITER:
        criteria->epsilon = 0.f;
        break;
    case CV_TERMCRIT_EPS:
        criteria->max_iter = max_iters;
        break;
    case CV_TERMCRIT_ITER | CV_TERMCRIT_EPS:
        break;
    default:
        assert( 0 );
        CV_Error( CV_StsBadArg, "Invalid termination criteria" );
    }

    /* compare squared values */
    criteria->epsilon *= criteria->epsilon;

    /* set pointers and step for every level */
    pyrBytes = 0;

    imgSize = cvGetSize(imgA);
    elem_size = CV_ELEM_SIZE(imgA->type);
    levelSize = imgSize;

    for( i = 1; i < level1; i++ )
    {
        levelSize.width = (levelSize.width + 1) >> 1;
        levelSize.height = (levelSize.height + 1) >> 1;

        int tstep = cvAlign(levelSize.width,ALIGN) * elem_size;
        pyrBytes += tstep * levelSize.height;
    }

    assert( pyrBytes <= imgSize.width * imgSize.height * elem_size * 4 / 3 );

    /* buffer_size = <size for patches> + <size for pyramids> */
    bufferBytes = (int)((level1 >= 0) * ((pyrA->data.ptr == 0) +
        (pyrB->data.ptr == 0)) * pyrBytes +
        (sizeof(imgI[0][0]) * 2 + sizeof(step[0][0]) +
         sizeof(size[0][0]) + sizeof(scale[0][0])) * level1);

    buffer->allocate( bufferBytes );

    *imgI = (uchar **) (uchar*)(*buffer);
    *imgJ = *imgI + level1;
    *step = (int *) (*imgJ + level1);
    *scale = (double *) (*step + level1);
    *size = (CvSize *)(*scale + level1);

    imgI[0][0] = imgA->data.ptr;
    imgJ[0][0] = imgB->data.ptr;
    step[0][0] = imgA->step;
    scale[0][0] = 1;
    size[0][0] = imgSize;

    if( level > 0 )
    {
        uchar *bufPtr = (uchar *) (*size + level1);
        uchar *ptrA = pyrA->data.ptr;
        uchar *ptrB = pyrB->data.ptr;

        if( !ptrA )
        {
            ptrA = bufPtr;
            bufPtr += pyrBytes;
        }

        if( !ptrB )
            ptrB = bufPtr;

        levelSize = imgSize;

        /* build pyramids for both frames */
        for( i = 1; i <= level; i++ )
        {
            int levelBytes;
            CvMat prev_level, next_level;

            levelSize.width = (levelSize.width + 1) >> 1;
            levelSize.height = (levelSize.height + 1) >> 1;

            size[0][i] = levelSize;
            step[0][i] = cvAlign( levelSize.width, ALIGN ) * elem_size;
            scale[0][i] = scale[0][i - 1] * 0.5;

            levelBytes = step[0][i] * levelSize.height;
            imgI[0][i] = (uchar *) ptrA;
            ptrA += levelBytes;

            if( !(flags & CV_LKFLOW_PYR_A_READY) )
            {
                prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 );
                next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 );
                cvSetData( &prev_level, imgI[0][i-1], step[0][i-1] );
                cvSetData( &next_level, imgI[0][i], step[0][i] );
                cvPyrDown( &prev_level, &next_level );
            }

            imgJ[0][i] = (uchar *) ptrB;
            ptrB += levelBytes;

            if( !(flags & CV_LKFLOW_PYR_B_READY) )
            {
                prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 );
                next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 );
                cvSetData( &prev_level, imgJ[0][i-1], step[0][i-1] );
                cvSetData( &next_level, imgJ[0][i], step[0][i] );
                cvPyrDown( &prev_level, &next_level );
            }
        }
    }
}


/* compute dI/dx and dI/dy */
static void
icvCalcIxIy_32f( const float* src, int src_step, float* dstX, float* dstY, int dst_step,
                 CvSize src_size, const float* smooth_k, float* buffer0 )
{
    int src_width = src_size.width, dst_width = src_size.width-2;
    int x, height = src_size.height - 2;
    float* buffer1 = buffer0 + src_width;

    src_step /= sizeof(src[0]);
    dst_step /= sizeof(dstX[0]);

    for( ; height--; src += src_step, dstX += dst_step, dstY += dst_step )
    {
        const float* src2 = src + src_step;
        const float* src3 = src + src_step*2;

        for( x = 0; x < src_width; x++ )
        {
            float t0 = (src3[x] + src[x])*smooth_k[0] + src2[x]*smooth_k[1];
            float t1 = src3[x] - src[x];
            buffer0[x] = t0; buffer1[x] = t1;
        }

        for( x = 0; x < dst_width; x++ )
        {
            float t0 = buffer0[x+2] - buffer0[x];
            float t1 = (buffer1[x] + buffer1[x+2])*smooth_k[0] + buffer1[x+1]*smooth_k[1];
            dstX[x] = t0; dstY[x] = t1;
        }
    }
}


#undef CV_8TO32F
#define CV_8TO32F(a) (a)

static const void*
icvAdjustRect( const void* srcptr, int src_step, int pix_size,
              CvSize src_size, CvSize win_size,
              CvPoint ip, CvRect* pRect )
{
    CvRect rect;
    const char* src = (const char*)srcptr;
    
    if( ip.x >= 0 )
    {
        src += ip.x*pix_size;
        rect.x = 0;
    }
    else
    {
        rect.x = -ip.x;
        if( rect.x > win_size.width )
            rect.x = win_size.width;
    }
    
    if( ip.x + win_size.width < src_size.width )
        rect.width = win_size.width;
    else
    {
        rect.width = src_size.width - ip.x - 1;
        if( rect.width < 0 )
        {
            src += rect.width*pix_size;
            rect.width = 0;
        }
        assert( rect.width <= win_size.width );
    }
    
    if( ip.y >= 0 )
    {
        src += ip.y * src_step;
        rect.y = 0;
    }
    else
        rect.y = -ip.y;
    
    if( ip.y + win_size.height < src_size.height )
        rect.height = win_size.height;
    else
    {
        rect.height = src_size.height - ip.y - 1;
        if( rect.height < 0 )
        {
            src += rect.height*src_step;
            rect.height = 0;
        }
    }
    
    *pRect = rect;
    return src - rect.x*pix_size;
}


static CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R
( const uchar* src, int src_step, CvSize src_size,
 float* dst, int dst_step, CvSize win_size, CvPoint2D32f center )
{
    CvPoint ip;
    float  a12, a22, b1, b2;
    float a, b;
    double s = 0;
    int i, j;
    
    center.x -= (win_size.width-1)*0.5f;
    center.y -= (win_size.height-1)*0.5f;
    
    ip.x = cvFloor( center.x );
    ip.y = cvFloor( center.y );
    
    if( win_size.width <= 0 || win_size.height <= 0 )
        return CV_BADRANGE_ERR;
    
    a = center.x - ip.x;
    b = center.y - ip.y;
    a = MAX(a,0.0001f);
    a12 = a*(1.f-b);
    a22 = a*b;
    b1 = 1.f - b;
    b2 = b;
    s = (1. - a)/a;
    
    src_step /= sizeof(src[0]);
    dst_step /= sizeof(dst[0]);
    
    if( 0 <= ip.x && ip.x + win_size.width < src_size.width &&
       0 <= ip.y && ip.y + win_size.height < src_size.height )
    {
        // extracted rectangle is totally inside the image
        src += ip.y * src_step + ip.x;
        
#if 0
        if( icvCopySubpix_8u32f_C1R_p &&
           icvCopySubpix_8u32f_C1R_p( src, src_step, dst,
                                     dst_step*sizeof(dst[0]), win_size, a, b ) >= 0 )
            return CV_OK;
#endif
        
        for( ; win_size.height--; src += src_step, dst += dst_step )
        {
            float prev = (1 - a)*(b1*CV_8TO32F(src[0]) + b2*CV_8TO32F(src[src_step]));
            for( j = 0; j < win_size.width; j++ )
            {
                float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src[j+1+src_step]);
                dst[j] = prev + t;
                prev = (float)(t*s);
            }
        }
    }
    else
    {
        CvRect r;
        
        src = (const uchar*)icvAdjustRect( src, src_step*sizeof(*src),
                                          sizeof(*src), src_size, win_size,ip, &r);
        
        for( i = 0; i < win_size.height; i++, dst += dst_step )
        {
            const uchar *src2 = src + src_step;
            
            if( i < r.y || i >= r.height )
                src2 -= src_step;
            
            for( j = 0; j < r.x; j++ )
            {
                float s0 = CV_8TO32F(src[r.x])*b1 +
                CV_8TO32F(src2[r.x])*b2;
                
                dst[j] = (float)(s0);
            }
            
            if( j < r.width )
            {
                float prev = (1 - a)*(b1*CV_8TO32F(src[j]) + b2*CV_8TO32F(src2[j]));
                
                for( ; j < r.width; j++ )
                {
                    float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src2[j+1]);
                    dst[j] = prev + t;
                    prev = (float)(t*s);
                }
            }
            
            for( ; j < win_size.width; j++ )
            {
                float s0 = CV_8TO32F(src[r.width])*b1 +
                CV_8TO32F(src2[r.width])*b2;
                
                dst[j] = (float)(s0);
            }
            
            if( i < r.height )
                src = src2;
        }
    }
    
    return CV_OK;
}


#define ICV_32F8U(x)  ((uchar)cvRound(x))

#define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( flavor, srctype, dsttype,      \
worktype, cast_macro, cvt )    \
933
static CvStatus CV_STDCALL                                                   \
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
icvGetQuadrangleSubPix_##flavor##_C1R                                       \
( const srctype * src, int src_step, CvSize src_size,                       \
dsttype *dst, int dst_step, CvSize win_size, const float *matrix )        \
{                                                                           \
int x, y;                                                               \
double dx = (win_size.width - 1)*0.5;                                   \
double dy = (win_size.height - 1)*0.5;                                  \
double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \
double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \
\
src_step /= sizeof(srctype);                                            \
dst_step /= sizeof(dsttype);                                            \
\
for( y = 0; y < win_size.height; y++, dst += dst_step )                 \
{                                                                       \
double xs = A12*y + A13;                                            \
double ys = A22*y + A23;                                            \
double xe = A11*(win_size.width-1) + A12*y + A13;                   \
double ye = A21*(win_size.width-1) + A22*y + A23;                   \
\
if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) &&   \
(unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) &&  \
(unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) &&   \
(unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3))    \
{                                                                   \
for( x = 0; x < win_size.width; x++ )                           \
{                                                               \
int ixs = cvFloor( xs );                                    \
int iys = cvFloor( ys );                                    \
const srctype *ptr = src + src_step*iys + ixs;              \
double a = xs - ixs, b = ys - iys, a1 = 1.f - a;            \
worktype p0 = cvt(ptr[0])*a1 + cvt(ptr[1])*a;               \
worktype p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+1])*a;\
xs += A11;                                                  \
ys += A21;                                                  \
\
dst[x] = cast_macro(p0 + b * (p1 - p0));                    \
}                                                               \
}                                                                   \
else                                                                \
{                                                                   \
for( x = 0; x < win_size.width; x++ )                           \
{                                                               \
int ixs = cvFloor( xs ), iys = cvFloor( ys );               \
double a = xs - ixs, b = ys - iys, a1 = 1.f - a;            \
const srctype *ptr0, *ptr1;                                 \
worktype p0, p1;                                            \
xs += A11; ys += A21;                                       \
\
if( (unsigned)iys < (unsigned)(src_size.height-1) )         \
ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step;      \
else                                                        \
ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \
\
if( (unsigned)ixs < (unsigned)(src_size.width-1) )          \
{                                                           \
p0 = cvt(ptr0[ixs])*a1 + cvt(ptr0[ixs+1])*a;            \
p1 = cvt(ptr1[ixs])*a1 + cvt(ptr1[ixs+1])*a;            \
}                                                           \
else                                                        \
{                                                           \
ixs = ixs < 0 ? 0 : src_size.width - 1;                 \
p0 = cvt(ptr0[ixs]); p1 = cvt(ptr1[ixs]);               \
}                                                           \
dst[x] = cast_macro(p0 + b * (p1 - p0));                    \
}                                                               \
}                                                                   \
}                                                                       \
\
return CV_OK;                                                           \
}

ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F )


CV_IMPL void
cvCalcOpticalFlowPyrLK( const void* arrA, const void* arrB,
1011
                        void* /*pyrarrA*/, void* /*pyrarrB*/,
1012 1013 1014 1015 1016 1017
                        const CvPoint2D32f * featuresA,
                        CvPoint2D32f * featuresB,
                        int count, CvSize winSize, int level,
                        char *status, float *error,
                        CvTermCriteria criteria, int flags )
{
1018
    if( count <= 0 )
1019
        return;
1020 1021 1022 1023 1024
    CV_Assert( featuresA && featuresB );
    cv::Mat A = cv::cvarrToMat(arrA), B = cv::cvarrToMat(arrB);
    cv::Mat ptA(count, 1, CV_32FC2, (void*)featuresA);
    cv::Mat ptB(count, 1, CV_32FC2, (void*)featuresB);
    cv::Mat st, err;
1025
    
1026 1027 1028 1029 1030 1031 1032
    if( status )
        st = cv::Mat(count, 1, CV_8U, (void*)status);
    if( error )
        err = cv::Mat(count, 1, CV_32F, (void*)error);
    cv::calcOpticalFlowPyrLK( A, B, ptA, ptB, status ? cv::_OutputArray(st) : cv::_OutputArray(),
                              error ? cv::_OutputArray(err) : cv::_OutputArray(),
                              winSize, level, criteria, flags);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
}


/* Affine tracking algorithm */

CV_IMPL void
cvCalcAffineFlowPyrLK( const void* arrA, const void* arrB,
                       void* pyrarrA, void* pyrarrB,
                       const CvPoint2D32f * featuresA,
                       CvPoint2D32f * featuresB,
                       float *matrices, int count,
                       CvSize winSize, int level,
                       char *status, float *error,
                       CvTermCriteria criteria, int flags )
{
    const int MAX_ITERS = 100;

    cv::AutoBuffer<char> _status;
    cv::AutoBuffer<uchar> buffer;
    cv::AutoBuffer<uchar> pyr_buffer;

    CvMat stubA, *imgA = (CvMat*)arrA;
    CvMat stubB, *imgB = (CvMat*)arrB;
    CvMat pstubA, *pyrA = (CvMat*)pyrarrA;
    CvMat pstubB, *pyrB = (CvMat*)pyrarrB;

    static const float smoothKernel[] = { 0.09375, 0.3125, 0.09375 };  /* 3/32, 10/32, 3/32 */

    int bufferBytes = 0;

    uchar **imgI = 0;
    uchar **imgJ = 0;
    int *step = 0;
    double *scale = 0;
    CvSize* size = 0;

    float *patchI;
    float *patchJ;
    float *Ix;
    float *Iy;

    int i, j, k, l;

    CvSize patchSize = cvSize( winSize.width * 2 + 1, winSize.height * 2 + 1 );
    int patchLen = patchSize.width * patchSize.height;
    int patchStep = patchSize.width * sizeof( patchI[0] );

    CvSize srcPatchSize = cvSize( patchSize.width + 2, patchSize.height + 2 );
    int srcPatchLen = srcPatchSize.width * srcPatchSize.height;
    int srcPatchStep = srcPatchSize.width * sizeof( patchI[0] );
    CvSize imgSize;
    float eps = (float)MIN(winSize.width, winSize.height);

    imgA = cvGetMat( imgA, &stubA );
    imgB = cvGetMat( imgB, &stubB );

    if( CV_MAT_TYPE( imgA->type ) != CV_8UC1 )
        CV_Error( CV_StsUnsupportedFormat, "" );

    if( !CV_ARE_TYPES_EQ( imgA, imgB ))
        CV_Error( CV_StsUnmatchedFormats, "" );

    if( !CV_ARE_SIZES_EQ( imgA, imgB ))
        CV_Error( CV_StsUnmatchedSizes, "" );

    if( imgA->step != imgB->step )
        CV_Error( CV_StsUnmatchedSizes, "imgA and imgB must have equal steps" );

    if( !matrices )
        CV_Error( CV_StsNullPtr, "" );

    imgSize = cvGetMatSize( imgA );

    if( pyrA )
    {
        pyrA = cvGetMat( pyrA, &pstubA );

        if( pyrA->step*pyrA->height < icvMinimalPyramidSize( imgSize ) )
            CV_Error( CV_StsBadArg, "pyramid A has insufficient size" );
    }
    else
    {
        pyrA = &pstubA;
        pyrA->data.ptr = 0;
    }

    if( pyrB )
    {
        pyrB = cvGetMat( pyrB, &pstubB );

        if( pyrB->step*pyrB->height < icvMinimalPyramidSize( imgSize ) )
            CV_Error( CV_StsBadArg, "pyramid B has insufficient size" );
    }
    else
    {
        pyrB = &pstubB;
        pyrB->data.ptr = 0;
    }

    if( count == 0 )
        return;

    /* check input arguments */
    if( !featuresA || !featuresB || !matrices )
        CV_Error( CV_StsNullPtr, "" );

    if( winSize.width <= 1 || winSize.height <= 1 )
        CV_Error( CV_StsOutOfRange, "the search window is too small" );

    if( count < 0 )
        CV_Error( CV_StsOutOfRange, "" );

    icvInitPyramidalAlgorithm( imgA, imgB,
        pyrA, pyrB, level, &criteria, MAX_ITERS, flags,
        &imgI, &imgJ, &step, &size, &scale, &pyr_buffer );

    /* buffer_size = <size for patches> + <size for pyramids> */
    bufferBytes = (srcPatchLen + patchLen*3)*sizeof(patchI[0]) + (36*2 + 6)*sizeof(double);

    buffer.allocate(bufferBytes);

    if( !status )
    {
        _status.allocate(count);
        status = _status;
    }

    patchI = (float *)(uchar*)buffer;
    patchJ = patchI + srcPatchLen;
    Ix = patchJ + patchLen;
    Iy = Ix + patchLen;

    if( status )
        memset( status, 1, count );

    if( !(flags & CV_LKFLOW_INITIAL_GUESSES) )
    {
        memcpy( featuresB, featuresA, count * sizeof( featuresA[0] ));
        for( i = 0; i < count * 4; i += 4 )
        {
            matrices[i] = matrices[i + 3] = 1.f;
            matrices[i + 1] = matrices[i + 2] = 0.f;
        }
    }

    for( i = 0; i < count; i++ )
    {
        featuresB[i].x = (float)(featuresB[i].x * scale[level] * 0.5);
        featuresB[i].y = (float)(featuresB[i].y * scale[level] * 0.5);
    }

    /* do processing from top pyramid level (smallest image)
       to the bottom (original image) */
    for( l = level; l >= 0; l-- )
    {
        CvSize levelSize = size[l];
        int levelStep = step[l];

        /* find flow for each given point at the particular level */
        for( i = 0; i < count; i++ )
        {
            CvPoint2D32f u;
            float Av[6];
            double G[36];
            double meanI = 0, meanJ = 0;
            int x, y;
            int pt_status = status[i];
            CvMat mat;

            if( !pt_status )
                continue;

            Av[0] = matrices[i*4];
            Av[1] = matrices[i*4+1];
            Av[3] = matrices[i*4+2];
            Av[4] = matrices[i*4+3];

            Av[2] = featuresB[i].x += featuresB[i].x;
            Av[5] = featuresB[i].y += featuresB[i].y;

            u.x = (float) (featuresA[i].x * scale[l]);
            u.y = (float) (featuresA[i].y * scale[l]);

            if( u.x < -eps || u.x >= levelSize.width+eps ||
                u.y < -eps || u.y >= levelSize.height+eps ||
                icvGetRectSubPix_8u32f_C1R( imgI[l], levelStep,
                levelSize, patchI, srcPatchStep, srcPatchSize, u ) < 0 )
            {
                /* point is outside the image. take the next */
                if( l == 0 )
                    status[i] = 0;
                continue;
            }

            icvCalcIxIy_32f( patchI, srcPatchStep, Ix, Iy,
                (srcPatchSize.width-2)*sizeof(patchI[0]), srcPatchSize,
                smoothKernel, patchJ );

            /* repack patchI (remove borders) */
            for( k = 0; k < patchSize.height; k++ )
                memcpy( patchI + k * patchSize.width,
                        patchI + (k + 1) * srcPatchSize.width + 1, patchStep );

            memset( G, 0, sizeof( G ));

            /* calculate G matrix */
            for( y = -winSize.height, k = 0; y <= winSize.height; y++ )
            {
                for( x = -winSize.width; x <= winSize.width; x++, k++ )
                {
                    double ixix = ((double) Ix[k]) * Ix[k];
                    double ixiy = ((double) Ix[k]) * Iy[k];
                    double iyiy = ((double) Iy[k]) * Iy[k];

                    double xx, xy, yy;

                    G[0] += ixix;
                    G[1] += ixiy;
                    G[2] += x * ixix;
                    G[3] += y * ixix;
                    G[4] += x * ixiy;
                    G[5] += y * ixiy;

                    // G[6] == G[1]
                    G[7] += iyiy;
                    // G[8] == G[4]
                    // G[9] == G[5]
                    G[10] += x * iyiy;
                    G[11] += y * iyiy;

                    xx = x * x;
                    xy = x * y;
                    yy = y * y;

                    // G[12] == G[2]
                    // G[13] == G[8] == G[4]
                    G[14] += xx * ixix;
                    G[15] += xy * ixix;
                    G[16] += xx * ixiy;
                    G[17] += xy * ixiy;

                    // G[18] == G[3]
                    // G[19] == G[9]
                    // G[20] == G[15]
                    G[21] += yy * ixix;
                    // G[22] == G[17]
                    G[23] += yy * ixiy;

                    // G[24] == G[4]
                    // G[25] == G[10]
                    // G[26] == G[16]
                    // G[27] == G[22]
                    G[28] += xx * iyiy;
                    G[29] += xy * iyiy;

                    // G[30] == G[5]
                    // G[31] == G[11]
                    // G[32] == G[17]
                    // G[33] == G[23]
                    // G[34] == G[29]
                    G[35] += yy * iyiy;

                    meanI += patchI[k];
                }
            }

            meanI /= patchSize.width*patchSize.height;

            G[8] = G[4];
            G[9] = G[5];
            G[22] = G[17];

            // fill part of G below its diagonal
            for( y = 1; y < 6; y++ )
                for( x = 0; x < y; x++ )
                    G[y * 6 + x] = G[x * 6 + y];

            cvInitMatHeader( &mat, 6, 6, CV_64FC1, G );

            if( cvInvert( &mat, &mat, CV_SVD ) < 1e-4 )
            {
                /* bad matrix. take the next point */
                if( l == 0 )
                    status[i] = 0;
                continue;
            }

            for( j = 0; j < criteria.max_iter; j++ )
            {
                double b[6] = {0,0,0,0,0,0}, eta[6];
                double t0, t1, s = 0;

                if( Av[2] < -eps || Av[2] >= levelSize.width+eps ||
                    Av[5] < -eps || Av[5] >= levelSize.height+eps ||
                    icvGetQuadrangleSubPix_8u32f_C1R( imgJ[l], levelStep,
                    levelSize, patchJ, patchStep, patchSize, Av ) < 0 )
                {
                    pt_status = 0;
                    break;
                }

                for( y = -winSize.height, k = 0, meanJ = 0; y <= winSize.height; y++ )
                    for( x = -winSize.width; x <= winSize.width; x++, k++ )
                        meanJ += patchJ[k];

                meanJ = meanJ / (patchSize.width * patchSize.height) - meanI;

                for( y = -winSize.height, k = 0; y <= winSize.height; y++ )
                {
                    for( x = -winSize.width; x <= winSize.width; x++, k++ )
                    {
                        double t = patchI[k] - patchJ[k] + meanJ;
                        double ixt = Ix[k] * t;
                        double iyt = Iy[k] * t;

                        s += t;

                        b[0] += ixt;
                        b[1] += iyt;
                        b[2] += x * ixt;
                        b[3] += y * ixt;
                        b[4] += x * iyt;
                        b[5] += y * iyt;
                    }
                }

                for( k = 0; k < 6; k++ )
                    eta[k] = G[k*6]*b[0] + G[k*6+1]*b[1] + G[k*6+2]*b[2] +
                        G[k*6+3]*b[3] + G[k*6+4]*b[4] + G[k*6+5]*b[5];

                Av[2] = (float)(Av[2] + Av[0] * eta[0] + Av[1] * eta[1]);
                Av[5] = (float)(Av[5] + Av[3] * eta[0] + Av[4] * eta[1]);

                t0 = Av[0] * (1 + eta[2]) + Av[1] * eta[4];
                t1 = Av[0] * eta[3] + Av[1] * (1 + eta[5]);
                Av[0] = (float)t0;
                Av[1] = (float)t1;

                t0 = Av[3] * (1 + eta[2]) + Av[4] * eta[4];
                t1 = Av[3] * eta[3] + Av[4] * (1 + eta[5]);
                Av[3] = (float)t0;
                Av[4] = (float)t1;

                if( eta[0] * eta[0] + eta[1] * eta[1] < criteria.epsilon )
                    break;
            }

            if( pt_status != 0 || l == 0 )
            {
                status[i] = (char)pt_status;
                featuresB[i].x = Av[2];
                featuresB[i].y = Av[5];
            
                matrices[i*4] = Av[0];
                matrices[i*4+1] = Av[1];
                matrices[i*4+2] = Av[3];
                matrices[i*4+3] = Av[4];
            }

            if( pt_status && l == 0 && error )
            {
                /* calc error */
                double err = 0;

                for( y = 0, k = 0; y < patchSize.height; y++ )
                {
                    for( x = 0; x < patchSize.width; x++, k++ )
                    {
                        double t = patchI[k] - patchJ[k] + meanJ;
                        err += t * t;
                    }
                }
                error[i] = (float)sqrt(err);
            }
        }
    }
}



static void
icvGetRTMatrix( const CvPoint2D32f* a, const CvPoint2D32f* b,
                int count, CvMat* M, int full_affine )
{
    if( full_affine )
    {
        double sa[36], sb[6];
        CvMat A = cvMat( 6, 6, CV_64F, sa ), B = cvMat( 6, 1, CV_64F, sb );
        CvMat MM = cvMat( 6, 1, CV_64F, M->data.db );

        int i;

        memset( sa, 0, sizeof(sa) );
        memset( sb, 0, sizeof(sb) );

        for( i = 0; i < count; i++ )
        {
            sa[0] += a[i].x*a[i].x;
            sa[1] += a[i].y*a[i].x;
            sa[2] += a[i].x;

            sa[6] += a[i].x*a[i].y;
            sa[7] += a[i].y*a[i].y;
            sa[8] += a[i].y;

            sa[12] += a[i].x;
            sa[13] += a[i].y;
            sa[14] += 1;

            sb[0] += a[i].x*b[i].x;
            sb[1] += a[i].y*b[i].x;
            sb[2] += b[i].x;
            sb[3] += a[i].x*b[i].y;
            sb[4] += a[i].y*b[i].y;
            sb[5] += b[i].y;
        }

        sa[21] = sa[0];
        sa[22] = sa[1];
        sa[23] = sa[2];
        sa[27] = sa[6];
        sa[28] = sa[7];
        sa[29] = sa[8];
        sa[33] = sa[12];
        sa[34] = sa[13];
        sa[35] = sa[14];

        cvSolve( &A, &B, &MM, CV_SVD );
    }
    else
    {
        double sa[16], sb[4], m[4], *om = M->data.db;
        CvMat A = cvMat( 4, 4, CV_64F, sa ), B = cvMat( 4, 1, CV_64F, sb );
        CvMat MM = cvMat( 4, 1, CV_64F, m );

        int i;

        memset( sa, 0, sizeof(sa) );
        memset( sb, 0, sizeof(sb) );

        for( i = 0; i < count; i++ )
        {
            sa[0] += a[i].x*a[i].x + a[i].y*a[i].y;
            sa[1] += 0;
            sa[2] += a[i].x;
            sa[3] += a[i].y;

            sa[4] += 0;
            sa[5] += a[i].x*a[i].x + a[i].y*a[i].y;
            sa[6] += -a[i].y;
            sa[7] += a[i].x;

            sa[8] += a[i].x;
            sa[9] += -a[i].y;
            sa[10] += 1;
            sa[11] += 0;

            sa[12] += a[i].y;
            sa[13] += a[i].x;
            sa[14] += 0;
            sa[15] += 1;

            sb[0] += a[i].x*b[i].x + a[i].y*b[i].y;
            sb[1] += a[i].x*b[i].y - a[i].y*b[i].x;
            sb[2] += b[i].x;
            sb[3] += b[i].y;
        }

        cvSolve( &A, &B, &MM, CV_SVD );

        om[0] = om[4] = m[0];
        om[1] = -m[1];
        om[3] = m[1];
        om[2] = m[2];
        om[5] = m[3];
    }
}


CV_IMPL int
cvEstimateRigidTransform( const CvArr* matA, const CvArr* matB, CvMat* matM, int full_affine )
{
    const int COUNT = 15;
    const int WIDTH = 160, HEIGHT = 120;
    const int RANSAC_MAX_ITERS = 500;
    const int RANSAC_SIZE0 = 3;
    const double RANSAC_GOOD_RATIO = 0.5;

    cv::Ptr<CvMat> sA, sB;
    cv::AutoBuffer<CvPoint2D32f> pA, pB;
    cv::AutoBuffer<int> good_idx;
    cv::AutoBuffer<char> status;
    cv::Ptr<CvMat> gray;

    CvMat stubA, *A = cvGetMat( matA, &stubA );
    CvMat stubB, *B = cvGetMat( matB, &stubB );
    CvSize sz0, sz1;
    int cn, equal_sizes;
    int i, j, k, k1;
    int count_x, count_y, count = 0;
    double scale = 1;
    CvRNG rng = cvRNG(-1);
    double m[6]={0};
    CvMat M = cvMat( 2, 3, CV_64F, m );
    int good_count = 0;
    CvRect brect;

    if( !CV_IS_MAT(matM) )
        CV_Error( matM ? CV_StsBadArg : CV_StsNullPtr, "Output parameter M is not a valid matrix" );

    if( !CV_ARE_SIZES_EQ( A, B ) )
        CV_Error( CV_StsUnmatchedSizes, "Both input images must have the same size" );

    if( !CV_ARE_TYPES_EQ( A, B ) )
        CV_Error( CV_StsUnmatchedFormats, "Both input images must have the same data type" );

    if( CV_MAT_TYPE(A->type) == CV_8UC1 || CV_MAT_TYPE(A->type) == CV_8UC3 )
    {
        cn = CV_MAT_CN(A->type);
        sz0 = cvGetSize(A);
        sz1 = cvSize(WIDTH, HEIGHT);

        scale = MAX( (double)sz1.width/sz0.width, (double)sz1.height/sz0.height );
        scale = MIN( scale, 1. );
        sz1.width = cvRound( sz0.width * scale );
        sz1.height = cvRound( sz0.height * scale );

        equal_sizes = sz1.width == sz0.width && sz1.height == sz0.height;

        if( !equal_sizes || cn != 1 )
        {
            sA = cvCreateMat( sz1.height, sz1.width, CV_8UC1 );
            sB = cvCreateMat( sz1.height, sz1.width, CV_8UC1 );

            if( cn != 1 )
            {
                gray = cvCreateMat( sz0.height, sz0.width, CV_8UC1 );
                cvCvtColor( A, gray, CV_BGR2GRAY );
                cvResize( gray, sA, CV_INTER_AREA );
                cvCvtColor( B, gray, CV_BGR2GRAY );
                cvResize( gray, sB, CV_INTER_AREA );
                gray.release();
            }
            else
            {
                cvResize( A, sA, CV_INTER_AREA );
                cvResize( B, sB, CV_INTER_AREA );
            }
           
            A = sA;
            B = sB;
        }

        count_y = COUNT;
        count_x = cvRound((double)COUNT*sz1.width/sz1.height);
        count = count_x * count_y;

        pA.allocate(count);
        pB.allocate(count);
        status.allocate(count);

        for( i = 0, k = 0; i < count_y; i++ )
            for( j = 0; j < count_x; j++, k++ )
            {
                pA[k].x = (j+0.5f)*sz1.width/count_x;
                pA[k].y = (i+0.5f)*sz1.height/count_y;
            }

        // find the corresponding points in B
        cvCalcOpticalFlowPyrLK( A, B, 0, 0, pA, pB, count, cvSize(10,10), 3,
                                status, 0, cvTermCriteria(CV_TERMCRIT_ITER,40,0.1), 0 );

        // repack the remained points
        for( i = 0, k = 0; i < count; i++ )
            if( status[i] )
            {
                if( i > k )
                {
                    pA[k] = pA[i];
                    pB[k] = pB[i];
                }
                k++;
            }

        count = k;
    }
    else if( CV_MAT_TYPE(A->type) == CV_32FC2 || CV_MAT_TYPE(A->type) == CV_32SC2 )
    {
        count = A->cols*A->rows;
        CvMat _pA, _pB;
        pA.allocate(count);
        pB.allocate(count);
        _pA = cvMat( A->rows, A->cols, CV_32FC2, pA );
        _pB = cvMat( B->rows, B->cols, CV_32FC2, pB );
        cvConvert( A, &_pA );
        cvConvert( B, &_pB );
    }
    else
        CV_Error( CV_StsUnsupportedFormat, "Both input images must have either 8uC1 or 8uC3 type" );

    good_idx.allocate(count);

    if( count < RANSAC_SIZE0 )
        return 0;
    
    CvMat _pB = cvMat(1, count, CV_32FC2, pB);    
    brect = cvBoundingRect(&_pB, 1);

    // RANSAC stuff:
    // 1. find the consensus
    for( k = 0; k < RANSAC_MAX_ITERS; k++ )
    {
        int idx[RANSAC_SIZE0];
        CvPoint2D32f a[3];
        CvPoint2D32f b[3];

        memset( a, 0, sizeof(a) );
        memset( b, 0, sizeof(b) );

        // choose random 3 non-complanar points from A & B
        for( i = 0; i < RANSAC_SIZE0; i++ )
        {
            for( k1 = 0; k1 < RANSAC_MAX_ITERS; k1++ )
            {
                idx[i] = cvRandInt(&rng) % count;
                
                for( j = 0; j < i; j++ )
                {
                    if( idx[j] == idx[i] )
                        break;
                    // check that the points are not very close one each other
                    if( fabs(pA[idx[i]].x - pA[idx[j]].x) +
                        fabs(pA[idx[i]].y - pA[idx[j]].y) < FLT_EPSILON )
                        break;
                    if( fabs(pB[idx[i]].x - pB[idx[j]].x) +
                        fabs(pB[idx[i]].y - pB[idx[j]].y) < FLT_EPSILON )
                        break;
                }

                if( j < i )
                    continue;

                if( i+1 == RANSAC_SIZE0 )
                {
                    // additional check for non-complanar vectors
                    a[0] = pA[idx[0]];
                    a[1] = pA[idx[1]];
                    a[2] = pA[idx[2]];

                    b[0] = pB[idx[0]];
                    b[1] = pB[idx[1]];
                    b[2] = pB[idx[2]];
                    
                    double dax1 = a[1].x - a[0].x, day1 = a[1].y - a[0].y;
                    double dax2 = a[2].x - a[0].x, day2 = a[2].y - a[0].y;
1688
                    double dbx1 = b[1].x - b[0].x, dby1 = b[1].y - b[0].y;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
                    double dbx2 = b[2].x - b[0].x, dby2 = b[2].y - b[0].y;
                    const double eps = 0.01;

                    if( fabs(dax1*day2 - day1*dax2) < eps*sqrt(dax1*dax1+day1*day1)*sqrt(dax2*dax2+day2*day2) ||
                        fabs(dbx1*dby2 - dby1*dbx2) < eps*sqrt(dbx1*dbx1+dby1*dby1)*sqrt(dbx2*dbx2+dby2*dby2) )
                        continue;
                }
                break;
            }

            if( k1 >= RANSAC_MAX_ITERS )
                break;
        }

        if( i < RANSAC_SIZE0 )
            continue;

        // estimate the transformation using 3 points
        icvGetRTMatrix( a, b, 3, &M, full_affine );

        for( i = 0, good_count = 0; i < count; i++ )
        {
            if( fabs( m[0]*pA[i].x + m[1]*pA[i].y + m[2] - pB[i].x ) +
                fabs( m[3]*pA[i].x + m[4]*pA[i].y + m[5] - pB[i].y ) < MAX(brect.width,brect.height)*0.05 )
                good_idx[good_count++] = i;
        }

        if( good_count >= count*RANSAC_GOOD_RATIO )
            break;
    }

    if( k >= RANSAC_MAX_ITERS )
        return 0;

    if( good_count < count )
    {
        for( i = 0; i < good_count; i++ )
        {
            j = good_idx[i];
            pA[i] = pA[j];
            pB[i] = pB[j];
        }
    }

    icvGetRTMatrix( pA, pB, good_count, &M, full_affine );
    m[2] /= scale;
    m[5] /= scale;
    cvConvert( &M, matM );
    
    return 1;
}

1741 1742
cv::Mat cv::estimateRigidTransform( InputArray src1,
                                    InputArray src2,
1743
                                    bool fullAffine )
1744
{
1745 1746
    Mat M(2, 3, CV_64F), A = src1.getMat(), B = src2.getMat();
    CvMat matA = A, matB = B, matM = M;
1747 1748 1749 1750 1751
    cvEstimateRigidTransform(&matA, &matB, &matM, fullAffine);
    return M;
}

/* End of file. */