dxt.cpp 128.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
I
Ilya Lavrenov 已提交
43 44
#include "opencv2/core/opencl/runtime/opencl_clamdfft.hpp"
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
A
Alexander Alekhin 已提交
45
#include "opencl_kernels_core.hpp"
A
Alexander Karsakov 已提交
46
#include <map>
47 48 49 50

namespace cv
{

51
// On Win64 optimized versions of DFT and DCT fail the tests (fixed in VS2010)
52
#if defined _MSC_VER && !defined CV_ICC && defined _M_X64 && _MSC_VER < 1600
53 54
# pragma optimize("", off)
# pragma warning(disable: 4748)
55 56
#endif

P
Pavel Vlasov 已提交
57
#if IPP_VERSION_X100 >= 710
58 59 60 61 62
#define USE_IPP_DFT 1
#else
#undef USE_IPP_DFT
#endif

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
/****************************************************************************************\
                               Discrete Fourier Transform
\****************************************************************************************/

#define CV_MAX_LOCAL_DFT_SIZE  (1 << 15)

static unsigned char bitrevTab[] =
{
  0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0,
  0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8,0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8,
  0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4,0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4,
  0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec,0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc,
  0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2,0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2,
  0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea,0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa,
  0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6,0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6,
  0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee,0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe,
  0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1,0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1,
  0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9,0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9,
  0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5,0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5,
  0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed,0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd,
  0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3,0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3,
  0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb,0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb,
  0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7,0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7,
  0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef,0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff
};

static const double DFTTab[][2] =
{
{ 1.00000000000000000, 0.00000000000000000 },
{-1.00000000000000000, 0.00000000000000000 },
{ 0.00000000000000000, 1.00000000000000000 },
{ 0.70710678118654757, 0.70710678118654746 },
{ 0.92387953251128674, 0.38268343236508978 },
{ 0.98078528040323043, 0.19509032201612825 },
{ 0.99518472667219693, 0.09801714032956060 },
{ 0.99879545620517241, 0.04906767432741802 },
{ 0.99969881869620425, 0.02454122852291229 },
{ 0.99992470183914450, 0.01227153828571993 },
{ 0.99998117528260111, 0.00613588464915448 },
{ 0.99999529380957619, 0.00306795676296598 },
{ 0.99999882345170188, 0.00153398018628477 },
{ 0.99999970586288223, 0.00076699031874270 },
{ 0.99999992646571789, 0.00038349518757140 },
{ 0.99999998161642933, 0.00019174759731070 },
{ 0.99999999540410733, 0.00009587379909598 },
{ 0.99999999885102686, 0.00004793689960307 },
{ 0.99999999971275666, 0.00002396844980842 },
{ 0.99999999992818922, 0.00001198422490507 },
{ 0.99999999998204725, 0.00000599211245264 },
{ 0.99999999999551181, 0.00000299605622633 },
{ 0.99999999999887801, 0.00000149802811317 },
{ 0.99999999999971945, 0.00000074901405658 },
{ 0.99999999999992983, 0.00000037450702829 },
{ 0.99999999999998246, 0.00000018725351415 },
{ 0.99999999999999567, 0.00000009362675707 },
{ 0.99999999999999889, 0.00000004681337854 },
{ 0.99999999999999978, 0.00000002340668927 },
{ 0.99999999999999989, 0.00000001170334463 },
{ 1.00000000000000000, 0.00000000585167232 },
{ 1.00000000000000000, 0.00000000292583616 }
};

#define BitRev(i,shift) \
   ((int)((((unsigned)bitrevTab[(i)&255] << 24)+ \
           ((unsigned)bitrevTab[((i)>> 8)&255] << 16)+ \
           ((unsigned)bitrevTab[((i)>>16)&255] <<  8)+ \
           ((unsigned)bitrevTab[((i)>>24)])) >> (shift)))

static int
DFTFactorize( int n, int* factors )
{
    int nf = 0, f, i, j;

    if( n <= 5 )
    {
        factors[0] = n;
        return 1;
    }
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    f = (((n - 1)^n)+1) >> 1;
    if( f > 1 )
    {
        factors[nf++] = f;
        n = f == n ? 1 : n/f;
    }

    for( f = 3; n > 1; )
    {
        int d = n/f;
        if( d*f == n )
        {
            factors[nf++] = f;
            n = d;
        }
        else
        {
            f += 2;
            if( f*f > n )
                break;
        }
    }

    if( n > 1 )
        factors[nf++] = n;

    f = (factors[0] & 1) == 0;
    for( i = f; i < (nf+f)/2; i++ )
        CV_SWAP( factors[i], factors[nf-i-1+f], j );

    return nf;
}

static void
DFTInit( int n0, int nf, int* factors, int* itab, int elem_size, void* _wave, int inv_itab )
{
    int digits[34], radix[34];
    int n = factors[0], m = 0;
    int* itab0 = itab;
    int i, j, k;
    Complex<double> w, w1;
    double t;

    if( n0 <= 5 )
    {
        itab[0] = 0;
        itab[n0-1] = n0-1;
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        if( n0 != 4 )
        {
            for( i = 1; i < n0-1; i++ )
                itab[i] = i;
        }
        else
        {
            itab[1] = 2;
            itab[2] = 1;
        }
        if( n0 == 5 )
        {
            if( elem_size == sizeof(Complex<double>) )
                ((Complex<double>*)_wave)[0] = Complex<double>(1.,0.);
            else
                ((Complex<float>*)_wave)[0] = Complex<float>(1.f,0.f);
        }
        if( n0 != 4 )
            return;
        m = 2;
    }
    else
    {
        // radix[] is initialized from index 'nf' down to zero
        assert (nf < 34);
        radix[nf] = 1;
        digits[nf] = 0;
        for( i = 0; i < nf; i++ )
        {
            digits[i] = 0;
            radix[nf-i-1] = radix[nf-i]*factors[nf-i-1];
        }

        if( inv_itab && factors[0] != factors[nf-1] )
            itab = (int*)_wave;

        if( (n & 1) == 0 )
        {
            int a = radix[1], na2 = n*a>>1, na4 = na2 >> 1;
            for( m = 0; (unsigned)(1 << m) < (unsigned)n; m++ )
                ;
            if( n <= 2  )
            {
                itab[0] = 0;
                itab[1] = na2;
            }
            else if( n <= 256 )
            {
                int shift = 10 - m;
                for( i = 0; i <= n - 4; i += 4 )
                {
                    j = (bitrevTab[i>>2]>>shift)*a;
                    itab[i] = j;
                    itab[i+1] = j + na2;
                    itab[i+2] = j + na4;
                    itab[i+3] = j + na2 + na4;
                }
            }
            else
            {
                int shift = 34 - m;
                for( i = 0; i < n; i += 4 )
                {
                    int i4 = i >> 2;
                    j = BitRev(i4,shift)*a;
                    itab[i] = j;
                    itab[i+1] = j + na2;
                    itab[i+2] = j + na4;
                    itab[i+3] = j + na2 + na4;
                }
            }

            digits[1]++;

            if( nf >= 2 )
            {
                for( i = n, j = radix[2]; i < n0; )
                {
                    for( k = 0; k < n; k++ )
                        itab[i+k] = itab[k] + j;
                    if( (i += n) >= n0 )
                        break;
                    j += radix[2];
                    for( k = 1; ++digits[k] >= factors[k]; k++ )
                    {
                        digits[k] = 0;
                        j += radix[k+2] - radix[k];
                    }
                }
            }
        }
        else
        {
            for( i = 0, j = 0;; )
            {
                itab[i] = j;
                if( ++i >= n0 )
                    break;
                j += radix[1];
                for( k = 0; ++digits[k] >= factors[k]; k++ )
                {
                    digits[k] = 0;
                    j += radix[k+2] - radix[k];
                }
            }
        }

        if( itab != itab0 )
        {
            itab0[0] = 0;
            for( i = n0 & 1; i < n0; i += 2 )
            {
                int k0 = itab[i];
                int k1 = itab[i+1];
                itab0[k0] = i;
                itab0[k1] = i+1;
            }
        }
    }

    if( (n0 & (n0-1)) == 0 )
    {
        w.re = w1.re = DFTTab[m][0];
        w.im = w1.im = -DFTTab[m][1];
    }
    else
    {
        t = -CV_PI*2/n0;
        w.im = w1.im = sin(t);
        w.re = w1.re = std::sqrt(1. - w1.im*w1.im);
    }
    n = (n0+1)/2;

    if( elem_size == sizeof(Complex<double>) )
    {
        Complex<double>* wave = (Complex<double>*)_wave;

        wave[0].re = 1.;
        wave[0].im = 0.;

        if( (n0 & 1) == 0 )
        {
            wave[n].re = -1.;
            wave[n].im = 0;
        }

        for( i = 1; i < n; i++ )
        {
            wave[i] = w;
            wave[n0-i].re = w.re;
            wave[n0-i].im = -w.im;

            t = w.re*w1.re - w.im*w1.im;
            w.im = w.re*w1.im + w.im*w1.re;
            w.re = t;
        }
    }
    else
    {
        Complex<float>* wave = (Complex<float>*)_wave;
        assert( elem_size == sizeof(Complex<float>) );
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        wave[0].re = 1.f;
        wave[0].im = 0.f;

        if( (n0 & 1) == 0 )
        {
            wave[n].re = -1.f;
            wave[n].im = 0.f;
        }

        for( i = 1; i < n; i++ )
        {
            wave[i].re = (float)w.re;
            wave[i].im = (float)w.im;
            wave[n0-i].re = (float)w.re;
            wave[n0-i].im = (float)-w.im;

            t = w.re*w1.re - w.im*w1.im;
            w.im = w.re*w1.im + w.im*w1.re;
            w.re = t;
        }
    }
}

template<typename T> struct DFT_VecR4
{
    int operator()(Complex<T>*, int, int, int&, const Complex<T>*) const { return 1; }
};

#if CV_SSE3

// optimized radix-4 transform
template<> struct DFT_VecR4<float>
{
    int operator()(Complex<float>* dst, int N, int n0, int& _dw0, const Complex<float>* wave) const
    {
        int n = 1, i, j, nx, dw, dw0 = _dw0;
        __m128 z = _mm_setzero_ps(), x02=z, x13=z, w01=z, w23=z, y01, y23, t0, t1;
        Cv32suf t; t.i = 0x80000000;
        __m128 neg0_mask = _mm_load_ss(&t.f);
        __m128 neg3_mask = _mm_shuffle_ps(neg0_mask, neg0_mask, _MM_SHUFFLE(0,1,2,3));
392

393 394 395 396 397
        for( ; n*4 <= N; )
        {
            nx = n;
            n *= 4;
            dw0 /= 4;
398

399 400 401
            for( i = 0; i < n0; i += n )
            {
                Complexf *v0, *v1;
402

403 404
                v0 = dst + i;
                v1 = v0 + nx*2;
405

406 407 408 409
                x02 = _mm_loadl_pi(x02, (const __m64*)&v0[0]);
                x13 = _mm_loadl_pi(x13, (const __m64*)&v0[nx]);
                x02 = _mm_loadh_pi(x02, (const __m64*)&v1[0]);
                x13 = _mm_loadh_pi(x13, (const __m64*)&v1[nx]);
410

411 412 413 414 415 416 417 418 419 420 421
                y01 = _mm_add_ps(x02, x13);
                y23 = _mm_sub_ps(x02, x13);
                t1 = _mm_xor_ps(_mm_shuffle_ps(y01, y23, _MM_SHUFFLE(2,3,3,2)), neg3_mask);
                t0 = _mm_movelh_ps(y01, y23);
                y01 = _mm_add_ps(t0, t1);
                y23 = _mm_sub_ps(t0, t1);

                _mm_storel_pi((__m64*)&v0[0], y01);
                _mm_storeh_pi((__m64*)&v0[nx], y01);
                _mm_storel_pi((__m64*)&v1[0], y23);
                _mm_storeh_pi((__m64*)&v1[nx], y23);
422

423 424 425 426 427 428 429 430 431
                for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
                {
                    v0 = dst + i + j;
                    v1 = v0 + nx*2;

                    x13 = _mm_loadl_pi(x13, (const __m64*)&v0[nx]);
                    w23 = _mm_loadl_pi(w23, (const __m64*)&wave[dw*2]);
                    x13 = _mm_loadh_pi(x13, (const __m64*)&v1[nx]); // x1, x3 = r1 i1 r3 i3
                    w23 = _mm_loadh_pi(w23, (const __m64*)&wave[dw*3]); // w2, w3 = wr2 wi2 wr3 wi3
432

433 434 435 436 437 438 439 440 441 442 443 444
                    t0 = _mm_mul_ps(_mm_moveldup_ps(x13), w23);
                    t1 = _mm_mul_ps(_mm_movehdup_ps(x13), _mm_shuffle_ps(w23, w23, _MM_SHUFFLE(2,3,0,1)));
                    x13 = _mm_addsub_ps(t0, t1);
                    // re(x1*w2), im(x1*w2), re(x3*w3), im(x3*w3)
                    x02 = _mm_loadl_pi(x02, (const __m64*)&v1[0]); // x2 = r2 i2
                    w01 = _mm_loadl_pi(w01, (const __m64*)&wave[dw]); // w1 = wr1 wi1
                    x02 = _mm_shuffle_ps(x02, x02, _MM_SHUFFLE(0,0,1,1));
                    w01 = _mm_shuffle_ps(w01, w01, _MM_SHUFFLE(1,0,0,1));
                    x02 = _mm_mul_ps(x02, w01);
                    x02 = _mm_addsub_ps(x02, _mm_movelh_ps(x02, x02));
                    // re(x0) im(x0) re(x2*w1), im(x2*w1)
                    x02 = _mm_loadl_pi(x02, (const __m64*)&v0[0]);
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459
                    y01 = _mm_add_ps(x02, x13);
                    y23 = _mm_sub_ps(x02, x13);
                    t1 = _mm_xor_ps(_mm_shuffle_ps(y01, y23, _MM_SHUFFLE(2,3,3,2)), neg3_mask);
                    t0 = _mm_movelh_ps(y01, y23);
                    y01 = _mm_add_ps(t0, t1);
                    y23 = _mm_sub_ps(t0, t1);

                    _mm_storel_pi((__m64*)&v0[0], y01);
                    _mm_storeh_pi((__m64*)&v0[nx], y01);
                    _mm_storel_pi((__m64*)&v1[0], y23);
                    _mm_storeh_pi((__m64*)&v1[nx], y23);
                }
            }
        }
460

461 462 463 464 465 466 467
        _dw0 = dw0;
        return n;
    }
};

#endif

468
#ifdef USE_IPP_DFT
E
fixed  
Elena Gvozdeva 已提交
469
static IppStatus ippsDFTFwd_CToC( const Complex<float>* src, Complex<float>* dst,
470 471
                             const void* spec, uchar* buf)
{
E
fixed  
Elena Gvozdeva 已提交
472 473
    return ippsDFTFwd_CToC_32fc( (const Ipp32fc*)src, (Ipp32fc*)dst,
                                 (const IppsDFTSpec_C_32fc*)spec, buf);
474 475
}

E
fixed  
Elena Gvozdeva 已提交
476
static IppStatus ippsDFTFwd_CToC( const Complex<double>* src, Complex<double>* dst,
477 478
                             const void* spec, uchar* buf)
{
E
fixed  
Elena Gvozdeva 已提交
479 480
    return ippsDFTFwd_CToC_64fc( (const Ipp64fc*)src, (Ipp64fc*)dst,
                                 (const IppsDFTSpec_C_64fc*)spec, buf);
481 482
}

E
fixed  
Elena Gvozdeva 已提交
483
static IppStatus ippsDFTInv_CToC( const Complex<float>* src, Complex<float>* dst,
484 485
                             const void* spec, uchar* buf)
{
E
fixed  
Elena Gvozdeva 已提交
486 487
    return ippsDFTInv_CToC_32fc( (const Ipp32fc*)src, (Ipp32fc*)dst,
                                 (const IppsDFTSpec_C_32fc*)spec, buf);
488 489
}

E
fixed  
Elena Gvozdeva 已提交
490 491
static IppStatus ippsDFTInv_CToC( const Complex<double>* src, Complex<double>* dst,
                                  const void* spec, uchar* buf)
492
{
E
fixed  
Elena Gvozdeva 已提交
493 494
    return ippsDFTInv_CToC_64fc( (const Ipp64fc*)src, (Ipp64fc*)dst,
                                 (const IppsDFTSpec_C_64fc*)spec, buf);
495 496
}

E
fixed  
Elena Gvozdeva 已提交
497 498
static IppStatus ippsDFTFwd_RToPack( const float* src, float* dst,
                                     const void* spec, uchar* buf)
499
{
E
fixed  
Elena Gvozdeva 已提交
500
    return ippsDFTFwd_RToPack_32f( src, dst, (const IppsDFTSpec_R_32f*)spec, buf);
501 502
}

E
fixed  
Elena Gvozdeva 已提交
503 504
static IppStatus ippsDFTFwd_RToPack( const double* src, double* dst,
                                     const void* spec, uchar* buf)
505
{
E
fixed  
Elena Gvozdeva 已提交
506
    return ippsDFTFwd_RToPack_64f( src, dst, (const IppsDFTSpec_R_64f*)spec, buf);
507 508
}

E
fixed  
Elena Gvozdeva 已提交
509 510
static IppStatus ippsDFTInv_PackToR( const float* src, float* dst,
                                     const void* spec, uchar* buf)
511
{
E
fixed  
Elena Gvozdeva 已提交
512
    return ippsDFTInv_PackToR_32f( src, dst, (const IppsDFTSpec_R_32f*)spec, buf);
513 514
}

E
fixed  
Elena Gvozdeva 已提交
515 516
static IppStatus ippsDFTInv_PackToR( const double* src, double* dst,
                                     const void* spec, uchar* buf)
517
{
E
fixed  
Elena Gvozdeva 已提交
518
    return ippsDFTInv_PackToR_64f( src, dst, (const IppsDFTSpec_R_64f*)spec, buf);
519 520 521 522 523 524 525 526 527 528 529
}
#endif

enum { DFT_NO_PERMUTE=256, DFT_COMPLEX_INPUT_OR_OUTPUT=512 };

// mixed-radix complex discrete Fourier transform: double-precision version
template<typename T> static void
DFT( const Complex<T>* src, Complex<T>* dst, int n,
     int nf, const int* factors, const int* itab,
     const Complex<T>* wave, int tab_size,
     const void*
530
#ifdef USE_IPP_DFT
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
     spec
#endif
     , Complex<T>* buf,
     int flags, double _scale )
{
    static const T sin_120 = (T)0.86602540378443864676372317075294;
    static const T fft5_2 = (T)0.559016994374947424102293417182819;
    static const T fft5_3 = (T)-0.951056516295153572116439333379382;
    static const T fft5_4 = (T)-1.538841768587626701285145288018455;
    static const T fft5_5 = (T)0.363271264002680442947733378740309;

    int n0 = n, f_idx, nx;
    int inv = flags & DFT_INVERSE;
    int dw0 = tab_size, dw;
    int i, j, k;
    Complex<T> t;
    T scale = (T)_scale;
    int tab_step;

550
#ifdef USE_IPP_DFT
551 552 553
    if( spec )
    {
        if( !inv )
E
fixed  
Elena Gvozdeva 已提交
554 555
        {
            if (ippsDFTFwd_CToC( src, dst, spec, (uchar*)buf ) >= 0)
556 557
            {
                CV_IMPL_ADD(CV_IMPL_IPP);
E
fixed  
Elena Gvozdeva 已提交
558
                return;
559
            }
E
fixed  
Elena Gvozdeva 已提交
560
        }
561
        else
E
fixed  
Elena Gvozdeva 已提交
562 563
        {
            if (ippsDFTInv_CToC( src, dst, spec, (uchar*)buf ) >= 0)
564 565
            {
                CV_IMPL_ADD(CV_IMPL_IPP);
E
fixed  
Elena Gvozdeva 已提交
566
                return;
567
            }
E
fixed  
Elena Gvozdeva 已提交
568 569
        }
        setIppErrorStatus();
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    }
#endif

    tab_step = tab_size == n ? 1 : tab_size == n*2 ? 2 : tab_size/n;

    // 0. shuffle data
    if( dst != src )
    {
        assert( (flags & DFT_NO_PERMUTE) == 0 );
        if( !inv )
        {
            for( i = 0; i <= n - 2; i += 2, itab += 2*tab_step )
            {
                int k0 = itab[0], k1 = itab[tab_step];
                assert( (unsigned)k0 < (unsigned)n && (unsigned)k1 < (unsigned)n );
                dst[i] = src[k0]; dst[i+1] = src[k1];
            }

            if( i < n )
                dst[n-1] = src[n-1];
        }
        else
        {
            for( i = 0; i <= n - 2; i += 2, itab += 2*tab_step )
            {
                int k0 = itab[0], k1 = itab[tab_step];
                assert( (unsigned)k0 < (unsigned)n && (unsigned)k1 < (unsigned)n );
                t.re = src[k0].re; t.im = -src[k0].im;
                dst[i] = t;
                t.re = src[k1].re; t.im = -src[k1].im;
                dst[i+1] = t;
            }

            if( i < n )
            {
                t.re = src[n-1].re; t.im = -src[n-1].im;
                dst[i] = t;
            }
        }
    }
    else
    {
        if( (flags & DFT_NO_PERMUTE) == 0 )
        {
            CV_Assert( factors[0] == factors[nf-1] );
            if( nf == 1 )
            {
                if( (n & 3) == 0 )
                {
                    int n2 = n/2;
                    Complex<T>* dsth = dst + n2;
621

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
                    for( i = 0; i < n2; i += 2, itab += tab_step*2 )
                    {
                        j = itab[0];
                        assert( (unsigned)j < (unsigned)n2 );

                        CV_SWAP(dst[i+1], dsth[j], t);
                        if( j > i )
                        {
                            CV_SWAP(dst[i], dst[j], t);
                            CV_SWAP(dsth[i+1], dsth[j+1], t);
                        }
                    }
                }
                // else do nothing
            }
            else
            {
                for( i = 0; i < n; i++, itab += tab_step )
                {
                    j = itab[0];
                    assert( (unsigned)j < (unsigned)n );
                    if( j > i )
                        CV_SWAP(dst[i], dst[j], t);
                }
            }
        }

        if( inv )
        {
            for( i = 0; i <= n - 2; i += 2 )
            {
                T t0 = -dst[i].im;
                T t1 = -dst[i+1].im;
                dst[i].im = t0; dst[i+1].im = t1;
            }

            if( i < n )
                dst[n-1].im = -dst[n-1].im;
        }
    }

    n = 1;
    // 1. power-2 transforms
    if( (factors[0] & 1) == 0 )
    {
        if( factors[0] >= 4 && checkHardwareSupport(CV_CPU_SSE3))
        {
            DFT_VecR4<T> vr4;
            n = vr4(dst, factors[0], n0, dw0, wave);
        }
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
        // radix-4 transform
        for( ; n*4 <= factors[0]; )
        {
            nx = n;
            n *= 4;
            dw0 /= 4;

            for( i = 0; i < n0; i += n )
            {
                Complex<T> *v0, *v1;
                T r0, i0, r1, i1, r2, i2, r3, i3, r4, i4;

                v0 = dst + i;
                v1 = v0 + nx*2;

                r0 = v1[0].re; i0 = v1[0].im;
                r4 = v1[nx].re; i4 = v1[nx].im;

                r1 = r0 + r4; i1 = i0 + i4;
                r3 = i0 - i4; i3 = r4 - r0;

                r2 = v0[0].re; i2 = v0[0].im;
                r4 = v0[nx].re; i4 = v0[nx].im;
696

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
                r0 = r2 + r4; i0 = i2 + i4;
                r2 -= r4; i2 -= i4;

                v0[0].re = r0 + r1; v0[0].im = i0 + i1;
                v1[0].re = r0 - r1; v1[0].im = i0 - i1;
                v0[nx].re = r2 + r3; v0[nx].im = i2 + i3;
                v1[nx].re = r2 - r3; v1[nx].im = i2 - i3;

                for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
                {
                    v0 = dst + i + j;
                    v1 = v0 + nx*2;

                    r2 = v0[nx].re*wave[dw*2].re - v0[nx].im*wave[dw*2].im;
                    i2 = v0[nx].re*wave[dw*2].im + v0[nx].im*wave[dw*2].re;
                    r0 = v1[0].re*wave[dw].im + v1[0].im*wave[dw].re;
                    i0 = v1[0].re*wave[dw].re - v1[0].im*wave[dw].im;
                    r3 = v1[nx].re*wave[dw*3].im + v1[nx].im*wave[dw*3].re;
                    i3 = v1[nx].re*wave[dw*3].re - v1[nx].im*wave[dw*3].im;

                    r1 = i0 + i3; i1 = r0 + r3;
                    r3 = r0 - r3; i3 = i3 - i0;
                    r4 = v0[0].re; i4 = v0[0].im;

                    r0 = r4 + r2; i0 = i4 + i2;
                    r2 = r4 - r2; i2 = i4 - i2;

                    v0[0].re = r0 + r1; v0[0].im = i0 + i1;
                    v1[0].re = r0 - r1; v1[0].im = i0 - i1;
                    v0[nx].re = r2 + r3; v0[nx].im = i2 + i3;
                    v1[nx].re = r2 - r3; v1[nx].im = i2 - i3;
                }
            }
        }

        for( ; n < factors[0]; )
        {
            // do the remaining radix-2 transform
            nx = n;
            n *= 2;
            dw0 /= 2;

            for( i = 0; i < n0; i += n )
            {
                Complex<T>* v = dst + i;
                T r0 = v[0].re + v[nx].re;
                T i0 = v[0].im + v[nx].im;
                T r1 = v[0].re - v[nx].re;
                T i1 = v[0].im - v[nx].im;
                v[0].re = r0; v[0].im = i0;
                v[nx].re = r1; v[nx].im = i1;

                for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
                {
                    v = dst + i + j;
                    r1 = v[nx].re*wave[dw].re - v[nx].im*wave[dw].im;
                    i1 = v[nx].im*wave[dw].re + v[nx].re*wave[dw].im;
                    r0 = v[0].re; i0 = v[0].im;

                    v[0].re = r0 + r1; v[0].im = i0 + i1;
                    v[nx].re = r0 - r1; v[nx].im = i0 - i1;
                }
            }
        }
    }

    // 2. all the other transforms
    for( f_idx = (factors[0]&1) ? 0 : 1; f_idx < nf; f_idx++ )
    {
        int factor = factors[f_idx];
        nx = n;
        n *= factor;
        dw0 /= factor;

        if( factor == 3 )
        {
            // radix-3
            for( i = 0; i < n0; i += n )
            {
                Complex<T>* v = dst + i;

                T r1 = v[nx].re + v[nx*2].re;
                T i1 = v[nx].im + v[nx*2].im;
                T r0 = v[0].re;
                T i0 = v[0].im;
                T r2 = sin_120*(v[nx].im - v[nx*2].im);
                T i2 = sin_120*(v[nx*2].re - v[nx].re);
                v[0].re = r0 + r1; v[0].im = i0 + i1;
                r0 -= (T)0.5*r1; i0 -= (T)0.5*i1;
                v[nx].re = r0 + r2; v[nx].im = i0 + i2;
                v[nx*2].re = r0 - r2; v[nx*2].im = i0 - i2;

                for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
                {
                    v = dst + i + j;
                    r0 = v[nx].re*wave[dw].re - v[nx].im*wave[dw].im;
                    i0 = v[nx].re*wave[dw].im + v[nx].im*wave[dw].re;
                    i2 = v[nx*2].re*wave[dw*2].re - v[nx*2].im*wave[dw*2].im;
                    r2 = v[nx*2].re*wave[dw*2].im + v[nx*2].im*wave[dw*2].re;
                    r1 = r0 + i2; i1 = i0 + r2;
797

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
                    r2 = sin_120*(i0 - r2); i2 = sin_120*(i2 - r0);
                    r0 = v[0].re; i0 = v[0].im;
                    v[0].re = r0 + r1; v[0].im = i0 + i1;
                    r0 -= (T)0.5*r1; i0 -= (T)0.5*i1;
                    v[nx].re = r0 + r2; v[nx].im = i0 + i2;
                    v[nx*2].re = r0 - r2; v[nx*2].im = i0 - i2;
                }
            }
        }
        else if( factor == 5 )
        {
            // radix-5
            for( i = 0; i < n0; i += n )
            {
                for( j = 0, dw = 0; j < nx; j++, dw += dw0 )
                {
                    Complex<T>* v0 = dst + i + j;
                    Complex<T>* v1 = v0 + nx*2;
                    Complex<T>* v2 = v1 + nx*2;

                    T r0, i0, r1, i1, r2, i2, r3, i3, r4, i4, r5, i5;

                    r3 = v0[nx].re*wave[dw].re - v0[nx].im*wave[dw].im;
                    i3 = v0[nx].re*wave[dw].im + v0[nx].im*wave[dw].re;
                    r2 = v2[0].re*wave[dw*4].re - v2[0].im*wave[dw*4].im;
                    i2 = v2[0].re*wave[dw*4].im + v2[0].im*wave[dw*4].re;

                    r1 = r3 + r2; i1 = i3 + i2;
                    r3 -= r2; i3 -= i2;

                    r4 = v1[nx].re*wave[dw*3].re - v1[nx].im*wave[dw*3].im;
                    i4 = v1[nx].re*wave[dw*3].im + v1[nx].im*wave[dw*3].re;
                    r0 = v1[0].re*wave[dw*2].re - v1[0].im*wave[dw*2].im;
                    i0 = v1[0].re*wave[dw*2].im + v1[0].im*wave[dw*2].re;

                    r2 = r4 + r0; i2 = i4 + i0;
                    r4 -= r0; i4 -= i0;

                    r0 = v0[0].re; i0 = v0[0].im;
                    r5 = r1 + r2; i5 = i1 + i2;

                    v0[0].re = r0 + r5; v0[0].im = i0 + i5;

                    r0 -= (T)0.25*r5; i0 -= (T)0.25*i5;
                    r1 = fft5_2*(r1 - r2); i1 = fft5_2*(i1 - i2);
                    r2 = -fft5_3*(i3 + i4); i2 = fft5_3*(r3 + r4);

                    i3 *= -fft5_5; r3 *= fft5_5;
                    i4 *= -fft5_4; r4 *= fft5_4;

                    r5 = r2 + i3; i5 = i2 + r3;
                    r2 -= i4; i2 -= r4;
850

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
                    r3 = r0 + r1; i3 = i0 + i1;
                    r0 -= r1; i0 -= i1;

                    v0[nx].re = r3 + r2; v0[nx].im = i3 + i2;
                    v2[0].re = r3 - r2; v2[0].im = i3 - i2;

                    v1[0].re = r0 + r5; v1[0].im = i0 + i5;
                    v1[nx].re = r0 - r5; v1[nx].im = i0 - i5;
                }
            }
        }
        else
        {
            // radix-"factor" - an odd number
            int p, q, factor2 = (factor - 1)/2;
            int d, dd, dw_f = tab_size/factor;
            Complex<T>* a = buf;
            Complex<T>* b = buf + factor2;

            for( i = 0; i < n0; i += n )
            {
                for( j = 0, dw = 0; j < nx; j++, dw += dw0 )
                {
                    Complex<T>* v = dst + i + j;
                    Complex<T> v_0 = v[0];
                    Complex<T> vn_0 = v_0;

                    if( j == 0 )
                    {
                        for( p = 1, k = nx; p <= factor2; p++, k += nx )
                        {
                            T r0 = v[k].re + v[n-k].re;
                            T i0 = v[k].im - v[n-k].im;
                            T r1 = v[k].re - v[n-k].re;
                            T i1 = v[k].im + v[n-k].im;

                            vn_0.re += r0; vn_0.im += i1;
                            a[p-1].re = r0; a[p-1].im = i0;
                            b[p-1].re = r1; b[p-1].im = i1;
                        }
                    }
                    else
                    {
                        const Complex<T>* wave_ = wave + dw*factor;
                        d = dw;

                        for( p = 1, k = nx; p <= factor2; p++, k += nx, d += dw )
                        {
                            T r2 = v[k].re*wave[d].re - v[k].im*wave[d].im;
                            T i2 = v[k].re*wave[d].im + v[k].im*wave[d].re;

                            T r1 = v[n-k].re*wave_[-d].re - v[n-k].im*wave_[-d].im;
                            T i1 = v[n-k].re*wave_[-d].im + v[n-k].im*wave_[-d].re;
904

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
                            T r0 = r2 + r1;
                            T i0 = i2 - i1;
                            r1 = r2 - r1;
                            i1 = i2 + i1;

                            vn_0.re += r0; vn_0.im += i1;
                            a[p-1].re = r0; a[p-1].im = i0;
                            b[p-1].re = r1; b[p-1].im = i1;
                        }
                    }

                    v[0] = vn_0;

                    for( p = 1, k = nx; p <= factor2; p++, k += nx )
                    {
                        Complex<T> s0 = v_0, s1 = v_0;
                        d = dd = dw_f*p;

                        for( q = 0; q < factor2; q++ )
                        {
                            T r0 = wave[d].re * a[q].re;
                            T i0 = wave[d].im * a[q].im;
                            T r1 = wave[d].re * b[q].im;
                            T i1 = wave[d].im * b[q].re;
929

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
                            s1.re += r0 + i0; s0.re += r0 - i0;
                            s1.im += r1 - i1; s0.im += r1 + i1;

                            d += dd;
                            d -= -(d >= tab_size) & tab_size;
                        }

                        v[k] = s0;
                        v[n-k] = s1;
                    }
                }
            }
        }
    }

    if( scale != 1 )
    {
        T re_scale = scale, im_scale = scale;
        if( inv )
            im_scale = -im_scale;

        for( i = 0; i < n0; i++ )
        {
            T t0 = dst[i].re*re_scale;
            T t1 = dst[i].im*im_scale;
            dst[i].re = t0;
            dst[i].im = t1;
        }
    }
    else if( inv )
    {
        for( i = 0; i <= n0 - 2; i += 2 )
        {
            T t0 = -dst[i].im;
            T t1 = -dst[i+1].im;
            dst[i].im = t0;
            dst[i+1].im = t1;
        }

        if( i < n0 )
            dst[n0-1].im = -dst[n0-1].im;
    }
}


/* FFT of real vector
   output vector format:
     re(0), re(1), im(1), ... , re(n/2-1), im((n+1)/2-1) [, re((n+1)/2)] OR ...
     re(0), 0, re(1), im(1), ..., re(n/2-1), im((n+1)/2-1) [, re((n+1)/2), 0] */
template<typename T> static void
RealDFT( const T* src, T* dst, int n, int nf, int* factors, const int* itab,
         const Complex<T>* wave, int tab_size, const void*
982
#ifdef USE_IPP_DFT
983 984 985 986 987 988 989 990 991 992
         spec
#endif
         ,
         Complex<T>* buf, int flags, double _scale )
{
    int complex_output = (flags & DFT_COMPLEX_INPUT_OR_OUTPUT) != 0;
    T scale = (T)_scale;
    int j, n2 = n >> 1;
    dst += complex_output;

993
#ifdef USE_IPP_DFT
994 995
    if( spec )
    {
E
fixed  
Elena Gvozdeva 已提交
996
        if (ippsDFTFwd_RToPack( src, dst, spec, (uchar*)buf ) >=0)
997
        {
E
fixed  
Elena Gvozdeva 已提交
998 999 1000 1001 1002 1003 1004
            if( complex_output )
            {
                dst[-1] = dst[0];
                dst[0] = 0;
                if( (n & 1) == 0 )
                    dst[n] = 0;
            }
1005
            CV_IMPL_ADD(CV_IMPL_IPP);
E
fixed  
Elena Gvozdeva 已提交
1006
            return;
1007
        }
E
fixed  
Elena Gvozdeva 已提交
1008
        setIppErrorStatus();
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    }
#endif
    assert( tab_size == n );

    if( n == 1 )
    {
        dst[0] = src[0]*scale;
    }
    else if( n == 2 )
    {
        T t = (src[0] + src[1])*scale;
        dst[1] = (src[0] - src[1])*scale;
        dst[0] = t;
    }
    else if( n & 1 )
    {
        dst -= complex_output;
        Complex<T>* _dst = (Complex<T>*)dst;
        _dst[0].re = src[0]*scale;
        _dst[0].im = 0;
        for( j = 1; j < n; j += 2 )
        {
            T t0 = src[itab[j]]*scale;
            T t1 = src[itab[j+1]]*scale;
            _dst[j].re = t0;
            _dst[j].im = 0;
            _dst[j+1].re = t1;
            _dst[j+1].im = 0;
        }
        DFT( _dst, _dst, n, nf, factors, itab, wave,
             tab_size, 0, buf, DFT_NO_PERMUTE, 1 );
        if( !complex_output )
            dst[1] = dst[0];
    }
    else
    {
        T t0, t;
        T h1_re, h1_im, h2_re, h2_im;
        T scale2 = scale*(T)0.5;
        factors[0] >>= 1;

        DFT( (Complex<T>*)src, (Complex<T>*)dst, n2, nf - (factors[0] == 1),
             factors + (factors[0] == 1),
             itab, wave, tab_size, 0, buf, 0, 1 );
        factors[0] <<= 1;

        t = dst[0] - dst[1];
        dst[0] = (dst[0] + dst[1])*scale;
        dst[1] = t*scale;

        t0 = dst[n2];
        t = dst[n-1];
        dst[n-1] = dst[1];

        for( j = 2, wave++; j < n2; j += 2, wave++ )
        {
            /* calc odd */
            h2_re = scale2*(dst[j+1] + t);
            h2_im = scale2*(dst[n-j] - dst[j]);

            /* calc even */
            h1_re = scale2*(dst[j] + dst[n-j]);
            h1_im = scale2*(dst[j+1] - t);

            /* rotate */
            t = h2_re*wave->re - h2_im*wave->im;
            h2_im = h2_re*wave->im + h2_im*wave->re;
            h2_re = t;
            t = dst[n-j-1];

            dst[j-1] = h1_re + h2_re;
            dst[n-j-1] = h1_re - h2_re;
            dst[j] = h1_im + h2_im;
            dst[n-j] = h2_im - h1_im;
        }

        if( j <= n2 )
        {
            dst[n2-1] = t0*scale;
            dst[n2] = -t*scale;
        }
    }

1092
    if( complex_output && ((n & 1) == 0 || n == 1))
1093 1094 1095
    {
        dst[-1] = dst[0];
        dst[0] = 0;
1096 1097
        if( n > 1 )
            dst[n] = 0;
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
    }
}

/* Inverse FFT of complex conjugate-symmetric vector
   input vector format:
      re[0], re[1], im[1], ... , re[n/2-1], im[n/2-1], re[n/2] OR
      re(0), 0, re(1), im(1), ..., re(n/2-1), im((n+1)/2-1) [, re((n+1)/2), 0] */
template<typename T> static void
CCSIDFT( const T* src, T* dst, int n, int nf, int* factors, const int* itab,
         const Complex<T>* wave, int tab_size,
         const void*
1109
#ifdef USE_IPP_DFT
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
         spec
#endif
         , Complex<T>* buf,
         int flags, double _scale )
{
    int complex_input = (flags & DFT_COMPLEX_INPUT_OR_OUTPUT) != 0;
    int j, k, n2 = (n+1) >> 1;
    T scale = (T)_scale;
    T save_s1 = 0.;
    T t0, t1, t2, t3, t;

    assert( tab_size == n );

    if( complex_input )
    {
        assert( src != dst );
        save_s1 = src[1];
        ((T*)src)[1] = src[0];
        src++;
    }
1130
#ifdef USE_IPP_DFT
1131 1132
    if( spec )
    {
E
fixed  
Elena Gvozdeva 已提交
1133
        if (ippsDFTInv_PackToR( src, dst, spec, (uchar*)buf ) >=0)
1134 1135 1136 1137 1138 1139
        {
            if( complex_input )
                ((T*)src)[0] = (T)save_s1;
            CV_IMPL_ADD(CV_IMPL_IPP);
            return;
        }
E
fixed  
Elena Gvozdeva 已提交
1140 1141

        setIppErrorStatus();
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    }
#endif
    if( n == 1 )
    {
        dst[0] = (T)(src[0]*scale);
    }
    else if( n == 2 )
    {
        t = (src[0] + src[1])*scale;
        dst[1] = (src[0] - src[1])*scale;
        dst[0] = t;
    }
    else if( n & 1 )
    {
        Complex<T>* _src = (Complex<T>*)(src-1);
        Complex<T>* _dst = (Complex<T>*)dst;

        _dst[0].re = src[0];
        _dst[0].im = 0;
        for( j = 1; j < n2; j++ )
        {
            int k0 = itab[j], k1 = itab[n-j];
            t0 = _src[j].re; t1 = _src[j].im;
            _dst[k0].re = t0; _dst[k0].im = -t1;
            _dst[k1].re = t0; _dst[k1].im = t1;
        }

        DFT( _dst, _dst, n, nf, factors, itab, wave,
             tab_size, 0, buf, DFT_NO_PERMUTE, 1. );
        dst[0] *= scale;
        for( j = 1; j < n; j += 2 )
        {
            t0 = dst[j*2]*scale;
            t1 = dst[j*2+2]*scale;
            dst[j] = t0;
            dst[j+1] = t1;
        }
    }
    else
    {
        int inplace = src == dst;
        const Complex<T>* w = wave;

        t = src[1];
        t0 = (src[0] + src[n-1]);
        t1 = (src[n-1] - src[0]);
        dst[0] = t0;
        dst[1] = t1;

        for( j = 2, w++; j < n2; j += 2, w++ )
        {
            T h1_re, h1_im, h2_re, h2_im;

            h1_re = (t + src[n-j-1]);
            h1_im = (src[j] - src[n-j]);

            h2_re = (t - src[n-j-1]);
            h2_im = (src[j] + src[n-j]);

            t = h2_re*w->re + h2_im*w->im;
            h2_im = h2_im*w->re - h2_re*w->im;
            h2_re = t;

            t = src[j+1];
            t0 = h1_re - h2_im;
            t1 = -h1_im - h2_re;
            t2 = h1_re + h2_im;
            t3 = h1_im - h2_re;

            if( inplace )
            {
                dst[j] = t0;
                dst[j+1] = t1;
                dst[n-j] = t2;
                dst[n-j+1]= t3;
            }
            else
            {
                int j2 = j >> 1;
                k = itab[j2];
                dst[k] = t0;
                dst[k+1] = t1;
                k = itab[n2-j2];
                dst[k] = t2;
                dst[k+1]= t3;
            }
        }

        if( j <= n2 )
        {
            t0 = t*2;
            t1 = src[n2]*2;

            if( inplace )
            {
                dst[n2] = t0;
                dst[n2+1] = t1;
            }
            else
            {
                k = itab[n2];
                dst[k*2] = t0;
                dst[k*2+1] = t1;
            }
        }

        factors[0] >>= 1;
        DFT( (Complex<T>*)dst, (Complex<T>*)dst, n2,
             nf - (factors[0] == 1),
             factors + (factors[0] == 1), itab,
             wave, tab_size, 0, buf,
             inplace ? 0 : DFT_NO_PERMUTE, 1. );
        factors[0] <<= 1;

        for( j = 0; j < n; j += 2 )
        {
            t0 = dst[j]*scale;
            t1 = dst[j+1]*(-scale);
            dst[j] = t0;
            dst[j+1] = t1;
        }
    }
    if( complex_input )
        ((T*)src)[0] = (T)save_s1;
}

static void
CopyColumn( const uchar* _src, size_t src_step,
            uchar* _dst, size_t dst_step,
            int len, size_t elem_size )
{
    int i, t0, t1;
    const int* src = (const int*)_src;
    int* dst = (int*)_dst;
    src_step /= sizeof(src[0]);
    dst_step /= sizeof(dst[0]);

    if( elem_size == sizeof(int) )
    {
        for( i = 0; i < len; i++, src += src_step, dst += dst_step )
            dst[0] = src[0];
    }
    else if( elem_size == sizeof(int)*2 )
    {
        for( i = 0; i < len; i++, src += src_step, dst += dst_step )
        {
            t0 = src[0]; t1 = src[1];
            dst[0] = t0; dst[1] = t1;
        }
    }
    else if( elem_size == sizeof(int)*4 )
    {
        for( i = 0; i < len; i++, src += src_step, dst += dst_step )
        {
            t0 = src[0]; t1 = src[1];
            dst[0] = t0; dst[1] = t1;
            t0 = src[2]; t1 = src[3];
            dst[2] = t0; dst[3] = t1;
        }
    }
}


static void
CopyFrom2Columns( const uchar* _src, size_t src_step,
                  uchar* _dst0, uchar* _dst1,
                  int len, size_t elem_size )
{
    int i, t0, t1;
    const int* src = (const int*)_src;
    int* dst0 = (int*)_dst0;
    int* dst1 = (int*)_dst1;
    src_step /= sizeof(src[0]);

    if( elem_size == sizeof(int) )
    {
        for( i = 0; i < len; i++, src += src_step )
        {
            t0 = src[0]; t1 = src[1];
            dst0[i] = t0; dst1[i] = t1;
        }
    }
    else if( elem_size == sizeof(int)*2 )
    {
        for( i = 0; i < len*2; i += 2, src += src_step )
        {
            t0 = src[0]; t1 = src[1];
            dst0[i] = t0; dst0[i+1] = t1;
            t0 = src[2]; t1 = src[3];
            dst1[i] = t0; dst1[i+1] = t1;
        }
    }
    else if( elem_size == sizeof(int)*4 )
    {
        for( i = 0; i < len*4; i += 4, src += src_step )
        {
            t0 = src[0]; t1 = src[1];
            dst0[i] = t0; dst0[i+1] = t1;
            t0 = src[2]; t1 = src[3];
            dst0[i+2] = t0; dst0[i+3] = t1;
            t0 = src[4]; t1 = src[5];
            dst1[i] = t0; dst1[i+1] = t1;
            t0 = src[6]; t1 = src[7];
            dst1[i+2] = t0; dst1[i+3] = t1;
        }
    }
}


static void
CopyTo2Columns( const uchar* _src0, const uchar* _src1,
                uchar* _dst, size_t dst_step,
                int len, size_t elem_size )
{
    int i, t0, t1;
    const int* src0 = (const int*)_src0;
    const int* src1 = (const int*)_src1;
    int* dst = (int*)_dst;
    dst_step /= sizeof(dst[0]);

    if( elem_size == sizeof(int) )
    {
        for( i = 0; i < len; i++, dst += dst_step )
        {
            t0 = src0[i]; t1 = src1[i];
            dst[0] = t0; dst[1] = t1;
        }
    }
    else if( elem_size == sizeof(int)*2 )
    {
        for( i = 0; i < len*2; i += 2, dst += dst_step )
        {
            t0 = src0[i]; t1 = src0[i+1];
            dst[0] = t0; dst[1] = t1;
            t0 = src1[i]; t1 = src1[i+1];
            dst[2] = t0; dst[3] = t1;
        }
    }
    else if( elem_size == sizeof(int)*4 )
    {
        for( i = 0; i < len*4; i += 4, dst += dst_step )
        {
            t0 = src0[i]; t1 = src0[i+1];
            dst[0] = t0; dst[1] = t1;
            t0 = src0[i+2]; t1 = src0[i+3];
            dst[2] = t0; dst[3] = t1;
            t0 = src1[i]; t1 = src1[i+1];
            dst[4] = t0; dst[5] = t1;
            t0 = src1[i+2]; t1 = src1[i+3];
            dst[6] = t0; dst[7] = t1;
        }
    }
}


static void
1398
ExpandCCS( uchar* _ptr, int n, int elem_size )
1399 1400
{
    int i;
1401
    if( elem_size == (int)sizeof(float) )
1402
    {
1403 1404 1405 1406 1407 1408 1409
        float* p = (float*)_ptr;
        for( i = 1; i < (n+1)/2; i++ )
        {
            p[(n-i)*2] = p[i*2-1];
            p[(n-i)*2+1] = -p[i*2];
        }
        if( (n & 1) == 0 )
1410
        {
1411 1412 1413
            p[n] = p[n-1];
            p[n+1] = 0.f;
            n--;
1414
        }
1415 1416 1417
        for( i = n-1; i > 0; i-- )
            p[i+1] = p[i];
        p[1] = 0.f;
1418 1419 1420
    }
    else
    {
1421 1422
        double* p = (double*)_ptr;
        for( i = 1; i < (n+1)/2; i++ )
1423
        {
1424 1425
            p[(n-i)*2] = p[i*2-1];
            p[(n-i)*2+1] = -p[i*2];
1426
        }
1427 1428 1429 1430 1431 1432 1433 1434 1435
        if( (n & 1) == 0 )
        {
            p[n] = p[n-1];
            p[n+1] = 0.f;
            n--;
        }
        for( i = n-1; i > 0; i-- )
            p[i+1] = p[i];
        p[1] = 0.f;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
    }
}


typedef void (*DFTFunc)(
     const void* src, void* dst, int n, int nf, int* factors,
     const int* itab, const void* wave, int tab_size,
     const void* spec, void* buf, int inv, double scale );

static void DFT_32f( const Complexf* src, Complexf* dst, int n,
    int nf, const int* factors, const int* itab,
    const Complexf* wave, int tab_size,
    const void* spec, Complexf* buf,
    int flags, double scale )
{
    DFT(src, dst, n, nf, factors, itab, wave, tab_size, spec, buf, flags, scale);
1452
}
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

static void DFT_64f( const Complexd* src, Complexd* dst, int n,
    int nf, const int* factors, const int* itab,
    const Complexd* wave, int tab_size,
    const void* spec, Complexd* buf,
    int flags, double scale )
{
    DFT(src, dst, n, nf, factors, itab, wave, tab_size, spec, buf, flags, scale);
}


static void RealDFT_32f( const float* src, float* dst, int n, int nf, int* factors,
        const int* itab,  const Complexf* wave, int tab_size, const void* spec,
        Complexf* buf, int flags, double scale )
{
    RealDFT( src, dst, n, nf, factors, itab, wave, tab_size, spec, buf, flags, scale);
}

static void RealDFT_64f( const double* src, double* dst, int n, int nf, int* factors,
        const int* itab,  const Complexd* wave, int tab_size, const void* spec,
        Complexd* buf, int flags, double scale )
{
    RealDFT( src, dst, n, nf, factors, itab, wave, tab_size, spec, buf, flags, scale);
}

static void CCSIDFT_32f( const float* src, float* dst, int n, int nf, int* factors,
                         const int* itab,  const Complexf* wave, int tab_size, const void* spec,
                         Complexf* buf, int flags, double scale )
{
    CCSIDFT( src, dst, n, nf, factors, itab, wave, tab_size, spec, buf, flags, scale);
}

static void CCSIDFT_64f( const double* src, double* dst, int n, int nf, int* factors,
                         const int* itab,  const Complexd* wave, int tab_size, const void* spec,
                         Complexd* buf, int flags, double scale )
{
    CCSIDFT( src, dst, n, nf, factors, itab, wave, tab_size, spec, buf, flags, scale);
}
1491

1492
}
1493

1494
#ifdef USE_IPP_DFT
1495 1496 1497
typedef IppStatus (CV_STDCALL* IppDFTGetSizeFunc)(int, int, IppHintAlgorithm, int*, int*, int*);
typedef IppStatus (CV_STDCALL* IppDFTInitFunc)(int, int, IppHintAlgorithm, void*, uchar*);
#endif
1498

E
Elena Gvozdeva 已提交
1499 1500
namespace cv
{
A
Alexander Alekhin 已提交
1501
#if defined USE_IPP_DFT
E
Elena Gvozdeva 已提交
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
typedef IppStatus (CV_STDCALL* ippiDFT_C_Func)(const Ipp32fc*, int, Ipp32fc*, int, const IppiDFTSpec_C_32fc*, Ipp8u*);
typedef IppStatus (CV_STDCALL* ippiDFT_R_Func)(const Ipp32f* , int, Ipp32f* , int, const IppiDFTSpec_R_32f* , Ipp8u*);

template <typename Dft>
class Dft_C_IPPLoop_Invoker : public ParallelLoopBody
{
public:

    Dft_C_IPPLoop_Invoker(const Mat& _src, Mat& _dst, const Dft& _ippidft, int _norm_flag, bool *_ok) :
        ParallelLoopBody(), src(_src), dst(_dst), ippidft(_ippidft), norm_flag(_norm_flag), ok(_ok)
    {
        *ok = true;
    }

    virtual void operator()(const Range& range) const
    {
        IppStatus status;
        Ipp8u* pBuffer = 0;
        Ipp8u* pMemInit= 0;
        int sizeBuffer=0;
        int sizeSpec=0;
        int sizeInit=0;

        IppiSize srcRoiSize = {src.cols, 1};

        status = ippiDFTGetSize_C_32fc(srcRoiSize, norm_flag, ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer );
        if ( status < 0 )
        {
            *ok = false;
            return;
        }

        IppiDFTSpec_C_32fc* pDFTSpec = (IppiDFTSpec_C_32fc*)ippMalloc( sizeSpec );

        if ( sizeInit > 0 )
            pMemInit = (Ipp8u*)ippMalloc( sizeInit );

        if ( sizeBuffer > 0 )
            pBuffer = (Ipp8u*)ippMalloc( sizeBuffer );

        status = ippiDFTInit_C_32fc( srcRoiSize, norm_flag, ippAlgHintNone, pDFTSpec, pMemInit );

        if ( sizeInit > 0 )
            ippFree( pMemInit );

        if ( status < 0 )
        {
            ippFree( pDFTSpec );
            if ( sizeBuffer > 0 )
                ippFree( pBuffer );
            *ok = false;
            return;
        }

        for( int i = range.start; i < range.end; ++i)
1558
            if(!ippidft(src.ptr<Ipp32fc>(i), (int)src.step,dst.ptr<Ipp32fc>(i), (int)dst.step, pDFTSpec, (Ipp8u*)pBuffer))
1559 1560 1561 1562 1563 1564 1565 1566
            {
                *ok = false;
            }

        if ( sizeBuffer > 0 )
            ippFree( pBuffer );

        ippFree( pDFTSpec );
1567
        CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
    }

private:
    const Mat& src;
    Mat& dst;
    const Dft& ippidft;
    int norm_flag;
    bool *ok;

    const Dft_C_IPPLoop_Invoker& operator= (const Dft_C_IPPLoop_Invoker&);
};

template <typename Dft>
class Dft_R_IPPLoop_Invoker : public ParallelLoopBody
{
public:

    Dft_R_IPPLoop_Invoker(const Mat& _src, Mat& _dst, const Dft& _ippidft, int _norm_flag, bool *_ok) :
        ParallelLoopBody(), src(_src), dst(_dst), ippidft(_ippidft), norm_flag(_norm_flag), ok(_ok)
    {
        *ok = true;
    }

    virtual void operator()(const Range& range) const
    {
        IppStatus status;
        Ipp8u* pBuffer = 0;
        Ipp8u* pMemInit= 0;
        int sizeBuffer=0;
        int sizeSpec=0;
        int sizeInit=0;

        IppiSize srcRoiSize = {src.cols, 1};

        status = ippiDFTGetSize_R_32f(srcRoiSize, norm_flag, ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer );
        if ( status < 0 )
        {
            *ok = false;
            return;
        }

        IppiDFTSpec_R_32f* pDFTSpec = (IppiDFTSpec_R_32f*)ippMalloc( sizeSpec );

        if ( sizeInit > 0 )
            pMemInit = (Ipp8u*)ippMalloc( sizeInit );

        if ( sizeBuffer > 0 )
            pBuffer = (Ipp8u*)ippMalloc( sizeBuffer );

        status = ippiDFTInit_R_32f( srcRoiSize, norm_flag, ippAlgHintNone, pDFTSpec, pMemInit );

        if ( sizeInit > 0 )
            ippFree( pMemInit );

        if ( status < 0 )
        {
            ippFree( pDFTSpec );
            if ( sizeBuffer > 0 )
                ippFree( pBuffer );
            *ok = false;
            return;
        }

        for( int i = range.start; i < range.end; ++i)
            if(!ippidft(src.ptr<float>(i), (int)src.step,dst.ptr<float>(i), (int)dst.step, pDFTSpec, (Ipp8u*)pBuffer))
            {
                *ok = false;
            }

        if ( sizeBuffer > 0 )
            ippFree( pBuffer );

        ippFree( pDFTSpec );
1641
        CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
    }

private:
    const Mat& src;
    Mat& dst;
    const Dft& ippidft;
    int norm_flag;
    bool *ok;

    const Dft_R_IPPLoop_Invoker& operator= (const Dft_R_IPPLoop_Invoker&);
};

template <typename Dft>
bool Dft_C_IPPLoop(const Mat& src, Mat& dst, const Dft& ippidft, int norm_flag)
{
    bool ok;
    parallel_for_(Range(0, src.rows), Dft_C_IPPLoop_Invoker<Dft>(src, dst, ippidft, norm_flag, &ok), src.total()/(double)(1<<16) );
    return ok;
}

template <typename Dft>
bool Dft_R_IPPLoop(const Mat& src, Mat& dst, const Dft& ippidft, int norm_flag)
{
    bool ok;
    parallel_for_(Range(0, src.rows), Dft_R_IPPLoop_Invoker<Dft>(src, dst, ippidft, norm_flag, &ok), src.total()/(double)(1<<16) );
    return ok;
}

struct IPPDFT_C_Functor
{
    IPPDFT_C_Functor(ippiDFT_C_Func _func) : func(_func){}

    bool operator()(const Ipp32fc* src, int srcStep, Ipp32fc* dst, int dstStep, const IppiDFTSpec_C_32fc* pDFTSpec, Ipp8u* pBuffer) const
    {
        return func ? func(src, srcStep, dst, dstStep, pDFTSpec, pBuffer) >= 0 : false;
    }
private:
    ippiDFT_C_Func func;
};

struct IPPDFT_R_Functor
{
    IPPDFT_R_Functor(ippiDFT_R_Func _func) : func(_func){}

    bool operator()(const Ipp32f* src, int srcStep, Ipp32f* dst, int dstStep, const IppiDFTSpec_R_32f* pDFTSpec, Ipp8u* pBuffer) const
    {
        return func ? func(src, srcStep, dst, dstStep, pDFTSpec, pBuffer) >= 0 : false;
    }
private:
    ippiDFT_R_Func func;
};

E
Elena Gvozdeva 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
static bool ippi_DFT_C_32F(const Mat& src, Mat& dst, bool inv, int norm_flag)
{
    IppStatus status;
    Ipp8u* pBuffer = 0;
    Ipp8u* pMemInit= 0;
    int sizeBuffer=0;
    int sizeSpec=0;
    int sizeInit=0;

    IppiSize srcRoiSize = {src.cols, src.rows};

    status = ippiDFTGetSize_C_32fc(srcRoiSize, norm_flag, ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer );
    if ( status < 0 )
        return false;

    IppiDFTSpec_C_32fc* pDFTSpec = (IppiDFTSpec_C_32fc*)ippMalloc( sizeSpec );

    if ( sizeInit > 0 )
        pMemInit = (Ipp8u*)ippMalloc( sizeInit );

    if ( sizeBuffer > 0 )
        pBuffer = (Ipp8u*)ippMalloc( sizeBuffer );

    status = ippiDFTInit_C_32fc( srcRoiSize, norm_flag, ippAlgHintNone, pDFTSpec, pMemInit );

    if ( sizeInit > 0 )
        ippFree( pMemInit );

    if ( status < 0 )
    {
        ippFree( pDFTSpec );
        if ( sizeBuffer > 0 )
            ippFree( pBuffer );
        return false;
    }

    if (!inv)
1731
        status = ippiDFTFwd_CToC_32fc_C1R( src.ptr<Ipp32fc>(), (int)src.step, dst.ptr<Ipp32fc>(), (int)dst.step, pDFTSpec, pBuffer );
E
Elena Gvozdeva 已提交
1732
    else
1733
        status = ippiDFTInv_CToC_32fc_C1R( src.ptr<Ipp32fc>(), (int)src.step, dst.ptr<Ipp32fc>(), (int)dst.step, pDFTSpec, pBuffer );
E
Elena Gvozdeva 已提交
1734 1735 1736 1737 1738 1739

    if ( sizeBuffer > 0 )
        ippFree( pBuffer );

    ippFree( pDFTSpec );

1740 1741 1742 1743
    if(status >= 0)
    {
        CV_IMPL_ADD(CV_IMPL_IPP);
        return true;
E
Elena Gvozdeva 已提交
1744
    }
1745 1746
    return false;
}
E
Elena Gvozdeva 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

static bool ippi_DFT_R_32F(const Mat& src, Mat& dst, bool inv, int norm_flag)
{
    IppStatus status;
    Ipp8u* pBuffer = 0;
    Ipp8u* pMemInit= 0;
    int sizeBuffer=0;
    int sizeSpec=0;
    int sizeInit=0;

    IppiSize srcRoiSize = {src.cols, src.rows};

    status = ippiDFTGetSize_R_32f(srcRoiSize, norm_flag, ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer );
    if ( status < 0 )
        return false;

    IppiDFTSpec_R_32f* pDFTSpec = (IppiDFTSpec_R_32f*)ippMalloc( sizeSpec );

    if ( sizeInit > 0 )
        pMemInit = (Ipp8u*)ippMalloc( sizeInit );

    if ( sizeBuffer > 0 )
        pBuffer = (Ipp8u*)ippMalloc( sizeBuffer );

    status = ippiDFTInit_R_32f( srcRoiSize, norm_flag, ippAlgHintNone, pDFTSpec, pMemInit );

    if ( sizeInit > 0 )
        ippFree( pMemInit );

    if ( status < 0 )
    {
        ippFree( pDFTSpec );
        if ( sizeBuffer > 0 )
            ippFree( pBuffer );
        return false;
    }

    if (!inv)
1785
        status = ippiDFTFwd_RToPack_32f_C1R( src.ptr<float>(), (int)(src.step), dst.ptr<float>(), (int)dst.step, pDFTSpec, pBuffer );
E
Elena Gvozdeva 已提交
1786
    else
1787
        status = ippiDFTInv_PackToR_32f_C1R( src.ptr<float>(), (int)src.step, dst.ptr<float>(), (int)dst.step, pDFTSpec, pBuffer );
E
Elena Gvozdeva 已提交
1788 1789 1790 1791 1792 1793

    if ( sizeBuffer > 0 )
        ippFree( pBuffer );

    ippFree( pDFTSpec );

1794 1795 1796 1797 1798 1799
    if(status >= 0)
    {
        CV_IMPL_ADD(CV_IMPL_IPP);
        return true;
    }
    return false;
1800
}
E
Elena Gvozdeva 已提交
1801 1802 1803 1804

#endif
}

A
Alexander Karsakov 已提交
1805
#ifdef HAVE_OPENCL
I
Ilya Lavrenov 已提交
1806

1807 1808 1809
namespace cv
{

A
Alexander Karsakov 已提交
1810 1811
enum FftType
{
1812 1813 1814 1815
    R2R = 0, // real to CCS in case forward transform, CCS to real otherwise
    C2R = 1, // complex to real in case inverse transform
    R2C = 2, // real to complex in case forward transform
    C2C = 3  // complex to complex
A
Alexander Karsakov 已提交
1816 1817
};

A
Alexander Karsakov 已提交
1818
struct OCL_FftPlan
A
Alexander Karsakov 已提交
1819
{
1820
private:
A
Alexander Karsakov 已提交
1821 1822 1823 1824
    UMat twiddles;
    String buildOptions;
    int thread_count;
    int dft_size;
1825
    int dft_depth;
1826
    bool status;
1827

A
Alexander Karsakov 已提交
1828
public:
1829
    OCL_FftPlan(int _size, int _depth) : dft_size(_size), dft_depth(_depth), status(true)
A
Alexander Karsakov 已提交
1830
    {
1831 1832
        CV_Assert( dft_depth == CV_32F || dft_depth == CV_64F );

A
Alexander Karsakov 已提交
1833
        int min_radix;
1834 1835
        std::vector<int> radixes, blocks;
        ocl_getRadixes(dft_size, radixes, blocks, min_radix);
A
Alexander Karsakov 已提交
1836
        thread_count = dft_size / min_radix;
1837

A
Alexander Karsakov 已提交
1838
        if (thread_count > (int) ocl::Device::getDefault().maxWorkGroupSize())
1839
        {
A
Alexander Karsakov 已提交
1840 1841
            status = false;
            return;
1842
        }
A
Alexander Karsakov 已提交
1843 1844 1845 1846 1847 1848

        // generate string with radix calls
        String radix_processing;
        int n = 1, twiddle_size = 0;
        for (size_t i=0; i<radixes.size(); i++)
        {
A
Alexander Karsakov 已提交
1849 1850 1851
            int radix = radixes[i], block = blocks[i];
            if (block > 1)
                radix_processing += format("fft_radix%d_B%d(smem,twiddles+%d,ind,%d,%d);", radix, block, twiddle_size, n, dft_size/radix);
1852 1853
            else
                radix_processing += format("fft_radix%d(smem,twiddles+%d,ind,%d,%d);", radix, twiddle_size, n, dft_size/radix);
A
Alexander Karsakov 已提交
1854 1855 1856 1857
            twiddle_size += (radix-1)*n;
            n *= radix;
        }

1858 1859 1860 1861 1862
        twiddles.create(1, twiddle_size, CV_MAKE_TYPE(dft_depth, 2));
        if (dft_depth == CV_32F)
            fillRadixTable<float>(twiddles, radixes);
        else
            fillRadixTable<double>(twiddles, radixes);
A
Alexander Karsakov 已提交
1863

1864 1865 1866
        buildOptions = format("-D LOCAL_SIZE=%d -D kercn=%d -D FT=%s -D CT=%s%s -D RADIX_PROCESS=%s",
                              dft_size, min_radix, ocl::typeToStr(dft_depth), ocl::typeToStr(CV_MAKE_TYPE(dft_depth, 2)),
                              dft_depth == CV_64F ? " -D DOUBLE_SUPPORT" : "", radix_processing.c_str());
A
Alexander Karsakov 已提交
1867 1868
    }

A
Alexander Karsakov 已提交
1869
    bool enqueueTransform(InputArray _src, OutputArray _dst, int num_dfts, int flags, int fftType, bool rows = true) const
A
Alexander Karsakov 已提交
1870
    {
A
Alexander Karsakov 已提交
1871 1872 1873
        if (!status)
            return false;

A
Alexander Karsakov 已提交
1874 1875 1876
        UMat src = _src.getUMat();
        UMat dst = _dst.getUMat();

1877 1878 1879 1880
        size_t globalsize[2];
        size_t localsize[2];
        String kernel_name;

A
Alexander Karsakov 已提交
1881
        bool is1d = (flags & DFT_ROWS) != 0 || num_dfts == 1;
1882
        bool inv = (flags & DFT_INVERSE) != 0;
1883
        String options = buildOptions;
1884

1885 1886
        if (rows)
        {
A
Alexander Karsakov 已提交
1887
            globalsize[0] = thread_count; globalsize[1] = src.rows;
1888
            localsize[0] = thread_count; localsize[1] = 1;
1889
            kernel_name = !inv ? "fft_multi_radix_rows" : "ifft_multi_radix_rows";
A
Alexander Karsakov 已提交
1890
            if ((is1d || inv) && (flags & DFT_SCALE))
1891
                options += " -D DFT_SCALE";
1892 1893 1894
        }
        else
        {
A
Alexander Karsakov 已提交
1895
            globalsize[0] = num_dfts; globalsize[1] = thread_count;
1896
            localsize[0] = 1; localsize[1] = thread_count;
1897
            kernel_name = !inv ? "fft_multi_radix_cols" : "ifft_multi_radix_cols";
1898 1899
            if (flags & DFT_SCALE)
                options += " -D DFT_SCALE";
1900
        }
1901

A
Alexander Karsakov 已提交
1902 1903 1904
        options += src.channels() == 1 ? " -D REAL_INPUT" : " -D COMPLEX_INPUT";
        options += dst.channels() == 1 ? " -D REAL_OUTPUT" : " -D COMPLEX_OUTPUT";
        options += is1d ? " -D IS_1D" : "";
A
Alexander Karsakov 已提交
1905

A
Alexander Karsakov 已提交
1906 1907 1908 1909 1910 1911 1912
        if (!inv)
        {
            if ((is1d && src.channels() == 1) || (rows && (fftType == R2R)))
                options += " -D NO_CONJUGATE";
        }
        else
        {
A
Alexander Karsakov 已提交
1913
            if (rows && (fftType == C2R || fftType == R2R))
A
Alexander Karsakov 已提交
1914 1915
                options += " -D NO_CONJUGATE";
            if (dst.cols % 2 == 0)
A
Alexander Karsakov 已提交
1916
                options += " -D EVEN";
A
Alexander Karsakov 已提交
1917
        }
A
Alexander Karsakov 已提交
1918

1919
        ocl::Kernel k(kernel_name.c_str(), ocl::core::fft_oclsrc, options);
A
Alexander Karsakov 已提交
1920 1921 1922
        if (k.empty())
            return false;

1923
        k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::ReadOnlyNoSize(twiddles), thread_count, num_dfts);
A
Alexander Karsakov 已提交
1924 1925
        return k.run(2, globalsize, localsize, false);
    }
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

private:
    static void ocl_getRadixes(int cols, std::vector<int>& radixes, std::vector<int>& blocks, int& min_radix)
    {
        int factors[34];
        int nf = DFTFactorize(cols, factors);

        int n = 1;
        int factor_index = 0;
        min_radix = INT_MAX;

        // 2^n transforms
        if ((factors[factor_index] & 1) == 0)
        {
            for( ; n < factors[factor_index];)
            {
                int radix = 2, block = 1;
                if (8*n <= factors[0])
                    radix = 8;
                else if (4*n <= factors[0])
                {
                    radix = 4;
                    if (cols % 12 == 0)
                        block = 3;
                    else if (cols % 8 == 0)
                        block = 2;
                }
                else
                {
                    if (cols % 10 == 0)
                        block = 5;
                    else if (cols % 8 == 0)
                        block = 4;
                    else if (cols % 6 == 0)
                        block = 3;
                    else if (cols % 4 == 0)
                        block = 2;
                }

                radixes.push_back(radix);
                blocks.push_back(block);
                min_radix = min(min_radix, block*radix);
                n *= radix;
            }
            factor_index++;
        }

        // all the other transforms
        for( ; factor_index < nf; factor_index++)
        {
            int radix = factors[factor_index], block = 1;
            if (radix == 3)
            {
                if (cols % 12 == 0)
                    block = 4;
                else if (cols % 9 == 0)
                    block = 3;
                else if (cols % 6 == 0)
                    block = 2;
            }
            else if (radix == 5)
            {
                if (cols % 10 == 0)
                    block = 2;
            }
            radixes.push_back(radix);
            blocks.push_back(block);
            min_radix = min(min_radix, block*radix);
        }
    }
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

    template <typename T>
    static void fillRadixTable(UMat twiddles, const std::vector<int>& radixes)
    {
        Mat tw = twiddles.getMat(ACCESS_WRITE);
        T* ptr = tw.ptr<T>();
        int ptr_index = 0;

        int n = 1;
        for (size_t i=0; i<radixes.size(); i++)
        {
            int radix = radixes[i];
            n *= radix;

            for (int j=1; j<radix; j++)
            {
                double theta = -CV_2PI*j/n;

                for (int k=0; k<(n/radix); k++)
                {
                    ptr[ptr_index++] = (T) cos(k*theta);
                    ptr[ptr_index++] = (T) sin(k*theta);
                }
            }
        }
    }
A
Alexander Karsakov 已提交
2022 2023 2024 2025 2026 2027 2028
};

class OCL_FftPlanCache
{
public:
    static OCL_FftPlanCache & getInstance()
    {
2029
        CV_SINGLETON_LAZY_INIT_REF(OCL_FftPlanCache, new OCL_FftPlanCache())
A
Alexander Karsakov 已提交
2030
    }
A
Alexander Karsakov 已提交
2031

2032
    Ptr<OCL_FftPlan> getFftPlan(int dft_size, int depth)
A
Alexander Karsakov 已提交
2033
    {
2034 2035
        int key = (dft_size << 16) | (depth & 0xFFFF);
        std::map<int, Ptr<OCL_FftPlan> >::iterator f = planStorage.find(key);
A
Alexander Karsakov 已提交
2036
        if (f != planStorage.end())
A
Alexander Karsakov 已提交
2037
        {
A
Alexander Karsakov 已提交
2038 2039 2040 2041
            return f->second;
        }
        else
        {
2042 2043
            Ptr<OCL_FftPlan> newPlan = Ptr<OCL_FftPlan>(new OCL_FftPlan(dft_size, depth));
            planStorage[key] = newPlan;
A
Alexander Karsakov 已提交
2044
            return newPlan;
A
Alexander Karsakov 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
        }
    }

    ~OCL_FftPlanCache()
    {
        planStorage.clear();
    }

protected:
    OCL_FftPlanCache() :
        planStorage()
    {
    }
A
Alexander Karsakov 已提交
2058
    std::map<int, Ptr<OCL_FftPlan> > planStorage;
A
Alexander Karsakov 已提交
2059 2060
};

2061
static bool ocl_dft_rows(InputArray _src, OutputArray _dst, int nonzero_rows, int flags, int fftType)
A
Alexander Karsakov 已提交
2062
{
2063 2064
    int type = _src.type(), depth = CV_MAT_DEPTH(type);
    Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.cols(), depth);
A
Alexander Karsakov 已提交
2065
    return plan->enqueueTransform(_src, _dst, nonzero_rows, flags, fftType, true);
2066 2067
}

2068
static bool ocl_dft_cols(InputArray _src, OutputArray _dst, int nonzero_cols, int flags, int fftType)
2069
{
2070 2071
    int type = _src.type(), depth = CV_MAT_DEPTH(type);
    Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.rows(), depth);
A
Alexander Karsakov 已提交
2072
    return plan->enqueueTransform(_src, _dst, nonzero_cols, flags, fftType, false);
2073 2074 2075 2076
}

static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_rows)
{
2077
    int type = _src.type(), cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
2078
    Size ssize = _src.size();
2079
    bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
2080 2081

    if ( !((cn == 1 || cn == 2) && (depth == CV_32F || (depth == CV_64F && doubleSupport))) )
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
        return false;

    // if is not a multiplication of prime numbers { 2, 3, 5 }
    if (ssize.area() != getOptimalDFTSize(ssize.area()))
        return false;

    UMat src = _src.getUMat();
    int complex_input = cn == 2 ? 1 : 0;
    int complex_output = (flags & DFT_COMPLEX_OUTPUT) != 0;
    int real_input = cn == 1 ? 1 : 0;
    int real_output = (flags & DFT_REAL_OUTPUT) != 0;
    bool inv = (flags & DFT_INVERSE) != 0 ? 1 : 0;
2094 2095 2096 2097

    if( nonzero_rows <= 0 || nonzero_rows > _src.rows() )
        nonzero_rows = _src.rows();
    bool is1d = (flags & DFT_ROWS) != 0 || nonzero_rows == 1;
2098 2099 2100 2101

    // if output format is not specified
    if (complex_output + real_output == 0)
    {
2102 2103 2104 2105
        if (real_input)
            real_output = 1;
        else
            complex_output = 1;
2106 2107
    }

A
Alexander Karsakov 已提交
2108 2109
    FftType fftType = (FftType)(complex_input << 0 | complex_output << 1);

2110
    // Forward Complex to CCS not supported
A
Alexander Karsakov 已提交
2111 2112 2113
    if (fftType == C2R && !inv)
        fftType = C2C;

2114
    // Inverse CCS to Complex not supported
A
Alexander Karsakov 已提交
2115 2116
    if (fftType == R2C && inv)
        fftType = R2R;
2117

2118
    UMat output;
A
Alexander Karsakov 已提交
2119
    if (fftType == C2C || fftType == R2C)
A
Alexander Karsakov 已提交
2120
    {
A
Alexander Karsakov 已提交
2121
        // complex output
2122
        _dst.create(src.size(), CV_MAKETYPE(depth, 2));
A
Alexander Karsakov 已提交
2123
        output = _dst.getUMat();
A
Alexander Karsakov 已提交
2124
    }
A
Alexander Karsakov 已提交
2125
    else
A
Alexander Karsakov 已提交
2126
    {
A
Alexander Karsakov 已提交
2127
        // real output
2128 2129
        if (is1d)
        {
2130
            _dst.create(src.size(), CV_MAKETYPE(depth, 1));
2131 2132 2133
            output = _dst.getUMat();
        }
        else
A
Alexander Karsakov 已提交
2134
        {
2135 2136
            _dst.create(src.size(), CV_MAKETYPE(depth, 1));
            output.create(src.size(), CV_MAKETYPE(depth, 2));
A
Alexander Karsakov 已提交
2137
        }
A
Alexander Karsakov 已提交
2138
    }
2139

A
Alexander Karsakov 已提交
2140
    if (!inv)
2141
    {
2142
        if (!ocl_dft_rows(src, output, nonzero_rows, flags, fftType))
2143
            return false;
A
Alexander Karsakov 已提交
2144 2145 2146 2147

        if (!is1d)
        {
            int nonzero_cols = fftType == R2R ? output.cols/2 + 1 : output.cols;
2148
            if (!ocl_dft_cols(output, _dst, nonzero_cols, flags, fftType))
A
Alexander Karsakov 已提交
2149 2150 2151 2152
                return false;
        }
    }
    else
A
Alexander Karsakov 已提交
2153
    {
A
Alexander Karsakov 已提交
2154 2155 2156
        if (fftType == C2C)
        {
            // complex output
2157
            if (!ocl_dft_rows(src, output, nonzero_rows, flags, fftType))
A
Alexander Karsakov 已提交
2158 2159 2160 2161
                return false;

            if (!is1d)
            {
2162
                if (!ocl_dft_cols(output, output, output.cols, flags, fftType))
A
Alexander Karsakov 已提交
2163 2164 2165 2166 2167 2168 2169
                    return false;
            }
        }
        else
        {
            if (is1d)
            {
2170
                if (!ocl_dft_rows(src, output, nonzero_rows, flags, fftType))
A
Alexander Karsakov 已提交
2171 2172 2173 2174
                    return false;
            }
            else
            {
A
Alexander Karsakov 已提交
2175
                int nonzero_cols = src.cols/2 + 1;
2176
                if (!ocl_dft_cols(src, output, nonzero_cols, flags, fftType))
A
Alexander Karsakov 已提交
2177
                    return false;
A
Alexander Karsakov 已提交
2178

2179
                if (!ocl_dft_rows(output, _dst, nonzero_rows, flags, fftType))
A
Alexander Karsakov 已提交
2180 2181 2182
                    return false;
            }
        }
A
Alexander Karsakov 已提交
2183
    }
2184 2185 2186
    return true;
}

A
Alexander Karsakov 已提交
2187 2188
} // namespace cv;

2189 2190
#endif

I
Ilya Lavrenov 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
#ifdef HAVE_CLAMDFFT

namespace cv {

#define CLAMDDFT_Assert(func) \
    { \
        clAmdFftStatus s = (func); \
        CV_Assert(s == CLFFT_SUCCESS); \
    }

class PlanCache
{
    struct FftPlan
    {
        FftPlan(const Size & _dft_size, int _src_step, int _dst_step, bool _doubleFP, bool _inplace, int _flags, FftType _fftType) :
            dft_size(_dft_size), src_step(_src_step), dst_step(_dst_step),
I
Ilya Lavrenov 已提交
2207 2208
            doubleFP(_doubleFP), inplace(_inplace), flags(_flags), fftType(_fftType),
            context((cl_context)ocl::Context::getDefault().ptr()), plHandle(0)
I
Ilya Lavrenov 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
        {
            bool dft_inverse = (flags & DFT_INVERSE) != 0;
            bool dft_scale = (flags & DFT_SCALE) != 0;
            bool dft_rows = (flags & DFT_ROWS) != 0;

            clAmdFftLayout inLayout = CLFFT_REAL, outLayout = CLFFT_REAL;
            clAmdFftDim dim = dft_size.height == 1 || dft_rows ? CLFFT_1D : CLFFT_2D;

            size_t batchSize = dft_rows ? dft_size.height : 1;
            size_t clLengthsIn[3] = { dft_size.width, dft_rows ? 1 : dft_size.height, 1 };
            size_t clStridesIn[3] = { 1, 1, 1 };
            size_t clStridesOut[3]  = { 1, 1, 1 };
            int elemSize = doubleFP ? sizeof(double) : sizeof(float);

            switch (fftType)
            {
            case C2C:
                inLayout = CLFFT_COMPLEX_INTERLEAVED;
                outLayout = CLFFT_COMPLEX_INTERLEAVED;
                clStridesIn[1] = src_step / (elemSize << 1);
                clStridesOut[1] = dst_step / (elemSize << 1);
                break;
            case R2C:
                inLayout = CLFFT_REAL;
                outLayout = CLFFT_HERMITIAN_INTERLEAVED;
                clStridesIn[1] = src_step / elemSize;
                clStridesOut[1] = dst_step / (elemSize << 1);
                break;
            case C2R:
                inLayout = CLFFT_HERMITIAN_INTERLEAVED;
                outLayout = CLFFT_REAL;
                clStridesIn[1] = src_step / (elemSize << 1);
                clStridesOut[1] = dst_step / elemSize;
                break;
            case R2R:
            default:
                CV_Error(Error::StsNotImplemented, "AMD Fft does not support this type");
                break;
            }

            clStridesIn[2] = dft_rows ? clStridesIn[1] : dft_size.width * clStridesIn[1];
            clStridesOut[2] = dft_rows ? clStridesOut[1] : dft_size.width * clStridesOut[1];

I
Ilya Lavrenov 已提交
2252
            CLAMDDFT_Assert(clAmdFftCreateDefaultPlan(&plHandle, (cl_context)ocl::Context::getDefault().ptr(), dim, clLengthsIn))
I
Ilya Lavrenov 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

            // setting plan properties
            CLAMDDFT_Assert(clAmdFftSetPlanPrecision(plHandle, doubleFP ? CLFFT_DOUBLE : CLFFT_SINGLE));
            CLAMDDFT_Assert(clAmdFftSetResultLocation(plHandle, inplace ? CLFFT_INPLACE : CLFFT_OUTOFPLACE))
            CLAMDDFT_Assert(clAmdFftSetLayout(plHandle, inLayout, outLayout))
            CLAMDDFT_Assert(clAmdFftSetPlanBatchSize(plHandle, batchSize))
            CLAMDDFT_Assert(clAmdFftSetPlanInStride(plHandle, dim, clStridesIn))
            CLAMDDFT_Assert(clAmdFftSetPlanOutStride(plHandle, dim, clStridesOut))
            CLAMDDFT_Assert(clAmdFftSetPlanDistance(plHandle, clStridesIn[dim], clStridesOut[dim]))

            float scale = dft_scale ? 1.0f / (dft_rows ? dft_size.width : dft_size.area()) : 1.0f;
            CLAMDDFT_Assert(clAmdFftSetPlanScale(plHandle, dft_inverse ? CLFFT_BACKWARD : CLFFT_FORWARD, scale))

            // ready to bake
I
Ilya Lavrenov 已提交
2267 2268
            cl_command_queue queue = (cl_command_queue)ocl::Queue::getDefault().ptr();
            CLAMDDFT_Assert(clAmdFftBakePlan(plHandle, 1, &queue, NULL, NULL))
I
Ilya Lavrenov 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
        }

        ~FftPlan()
        {
//            clAmdFftDestroyPlan(&plHandle);
        }

        friend class PlanCache;

    private:
        Size dft_size;
        int src_step, dst_step;
        bool doubleFP;
        bool inplace;
        int flags;
        FftType fftType;

        cl_context context;
        clAmdFftPlanHandle plHandle;
    };

public:
    static PlanCache & getInstance()
    {
2293
        CV_SINGLETON_LAZY_INIT_REF(PlanCache, new PlanCache())
I
Ilya Lavrenov 已提交
2294 2295 2296 2297 2298
    }

    clAmdFftPlanHandle getPlanHandle(const Size & dft_size, int src_step, int dst_step, bool doubleFP,
                                     bool inplace, int flags, FftType fftType)
    {
I
Ilya Lavrenov 已提交
2299
        cl_context currentContext = (cl_context)ocl::Context::getDefault().ptr();
I
Ilya Lavrenov 已提交
2300

I
Ilya Lavrenov 已提交
2301
        for (size_t i = 0, size = planStorage.size(); i < size; ++i)
I
Ilya Lavrenov 已提交
2302 2303
        {
            const FftPlan * const plan = planStorage[i];
I
Ilya Lavrenov 已提交
2304

I
Ilya Lavrenov 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
            if (plan->dft_size == dft_size &&
                plan->flags == flags &&
                plan->src_step == src_step &&
                plan->dst_step == dst_step &&
                plan->doubleFP == doubleFP &&
                plan->fftType == fftType &&
                plan->inplace == inplace)
            {
                if (plan->context != currentContext)
                {
                    planStorage.erase(planStorage.begin() + i);
                    break;
                }

                return plan->plHandle;
            }
        }

        // no baked plan is found, so let's create a new one
2324
        Ptr<FftPlan> newPlan = Ptr<FftPlan>(new FftPlan(dft_size, src_step, dst_step, doubleFP, inplace, flags, fftType));
I
Ilya Lavrenov 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
        planStorage.push_back(newPlan);

        return newPlan->plHandle;
    }

    ~PlanCache()
    {
        planStorage.clear();
    }

protected:
    PlanCache() :
        planStorage()
    {
    }

2341
    std::vector<Ptr<FftPlan> > planStorage;
I
Ilya Lavrenov 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
};

extern "C" {

static void CL_CALLBACK oclCleanupCallback(cl_event e, cl_int, void *p)
{
    UMatData * u = (UMatData *)p;

    if( u && CV_XADD(&u->urefcount, -1) == 1 )
        u->currAllocator->deallocate(u);
    u = 0;

    clReleaseEvent(e), e = 0;
}

}

A
Alexander Karsakov 已提交
2359
static bool ocl_dft_amdfft(InputArray _src, OutputArray _dst, int flags)
I
Ilya Lavrenov 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
{
    int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
    Size ssize = _src.size();

    bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
    if ( (!doubleSupport && depth == CV_64F) ||
         !(type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2) ||
         _src.offset() != 0)
        return false;

    // if is not a multiplication of prime numbers { 2, 3, 5 }
    if (ssize.area() != getOptimalDFTSize(ssize.area()))
        return false;

    int dst_complex_input = cn == 2 ? 1 : 0;
    bool dft_inverse = (flags & DFT_INVERSE) != 0 ? 1 : 0;
    int dft_complex_output = (flags & DFT_COMPLEX_OUTPUT) != 0;
    bool dft_real_output = (flags & DFT_REAL_OUTPUT) != 0;

    CV_Assert(dft_complex_output + dft_real_output < 2);
    FftType fftType = (FftType)(dst_complex_input << 0 | dft_complex_output << 1);

    switch (fftType)
    {
    case C2C:
        _dst.create(ssize.height, ssize.width, CV_MAKE_TYPE(depth, 2));
        break;
    case R2C: // TODO implement it if possible
    case C2R: // TODO implement it if possible
    case R2R: // AMD Fft does not support this type
    default:
        return false;
    }

    UMat src = _src.getUMat(), dst = _dst.getUMat();
    bool inplace = src.u == dst.u;

    clAmdFftPlanHandle plHandle = PlanCache::getInstance().
            getPlanHandle(ssize, (int)src.step, (int)dst.step,
                          depth == CV_64F, inplace, flags, fftType);

    // get the bufferSize
    size_t bufferSize = 0;
    CLAMDDFT_Assert(clAmdFftGetTmpBufSize(plHandle, &bufferSize))
    UMat tmpBuffer(1, (int)bufferSize, CV_8UC1);

    cl_mem srcarg = (cl_mem)src.handle(ACCESS_READ);
    cl_mem dstarg = (cl_mem)dst.handle(ACCESS_RW);

I
Ilya Lavrenov 已提交
2409
    cl_command_queue queue = (cl_command_queue)ocl::Queue::getDefault().ptr();
I
Ilya Lavrenov 已提交
2410 2411 2412
    cl_event e = 0;

    CLAMDDFT_Assert(clAmdFftEnqueueTransform(plHandle, dft_inverse ? CLFFT_BACKWARD : CLFFT_FORWARD,
I
Ilya Lavrenov 已提交
2413
                                       1, &queue, 0, NULL, &e,
I
Ilya Lavrenov 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
                                       &srcarg, &dstarg, (cl_mem)tmpBuffer.handle(ACCESS_RW)))

    tmpBuffer.addref();
    clSetEventCallback(e, CL_COMPLETE, oclCleanupCallback, tmpBuffer.u);
    return true;
}

#undef DFT_ASSERT

}

#endif // HAVE_CLAMDFFT

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
namespace cv
{
static void complementComplexOutput(Mat& dst, int len, int dft_dims)
{
    int i, n = dst.cols;
    size_t elem_size = dst.elemSize1();
    if( elem_size == sizeof(float) )
    {
        float* p0 = dst.ptr<float>();
        size_t dstep = dst.step/sizeof(p0[0]);
        for( i = 0; i < len; i++ )
        {
            float* p = p0 + dstep*i;
            float* q = dft_dims == 1 || i == 0 || i*2 == len ? p : p0 + dstep*(len-i);

            for( int j = 1; j < (n+1)/2; j++ )
            {
                p[(n-j)*2] = q[j*2];
                p[(n-j)*2+1] = -q[j*2+1];
            }
        }
    }
    else
    {
        double* p0 = dst.ptr<double>();
        size_t dstep = dst.step/sizeof(p0[0]);
        for( i = 0; i < len; i++ )
        {
            double* p = p0 + dstep*i;
            double* q = dft_dims == 1 || i == 0 || i*2 == len ? p : p0 + dstep*(len-i);

            for( int j = 1; j < (n+1)/2; j++ )
            {
                p[(n-j)*2] = q[j*2];
                p[(n-j)*2+1] = -q[j*2+1];
            }
        }
    }
}
}

2468
void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
2469
{
I
Ilya Lavrenov 已提交
2470
#ifdef HAVE_CLAMDFFT
I
Ilya Lavrenov 已提交
2471 2472
    CV_OCL_RUN(ocl::haveAmdFft() && ocl::Device::getDefault().type() != ocl::Device::TYPE_CPU &&
            _dst.isUMat() && _src0.dims() <= 2 && nonzero_rows == 0,
2473 2474 2475 2476 2477 2478
               ocl_dft_amdfft(_src0, _dst, flags))
#endif

#ifdef HAVE_OPENCL
    CV_OCL_RUN(_dst.isUMat() && _src0.dims() <= 2,
               ocl_dft(_src0, _dst, flags, nonzero_rows))
I
Ilya Lavrenov 已提交
2479 2480
#endif

2481
    static DFTFunc dft_tbl[6] =
2482
    {
2483 2484 2485 2486 2487 2488 2489
        (DFTFunc)DFT_32f,
        (DFTFunc)RealDFT_32f,
        (DFTFunc)CCSIDFT_32f,
        (DFTFunc)DFT_64f,
        (DFTFunc)RealDFT_64f,
        (DFTFunc)CCSIDFT_64f
    };
2490
    AutoBuffer<uchar> buf;
2491
    Mat src0 = _src0.getMat(), src = src0;
2492 2493 2494 2495 2496 2497 2498
    int prev_len = 0, stage = 0;
    bool inv = (flags & DFT_INVERSE) != 0;
    int nf = 0, real_transform = src.channels() == 1 || (inv && (flags & DFT_REAL_OUTPUT)!=0);
    int type = src.type(), depth = src.depth();
    int elem_size = (int)src.elemSize1(), complex_elem_size = elem_size*2;
    int factors[34];
    bool inplace_transform = false;
2499
#ifdef USE_IPP_DFT
2500
    AutoBuffer<uchar> ippbuf;
2501
    int ipp_norm_flag = !(flags & DFT_SCALE) ? 8 : inv ? 2 : 1;
2502 2503 2504 2505 2506
#endif

    CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 );

    if( !inv && src.channels() == 1 && (flags & DFT_COMPLEX_OUTPUT) )
2507
        _dst.create( src.size(), CV_MAKETYPE(depth, 2) );
2508
    else if( inv && src.channels() == 2 && (flags & DFT_REAL_OUTPUT) )
2509
        _dst.create( src.size(), depth );
2510
    else
2511
        _dst.create( src.size(), type );
2512

2513
    Mat dst = _dst.getMat();
2514

A
Alexander Alekhin 已提交
2515
#if defined USE_IPP_DFT
2516
    CV_IPP_CHECK()
A
Alexander Alekhin 已提交
2517
    {
2518
        if ((src.depth() == CV_32F) && (src.total()>(int)(1<<6)) && nonzero_rows == 0)
E
Elena Gvozdeva 已提交
2519
        {
2520
            if ((flags & DFT_ROWS) == 0)
2521
            {
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
                if (src.channels() == 2 && !(inv && (flags & DFT_REAL_OUTPUT)))
                {
                    if (ippi_DFT_C_32F(src, dst, inv, ipp_norm_flag))
                    {
                        CV_IMPL_ADD(CV_IMPL_IPP);
                        return;
                    }
                    setIppErrorStatus();
                }
                if (src.channels() == 1 && (inv || !(flags & DFT_COMPLEX_OUTPUT)))
                {
                    if (ippi_DFT_R_32F(src, dst, inv, ipp_norm_flag))
                    {
                        CV_IMPL_ADD(CV_IMPL_IPP);
                        return;
                    }
                    setIppErrorStatus();
                }
2540
            }
2541
            else
2542
            {
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
                if (src.channels() == 2 && !(inv && (flags & DFT_REAL_OUTPUT)))
                {
                    ippiDFT_C_Func ippiFunc = inv ? (ippiDFT_C_Func)ippiDFTInv_CToC_32fc_C1R : (ippiDFT_C_Func)ippiDFTFwd_CToC_32fc_C1R;
                    if (Dft_C_IPPLoop(src, dst, IPPDFT_C_Functor(ippiFunc),ipp_norm_flag))
                    {
                        CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT);
                        return;
                    }
                    setIppErrorStatus();
                }
                if (src.channels() == 1 && (inv || !(flags & DFT_COMPLEX_OUTPUT)))
                {
                    ippiDFT_R_Func ippiFunc = inv ? (ippiDFT_R_Func)ippiDFTInv_PackToR_32f_C1R : (ippiDFT_R_Func)ippiDFTFwd_RToPack_32f_C1R;
                    if (Dft_R_IPPLoop(src, dst, IPPDFT_R_Functor(ippiFunc),ipp_norm_flag))
                    {
                        CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT);
                        return;
                    }
                    setIppErrorStatus();
                }
2563
            }
E
Elena Gvozdeva 已提交
2564
        }
A
Alexander Alekhin 已提交
2565
    }
E
Elena Gvozdeva 已提交
2566 2567
#endif

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
    if( !real_transform )
        elem_size = complex_elem_size;

    if( src.cols == 1 && nonzero_rows > 0 )
        CV_Error( CV_StsNotImplemented,
        "This mode (using nonzero_rows with a single-column matrix) breaks the function's logic, so it is prohibited.\n"
        "For fast convolution/correlation use 2-column matrix or single-row matrix instead" );

    // determine, which transform to do first - row-wise
    // (stage 0) or column-wise (stage 1) transform
    if( !(flags & DFT_ROWS) && src.rows > 1 &&
        ((src.cols == 1 && (!src.isContinuous() || !dst.isContinuous())) ||
         (src.cols > 1 && inv && real_transform)) )
        stage = 1;

    for(;;)
    {
        double scale = 1;
        uchar* wave = 0;
        int* itab = 0;
        uchar* ptr;
        int i, len, count, sz = 0;
        int use_buf = 0, odd_real = 0;
        DFTFunc dft_func;

        if( stage == 0 ) // row-wise transform
        {
            len = !inv ? src.cols : dst.cols;
            count = src.rows;
            if( len == 1 && !(flags & DFT_ROWS) )
            {
                len = !inv ? src.rows : dst.rows;
                count = 1;
            }
            odd_real = real_transform && (len & 1);
        }
        else
        {
            len = dst.rows;
            count = !inv ? src0.cols : dst.cols;
            sz = 2*len*complex_elem_size;
        }

D
Dmitry-Me 已提交
2611
        void *spec = 0;
2612
#ifdef USE_IPP_DFT
2613
        if( CV_IPP_CHECK_COND && (len*count >= 64) ) // use IPP DFT if available
2614
        {
2615 2616 2617
            int specsize=0, initsize=0, worksize=0;
            IppDFTGetSizeFunc getSizeFunc = 0;
            IppDFTInitFunc initFunc = 0;
2618

2619 2620 2621
            if( real_transform && stage == 0 )
            {
                if( depth == CV_32F )
V
Vadim Pisarevsky 已提交
2622 2623
                {
                    getSizeFunc = ippsDFTGetSize_R_32f;
2624
                    initFunc = (IppDFTInitFunc)ippsDFTInit_R_32f;
V
Vadim Pisarevsky 已提交
2625
                }
2626
                else
V
Vadim Pisarevsky 已提交
2627 2628
                {
                    getSizeFunc = ippsDFTGetSize_R_64f;
2629
                    initFunc = (IppDFTInitFunc)ippsDFTInit_R_64f;
V
Vadim Pisarevsky 已提交
2630
                }
2631 2632 2633 2634
            }
            else
            {
                if( depth == CV_32F )
V
Vadim Pisarevsky 已提交
2635 2636
                {
                    getSizeFunc = ippsDFTGetSize_C_32fc;
2637
                    initFunc = (IppDFTInitFunc)ippsDFTInit_C_32fc;
V
Vadim Pisarevsky 已提交
2638
                }
2639
                else
V
Vadim Pisarevsky 已提交
2640 2641
                {
                    getSizeFunc = ippsDFTGetSize_C_64fc;
2642
                    initFunc = (IppDFTInitFunc)ippsDFTInit_C_64fc;
V
Vadim Pisarevsky 已提交
2643
                }
2644 2645 2646 2647 2648 2649 2650 2651 2652
            }
            if( getSizeFunc(len, ipp_norm_flag, ippAlgHintNone, &specsize, &initsize, &worksize) >= 0 )
            {
                ippbuf.allocate(specsize + initsize + 64);
                spec = alignPtr(&ippbuf[0], 32);
                uchar* initbuf = alignPtr((uchar*)spec + specsize, 32);
                if( initFunc(len, ipp_norm_flag, ippAlgHintNone, spec, initbuf) < 0 )
                    spec = 0;
                sz += worksize;
2653
            }
E
fixed  
Elena Gvozdeva 已提交
2654 2655
            else
                setIppErrorStatus();
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
        }
        else
#endif
        {
            if( len != prev_len )
                nf = DFTFactorize( len, factors );

            inplace_transform = factors[0] == factors[nf-1];
            sz += len*(complex_elem_size + sizeof(int));
            i = nf > 1 && (factors[0] & 1) == 0;
            if( (factors[i] & 1) != 0 && factors[i] > 5 )
                sz += (factors[i]+1)*complex_elem_size;

            if( (stage == 0 && ((src.data == dst.data && !inplace_transform) || odd_real)) ||
                (stage == 1 && !inplace_transform) )
            {
                use_buf = 1;
                sz += len*complex_elem_size;
            }
        }

        ptr = (uchar*)buf;
        buf.allocate( sz + 32 );
        if( ptr != (uchar*)buf )
            prev_len = 0; // because we release the buffer,
                          // force recalculation of
                          // twiddle factors and permutation table
        ptr = (uchar*)buf;
        if( !spec )
        {
            wave = ptr;
            ptr += len*complex_elem_size;
            itab = (int*)ptr;
            ptr = (uchar*)cvAlignPtr( ptr + len*sizeof(int), 16 );

            if( len != prev_len || (!inplace_transform && inv && real_transform))
                DFTInit( len, nf, factors, itab, complex_elem_size,
                            wave, stage == 0 && inv && real_transform );
            // otherwise reuse the tables calculated on the previous stage
        }

        if( stage == 0 )
        {
            uchar* tmp_buf = 0;
            int dptr_offset = 0;
            int dst_full_len = len*elem_size;
2702
            int _flags = (int)inv + (src.channels() != dst.channels() ?
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
                         DFT_COMPLEX_INPUT_OR_OUTPUT : 0);
            if( use_buf )
            {
                tmp_buf = ptr;
                ptr += len*complex_elem_size;
                if( odd_real && !inv && len > 1 &&
                    !(_flags & DFT_COMPLEX_INPUT_OR_OUTPUT))
                    dptr_offset = elem_size;
            }

            if( !inv && (_flags & DFT_COMPLEX_INPUT_OR_OUTPUT) )
                dst_full_len += (len & 1) ? elem_size : complex_elem_size;

            dft_func = dft_tbl[(!real_transform ? 0 : !inv ? 1 : 2) + (depth == CV_64F)*3];

            if( count > 1 && !(flags & DFT_ROWS) && (!inv || !real_transform) )
                stage = 1;
            else if( flags & CV_DXT_SCALE )
                scale = 1./(len * (flags & DFT_ROWS ? 1 : count));

            if( nonzero_rows <= 0 || nonzero_rows > count )
                nonzero_rows = count;

            for( i = 0; i < nonzero_rows; i++ )
            {
2728 2729
                const uchar* sptr = src.ptr(i);
                uchar* dptr0 = dst.ptr(i);
2730 2731 2732 2733
                uchar* dptr = dptr0;

                if( tmp_buf )
                    dptr = tmp_buf;
2734

2735 2736 2737 2738 2739 2740 2741
                dft_func( sptr, dptr, len, nf, factors, itab, wave, len, spec, ptr, _flags, scale );
                if( dptr != dptr0 )
                    memcpy( dptr0, dptr + dptr_offset, dst_full_len );
            }

            for( ; i < count; i++ )
            {
2742
                uchar* dptr0 = dst.ptr(i);
2743 2744 2745 2746
                memset( dptr0, 0, dst_full_len );
            }

            if( stage != 1 )
2747 2748 2749
            {
                if( !inv && real_transform && dst.channels() == 2 )
                    complementComplexOutput(dst, nonzero_rows, 1);
2750
                break;
2751
            }
2752 2753 2754 2755 2756 2757
            src = dst;
        }
        else
        {
            int a = 0, b = count;
            uchar *buf0, *buf1, *dbuf0, *dbuf1;
2758 2759
            const uchar* sptr0 = src.ptr();
            uchar* dptr0 = dst.ptr();
2760 2761 2762 2763 2764
            buf0 = ptr;
            ptr += len*complex_elem_size;
            buf1 = ptr;
            ptr += len*complex_elem_size;
            dbuf0 = buf0, dbuf1 = buf1;
2765

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
            if( use_buf )
            {
                dbuf1 = ptr;
                dbuf0 = buf1;
                ptr += len*complex_elem_size;
            }

            dft_func = dft_tbl[(depth == CV_64F)*3];

            if( real_transform && inv && src.cols > 1 )
                stage = 0;
            else if( flags & CV_DXT_SCALE )
                scale = 1./(len * count);

            if( real_transform )
            {
                int even;
                a = 1;
                even = (count & 1) == 0;
                b = (count+1)/2;
                if( !inv )
                {
                    memset( buf0, 0, len*complex_elem_size );
                    CopyColumn( sptr0, src.step, buf0, complex_elem_size, len, elem_size );
                    sptr0 += dst.channels()*elem_size;
                    if( even )
                    {
                        memset( buf1, 0, len*complex_elem_size );
                        CopyColumn( sptr0 + (count-2)*elem_size, src.step,
                                    buf1, complex_elem_size, len, elem_size );
                    }
                }
                else if( src.channels() == 1 )
                {
2800 2801
                    CopyColumn( sptr0, src.step, buf0, elem_size, len, elem_size );
                    ExpandCCS( buf0, len, elem_size );
2802 2803 2804
                    if( even )
                    {
                        CopyColumn( sptr0 + (count-1)*elem_size, src.step,
2805 2806
                                    buf1, elem_size, len, elem_size );
                        ExpandCCS( buf1, len, elem_size );
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
                    }
                    sptr0 += elem_size;
                }
                else
                {
                    CopyColumn( sptr0, src.step, buf0, complex_elem_size, len, complex_elem_size );
                    if( even )
                    {
                        CopyColumn( sptr0 + b*complex_elem_size, src.step,
                                       buf1, complex_elem_size, len, complex_elem_size );
                    }
                    sptr0 += complex_elem_size;
                }
2820

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
                if( even )
                    dft_func( buf1, dbuf1, len, nf, factors, itab,
                              wave, len, spec, ptr, inv, scale );
                dft_func( buf0, dbuf0, len, nf, factors, itab,
                          wave, len, spec, ptr, inv, scale );

                if( dst.channels() == 1 )
                {
                    if( !inv )
                    {
                        // copy the half of output vector to the first/last column.
                        // before doing that, defgragment the vector
                        memcpy( dbuf0 + elem_size, dbuf0, elem_size );
                        CopyColumn( dbuf0 + elem_size, elem_size, dptr0,
                                       dst.step, len, elem_size );
                        if( even )
                        {
                            memcpy( dbuf1 + elem_size, dbuf1, elem_size );
                            CopyColumn( dbuf1 + elem_size, elem_size,
                                           dptr0 + (count-1)*elem_size,
                                           dst.step, len, elem_size );
                        }
                        dptr0 += elem_size;
                    }
                    else
                    {
                        // copy the real part of the complex vector to the first/last column
                        CopyColumn( dbuf0, complex_elem_size, dptr0, dst.step, len, elem_size );
                        if( even )
                            CopyColumn( dbuf1, complex_elem_size, dptr0 + (count-1)*elem_size,
                                           dst.step, len, elem_size );
                        dptr0 += elem_size;
                    }
                }
                else
                {
                    assert( !inv );
                    CopyColumn( dbuf0, complex_elem_size, dptr0,
                                   dst.step, len, complex_elem_size );
                    if( even )
                        CopyColumn( dbuf1, complex_elem_size,
                                       dptr0 + b*complex_elem_size,
                                       dst.step, len, complex_elem_size );
                    dptr0 += complex_elem_size;
                }
            }

            for( i = a; i < b; i += 2 )
            {
                if( i+1 < b )
                {
                    CopyFrom2Columns( sptr0, src.step, buf0, buf1, len, complex_elem_size );
                    dft_func( buf1, dbuf1, len, nf, factors, itab,
                              wave, len, spec, ptr, inv, scale );
                }
                else
                    CopyColumn( sptr0, src.step, buf0, complex_elem_size, len, complex_elem_size );

                dft_func( buf0, dbuf0, len, nf, factors, itab,
                          wave, len, spec, ptr, inv, scale );

                if( i+1 < b )
                    CopyTo2Columns( dbuf0, dbuf1, dptr0, dst.step, len, complex_elem_size );
                else
                    CopyColumn( dbuf0, complex_elem_size, dptr0, dst.step, len, complex_elem_size );
                sptr0 += 2*complex_elem_size;
                dptr0 += 2*complex_elem_size;
            }

            if( stage != 0 )
2891 2892
            {
                if( !inv && real_transform && dst.channels() == 2 && len > 1 )
2893
                    complementComplexOutput(dst, len, 2);
2894
                break;
2895
            }
2896 2897 2898 2899 2900 2901
            src = dst;
        }
    }
}


2902
void cv::idft( InputArray src, OutputArray dst, int flags, int nonzero_rows )
2903 2904 2905 2906
{
    dft( src, dst, flags | DFT_INVERSE, nonzero_rows );
}

I
Ilya Lavrenov 已提交
2907 2908
#ifdef HAVE_OPENCL

I
Ilya Lavrenov 已提交
2909 2910 2911 2912 2913
namespace cv {

static bool ocl_mulSpectrums( InputArray _srcA, InputArray _srcB,
                              OutputArray _dst, int flags, bool conjB )
{
I
Ilya Lavrenov 已提交
2914 2915
    int atype = _srcA.type(), btype = _srcB.type(),
            rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
I
Ilya Lavrenov 已提交
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
    Size asize = _srcA.size(), bsize = _srcB.size();
    CV_Assert(asize == bsize);

    if ( !(atype == CV_32FC2 && btype == CV_32FC2) || flags != 0 )
        return false;

    UMat A = _srcA.getUMat(), B = _srcB.getUMat();
    CV_Assert(A.size() == B.size());

    _dst.create(A.size(), atype);
    UMat dst = _dst.getUMat();

    ocl::Kernel k("mulAndScaleSpectrums",
                  ocl::core::mulspectrums_oclsrc,
                  format("%s", conjB ? "-D CONJ" : ""));
    if (k.empty())
        return false;

    k.args(ocl::KernelArg::ReadOnlyNoSize(A), ocl::KernelArg::ReadOnlyNoSize(B),
I
Ilya Lavrenov 已提交
2935
           ocl::KernelArg::WriteOnly(dst), rowsPerWI);
I
Ilya Lavrenov 已提交
2936

I
Ilya Lavrenov 已提交
2937
    size_t globalsize[2] = { asize.width, (asize.height + rowsPerWI - 1) / rowsPerWI };
I
Ilya Lavrenov 已提交
2938 2939 2940 2941 2942
    return k.run(2, globalsize, NULL, false);
}

}

I
Ilya Lavrenov 已提交
2943 2944
#endif

2945
void cv::mulSpectrums( InputArray _srcA, InputArray _srcB,
2946
                       OutputArray _dst, int flags, bool conjB )
2947
{
I
Ilya Lavrenov 已提交
2948
    CV_OCL_RUN(_dst.isUMat() && _srcA.dims() <= 2 && _srcB.dims() <= 2,
I
Ilya Lavrenov 已提交
2949 2950
            ocl_mulSpectrums(_srcA, _srcB, _dst, flags, conjB))

2951
    Mat srcA = _srcA.getMat(), srcB = _srcB.getMat();
2952 2953 2954 2955 2956 2957 2958
    int depth = srcA.depth(), cn = srcA.channels(), type = srcA.type();
    int rows = srcA.rows, cols = srcA.cols;
    int j, k;

    CV_Assert( type == srcB.type() && srcA.size() == srcB.size() );
    CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 );

2959 2960
    _dst.create( srcA.rows, srcA.cols, type );
    Mat dst = _dst.getMat();
2961

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
    bool is_1d = (flags & DFT_ROWS) || (rows == 1 || (cols == 1 &&
             srcA.isContinuous() && srcB.isContinuous() && dst.isContinuous()));

    if( is_1d && !(flags & DFT_ROWS) )
        cols = cols + rows - 1, rows = 1;

    int ncols = cols*cn;
    int j0 = cn == 1;
    int j1 = ncols - (cols % 2 == 0 && cn == 1);

    if( depth == CV_32F )
    {
2974 2975 2976
        const float* dataA = srcA.ptr<float>();
        const float* dataB = srcB.ptr<float>();
        float* dataC = dst.ptr<float>();
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040

        size_t stepA = srcA.step/sizeof(dataA[0]);
        size_t stepB = srcB.step/sizeof(dataB[0]);
        size_t stepC = dst.step/sizeof(dataC[0]);

        if( !is_1d && cn == 1 )
        {
            for( k = 0; k < (cols % 2 ? 1 : 2); k++ )
            {
                if( k == 1 )
                    dataA += cols - 1, dataB += cols - 1, dataC += cols - 1;
                dataC[0] = dataA[0]*dataB[0];
                if( rows % 2 == 0 )
                    dataC[(rows-1)*stepC] = dataA[(rows-1)*stepA]*dataB[(rows-1)*stepB];
                if( !conjB )
                    for( j = 1; j <= rows - 2; j += 2 )
                    {
                        double re = (double)dataA[j*stepA]*dataB[j*stepB] -
                                    (double)dataA[(j+1)*stepA]*dataB[(j+1)*stepB];
                        double im = (double)dataA[j*stepA]*dataB[(j+1)*stepB] +
                                    (double)dataA[(j+1)*stepA]*dataB[j*stepB];
                        dataC[j*stepC] = (float)re; dataC[(j+1)*stepC] = (float)im;
                    }
                else
                    for( j = 1; j <= rows - 2; j += 2 )
                    {
                        double re = (double)dataA[j*stepA]*dataB[j*stepB] +
                                    (double)dataA[(j+1)*stepA]*dataB[(j+1)*stepB];
                        double im = (double)dataA[(j+1)*stepA]*dataB[j*stepB] -
                                    (double)dataA[j*stepA]*dataB[(j+1)*stepB];
                        dataC[j*stepC] = (float)re; dataC[(j+1)*stepC] = (float)im;
                    }
                if( k == 1 )
                    dataA -= cols - 1, dataB -= cols - 1, dataC -= cols - 1;
            }
        }

        for( ; rows--; dataA += stepA, dataB += stepB, dataC += stepC )
        {
            if( is_1d && cn == 1 )
            {
                dataC[0] = dataA[0]*dataB[0];
                if( cols % 2 == 0 )
                    dataC[j1] = dataA[j1]*dataB[j1];
            }

            if( !conjB )
                for( j = j0; j < j1; j += 2 )
                {
                    double re = (double)dataA[j]*dataB[j] - (double)dataA[j+1]*dataB[j+1];
                    double im = (double)dataA[j+1]*dataB[j] + (double)dataA[j]*dataB[j+1];
                    dataC[j] = (float)re; dataC[j+1] = (float)im;
                }
            else
                for( j = j0; j < j1; j += 2 )
                {
                    double re = (double)dataA[j]*dataB[j] + (double)dataA[j+1]*dataB[j+1];
                    double im = (double)dataA[j+1]*dataB[j] - (double)dataA[j]*dataB[j+1];
                    dataC[j] = (float)re; dataC[j+1] = (float)im;
                }
        }
    }
    else
    {
3041 3042 3043
        const double* dataA = srcA.ptr<double>();
        const double* dataB = srcB.ptr<double>();
        double* dataC = dst.ptr<double>();
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112

        size_t stepA = srcA.step/sizeof(dataA[0]);
        size_t stepB = srcB.step/sizeof(dataB[0]);
        size_t stepC = dst.step/sizeof(dataC[0]);

        if( !is_1d && cn == 1 )
        {
            for( k = 0; k < (cols % 2 ? 1 : 2); k++ )
            {
                if( k == 1 )
                    dataA += cols - 1, dataB += cols - 1, dataC += cols - 1;
                dataC[0] = dataA[0]*dataB[0];
                if( rows % 2 == 0 )
                    dataC[(rows-1)*stepC] = dataA[(rows-1)*stepA]*dataB[(rows-1)*stepB];
                if( !conjB )
                    for( j = 1; j <= rows - 2; j += 2 )
                    {
                        double re = dataA[j*stepA]*dataB[j*stepB] -
                                    dataA[(j+1)*stepA]*dataB[(j+1)*stepB];
                        double im = dataA[j*stepA]*dataB[(j+1)*stepB] +
                                    dataA[(j+1)*stepA]*dataB[j*stepB];
                        dataC[j*stepC] = re; dataC[(j+1)*stepC] = im;
                    }
                else
                    for( j = 1; j <= rows - 2; j += 2 )
                    {
                        double re = dataA[j*stepA]*dataB[j*stepB] +
                                    dataA[(j+1)*stepA]*dataB[(j+1)*stepB];
                        double im = dataA[(j+1)*stepA]*dataB[j*stepB] -
                                    dataA[j*stepA]*dataB[(j+1)*stepB];
                        dataC[j*stepC] = re; dataC[(j+1)*stepC] = im;
                    }
                if( k == 1 )
                    dataA -= cols - 1, dataB -= cols - 1, dataC -= cols - 1;
            }
        }

        for( ; rows--; dataA += stepA, dataB += stepB, dataC += stepC )
        {
            if( is_1d && cn == 1 )
            {
                dataC[0] = dataA[0]*dataB[0];
                if( cols % 2 == 0 )
                    dataC[j1] = dataA[j1]*dataB[j1];
            }

            if( !conjB )
                for( j = j0; j < j1; j += 2 )
                {
                    double re = dataA[j]*dataB[j] - dataA[j+1]*dataB[j+1];
                    double im = dataA[j+1]*dataB[j] + dataA[j]*dataB[j+1];
                    dataC[j] = re; dataC[j+1] = im;
                }
            else
                for( j = j0; j < j1; j += 2 )
                {
                    double re = dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1];
                    double im = dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1];
                    dataC[j] = re; dataC[j+1] = im;
                }
        }
    }
}


/****************************************************************************************\
                               Discrete Cosine Transform
\****************************************************************************************/

3113 3114 3115
namespace cv
{

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
/* DCT is calculated using DFT, as described here:
   http://www.ece.utexas.edu/~bevans/courses/ee381k/lectures/09_DCT/lecture9/:
*/
template<typename T> static void
DCT( const T* src, int src_step, T* dft_src, T* dft_dst, T* dst, int dst_step,
     int n, int nf, int* factors, const int* itab, const Complex<T>* dft_wave,
     const Complex<T>* dct_wave, const void* spec, Complex<T>* buf )
{
    static const T sin_45 = (T)0.70710678118654752440084436210485;
    int j, n2 = n >> 1;

    src_step /= sizeof(src[0]);
    dst_step /= sizeof(dst[0]);
    T* dst1 = dst + (n-1)*dst_step;

    if( n == 1 )
    {
        dst[0] = src[0];
        return;
    }

    for( j = 0; j < n2; j++, src += src_step*2 )
    {
        dft_src[j] = src[0];
        dft_src[n-j-1] = src[src_step];
    }

    RealDFT( dft_src, dft_dst, n, nf, factors,
             itab, dft_wave, n, spec, buf, 0, 1.0 );
    src = dft_dst;

    dst[0] = (T)(src[0]*dct_wave->re*sin_45);
    dst += dst_step;
    for( j = 1, dct_wave++; j < n2; j++, dct_wave++,
                                    dst += dst_step, dst1 -= dst_step )
    {
        T t0 = dct_wave->re*src[j*2-1] - dct_wave->im*src[j*2];
        T t1 = -dct_wave->im*src[j*2-1] - dct_wave->re*src[j*2];
        dst[0] = t0;
        dst1[0] = t1;
    }

    dst[0] = src[n-1]*dct_wave->re;
}


template<typename T> static void
IDCT( const T* src, int src_step, T* dft_src, T* dft_dst, T* dst, int dst_step,
      int n, int nf, int* factors, const int* itab, const Complex<T>* dft_wave,
      const Complex<T>* dct_wave, const void* spec, Complex<T>* buf )
{
    static const T sin_45 = (T)0.70710678118654752440084436210485;
    int j, n2 = n >> 1;

    src_step /= sizeof(src[0]);
    dst_step /= sizeof(dst[0]);
    const T* src1 = src + (n-1)*src_step;

    if( n == 1 )
    {
        dst[0] = src[0];
        return;
    }

    dft_src[0] = (T)(src[0]*2*dct_wave->re*sin_45);
    src += src_step;
    for( j = 1, dct_wave++; j < n2; j++, dct_wave++,
                                    src += src_step, src1 -= src_step )
    {
        T t0 = dct_wave->re*src[0] - dct_wave->im*src1[0];
        T t1 = -dct_wave->im*src[0] - dct_wave->re*src1[0];
        dft_src[j*2-1] = t0;
        dft_src[j*2] = t1;
    }

    dft_src[n-1] = (T)(src[0]*2*dct_wave->re);
    CCSIDFT( dft_src, dft_dst, n, nf, factors, itab,
             dft_wave, n, spec, buf, 0, 1.0 );

    for( j = 0; j < n2; j++, dst += dst_step*2 )
    {
        dst[0] = dft_dst[j];
        dst[dst_step] = dft_dst[n-j-1];
    }
}


static void
DCTInit( int n, int elem_size, void* _wave, int inv )
{
    static const double DctScale[] =
    {
    0.707106781186547570, 0.500000000000000000, 0.353553390593273790,
    0.250000000000000000, 0.176776695296636890, 0.125000000000000000,
    0.088388347648318447, 0.062500000000000000, 0.044194173824159223,
    0.031250000000000000, 0.022097086912079612, 0.015625000000000000,
    0.011048543456039806, 0.007812500000000000, 0.005524271728019903,
    0.003906250000000000, 0.002762135864009952, 0.001953125000000000,
    0.001381067932004976, 0.000976562500000000, 0.000690533966002488,
    0.000488281250000000, 0.000345266983001244, 0.000244140625000000,
    0.000172633491500622, 0.000122070312500000, 0.000086316745750311,
    0.000061035156250000, 0.000043158372875155, 0.000030517578125000
    };

    int i;
    Complex<double> w, w1;
    double t, scale;
3223

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
    if( n == 1 )
        return;

    assert( (n&1) == 0 );

    if( (n & (n - 1)) == 0 )
    {
        int m;
        for( m = 0; (unsigned)(1 << m) < (unsigned)n; m++ )
            ;
        scale = (!inv ? 2 : 1)*DctScale[m];
        w1.re = DFTTab[m+2][0];
        w1.im = -DFTTab[m+2][1];
    }
    else
    {
        t = 1./(2*n);
        scale = (!inv ? 2 : 1)*std::sqrt(t);
        w1.im = sin(-CV_PI*t);
        w1.re = std::sqrt(1. - w1.im*w1.im);
    }
    n >>= 1;
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
    if( elem_size == sizeof(Complex<double>) )
    {
        Complex<double>* wave = (Complex<double>*)_wave;

        w.re = scale;
        w.im = 0.;

        for( i = 0; i <= n; i++ )
        {
            wave[i] = w;
            t = w.re*w1.re - w.im*w1.im;
            w.im = w.re*w1.im + w.im*w1.re;
            w.re = t;
        }
    }
    else
    {
        Complex<float>* wave = (Complex<float>*)_wave;
        assert( elem_size == sizeof(Complex<float>) );
3266

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
        w.re = (float)scale;
        w.im = 0.f;

        for( i = 0; i <= n; i++ )
        {
            wave[i].re = (float)w.re;
            wave[i].im = (float)w.im;
            t = w.re*w1.re - w.im*w1.im;
            w.im = w.re*w1.im + w.im*w1.re;
            w.re = t;
        }
    }
}


typedef void (*DCTFunc)(const void* src, int src_step, void* dft_src,
                        void* dft_dst, void* dst, int dst_step, int n,
                        int nf, int* factors, const int* itab, const void* dft_wave,
                        const void* dct_wave, const void* spec, void* buf );

static void DCT_32f(const float* src, int src_step, float* dft_src, float* dft_dst,
                    float* dst, int dst_step, int n, int nf, int* factors, const int* itab,
                    const Complexf* dft_wave, const Complexf* dct_wave, const void* spec, Complexf* buf )
{
    DCT(src, src_step, dft_src, dft_dst, dst, dst_step,
        n, nf, factors, itab, dft_wave, dct_wave, spec, buf);
}

static void IDCT_32f(const float* src, int src_step, float* dft_src, float* dft_dst,
                    float* dst, int dst_step, int n, int nf, int* factors, const int* itab,
                    const Complexf* dft_wave, const Complexf* dct_wave, const void* spec, Complexf* buf )
{
    IDCT(src, src_step, dft_src, dft_dst, dst, dst_step,
         n, nf, factors, itab, dft_wave, dct_wave, spec, buf);
}

static void DCT_64f(const double* src, int src_step, double* dft_src, double* dft_dst,
                    double* dst, int dst_step, int n, int nf, int* factors, const int* itab,
                    const Complexd* dft_wave, const Complexd* dct_wave, const void* spec, Complexd* buf )
{
    DCT(src, src_step, dft_src, dft_dst, dst, dst_step,
        n, nf, factors, itab, dft_wave, dct_wave, spec, buf);
}

static void IDCT_64f(const double* src, int src_step, double* dft_src, double* dft_dst,
                     double* dst, int dst_step, int n, int nf, int* factors, const int* itab,
                     const Complexd* dft_wave, const Complexd* dct_wave, const void* spec, Complexd* buf )
{
    IDCT(src, src_step, dft_src, dft_dst, dst, dst_step,
         n, nf, factors, itab, dft_wave, dct_wave, spec, buf);
3317
}
3318 3319

}
3320

E
Elena Gvozdeva 已提交
3321 3322
namespace cv
{
A
Alexander Alekhin 已提交
3323
#if defined HAVE_IPP && IPP_VERSION_MAJOR >= 7
E
Elena Gvozdeva 已提交
3324

3325 3326 3327 3328
typedef IppStatus (CV_STDCALL * ippiDCTFunc)(const Ipp32f*, int, Ipp32f*, int, const void*, Ipp8u*);
typedef IppStatus (CV_STDCALL * ippiDCTInitAlloc)(void**, IppiSize, IppHintAlgorithm);
typedef IppStatus (CV_STDCALL * ippiDCTFree)(void* pDCTSpec);
typedef IppStatus (CV_STDCALL * ippiDCTGetBufSize)(const void*, int*);
E
Elena Gvozdeva 已提交
3329

3330 3331
template <typename Dct>
class DctIPPLoop_Invoker : public ParallelLoopBody
E
Elena Gvozdeva 已提交
3332
{
3333
public:
E
Elena Gvozdeva 已提交
3334

E
fixed  
Elena Gvozdeva 已提交
3335 3336
    DctIPPLoop_Invoker(const Mat& _src, Mat& _dst, const Dct* _ippidct, bool _inv, bool *_ok) :
        ParallelLoopBody(), src(&_src), dst(&_dst), ippidct(_ippidct), inv(_inv), ok(_ok)
3337 3338 3339
    {
        *ok = true;
    }
E
Elena Gvozdeva 已提交
3340

3341 3342 3343 3344 3345 3346
    virtual void operator()(const Range& range) const
    {
        void* pDCTSpec;
        AutoBuffer<uchar> buf;
        uchar* pBuffer = 0;
        int bufSize=0;
E
Elena Gvozdeva 已提交
3347

E
fixed  
Elena Gvozdeva 已提交
3348
        IppiSize srcRoiSize = {src->cols, 1};
E
Elena Gvozdeva 已提交
3349

3350
        CV_SUPPRESS_DEPRECATED_START
E
Elena Gvozdeva 已提交
3351

3352 3353 3354
        ippiDCTInitAlloc ippInitAlloc   = inv ? (ippiDCTInitAlloc)ippiDCTInvInitAlloc_32f   : (ippiDCTInitAlloc)ippiDCTFwdInitAlloc_32f;
        ippiDCTFree ippFree             = inv ? (ippiDCTFree)ippiDCTInvFree_32f             : (ippiDCTFree)ippiDCTFwdFree_32f;
        ippiDCTGetBufSize ippGetBufSize = inv ? (ippiDCTGetBufSize)ippiDCTInvGetBufSize_32f : (ippiDCTGetBufSize)ippiDCTFwdGetBufSize_32f;
E
Elena Gvozdeva 已提交
3355

E
fixed  
Elena Gvozdeva 已提交
3356
        if (ippInitAlloc(&pDCTSpec, srcRoiSize, ippAlgHintNone)>=0 && ippGetBufSize(pDCTSpec, &bufSize)>=0)
3357
        {
E
fixed  
Elena Gvozdeva 已提交
3358 3359
            buf.allocate( bufSize );
            pBuffer = (uchar*)buf;
E
Elena Gvozdeva 已提交
3360

E
fixed  
Elena Gvozdeva 已提交
3361
            for( int i = range.start; i < range.end; ++i)
3362
                if(!(*ippidct)(src->ptr<float>(i), (int)src->step,dst->ptr<float>(i), (int)dst->step, pDCTSpec, (Ipp8u*)pBuffer))
E
fixed  
Elena Gvozdeva 已提交
3363
                    *ok = false;
3364
        }
E
fixed  
Elena Gvozdeva 已提交
3365 3366
        else
            *ok = false;
3367

E
fixed  
Elena Gvozdeva 已提交
3368 3369
        if (pDCTSpec)
            ippFree(pDCTSpec);
3370 3371

        CV_SUPPRESS_DEPRECATED_END
E
Elena Gvozdeva 已提交
3372 3373
    }

3374
private:
E
fixed  
Elena Gvozdeva 已提交
3375 3376 3377
    const Mat* src;
    Mat* dst;
    const Dct* ippidct;
3378 3379 3380 3381 3382 3383 3384 3385
    bool inv;
    bool *ok;
};

template <typename Dct>
bool DctIPPLoop(const Mat& src, Mat& dst, const Dct& ippidct, bool inv)
{
    bool ok;
E
fixed  
Elena Gvozdeva 已提交
3386
    parallel_for_(Range(0, src.rows), DctIPPLoop_Invoker<Dct>(src, dst, &ippidct, inv, &ok), src.rows/(double)(1<<4) );
3387
    return ok;
E
Elena Gvozdeva 已提交
3388 3389
}

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
struct IPPDCTFunctor
{
    IPPDCTFunctor(ippiDCTFunc _func) : func(_func){}

    bool operator()(const Ipp32f* src, int srcStep, Ipp32f* dst, int dstStep, const void* pDCTSpec, Ipp8u* pBuffer) const
    {
        return func ? func(src, srcStep, dst, dstStep, pDCTSpec, pBuffer) >= 0 : false;
    }
private:
    ippiDCTFunc func;
};

E
fixed  
Elena Gvozdeva 已提交
3402
static bool ippi_DCT_32f(const Mat& src, Mat& dst, bool inv, bool row)
E
Elena Gvozdeva 已提交
3403
{
3404
    ippiDCTFunc ippFunc = inv ? (ippiDCTFunc)ippiDCTInv_32f_C1R : (ippiDCTFunc)ippiDCTFwd_32f_C1R ;
E
Elena Gvozdeva 已提交
3405

3406
    if (row)
E
fixed  
Elena Gvozdeva 已提交
3407
        return(DctIPPLoop(src,dst,IPPDCTFunctor(ippFunc),inv));
3408 3409 3410 3411 3412 3413 3414
    else
    {
        IppStatus status;
        void* pDCTSpec;
        AutoBuffer<uchar> buf;
        uchar* pBuffer = 0;
        int bufSize=0;
E
Elena Gvozdeva 已提交
3415

3416
        IppiSize srcRoiSize = {src.cols, src.rows};
E
Elena Gvozdeva 已提交
3417

3418
        CV_SUPPRESS_DEPRECATED_START
E
Elena Gvozdeva 已提交
3419

3420 3421 3422
        ippiDCTInitAlloc ippInitAlloc   = inv ? (ippiDCTInitAlloc)ippiDCTInvInitAlloc_32f   : (ippiDCTInitAlloc)ippiDCTFwdInitAlloc_32f;
        ippiDCTFree ippFree             = inv ? (ippiDCTFree)ippiDCTInvFree_32f             : (ippiDCTFree)ippiDCTFwdFree_32f;
        ippiDCTGetBufSize ippGetBufSize = inv ? (ippiDCTGetBufSize)ippiDCTInvGetBufSize_32f : (ippiDCTGetBufSize)ippiDCTFwdGetBufSize_32f;
E
Elena Gvozdeva 已提交
3423

E
fixed  
Elena Gvozdeva 已提交
3424
        status = ippStsErr;
E
Elena Gvozdeva 已提交
3425

E
fixed  
Elena Gvozdeva 已提交
3426
        if (ippInitAlloc(&pDCTSpec, srcRoiSize, ippAlgHintNone)>=0 && ippGetBufSize(pDCTSpec, &bufSize)>=0)
3427
        {
E
fixed  
Elena Gvozdeva 已提交
3428 3429
            buf.allocate( bufSize );
            pBuffer = (uchar*)buf;
E
Elena Gvozdeva 已提交
3430

3431
            status = ippFunc(src.ptr<float>(), (int)src.step, dst.ptr<float>(), (int)dst.step, pDCTSpec, (Ipp8u*)pBuffer);
E
Elena Gvozdeva 已提交
3432 3433
        }

E
fixed  
Elena Gvozdeva 已提交
3434 3435
        if (pDCTSpec)
            ippFree(pDCTSpec);
3436 3437 3438 3439 3440

        CV_SUPPRESS_DEPRECATED_END

        return status >= 0;
    }
E
Elena Gvozdeva 已提交
3441 3442 3443 3444 3445
}

#endif
}

3446
void cv::dct( InputArray _src0, OutputArray _dst, int flags )
3447
{
3448
    static DCTFunc dct_tbl[4] =
3449
    {
3450 3451 3452 3453 3454
        (DCTFunc)DCT_32f,
        (DCTFunc)IDCT_32f,
        (DCTFunc)DCT_64f,
        (DCTFunc)IDCT_64f
    };
3455 3456

    bool inv = (flags & DCT_INVERSE) != 0;
3457
    Mat src0 = _src0.getMat(), src = src0;
3458
    int type = src.type(), depth = src.depth();
3459
    void *spec = 0;
3460

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
    double scale = 1.;
    int prev_len = 0, nf = 0, stage, end_stage;
    uchar *src_dft_buf = 0, *dst_dft_buf = 0;
    uchar *dft_wave = 0, *dct_wave = 0;
    int* itab = 0;
    uchar* ptr = 0;
    int elem_size = (int)src.elemSize(), complex_elem_size = elem_size*2;
    int factors[34], inplace_transform;
    int i, len, count;
    AutoBuffer<uchar> buf;

    CV_Assert( type == CV_32FC1 || type == CV_64FC1 );
3473 3474
    _dst.create( src.rows, src.cols, type );
    Mat dst = _dst.getMat();
3475

3476
    CV_IPP_RUN(IPP_VERSION_X100 >= 700 && src.type() == CV_32F, ippi_DCT_32f(src, dst, inv, ((flags & DCT_ROWS) != 0)))
E
Elena Gvozdeva 已提交
3477

3478
    DCTFunc dct_func = dct_tbl[(int)inv + (depth == CV_64F)*2];
3479

I
typo  
Ilya Lavrenov 已提交
3480
    if( (flags & DCT_ROWS) || src.rows == 1 ||
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
        (src.cols == 1 && (src.isContinuous() && dst.isContinuous())))
    {
        stage = end_stage = 0;
    }
    else
    {
        stage = src.cols == 1;
        end_stage = 1;
    }

    for( ; stage <= end_stage; stage++ )
    {
3493 3494
        const uchar* sptr = src.ptr();
        uchar* dptr = dst.ptr();
3495
        size_t sstep0, sstep1, dstep0, dstep1;
3496

3497 3498 3499 3500
        if( stage == 0 )
        {
            len = src.cols;
            count = src.rows;
I
typo  
Ilya Lavrenov 已提交
3501
            if( len == 1 && !(flags & DCT_ROWS) )
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
            {
                len = src.rows;
                count = 1;
            }
            sstep0 = src.step;
            dstep0 = dst.step;
            sstep1 = dstep1 = elem_size;
        }
        else
        {
            len = dst.rows;
            count = dst.cols;
            sstep1 = src.step;
            dstep1 = dst.step;
            sstep0 = dstep0 = elem_size;
        }

        if( len != prev_len )
        {
            int sz;

            if( len > 1 && (len & 1) )
                CV_Error( CV_StsNotImplemented, "Odd-size DCT\'s are not implemented" );

            sz = len*elem_size;
            sz += (len/2 + 1)*complex_elem_size;

            spec = 0;
            inplace_transform = 1;
            {
                sz += len*(complex_elem_size + sizeof(int)) + complex_elem_size;

                nf = DFTFactorize( len, factors );
                inplace_transform = factors[0] == factors[nf-1];

                i = nf > 1 && (factors[0] & 1) == 0;
                if( (factors[i] & 1) != 0 && factors[i] > 5 )
                    sz += (factors[i]+1)*complex_elem_size;

                if( !inplace_transform )
                    sz += len*elem_size;
            }

            buf.allocate( sz + 32 );
            ptr = (uchar*)buf;

            if( !spec )
            {
                dft_wave = ptr;
                ptr += len*complex_elem_size;
                itab = (int*)ptr;
                ptr = (uchar*)cvAlignPtr( ptr + len*sizeof(int), 16 );
                DFTInit( len, nf, factors, itab, complex_elem_size, dft_wave, inv );
            }
3556

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
            dct_wave = ptr;
            ptr += (len/2 + 1)*complex_elem_size;
            src_dft_buf = dst_dft_buf = ptr;
            ptr += len*elem_size;
            if( !inplace_transform )
            {
                dst_dft_buf = ptr;
                ptr += len*elem_size;
            }
            DCTInit( len, complex_elem_size, dct_wave, inv );
            if( !inv )
                scale += scale;
            prev_len = len;
        }
        // otherwise reuse the tables calculated on the previous stage
        for( i = 0; i < count; i++ )
        {
            dct_func( sptr + i*sstep0, (int)sstep1, src_dft_buf, dst_dft_buf,
                      dptr + i*dstep0, (int)dstep1, len, nf, factors,
                      itab, dft_wave, dct_wave, spec, ptr );
        }
        src = dst;
    }
}


3583
void cv::idct( InputArray src, OutputArray dst, int flags )
3584 3585 3586 3587
{
    dct( src, dst, flags | DCT_INVERSE );
}

3588 3589 3590
namespace cv
{

3591
static const int optimalDFTSizeTab[] = {
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48,
50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160,
162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375,
384, 400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675, 720,
729, 750, 768, 800, 810, 864, 900, 960, 972, 1000, 1024, 1080, 1125, 1152, 1200,
1215, 1250, 1280, 1296, 1350, 1440, 1458, 1500, 1536, 1600, 1620, 1728, 1800, 1875,
1920, 1944, 2000, 2025, 2048, 2160, 2187, 2250, 2304, 2400, 2430, 2500, 2560, 2592,
2700, 2880, 2916, 3000, 3072, 3125, 3200, 3240, 3375, 3456, 3600, 3645, 3750, 3840,
3888, 4000, 4050, 4096, 4320, 4374, 4500, 4608, 4800, 4860, 5000, 5120, 5184, 5400,
5625, 5760, 5832, 6000, 6075, 6144, 6250, 6400, 6480, 6561, 6750, 6912, 7200, 7290,
7500, 7680, 7776, 8000, 8100, 8192, 8640, 8748, 9000, 9216, 9375, 9600, 9720, 10000,
10125, 10240, 10368, 10800, 10935, 11250, 11520, 11664, 12000, 12150, 12288, 12500,
12800, 12960, 13122, 13500, 13824, 14400, 14580, 15000, 15360, 15552, 15625, 16000,
16200, 16384, 16875, 17280, 17496, 18000, 18225, 18432, 18750, 19200, 19440, 19683,
20000, 20250, 20480, 20736, 21600, 21870, 22500, 23040, 23328, 24000, 24300, 24576,
25000, 25600, 25920, 26244, 27000, 27648, 28125, 28800, 29160, 30000, 30375, 30720,
31104, 31250, 32000, 32400, 32768, 32805, 33750, 34560, 34992, 36000, 36450, 36864,
37500, 38400, 38880, 39366, 40000, 40500, 40960, 41472, 43200, 43740, 45000, 46080,
46656, 46875, 48000, 48600, 49152, 50000, 50625, 51200, 51840, 52488, 54000, 54675,
55296, 56250, 57600, 58320, 59049, 60000, 60750, 61440, 62208, 62500, 64000, 64800,
65536, 65610, 67500, 69120, 69984, 72000, 72900, 73728, 75000, 76800, 77760, 78125,
78732, 80000, 81000, 81920, 82944, 84375, 86400, 87480, 90000, 91125, 92160, 93312,
93750, 96000, 97200, 98304, 98415, 100000, 101250, 102400, 103680, 104976, 108000,
109350, 110592, 112500, 115200, 116640, 118098, 120000, 121500, 122880, 124416, 125000,
128000, 129600, 131072, 131220, 135000, 138240, 139968, 140625, 144000, 145800, 147456,
150000, 151875, 153600, 155520, 156250, 157464, 160000, 162000, 163840, 164025, 165888,
168750, 172800, 174960, 177147, 180000, 182250, 184320, 186624, 187500, 192000, 194400,
196608, 196830, 200000, 202500, 204800, 207360, 209952, 216000, 218700, 221184, 225000,
230400, 233280, 234375, 236196, 240000, 243000, 245760, 248832, 250000, 253125, 256000,
259200, 262144, 262440, 270000, 273375, 276480, 279936, 281250, 288000, 291600, 294912,
295245, 300000, 303750, 307200, 311040, 312500, 314928, 320000, 324000, 327680, 328050,
331776, 337500, 345600, 349920, 354294, 360000, 364500, 368640, 373248, 375000, 384000,
388800, 390625, 393216, 393660, 400000, 405000, 409600, 414720, 419904, 421875, 432000,
437400, 442368, 450000, 455625, 460800, 466560, 468750, 472392, 480000, 486000, 491520,
492075, 497664, 500000, 506250, 512000, 518400, 524288, 524880, 531441, 540000, 546750,
552960, 559872, 562500, 576000, 583200, 589824, 590490, 600000, 607500, 614400, 622080,
625000, 629856, 640000, 648000, 655360, 656100, 663552, 675000, 691200, 699840, 703125,
708588, 720000, 729000, 737280, 746496, 750000, 759375, 768000, 777600, 781250, 786432,
787320, 800000, 810000, 819200, 820125, 829440, 839808, 843750, 864000, 874800, 884736,
885735, 900000, 911250, 921600, 933120, 937500, 944784, 960000, 972000, 983040, 984150,
995328, 1000000, 1012500, 1024000, 1036800, 1048576, 1049760, 1062882, 1080000, 1093500,
1105920, 1119744, 1125000, 1152000, 1166400, 1171875, 1179648, 1180980, 1200000,
1215000, 1228800, 1244160, 1250000, 1259712, 1265625, 1280000, 1296000, 1310720,
1312200, 1327104, 1350000, 1366875, 1382400, 1399680, 1406250, 1417176, 1440000,
1458000, 1474560, 1476225, 1492992, 1500000, 1518750, 1536000, 1555200, 1562500,
1572864, 1574640, 1594323, 1600000, 1620000, 1638400, 1640250, 1658880, 1679616,
1687500, 1728000, 1749600, 1769472, 1771470, 1800000, 1822500, 1843200, 1866240,
1875000, 1889568, 1920000, 1944000, 1953125, 1966080, 1968300, 1990656, 2000000,
2025000, 2048000, 2073600, 2097152, 2099520, 2109375, 2125764, 2160000, 2187000,
2211840, 2239488, 2250000, 2278125, 2304000, 2332800, 2343750, 2359296, 2361960,
2400000, 2430000, 2457600, 2460375, 2488320, 2500000, 2519424, 2531250, 2560000,
2592000, 2621440, 2624400, 2654208, 2657205, 2700000, 2733750, 2764800, 2799360,
2812500, 2834352, 2880000, 2916000, 2949120, 2952450, 2985984, 3000000, 3037500,
3072000, 3110400, 3125000, 3145728, 3149280, 3188646, 3200000, 3240000, 3276800,
3280500, 3317760, 3359232, 3375000, 3456000, 3499200, 3515625, 3538944, 3542940,
3600000, 3645000, 3686400, 3732480, 3750000, 3779136, 3796875, 3840000, 3888000,
3906250, 3932160, 3936600, 3981312, 4000000, 4050000, 4096000, 4100625, 4147200,
4194304, 4199040, 4218750, 4251528, 4320000, 4374000, 4423680, 4428675, 4478976,
4500000, 4556250, 4608000, 4665600, 4687500, 4718592, 4723920, 4782969, 4800000,
4860000, 4915200, 4920750, 4976640, 5000000, 5038848, 5062500, 5120000, 5184000,
5242880, 5248800, 5308416, 5314410, 5400000, 5467500, 5529600, 5598720, 5625000,
5668704, 5760000, 5832000, 5859375, 5898240, 5904900, 5971968, 6000000, 6075000,
6144000, 6220800, 6250000, 6291456, 6298560, 6328125, 6377292, 6400000, 6480000,
6553600, 6561000, 6635520, 6718464, 6750000, 6834375, 6912000, 6998400, 7031250,
7077888, 7085880, 7200000, 7290000, 7372800, 7381125, 7464960, 7500000, 7558272,
7593750, 7680000, 7776000, 7812500, 7864320, 7873200, 7962624, 7971615, 8000000,
8100000, 8192000, 8201250, 8294400, 8388608, 8398080, 8437500, 8503056, 8640000,
8748000, 8847360, 8857350, 8957952, 9000000, 9112500, 9216000, 9331200, 9375000,
9437184, 9447840, 9565938, 9600000, 9720000, 9765625, 9830400, 9841500, 9953280,
10000000, 10077696, 10125000, 10240000, 10368000, 10485760, 10497600, 10546875, 10616832,
10628820, 10800000, 10935000, 11059200, 11197440, 11250000, 11337408, 11390625, 11520000,
11664000, 11718750, 11796480, 11809800, 11943936, 12000000, 12150000, 12288000, 12301875,
12441600, 12500000, 12582912, 12597120, 12656250, 12754584, 12800000, 12960000, 13107200,
13122000, 13271040, 13286025, 13436928, 13500000, 13668750, 13824000, 13996800, 14062500,
14155776, 14171760, 14400000, 14580000, 14745600, 14762250, 14929920, 15000000, 15116544,
15187500, 15360000, 15552000, 15625000, 15728640, 15746400, 15925248, 15943230, 16000000,
16200000, 16384000, 16402500, 16588800, 16777216, 16796160, 16875000, 17006112, 17280000,
17496000, 17578125, 17694720, 17714700, 17915904, 18000000, 18225000, 18432000, 18662400,
18750000, 18874368, 18895680, 18984375, 19131876, 19200000, 19440000, 19531250, 19660800,
19683000, 19906560, 20000000, 20155392, 20250000, 20480000, 20503125, 20736000, 20971520,
20995200, 21093750, 21233664, 21257640, 21600000, 21870000, 22118400, 22143375, 22394880,
22500000, 22674816, 22781250, 23040000, 23328000, 23437500, 23592960, 23619600, 23887872,
23914845, 24000000, 24300000, 24576000, 24603750, 24883200, 25000000, 25165824, 25194240,
25312500, 25509168, 25600000, 25920000, 26214400, 26244000, 26542080, 26572050, 26873856,
27000000, 27337500, 27648000, 27993600, 28125000, 28311552, 28343520, 28800000, 29160000,
29296875, 29491200, 29524500, 29859840, 30000000, 30233088, 30375000, 30720000, 31104000,
31250000, 31457280, 31492800, 31640625, 31850496, 31886460, 32000000, 32400000, 32768000,
32805000, 33177600, 33554432, 33592320, 33750000, 34012224, 34171875, 34560000, 34992000,
35156250, 35389440, 35429400, 35831808, 36000000, 36450000, 36864000, 36905625, 37324800,
37500000, 37748736, 37791360, 37968750, 38263752, 38400000, 38880000, 39062500, 39321600,
39366000, 39813120, 39858075, 40000000, 40310784, 40500000, 40960000, 41006250, 41472000,
41943040, 41990400, 42187500, 42467328, 42515280, 43200000, 43740000, 44236800, 44286750,
44789760, 45000000, 45349632, 45562500, 46080000, 46656000, 46875000, 47185920, 47239200,
47775744, 47829690, 48000000, 48600000, 48828125, 49152000, 49207500, 49766400, 50000000,
50331648, 50388480, 50625000, 51018336, 51200000, 51840000, 52428800, 52488000, 52734375,
53084160, 53144100, 53747712, 54000000, 54675000, 55296000, 55987200, 56250000, 56623104,
56687040, 56953125, 57600000, 58320000, 58593750, 58982400, 59049000, 59719680, 60000000,
60466176, 60750000, 61440000, 61509375, 62208000, 62500000, 62914560, 62985600, 63281250,
63700992, 63772920, 64000000, 64800000, 65536000, 65610000, 66355200, 66430125, 67108864,
67184640, 67500000, 68024448, 68343750, 69120000, 69984000, 70312500, 70778880, 70858800,
71663616, 72000000, 72900000, 73728000, 73811250, 74649600, 75000000, 75497472, 75582720,
75937500, 76527504, 76800000, 77760000, 78125000, 78643200, 78732000, 79626240, 79716150,
80000000, 80621568, 81000000, 81920000, 82012500, 82944000, 83886080, 83980800, 84375000,
84934656, 85030560, 86400000, 87480000, 87890625, 88473600, 88573500, 89579520, 90000000,
90699264, 91125000, 92160000, 93312000, 93750000, 94371840, 94478400, 94921875, 95551488,
95659380, 96000000, 97200000, 97656250, 98304000, 98415000, 99532800, 100000000,
100663296, 100776960, 101250000, 102036672, 102400000, 102515625, 103680000, 104857600,
104976000, 105468750, 106168320, 106288200, 107495424, 108000000, 109350000, 110592000,
110716875, 111974400, 112500000, 113246208, 113374080, 113906250, 115200000, 116640000,
117187500, 117964800, 118098000, 119439360, 119574225, 120000000, 120932352, 121500000,
122880000, 123018750, 124416000, 125000000, 125829120, 125971200, 126562500, 127401984,
127545840, 128000000, 129600000, 131072000, 131220000, 132710400, 132860250, 134217728,
134369280, 135000000, 136048896, 136687500, 138240000, 139968000, 140625000, 141557760,
141717600, 143327232, 144000000, 145800000, 146484375, 147456000, 147622500, 149299200,
150000000, 150994944, 151165440, 151875000, 153055008, 153600000, 155520000, 156250000,
157286400, 157464000, 158203125, 159252480, 159432300, 160000000, 161243136, 162000000,
163840000, 164025000, 165888000, 167772160, 167961600, 168750000, 169869312, 170061120,
170859375, 172800000, 174960000, 175781250, 176947200, 177147000, 179159040, 180000000,
181398528, 182250000, 184320000, 184528125, 186624000, 187500000, 188743680, 188956800,
189843750, 191102976, 191318760, 192000000, 194400000, 195312500, 196608000, 196830000,
199065600, 199290375, 200000000, 201326592, 201553920, 202500000, 204073344, 204800000,
205031250, 207360000, 209715200, 209952000, 210937500, 212336640, 212576400, 214990848,
216000000, 218700000, 221184000, 221433750, 223948800, 225000000, 226492416, 226748160,
227812500, 230400000, 233280000, 234375000, 235929600, 236196000, 238878720, 239148450,
240000000, 241864704, 243000000, 244140625, 245760000, 246037500, 248832000, 250000000,
251658240, 251942400, 253125000, 254803968, 255091680, 256000000, 259200000, 262144000,
262440000, 263671875, 265420800, 265720500, 268435456, 268738560, 270000000, 272097792,
273375000, 276480000, 279936000, 281250000, 283115520, 283435200, 284765625, 286654464,
288000000, 291600000, 292968750, 294912000, 295245000, 298598400, 300000000, 301989888,
302330880, 303750000, 306110016, 307200000, 307546875, 311040000, 312500000, 314572800,
314928000, 316406250, 318504960, 318864600, 320000000, 322486272, 324000000, 327680000,
328050000, 331776000, 332150625, 335544320, 335923200, 337500000, 339738624, 340122240,
341718750, 345600000, 349920000, 351562500, 353894400, 354294000, 358318080, 360000000,
362797056, 364500000, 368640000, 369056250, 373248000, 375000000, 377487360, 377913600,
379687500, 382205952, 382637520, 384000000, 388800000, 390625000, 393216000, 393660000,
398131200, 398580750, 400000000, 402653184, 403107840, 405000000, 408146688, 409600000,
410062500, 414720000, 419430400, 419904000, 421875000, 424673280, 425152800, 429981696,
432000000, 437400000, 439453125, 442368000, 442867500, 447897600, 450000000, 452984832,
453496320, 455625000, 460800000, 466560000, 468750000, 471859200, 472392000, 474609375,
477757440, 478296900, 480000000, 483729408, 486000000, 488281250, 491520000, 492075000,
497664000, 500000000, 503316480, 503884800, 506250000, 509607936, 510183360, 512000000,
512578125, 518400000, 524288000, 524880000, 527343750, 530841600, 531441000, 536870912,
537477120, 540000000, 544195584, 546750000, 552960000, 553584375, 559872000, 562500000,
566231040, 566870400, 569531250, 573308928, 576000000, 583200000, 585937500, 589824000,
590490000, 597196800, 597871125, 600000000, 603979776, 604661760, 607500000, 612220032,
614400000, 615093750, 622080000, 625000000, 629145600, 629856000, 632812500, 637009920,
637729200, 640000000, 644972544, 648000000, 655360000, 656100000, 663552000, 664301250,
671088640, 671846400, 675000000, 679477248, 680244480, 683437500, 691200000, 699840000,
703125000, 707788800, 708588000, 716636160, 720000000, 725594112, 729000000, 732421875,
737280000, 738112500, 746496000, 750000000, 754974720, 755827200, 759375000, 764411904,
765275040, 768000000, 777600000, 781250000, 786432000, 787320000, 791015625, 796262400,
797161500, 800000000, 805306368, 806215680, 810000000, 816293376, 819200000, 820125000,
829440000, 838860800, 839808000, 843750000, 849346560, 850305600, 854296875, 859963392,
864000000, 874800000, 878906250, 884736000, 885735000, 895795200, 900000000, 905969664,
906992640, 911250000, 921600000, 922640625, 933120000, 937500000, 943718400, 944784000,
949218750, 955514880, 956593800, 960000000, 967458816, 972000000, 976562500, 983040000,
984150000, 995328000, 996451875, 1000000000, 1006632960, 1007769600, 1012500000,
1019215872, 1020366720, 1024000000, 1025156250, 1036800000, 1048576000, 1049760000,
1054687500, 1061683200, 1062882000, 1073741824, 1074954240, 1080000000, 1088391168,
1093500000, 1105920000, 1107168750, 1119744000, 1125000000, 1132462080, 1133740800,
1139062500, 1146617856, 1152000000, 1166400000, 1171875000, 1179648000, 1180980000,
1194393600, 1195742250, 1200000000, 1207959552, 1209323520, 1215000000, 1220703125,
1224440064, 1228800000, 1230187500, 1244160000, 1250000000, 1258291200, 1259712000,
1265625000, 1274019840, 1275458400, 1280000000, 1289945088, 1296000000, 1310720000,
1312200000, 1318359375, 1327104000, 1328602500, 1342177280, 1343692800, 1350000000,
1358954496, 1360488960, 1366875000, 1382400000, 1399680000, 1406250000, 1415577600,
1417176000, 1423828125, 1433272320, 1440000000, 1451188224, 1458000000, 1464843750,
1474560000, 1476225000, 1492992000, 1500000000, 1509949440, 1511654400, 1518750000,
1528823808, 1530550080, 1536000000, 1537734375, 1555200000, 1562500000, 1572864000,
1574640000, 1582031250, 1592524800, 1594323000, 1600000000, 1610612736, 1612431360,
1620000000, 1632586752, 1638400000, 1640250000, 1658880000, 1660753125, 1677721600,
1679616000, 1687500000, 1698693120, 1700611200, 1708593750, 1719926784, 1728000000,
1749600000, 1757812500, 1769472000, 1771470000, 1791590400, 1800000000, 1811939328,
1813985280, 1822500000, 1843200000, 1845281250, 1866240000, 1875000000, 1887436800,
1889568000, 1898437500, 1911029760, 1913187600, 1920000000, 1934917632, 1944000000,
1953125000, 1966080000, 1968300000, 1990656000, 1992903750, 2000000000, 2013265920,
2015539200, 2025000000, 2038431744, 2040733440, 2048000000, 2050312500, 2073600000,
3769 3770 3771
2097152000, 2099520000, 2109375000, 2123366400, 2125764000
};

3772
}
3773

3774
int cv::getOptimalDFTSize( int size0 )
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
{
    int a = 0, b = sizeof(optimalDFTSizeTab)/sizeof(optimalDFTSizeTab[0]) - 1;
    if( (unsigned)size0 >= (unsigned)optimalDFTSizeTab[b] )
        return -1;

    while( a < b )
    {
        int c = (a + b) >> 1;
        if( size0 <= optimalDFTSizeTab[c] )
            b = c;
        else
            a = c+1;
    }

    return optimalDFTSizeTab[b];
}

CV_IMPL void
cvDFT( const CvArr* srcarr, CvArr* dstarr, int flags, int nonzero_rows )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0;
    int _flags = ((flags & CV_DXT_INVERSE) ? cv::DFT_INVERSE : 0) |
        ((flags & CV_DXT_SCALE) ? cv::DFT_SCALE : 0) |
        ((flags & CV_DXT_ROWS) ? cv::DFT_ROWS : 0);

3800
    CV_Assert( src.size == dst.size );
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821

    if( src.type() != dst.type() )
    {
        if( dst.channels() == 2 )
            _flags |= cv::DFT_COMPLEX_OUTPUT;
        else
            _flags |= cv::DFT_REAL_OUTPUT;
    }

    cv::dft( src, dst, _flags, nonzero_rows );
    CV_Assert( dst.data == dst0.data ); // otherwise it means that the destination size or type was incorrect
}


CV_IMPL void
cvMulSpectrums( const CvArr* srcAarr, const CvArr* srcBarr,
                CvArr* dstarr, int flags )
{
    cv::Mat srcA = cv::cvarrToMat(srcAarr),
        srcB = cv::cvarrToMat(srcBarr),
        dst = cv::cvarrToMat(dstarr);
3822
    CV_Assert( srcA.size == dst.size && srcA.type() == dst.type() );
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833

    cv::mulSpectrums(srcA, srcB, dst,
        (flags & CV_DXT_ROWS) ? cv::DFT_ROWS : 0,
        (flags & CV_DXT_MUL_CONJ) != 0 );
}


CV_IMPL void
cvDCT( const CvArr* srcarr, CvArr* dstarr, int flags )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
3834
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
    int _flags = ((flags & CV_DXT_INVERSE) ? cv::DCT_INVERSE : 0) |
            ((flags & CV_DXT_ROWS) ? cv::DCT_ROWS : 0);
    cv::dct( src, dst, _flags );
}


CV_IMPL int
cvGetOptimalDFTSize( int size0 )
{
    return cv::getOptimalDFTSize(size0);
}

/* End of file. */