proc.c 55.0 KB
Newer Older
1 2
/*-------------------------------------------------------------------------
 *
3
 * proc.c
4
 *	  routines to manage per-process shared memory data structure
5
 *
6
 * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
B
Add:  
Bruce Momjian 已提交
7
 * Portions Copyright (c) 1994, Regents of the University of California
8 9 10
 *
 *
 * IDENTIFICATION
11
 *	  src/backend/storage/lmgr/proc.c
12 13 14 15 16
 *
 *-------------------------------------------------------------------------
 */
/*
 * Interface (a):
17
 *		ProcSleep(), ProcWakeup(),
18 19
 *		ProcQueueAlloc() -- create a shm queue for sleeping processes
 *		ProcQueueInit() -- create a queue without allocing memory
20
 *
21 22
 * Waiting for a lock causes the backend to be put to sleep.  Whoever releases
 * the lock wakes the process up again (and gives it an error code so it knows
23 24 25 26
 * whether it was awoken on an error condition).
 *
 * Interface (b):
 *
27 28
 * ProcReleaseLocks -- frees the locks associated with current transaction
 *
29
 * ProcKill -- destroys the shared memory state (and locks)
30
 * associated with the process.
31
 */
32 33
#include "postgres.h"

34
#include <signal.h>
35 36
#include <unistd.h>
#include <sys/time.h>
M
Marc G. Fournier 已提交
37

38
#include "access/transam.h"
39
#include "access/twophase.h"
40
#include "access/xact.h"
41
#include "miscadmin.h"
42
#include "postmaster/autovacuum.h"
43
#include "replication/syncrep.h"
44
#include "storage/ipc.h"
45
#include "storage/lmgr.h"
46
#include "storage/pmsignal.h"
47
#include "storage/proc.h"
48
#include "storage/procarray.h"
49
#include "storage/procsignal.h"
50
#include "storage/spin.h"
51
#include "utils/timestamp.h"
52

53

54
/* GUC variables */
B
Bruce Momjian 已提交
55
int			DeadlockTimeout = 1000;
56
int			StatementTimeout = 0;
57
bool		log_lock_waits = false;
M
 
Marc G. Fournier 已提交
58

59
/* Pointer to this process's PGPROC and PGXACT structs, if any */
J
Jan Wieck 已提交
60
PGPROC	   *MyProc = NULL;
61
PGXACT	   *MyPgXact = NULL;
62 63

/*
J
Jan Wieck 已提交
64
 * This spinlock protects the freelist of recycled PGPROC structures.
65
 * We cannot use an LWLock because the LWLock manager depends on already
J
Jan Wieck 已提交
66
 * having a PGPROC and a wait semaphore!  But these structures are touched
67 68
 * relatively infrequently (only at backend startup or shutdown) and not for
 * very long, so a spinlock is okay.
69
 */
70
NON_EXEC_STATIC slock_t *ProcStructLock = NULL;
71

72
/* Pointers to shared-memory structures */
73
PROC_HDR   *ProcGlobal = NULL;
74
NON_EXEC_STATIC PGPROC *AuxiliaryProcs = NULL;
75
PGPROC	   *PreparedXactProcs = NULL;
76

77 78
/* If we are waiting for a lock, this points to the associated LOCALLOCK */
static LOCALLOCK *lockAwaited = NULL;
79

80
/* Mark these volatile because they can be changed by signal handler */
81
static volatile bool standby_timeout_active = false;
82 83
static volatile bool statement_timeout_active = false;
static volatile bool deadlock_timeout_active = false;
84
static volatile DeadLockState deadlock_state = DS_NOT_YET_CHECKED;
85
volatile bool cancel_from_timeout = false;
B
Bruce Momjian 已提交
86

87 88 89
/* timeout_start_time is set when log_lock_waits is true */
static TimestampTz timeout_start_time;

90
/* statement_fin_time is valid only if statement_timeout_active is true */
91
static TimestampTz statement_fin_time;
92
static TimestampTz statement_fin_time2; /* valid only in recovery */
93 94


95
static void RemoveProcFromArray(int code, Datum arg);
96
static void ProcKill(int code, Datum arg);
97
static void AuxiliaryProcKill(int code, Datum arg);
98
static bool CheckStatementTimeout(void);
99
static bool CheckStandbyTimeout(void);
100

V
Vadim B. Mikheev 已提交
101

102 103 104
/*
 * Report shared-memory space needed by InitProcGlobal.
 */
105
Size
106
ProcGlobalShmemSize(void)
107
{
108 109 110 111
	Size		size = 0;

	/* ProcGlobal */
	size = add_size(size, sizeof(PROC_HDR));
112
	/* MyProcs, including autovacuum workers and launcher */
113
	size = add_size(size, mul_size(MaxBackends, sizeof(PGPROC)));
114 115 116 117
	/* AuxiliaryProcs */
	size = add_size(size, mul_size(NUM_AUXILIARY_PROCS, sizeof(PGPROC)));
	/* Prepared xacts */
	size = add_size(size, mul_size(max_prepared_xacts, sizeof(PGPROC)));
118 119
	/* ProcStructLock */
	size = add_size(size, sizeof(slock_t));
120

121 122 123 124
	size = add_size(size, mul_size(MaxBackends, sizeof(PGXACT)));
	size = add_size(size, mul_size(NUM_AUXILIARY_PROCS, sizeof(PGXACT)));
	size = add_size(size, mul_size(max_prepared_xacts, sizeof(PGXACT)));

125 126 127
	return size;
}

128 129 130 131
/*
 * Report number of semaphores needed by InitProcGlobal.
 */
int
132
ProcGlobalSemas(void)
133
{
134 135 136 137
	/*
	 * We need a sema per backend (including autovacuum), plus one for each
	 * auxiliary process.
	 */
138
	return MaxBackends + NUM_AUXILIARY_PROCS;
139 140
}

141 142
/*
 * InitProcGlobal -
143 144
 *	  Initialize the global process table during postmaster or standalone
 *	  backend startup.
145
 *
146
 *	  We also create all the per-process semaphores we will need to support
147 148 149 150 151 152 153
 *	  the requested number of backends.  We used to allocate semaphores
 *	  only when backends were actually started up, but that is bad because
 *	  it lets Postgres fail under load --- a lot of Unix systems are
 *	  (mis)configured with small limits on the number of semaphores, and
 *	  running out when trying to start another backend is a common failure.
 *	  So, now we grab enough semaphores to support the desired max number
 *	  of backends immediately at initialization --- if the sysadmin has set
154 155
 *	  MaxConnections or autovacuum_max_workers higher than his kernel will
 *	  support, he'll find out sooner rather than later.
156 157 158 159
 *
 *	  Another reason for creating semaphores here is that the semaphore
 *	  implementation typically requires us to create semaphores in the
 *	  postmaster, not in backends.
160 161
 *
 * Note: this is NOT called by individual backends under a postmaster,
162
 * not even in the EXEC_BACKEND case.  The ProcGlobal and AuxiliaryProcs
163
 * pointers must be propagated specially for EXEC_BACKEND operation.
164 165
 */
void
166
InitProcGlobal(void)
167
{
168
	PGPROC	   *procs;
169
	PGXACT	   *pgxacts;
170 171
	int			i,
				j;
172
	bool		found;
173
	uint32		TotalProcs = MaxBackends + NUM_AUXILIARY_PROCS + max_prepared_xacts;
174

175
	/* Create the ProcGlobal shared structure */
176
	ProcGlobal = (PROC_HDR *)
177 178
		ShmemInitStruct("Proc Header", sizeof(PROC_HDR), &found);
	Assert(!found);
179

180 181 182
	/*
	 * Initialize the data structures.
	 */
R
Robert Haas 已提交
183
	ProcGlobal->spins_per_delay = DEFAULT_SPINS_PER_DELAY;
184 185
	ProcGlobal->freeProcs = NULL;
	ProcGlobal->autovacFreeProcs = NULL;
186 187 188
	ProcGlobal->startupProc = NULL;
	ProcGlobal->startupProcPid = 0;
	ProcGlobal->startupBufferPinWaitBufId = -1;
189 190
	ProcGlobal->walwriterLatch = NULL;
	ProcGlobal->checkpointerLatch = NULL;
191

192
	/*
193 194 195 196 197
	 * Create and initialize all the PGPROC structures we'll need.  There are
	 * four separate consumers: (1) normal backends, (2) autovacuum workers
	 * and the autovacuum launcher, (3) auxiliary processes, and (4) prepared
	 * transactions.  Each PGPROC structure is dedicated to exactly one of
	 * these purposes, and they do not move between groups.
198
	 */
R
Robert Haas 已提交
199
	procs = (PGPROC *) ShmemAlloc(TotalProcs * sizeof(PGPROC));
200 201
	ProcGlobal->allProcs = procs;
	ProcGlobal->allProcCount = TotalProcs;
202 203 204 205
	if (!procs)
		ereport(FATAL,
				(errcode(ERRCODE_OUT_OF_MEMORY),
				 errmsg("out of shared memory")));
R
Robert Haas 已提交
206
	MemSet(procs, 0, TotalProcs * sizeof(PGPROC));
207 208 209 210 211 212

	/*
	 * Also allocate a separate array of PGXACT structures.  This is separate
	 * from the main PGPROC array so that the most heavily accessed data is
	 * stored contiguously in memory in as few cache lines as possible. This
	 * provides significant performance benefits, especially on a
213
	 * multiprocessor system.  There is one PGXACT structure for every PGPROC
214 215 216 217 218 219
	 * structure.
	 */
	pgxacts = (PGXACT *) ShmemAlloc(TotalProcs * sizeof(PGXACT));
	MemSet(pgxacts, 0, TotalProcs * sizeof(PGXACT));
	ProcGlobal->allPgXact = pgxacts;

R
Robert Haas 已提交
220
	for (i = 0; i < TotalProcs; i++)
221
	{
R
Robert Haas 已提交
222
		/* Common initialization for all PGPROCs, regardless of type. */
223

224
		/*
225 226 227
		 * Set up per-PGPROC semaphore, latch, and backendLock. Prepared xact
		 * dummy PGPROCs don't need these though - they're never associated
		 * with a real process
228 229 230 231 232 233 234 235
		 */
		if (i < MaxBackends + NUM_AUXILIARY_PROCS)
		{
			PGSemaphoreCreate(&(procs[i].sem));
			InitSharedLatch(&(procs[i].procLatch));
			procs[i].backendLock = LWLockAssign();
		}
		procs[i].pgprocno = i;
R
Robert Haas 已提交
236 237

		/*
238 239 240 241 242 243
		 * Newly created PGPROCs for normal backends or for autovacuum must be
		 * queued up on the appropriate free list.	Because there can only
		 * ever be a small, fixed number of auxiliary processes, no free list
		 * is used in that case; InitAuxiliaryProcess() instead uses a linear
		 * search.	PGPROCs for prepared transactions are added to a free list
		 * by TwoPhaseShmemInit().
R
Robert Haas 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256
		 */
		if (i < MaxConnections)
		{
			/* PGPROC for normal backend, add to freeProcs list */
			procs[i].links.next = (SHM_QUEUE *) ProcGlobal->freeProcs;
			ProcGlobal->freeProcs = &procs[i];
		}
		else if (i < MaxBackends)
		{
			/* PGPROC for AV launcher/worker, add to autovacFreeProcs list */
			procs[i].links.next = (SHM_QUEUE *) ProcGlobal->autovacFreeProcs;
			ProcGlobal->autovacFreeProcs = &procs[i];
		}
257 258 259 260

		/* Initialize myProcLocks[] shared memory queues. */
		for (j = 0; j < NUM_LOCK_PARTITIONS; j++)
			SHMQueueInit(&(procs[i].myProcLocks[j]));
261 262
	}

263
	/*
264 265
	 * Save pointers to the blocks of PGPROC structures reserved for auxiliary
	 * processes and prepared transactions.
266
	 */
R
Robert Haas 已提交
267
	AuxiliaryProcs = &procs[MaxBackends];
268
	PreparedXactProcs = &procs[MaxBackends + NUM_AUXILIARY_PROCS];
269 270 271 272

	/* Create ProcStructLock spinlock, too */
	ProcStructLock = (slock_t *) ShmemAlloc(sizeof(slock_t));
	SpinLockInit(ProcStructLock);
273 274
}

275
/*
276
 * InitProcess -- initialize a per-process data structure for this backend
277 278
 */
void
279
InitProcess(void)
280
{
281 282
	/* use volatile pointer to prevent code rearrangement */
	volatile PROC_HDR *procglobal = ProcGlobal;
283 284

	/*
285 286
	 * ProcGlobal should be set up already (if we are a backend, we inherit
	 * this by fork() or EXEC_BACKEND mechanism from the postmaster).
287
	 */
288
	if (procglobal == NULL)
289
		elog(PANIC, "proc header uninitialized");
290 291

	if (MyProc != NULL)
292
		elog(ERROR, "you already exist");
293

294
	/*
B
Bruce Momjian 已提交
295 296
	 * Try to get a proc struct from the free list.  If this fails, we must be
	 * out of PGPROC structures (not to mention semaphores).
297
	 *
B
Bruce Momjian 已提交
298 299
	 * While we are holding the ProcStructLock, also copy the current shared
	 * estimate of spins_per_delay to local storage.
300
	 */
301
	SpinLockAcquire(ProcStructLock);
302

303 304
	set_spins_per_delay(procglobal->spins_per_delay);

305
	if (IsAnyAutoVacuumProcess())
306
		MyProc = procglobal->autovacFreeProcs;
307
	else
308
		MyProc = procglobal->freeProcs;
309

310
	if (MyProc != NULL)
311
	{
312
		if (IsAnyAutoVacuumProcess())
313
			procglobal->autovacFreeProcs = (PGPROC *) MyProc->links.next;
314
		else
315
			procglobal->freeProcs = (PGPROC *) MyProc->links.next;
316
		SpinLockRelease(ProcStructLock);
317 318 319 320
	}
	else
	{
		/*
B
Bruce Momjian 已提交
321 322
		 * If we reach here, all the PGPROCs are in use.  This is one of the
		 * possible places to detect "too many backends", so give the standard
323 324
		 * error message.  XXX do we need to give a different failure message
		 * in the autovacuum case?
325
		 */
326
		SpinLockRelease(ProcStructLock);
327 328 329
		ereport(FATAL,
				(errcode(ERRCODE_TOO_MANY_CONNECTIONS),
				 errmsg("sorry, too many clients already")));
330
	}
331
	MyPgXact = &ProcGlobal->allPgXact[MyProc->pgprocno];
332

333 334
	/*
	 * Now that we have a PGPROC, mark ourselves as an active postmaster
335
	 * child; this is so that the postmaster can detect it if we exit without
336 337
	 * cleaning up.  (XXX autovac launcher currently doesn't participate in
	 * this; it probably should.)
338
	 */
339
	if (IsUnderPostmaster && !IsAutoVacuumLauncherProcess())
340
		MarkPostmasterChildActive();
341

342
	/*
343 344
	 * Initialize all fields of MyProc, except for those previously
	 * initialized by InitProcGlobal.
345
	 */
346
	SHMQueueElemInit(&(MyProc->links));
347
	MyProc->waitStatus = STATUS_OK;
348
	MyProc->lxid = InvalidLocalTransactionId;
349 350
	MyPgXact->xid = InvalidTransactionId;
	MyPgXact->xmin = InvalidTransactionId;
351
	MyProc->pid = MyProcPid;
352 353
	/* backendId, databaseId and roleId will be filled in later */
	MyProc->backendId = InvalidBackendId;
354
	MyProc->databaseId = InvalidOid;
355
	MyProc->roleId = InvalidOid;
356 357
	MyPgXact->inCommit = false;
	MyPgXact->vacuumFlags = 0;
358
	/* NB -- autovac launcher intentionally does not set IS_AUTOVACUUM */
359
	if (IsAutoVacuumWorkerProcess())
360
		MyPgXact->vacuumFlags |= PROC_IS_AUTOVACUUM;
361
	MyProc->lwWaiting = false;
362
	MyProc->lwWaitMode = 0;
363
	MyProc->lwWaitLink = NULL;
364
	MyProc->waitLock = NULL;
365
	MyProc->waitProcLock = NULL;
366 367 368
#ifdef USE_ASSERT_CHECKING
	if (assert_enabled)
	{
369
		int			i;
370 371 372 373 374 375

		/* Last process should have released all locks. */
		for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
			Assert(SHMQueueEmpty(&(MyProc->myProcLocks[i])));
	}
#endif
376
	MyProc->recoveryConflictPending = false;
377

378
	/* Initialize fields for sync rep */
379
	MyProc->waitLSN = 0;
380 381
	MyProc->syncRepState = SYNC_REP_NOT_WAITING;
	SHMQueueElemInit(&(MyProc->syncRepLinks));
382 383 384 385 386 387

	/*
	 * Acquire ownership of the PGPROC's latch, so that we can use WaitLatch.
	 * Note that there's no particular need to do ResetLatch here.
	 */
	OwnLatch(&MyProc->procLatch);
388

389
	/*
390
	 * We might be reusing a semaphore that belonged to a failed process. So
B
Bruce Momjian 已提交
391
	 * be careful and reinitialize its value here.	(This is not strictly
392
	 * necessary anymore, but seems like a good idea for cleanliness.)
393
	 */
394
	PGSemaphoreReset(&MyProc->sem);
395

396
	/*
397
	 * Arrange to clean up at backend exit.
398
	 */
399
	on_shmem_exit(ProcKill, 0);
400 401

	/*
B
Bruce Momjian 已提交
402 403
	 * Now that we have a PGPROC, we could try to acquire locks, so initialize
	 * the deadlock checker.
404 405
	 */
	InitDeadLockChecking();
406 407
}

408 409 410 411
/*
 * InitProcessPhase2 -- make MyProc visible in the shared ProcArray.
 *
 * This is separate from InitProcess because we can't acquire LWLocks until
412 413
 * we've created a PGPROC, but in the EXEC_BACKEND case ProcArrayAdd won't
 * work until after we've done CreateSharedMemoryAndSemaphores.
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
 */
void
InitProcessPhase2(void)
{
	Assert(MyProc != NULL);

	/*
	 * Add our PGPROC to the PGPROC array in shared memory.
	 */
	ProcArrayAdd(MyProc);

	/*
	 * Arrange to clean that up at backend exit.
	 */
	on_shmem_exit(RemoveProcFromArray, 0);
}

431
/*
432
 * InitAuxiliaryProcess -- create a per-auxiliary-process data structure
433
 *
434 435
 * This is called by bgwriter and similar processes so that they will have a
 * MyProc value that's real enough to let them wait for LWLocks.  The PGPROC
436
 * and sema that are assigned are one of the extra ones created during
437
 * InitProcGlobal.
438
 *
439
 * Auxiliary processes are presently not expected to wait for real (lockmgr)
440
 * locks, so we need not set up the deadlock checker.  They are never added
B
Bruce Momjian 已提交
441
 * to the ProcArray or the sinval messaging mechanism, either.	They also
442 443
 * don't get a VXID assigned, since this is only useful when we actually
 * hold lockmgr locks.
444 445 446 447 448
 *
 * Startup process however uses locks but never waits for them in the
 * normal backend sense. Startup process also takes part in sinval messaging
 * as a sendOnly process, so never reads messages from sinval queue. So
 * Startup process does have a VXID and does show up in pg_locks.
449 450
 */
void
451
InitAuxiliaryProcess(void)
452
{
453
	PGPROC	   *auxproc;
454
	int			proctype;
J
Jan Wieck 已提交
455

456
	/*
457 458
	 * ProcGlobal should be set up already (if we are a backend, we inherit
	 * this by fork() or EXEC_BACKEND mechanism from the postmaster).
459
	 */
460
	if (ProcGlobal == NULL || AuxiliaryProcs == NULL)
461
		elog(PANIC, "proc header uninitialized");
462 463

	if (MyProc != NULL)
464
		elog(ERROR, "you already exist");
465

466
	/*
467
	 * We use the ProcStructLock to protect assignment and releasing of
468
	 * AuxiliaryProcs entries.
469
	 *
B
Bruce Momjian 已提交
470 471
	 * While we are holding the ProcStructLock, also copy the current shared
	 * estimate of spins_per_delay to local storage.
472 473 474 475 476
	 */
	SpinLockAcquire(ProcStructLock);

	set_spins_per_delay(ProcGlobal->spins_per_delay);

477
	/*
478
	 * Find a free auxproc ... *big* trouble if there isn't one ...
479
	 */
480
	for (proctype = 0; proctype < NUM_AUXILIARY_PROCS; proctype++)
481
	{
482 483
		auxproc = &AuxiliaryProcs[proctype];
		if (auxproc->pid == 0)
484 485
			break;
	}
486
	if (proctype >= NUM_AUXILIARY_PROCS)
487 488
	{
		SpinLockRelease(ProcStructLock);
489
		elog(FATAL, "all AuxiliaryProcs are in use");
490
	}
491

492
	/* Mark auxiliary proc as in use by me */
493
	/* use volatile pointer to prevent code rearrangement */
494
	((volatile PGPROC *) auxproc)->pid = MyProcPid;
495

496
	MyProc = auxproc;
497
	MyPgXact = &ProcGlobal->allPgXact[auxproc->pgprocno];
498 499 500

	SpinLockRelease(ProcStructLock);

501
	/*
502 503
	 * Initialize all fields of MyProc, except for those previously
	 * initialized by InitProcGlobal.
504 505
	 */
	SHMQueueElemInit(&(MyProc->links));
506
	MyProc->waitStatus = STATUS_OK;
507
	MyProc->lxid = InvalidLocalTransactionId;
508 509
	MyPgXact->xid = InvalidTransactionId;
	MyPgXact->xmin = InvalidTransactionId;
510
	MyProc->backendId = InvalidBackendId;
511
	MyProc->databaseId = InvalidOid;
512
	MyProc->roleId = InvalidOid;
513 514
	MyPgXact->inCommit = false;
	MyPgXact->vacuumFlags = 0;
515
	MyProc->lwWaiting = false;
516
	MyProc->lwWaitMode = 0;
517 518
	MyProc->lwWaitLink = NULL;
	MyProc->waitLock = NULL;
519
	MyProc->waitProcLock = NULL;
520 521 522
#ifdef USE_ASSERT_CHECKING
	if (assert_enabled)
	{
523
		int			i;
524 525 526 527 528 529

		/* Last process should have released all locks. */
		for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
			Assert(SHMQueueEmpty(&(MyProc->myProcLocks[i])));
	}
#endif
530

531 532 533 534 535 536
	/*
	 * Acquire ownership of the PGPROC's latch, so that we can use WaitLatch.
	 * Note that there's no particular need to do ResetLatch here.
	 */
	OwnLatch(&MyProc->procLatch);

537
	/*
B
Bruce Momjian 已提交
538
	 * We might be reusing a semaphore that belonged to a failed process. So
B
Bruce Momjian 已提交
539
	 * be careful and reinitialize its value here.	(This is not strictly
540
	 * necessary anymore, but seems like a good idea for cleanliness.)
541
	 */
542
	PGSemaphoreReset(&MyProc->sem);
543 544 545 546

	/*
	 * Arrange to clean up at process exit.
	 */
547
	on_shmem_exit(AuxiliaryProcKill, Int32GetDatum(proctype));
548 549
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Record the PID and PGPROC structures for the Startup process, for use in
 * ProcSendSignal().  See comments there for further explanation.
 */
void
PublishStartupProcessInformation(void)
{
	/* use volatile pointer to prevent code rearrangement */
	volatile PROC_HDR *procglobal = ProcGlobal;

	SpinLockAcquire(ProcStructLock);

	procglobal->startupProc = MyProc;
	procglobal->startupProcPid = MyProcPid;

	SpinLockRelease(ProcStructLock);
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
/*
 * Used from bufgr to share the value of the buffer that Startup waits on,
 * or to reset the value to "not waiting" (-1). This allows processing
 * of recovery conflicts for buffer pins. Set is made before backends look
 * at this value, so locking not required, especially since the set is
 * an atomic integer set operation.
 */
void
SetStartupBufferPinWaitBufId(int bufid)
{
	/* use volatile pointer to prevent code rearrangement */
	volatile PROC_HDR *procglobal = ProcGlobal;

	procglobal->startupBufferPinWaitBufId = bufid;
}

/*
 * Used by backends when they receive a request to check for buffer pin waits.
 */
int
GetStartupBufferPinWaitBufId(void)
{
	/* use volatile pointer to prevent code rearrangement */
	volatile PROC_HDR *procglobal = ProcGlobal;

593
	return procglobal->startupBufferPinWaitBufId;
594 595
}

596 597 598 599 600 601 602 603 604
/*
 * Check whether there are at least N free PGPROC objects.
 *
 * Note: this is designed on the assumption that N will generally be small.
 */
bool
HaveNFreeProcs(int n)
{
	PGPROC	   *proc;
B
Bruce Momjian 已提交
605

606 607 608 609 610
	/* use volatile pointer to prevent code rearrangement */
	volatile PROC_HDR *procglobal = ProcGlobal;

	SpinLockAcquire(ProcStructLock);

611
	proc = procglobal->freeProcs;
612

613
	while (n > 0 && proc != NULL)
614
	{
615
		proc = (PGPROC *) proc->links.next;
616 617 618 619 620 621 622 623
		n--;
	}

	SpinLockRelease(ProcStructLock);

	return (n <= 0);
}

624 625 626
/*
 * Check if the current process is awaiting a lock.
 */
627 628 629 630 631 632 633 634 635
bool
IsWaitingForLock(void)
{
	if (lockAwaited == NULL)
		return false;

	return true;
}

636
/*
637 638
 * Cancel any pending wait for lock, when aborting a transaction, and revert
 * any strong lock count acquisition for a lock being acquired.
639 640
 *
 * (Normally, this would only happen if we accept a cancel/die
641 642
 * interrupt while waiting; but an ereport(ERROR) before or during the lock
 * wait is within the realm of possibility, too.)
643
 */
644
void
645
LockErrorCleanup(void)
646
{
647 648
	LWLockId	partitionLock;

649 650
	AbortStrongLockAcquire();

651
	/* Nothing to do if we weren't waiting for a lock */
652
	if (lockAwaited == NULL)
653
		return;
654

655
	/* Turn off the deadlock timer, if it's still running (see ProcSleep) */
656
	disable_sig_alarm(false);
657 658

	/* Unlink myself from the wait queue, if on it (might not be anymore!) */
659
	partitionLock = LockHashPartitionLock(lockAwaited->hashcode);
660
	LWLockAcquire(partitionLock, LW_EXCLUSIVE);
661

662
	if (MyProc->links.next != NULL)
663 664
	{
		/* We could not have been granted the lock yet */
665
		RemoveFromWaitQueue(MyProc, lockAwaited->hashcode);
666 667 668 669 670
	}
	else
	{
		/*
		 * Somebody kicked us off the lock queue already.  Perhaps they
B
Bruce Momjian 已提交
671 672 673
		 * granted us the lock, or perhaps they detected a deadlock. If they
		 * did grant us the lock, we'd better remember it in our local lock
		 * table.
674
		 */
675 676
		if (MyProc->waitStatus == STATUS_OK)
			GrantAwaitedLock();
677 678
	}

679
	lockAwaited = NULL;
680

681
	LWLockRelease(partitionLock);
H
Hiroshi Inoue 已提交
682

683
	/*
684
	 * We used to do PGSemaphoreReset() here to ensure that our proc's wait
B
Bruce Momjian 已提交
685 686 687 688 689 690
	 * semaphore is reset to zero.	This prevented a leftover wakeup signal
	 * from remaining in the semaphore if someone else had granted us the lock
	 * we wanted before we were able to remove ourselves from the wait-list.
	 * However, now that ProcSleep loops until waitStatus changes, a leftover
	 * wakeup signal isn't harmful, and it seems not worth expending cycles to
	 * get rid of a signal that most likely isn't there.
691
	 */
H
Hiroshi Inoue 已提交
692
}
693

694

695
/*
696
 * ProcReleaseLocks() -- release locks associated with current transaction
697
 *			at main transaction commit or abort
698
 *
699
 * At main transaction commit, we release standard locks except session locks.
700
 * At main transaction abort, we release all locks including session locks.
701
 *
702 703 704
 * Advisory locks are released only if they are transaction-level;
 * session-level holds remain, whether this is a commit or not.
 *
705
 * At subtransaction commit, we don't release any locks (so this func is not
706
 * needed at all); we will defer the releasing to the parent transaction.
707
 * At subtransaction abort, we release all locks held by the subtransaction;
708 709
 * this is implemented by retail releasing of the locks under control of
 * the ResourceOwner mechanism.
710 711
 */
void
712
ProcReleaseLocks(bool isCommit)
713
{
714 715
	if (!MyProc)
		return;
716
	/* If waiting, get off wait queue (should only be needed after error) */
717
	LockErrorCleanup();
718
	/* Release standard locks, including session-level if aborting */
719
	LockReleaseAll(DEFAULT_LOCKMETHOD, !isCommit);
720
	/* Release transaction-level advisory locks */
721
	LockReleaseAll(USER_LOCKMETHOD, false);
722 723 724
}


725 726 727 728 729 730 731
/*
 * RemoveProcFromArray() -- Remove this process from the shared ProcArray.
 */
static void
RemoveProcFromArray(int code, Datum arg)
{
	Assert(MyProc != NULL);
732
	ProcArrayRemove(MyProc, InvalidTransactionId);
733 734
}

735 736
/*
 * ProcKill() -- Destroy the per-proc data structure for
737
 *		this process. Release any of its held LW locks.
738 739
 */
static void
740
ProcKill(int code, Datum arg)
741
{
742 743 744
	/* use volatile pointer to prevent code rearrangement */
	volatile PROC_HDR *procglobal = ProcGlobal;

745
	Assert(MyProc != NULL);
746

747 748 749
	/* Make sure we're out of the sync rep lists */
	SyncRepCleanupAtProcExit();

750 751 752
#ifdef USE_ASSERT_CHECKING
	if (assert_enabled)
	{
753
		int			i;
754 755 756 757 758 759 760

		/* Last process should have released all locks. */
		for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
			Assert(SHMQueueEmpty(&(MyProc->myProcLocks[i])));
	}
#endif

761
	/*
B
Bruce Momjian 已提交
762 763
	 * Release any LW locks I am holding.  There really shouldn't be any, but
	 * it's cheap to check again before we cut the knees off the LWLock
764
	 * facility by releasing our PGPROC ...
765
	 */
766
	LWLockReleaseAll();
767

768 769 770
	/* Release ownership of the process's latch, too */
	DisownLatch(&MyProc->procLatch);

771
	SpinLockAcquire(ProcStructLock);
772

773 774
	/* Return PGPROC structure (and semaphore) to appropriate freelist */
	if (IsAnyAutoVacuumProcess())
775
	{
776 777
		MyProc->links.next = (SHM_QUEUE *) procglobal->autovacFreeProcs;
		procglobal->autovacFreeProcs = MyProc;
778 779 780
	}
	else
	{
781 782
		MyProc->links.next = (SHM_QUEUE *) procglobal->freeProcs;
		procglobal->freeProcs = MyProc;
783
	}
784

J
Jan Wieck 已提交
785
	/* PGPROC struct isn't mine anymore */
786
	MyProc = NULL;
787

788 789 790
	/* Update shared estimate of spins_per_delay */
	procglobal->spins_per_delay = update_spins_per_delay(procglobal->spins_per_delay);

791
	SpinLockRelease(ProcStructLock);
792

793 794
	/*
	 * This process is no longer present in shared memory in any meaningful
B
Bruce Momjian 已提交
795 796
	 * way, so tell the postmaster we've cleaned up acceptably well. (XXX
	 * autovac launcher should be included here someday)
797
	 */
798
	if (IsUnderPostmaster && !IsAutoVacuumLauncherProcess())
799 800
		MarkPostmasterChildInactive();

801 802
	/* wake autovac launcher if needed -- see comments in FreeWorkerInfo */
	if (AutovacuumLauncherPid != 0)
803
		kill(AutovacuumLauncherPid, SIGUSR2);
804 805 806
}

/*
807 808 809
 * AuxiliaryProcKill() -- Cut-down version of ProcKill for auxiliary
 *		processes (bgwriter, etc).	The PGPROC and sema are not released, only
 *		marked as not-in-use.
810 811
 */
static void
812
AuxiliaryProcKill(int code, Datum arg)
813
{
B
Bruce Momjian 已提交
814
	int			proctype = DatumGetInt32(arg);
815
	PGPROC	   *auxproc PG_USED_FOR_ASSERTS_ONLY;
J
Jan Wieck 已提交
816

817
	Assert(proctype >= 0 && proctype < NUM_AUXILIARY_PROCS);
J
Jan Wieck 已提交
818

819
	auxproc = &AuxiliaryProcs[proctype];
J
Jan Wieck 已提交
820

821
	Assert(MyProc == auxproc);
822

823
	/* Release any LW locks I am holding (see notes above) */
824 825
	LWLockReleaseAll();

826 827 828
	/* Release ownership of the process's latch, too */
	DisownLatch(&MyProc->procLatch);

829 830
	SpinLockAcquire(ProcStructLock);

831
	/* Mark auxiliary proc no longer in use */
832 833
	MyProc->pid = 0;

J
Jan Wieck 已提交
834
	/* PGPROC struct isn't mine anymore */
835
	MyProc = NULL;
836 837 838 839 840

	/* Update shared estimate of spins_per_delay */
	ProcGlobal->spins_per_delay = update_spins_per_delay(ProcGlobal->spins_per_delay);

	SpinLockRelease(ProcStructLock);
841 842
}

843

844 845
/*
 * ProcQueue package: routines for putting processes to sleep
846
 *		and  waking them up
847 848 849 850 851
 */

/*
 * ProcQueueAlloc -- alloc/attach to a shared memory process queue
 *
852 853
 * Returns: a pointer to the queue
 * Side Effects: Initializes the queue if it wasn't there before
854
 */
855
#ifdef NOT_USED
856
PROC_QUEUE *
857
ProcQueueAlloc(const char *name)
858
{
859
	PROC_QUEUE *queue;
860
	bool		found;
861

862 863 864
	queue = (PROC_QUEUE *)
		ShmemInitStruct(name, sizeof(PROC_QUEUE), &found);

865 866
	if (!found)
		ProcQueueInit(queue);
867

868
	return queue;
869
}
870
#endif
871 872 873 874 875

/*
 * ProcQueueInit -- initialize a shared memory process queue
 */
void
876
ProcQueueInit(PROC_QUEUE *queue)
877
{
878 879
	SHMQueueInit(&(queue->links));
	queue->size = 0;
880 881 882 883
}


/*
884
 * ProcSleep -- put a process to sleep on the specified lock
885
 *
886 887
 * Caller must have set MyProc->heldLocks to reflect locks already held
 * on the lockable object by this process (under all XIDs).
888
 *
889
 * The lock table's partition lock must be held at entry, and will be held
890
 * at exit.
891
 *
892
 * Result: STATUS_OK if we acquired the lock, STATUS_ERROR if not (deadlock).
893
 *
894
 * ASSUME: that no one will fiddle with the queue until after
895
 *		we release the partition lock.
896 897
 *
 * NOTES: The process queue is now a priority queue for locking.
898 899 900
 *
 * P() on the semaphore should put us to sleep.  The process
 * semaphore is normally zero, so when we try to acquire it, we sleep.
901 902
 */
int
903
ProcSleep(LOCALLOCK *locallock, LockMethod lockMethodTable)
904
{
905 906 907
	LOCKMODE	lockmode = locallock->tag.mode;
	LOCK	   *lock = locallock->lock;
	PROCLOCK   *proclock = locallock->proclock;
908 909
	uint32		hashcode = locallock->hashcode;
	LWLockId	partitionLock = LockHashPartitionLock(hashcode);
910
	PROC_QUEUE *waitQueue = &(lock->waitProcs);
911
	LOCKMASK	myHeldLocks = MyProc->heldLocks;
912
	bool		early_deadlock = false;
B
Bruce Momjian 已提交
913
	bool		allow_autovacuum_cancel = true;
914
	int			myWaitStatus;
J
Jan Wieck 已提交
915
	PGPROC	   *proc;
916
	int			i;
917

918
	/*
919 920
	 * Determine where to add myself in the wait queue.
	 *
921 922 923 924
	 * Normally I should go at the end of the queue.  However, if I already
	 * hold locks that conflict with the request of any previous waiter, put
	 * myself in the queue just in front of the first such waiter. This is not
	 * a necessary step, since deadlock detection would move me to before that
B
Bruce Momjian 已提交
925 926
	 * waiter anyway; but it's relatively cheap to detect such a conflict
	 * immediately, and avoid delaying till deadlock timeout.
927
	 *
928 929
	 * Special case: if I find I should go in front of some waiter, check to
	 * see if I conflict with already-held locks or the requests before that
B
Bruce Momjian 已提交
930 931 932 933
	 * waiter.	If not, then just grant myself the requested lock immediately.
	 * This is the same as the test for immediate grant in LockAcquire, except
	 * we are only considering the part of the wait queue before my insertion
	 * point.
934 935
	 */
	if (myHeldLocks != 0)
V
Vadim B. Mikheev 已提交
936
	{
937
		LOCKMASK	aheadRequests = 0;
938

939
		proc = (PGPROC *) waitQueue->links.next;
940
		for (i = 0; i < waitQueue->size; i++)
V
Vadim B. Mikheev 已提交
941
		{
942
			/* Must he wait for me? */
B
Bruce Momjian 已提交
943
			if (lockMethodTable->conflictTab[proc->waitLockMode] & myHeldLocks)
V
Vadim B. Mikheev 已提交
944
			{
945
				/* Must I wait for him ? */
B
Bruce Momjian 已提交
946
				if (lockMethodTable->conflictTab[lockmode] & proc->heldLocks)
947
				{
948
					/*
B
Bruce Momjian 已提交
949 950 951 952 953
					 * Yes, so we have a deadlock.	Easiest way to clean up
					 * correctly is to call RemoveFromWaitQueue(), but we
					 * can't do that until we are *on* the wait queue. So, set
					 * a flag to check below, and break out of loop.  Also,
					 * record deadlock info for later message.
954
					 */
955
					RememberSimpleDeadLock(MyProc, lockmode, lock, proc);
956 957
					early_deadlock = true;
					break;
958
				}
959
				/* I must go before this waiter.  Check special case. */
B
Bruce Momjian 已提交
960
				if ((lockMethodTable->conflictTab[lockmode] & aheadRequests) == 0 &&
961 962 963
					LockCheckConflicts(lockMethodTable,
									   lockmode,
									   lock,
964
									   proclock,
965
									   MyProc) == STATUS_OK)
966
				{
967
					/* Skip the wait and just grant myself the lock. */
968
					GrantLock(lock, proclock, lockmode);
969
					GrantAwaitedLock();
970
					return STATUS_OK;
971 972
				}
				/* Break out of loop to put myself before him */
V
Vadim B. Mikheev 已提交
973
				break;
974
			}
975
			/* Nope, so advance to next waiter */
976
			aheadRequests |= LOCKBIT_ON(proc->waitLockMode);
977
			proc = (PGPROC *) proc->links.next;
V
Vadim B. Mikheev 已提交
978
		}
B
Bruce Momjian 已提交
979

980
		/*
B
Bruce Momjian 已提交
981 982
		 * If we fall out of loop normally, proc points to waitQueue head, so
		 * we will insert at tail of queue as desired.
983
		 */
984 985 986 987
	}
	else
	{
		/* I hold no locks, so I can't push in front of anyone. */
J
Jan Wieck 已提交
988
		proc = (PGPROC *) &(waitQueue->links);
V
Vadim B. Mikheev 已提交
989
	}
990

991
	/*
B
Bruce Momjian 已提交
992
	 * Insert self into queue, ahead of the given proc (or at tail of queue).
993
	 */
994
	SHMQueueInsertBefore(&(proc->links), &(MyProc->links));
B
Bruce Momjian 已提交
995
	waitQueue->size++;
996

997
	lock->waitMask |= LOCKBIT_ON(lockmode);
998

J
Jan Wieck 已提交
999
	/* Set up wait information in PGPROC object, too */
1000
	MyProc->waitLock = lock;
1001
	MyProc->waitProcLock = proclock;
1002 1003
	MyProc->waitLockMode = lockmode;

1004
	MyProc->waitStatus = STATUS_WAITING;
1005 1006

	/*
B
Bruce Momjian 已提交
1007 1008 1009
	 * If we detected deadlock, give up without waiting.  This must agree with
	 * CheckDeadLock's recovery code, except that we shouldn't release the
	 * semaphore since we haven't tried to lock it yet.
1010 1011 1012
	 */
	if (early_deadlock)
	{
1013
		RemoveFromWaitQueue(MyProc, hashcode);
1014 1015
		return STATUS_ERROR;
	}
1016

1017
	/* mark that we are waiting for a lock */
1018
	lockAwaited = locallock;
1019

1020
	/*
1021
	 * Release the lock table's partition lock.
1022
	 *
1023
	 * NOTE: this may also cause us to exit critical-section state, possibly
B
Bruce Momjian 已提交
1024 1025
	 * allowing a cancel/die interrupt to be accepted. This is OK because we
	 * have recorded the fact that we are waiting for a lock, and so
1026
	 * LockErrorCleanup will clean up if cancel/die happens.
1027
	 */
1028
	LWLockRelease(partitionLock);
1029

1030 1031 1032
	/*
	 * Also, now that we will successfully clean up after an ereport, it's
	 * safe to check to see if there's a buffer pin deadlock against the
1033 1034
	 * Startup process.  Of course, that's only necessary if we're doing Hot
	 * Standby and are not the Startup process ourselves.
1035 1036 1037 1038
	 */
	if (RecoveryInProgress() && !InRecovery)
		CheckRecoveryConflictDeadlock();

1039 1040 1041
	/* Reset deadlock_state before enabling the signal handler */
	deadlock_state = DS_NOT_YET_CHECKED;

1042
	/*
B
Bruce Momjian 已提交
1043 1044 1045 1046
	 * Set timer so we can wake up after awhile and check for a deadlock. If a
	 * deadlock is detected, the handler releases the process's semaphore and
	 * sets MyProc->waitStatus = STATUS_ERROR, allowing us to know that we
	 * must report failure rather than success.
1047
	 *
1048 1049
	 * By delaying the check until we've waited for a bit, we can avoid
	 * running the rather expensive deadlock-check code in most cases.
1050
	 */
1051
	if (!enable_sig_alarm(DeadlockTimeout, false))
1052
		elog(FATAL, "could not set timer for process wakeup");
1053

1054
	/*
1055
	 * If someone wakes us between LWLockRelease and PGSemaphoreLock,
B
Bruce Momjian 已提交
1056
	 * PGSemaphoreLock will not block.	The wakeup is "saved" by the semaphore
B
Bruce Momjian 已提交
1057 1058 1059 1060 1061
	 * implementation.	While this is normally good, there are cases where a
	 * saved wakeup might be leftover from a previous operation (for example,
	 * we aborted ProcWaitForSignal just before someone did ProcSendSignal).
	 * So, loop to wait again if the waitStatus shows we haven't been granted
	 * nor denied the lock yet.
1062
	 *
1063 1064 1065 1066 1067 1068
	 * We pass interruptOK = true, which eliminates a window in which
	 * cancel/die interrupts would be held off undesirably.  This is a promise
	 * that we don't mind losing control to a cancel/die interrupt here.  We
	 * don't, because we have no shared-state-change work to do after being
	 * granted the lock (the grantor did it all).  We do have to worry about
	 * updating the locallock table, but if we lose control to an error,
1069
	 * LockErrorCleanup will fix that up.
1070
	 */
B
Bruce Momjian 已提交
1071 1072
	do
	{
1073
		PGSemaphoreLock(&MyProc->sem, true);
1074

1075 1076
		/*
		 * waitStatus could change from STATUS_WAITING to something else
B
Bruce Momjian 已提交
1077
		 * asynchronously.	Read it just once per loop to prevent surprising
1078 1079 1080 1081
		 * behavior (such as missing log messages).
		 */
		myWaitStatus = MyProc->waitStatus;

1082 1083
		/*
		 * If we are not deadlocked, but are waiting on an autovacuum-induced
B
Bruce Momjian 已提交
1084
		 * task, send a signal to interrupt it.
1085 1086 1087
		 */
		if (deadlock_state == DS_BLOCKED_BY_AUTOVACUUM && allow_autovacuum_cancel)
		{
B
Bruce Momjian 已提交
1088
			PGPROC	   *autovac = GetBlockingAutoVacuumPgproc();
1089
			PGXACT	   *autovac_pgxact = &ProcGlobal->allPgXact[autovac->pgprocno];
1090 1091 1092 1093 1094 1095 1096 1097

			LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);

			/*
			 * Only do it if the worker is not working to protect against Xid
			 * wraparound.
			 */
			if ((autovac != NULL) &&
1098 1099
				(autovac_pgxact->vacuumFlags & PROC_IS_AUTOVACUUM) &&
				!(autovac_pgxact->vacuumFlags & PROC_VACUUM_FOR_WRAPAROUND))
1100
			{
B
Bruce Momjian 已提交
1101
				int			pid = autovac->pid;
1102

P
Peter Eisentraut 已提交
1103
				elog(DEBUG2, "sending cancel to blocking autovacuum PID %d",
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
					 pid);

				/* don't hold the lock across the kill() syscall */
				LWLockRelease(ProcArrayLock);

				/* send the autovacuum worker Back to Old Kent Road */
				if (kill(pid, SIGINT) < 0)
				{
					/* Just a warning to allow multiple callers */
					ereport(WARNING,
							(errmsg("could not send signal to process %d: %m",
									pid)));
				}
			}
			else
				LWLockRelease(ProcArrayLock);

			/* prevent signal from being resent more than once */
			allow_autovacuum_cancel = false;
		}

1125 1126 1127 1128
		/*
		 * If awoken after the deadlock check interrupt has run, and
		 * log_lock_waits is on, then report about the wait.
		 */
1129
		if (log_lock_waits && deadlock_state != DS_NOT_YET_CHECKED)
1130
		{
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
			StringInfoData buf;
			const char *modename;
			long		secs;
			int			usecs;
			long		msecs;

			initStringInfo(&buf);
			DescribeLockTag(&buf, &locallock->tag.lock);
			modename = GetLockmodeName(locallock->tag.lock.locktag_lockmethodid,
									   lockmode);
			TimestampDifference(timeout_start_time, GetCurrentTimestamp(),
								&secs, &usecs);
			msecs = secs * 1000 + usecs / 1000;
			usecs = usecs % 1000;

			if (deadlock_state == DS_SOFT_DEADLOCK)
				ereport(LOG,
						(errmsg("process %d avoided deadlock for %s on %s by rearranging queue order after %ld.%03d ms",
B
Bruce Momjian 已提交
1149
							  MyProcPid, modename, buf.data, msecs, usecs)));
1150
			else if (deadlock_state == DS_HARD_DEADLOCK)
1151
			{
1152
				/*
B
Bruce Momjian 已提交
1153 1154 1155 1156
				 * This message is a bit redundant with the error that will be
				 * reported subsequently, but in some cases the error report
				 * might not make it to the log (eg, if it's caught by an
				 * exception handler), and we want to ensure all long-wait
1157 1158 1159 1160
				 * events get logged.
				 */
				ereport(LOG,
						(errmsg("process %d detected deadlock while waiting for %s on %s after %ld.%03d ms",
B
Bruce Momjian 已提交
1161
							  MyProcPid, modename, buf.data, msecs, usecs)));
1162
			}
1163 1164 1165 1166

			if (myWaitStatus == STATUS_WAITING)
				ereport(LOG,
						(errmsg("process %d still waiting for %s on %s after %ld.%03d ms",
B
Bruce Momjian 已提交
1167
							  MyProcPid, modename, buf.data, msecs, usecs)));
1168 1169
			else if (myWaitStatus == STATUS_OK)
				ereport(LOG,
B
Bruce Momjian 已提交
1170 1171
					(errmsg("process %d acquired %s on %s after %ld.%03d ms",
							MyProcPid, modename, buf.data, msecs, usecs)));
1172 1173 1174
			else
			{
				Assert(myWaitStatus == STATUS_ERROR);
B
Bruce Momjian 已提交
1175

1176 1177
				/*
				 * Currently, the deadlock checker always kicks its own
B
Bruce Momjian 已提交
1178 1179 1180 1181 1182
				 * process, which means that we'll only see STATUS_ERROR when
				 * deadlock_state == DS_HARD_DEADLOCK, and there's no need to
				 * print redundant messages.  But for completeness and
				 * future-proofing, print a message if it looks like someone
				 * else kicked us off the lock.
1183 1184 1185 1186
				 */
				if (deadlock_state != DS_HARD_DEADLOCK)
					ereport(LOG,
							(errmsg("process %d failed to acquire %s on %s after %ld.%03d ms",
B
Bruce Momjian 已提交
1187
							  MyProcPid, modename, buf.data, msecs, usecs)));
1188 1189 1190
			}

			/*
B
Bruce Momjian 已提交
1191 1192
			 * At this point we might still need to wait for the lock. Reset
			 * state so we don't print the above messages again.
1193 1194 1195 1196
			 */
			deadlock_state = DS_NO_DEADLOCK;

			pfree(buf.data);
1197
		}
1198
	} while (myWaitStatus == STATUS_WAITING);
1199

1200
	/*
1201
	 * Disable the timer, if it's still running
B
Bruce Momjian 已提交
1202
	 */
1203
	if (!disable_sig_alarm(false))
1204
		elog(FATAL, "could not disable timer for process wakeup");
B
Bruce Momjian 已提交
1205

1206
	/*
B
Bruce Momjian 已提交
1207 1208 1209
	 * Re-acquire the lock table's partition lock.  We have to do this to hold
	 * off cancel/die interrupts before we can mess with lockAwaited (else we
	 * might have a missed or duplicated locallock update).
1210
	 */
1211
	LWLockAcquire(partitionLock, LW_EXCLUSIVE);
1212 1213

	/*
1214
	 * We no longer want LockErrorCleanup to do anything.
1215
	 */
1216
	lockAwaited = NULL;
1217

1218
	/*
1219
	 * If we got the lock, be sure to remember it in the locallock table.
1220
	 */
1221
	if (MyProc->waitStatus == STATUS_OK)
1222
		GrantAwaitedLock();
1223

1224 1225 1226 1227
	/*
	 * We don't have to do anything else, because the awaker did all the
	 * necessary update of the lock table and MyProc.
	 */
1228
	return MyProc->waitStatus;
1229 1230 1231 1232 1233 1234
}


/*
 * ProcWakeup -- wake up a process by releasing its private semaphore.
 *
1235
 *	 Also remove the process from the wait queue and set its links invalid.
1236
 *	 RETURN: the next process in the wait queue.
1237
 *
1238 1239
 * The appropriate lock partition lock must be held by caller.
 *
1240 1241 1242
 * XXX: presently, this code is only used for the "success" case, and only
 * works correctly for that case.  To clean up in failure case, would need
 * to twiddle the lock's request counts too --- see RemoveFromWaitQueue.
1243
 * Hence, in practice the waitStatus parameter must be STATUS_OK.
1244
 */
J
Jan Wieck 已提交
1245
PGPROC *
1246
ProcWakeup(PGPROC *proc, int waitStatus)
1247
{
J
Jan Wieck 已提交
1248
	PGPROC	   *retProc;
1249

1250
	/* Proc should be sleeping ... */
1251 1252
	if (proc->links.prev == NULL ||
		proc->links.next == NULL)
1253
		return NULL;
1254
	Assert(proc->waitStatus == STATUS_WAITING);
1255

1256
	/* Save next process before we zap the list link */
1257
	retProc = (PGPROC *) proc->links.next;
1258

1259
	/* Remove process from wait queue */
1260
	SHMQueueDelete(&(proc->links));
1261
	(proc->waitLock->waitProcs.size)--;
1262

1263 1264
	/* Clean up process' state and pass it the ok/fail signal */
	proc->waitLock = NULL;
1265
	proc->waitProcLock = NULL;
1266
	proc->waitStatus = waitStatus;
1267

1268
	/* And awaken it */
1269
	PGSemaphoreUnlock(&proc->sem);
1270 1271

	return retProc;
1272 1273 1274 1275
}

/*
 * ProcLockWakeup -- routine for waking up processes when a lock is
1276 1277
 *		released (or a prior waiter is aborted).  Scan all waiters
 *		for lock, waken any that are no longer blocked.
1278 1279
 *
 * The appropriate lock partition lock must be held by caller.
1280
 */
1281
void
1282
ProcLockWakeup(LockMethod lockMethodTable, LOCK *lock)
1283
{
1284 1285
	PROC_QUEUE *waitQueue = &(lock->waitProcs);
	int			queue_size = waitQueue->size;
J
Jan Wieck 已提交
1286
	PGPROC	   *proc;
1287
	LOCKMASK	aheadRequests = 0;
M
 
Marc G. Fournier 已提交
1288

1289
	Assert(queue_size >= 0);
1290

1291 1292
	if (queue_size == 0)
		return;
1293

1294
	proc = (PGPROC *) waitQueue->links.next;
1295

1296 1297
	while (queue_size-- > 0)
	{
B
Bruce Momjian 已提交
1298
		LOCKMODE	lockmode = proc->waitLockMode;
M
 
Marc G. Fournier 已提交
1299 1300

		/*
B
Bruce Momjian 已提交
1301 1302
		 * Waken if (a) doesn't conflict with requests of earlier waiters, and
		 * (b) doesn't conflict with already-held locks.
M
 
Marc G. Fournier 已提交
1303
		 */
B
Bruce Momjian 已提交
1304
		if ((lockMethodTable->conflictTab[lockmode] & aheadRequests) == 0 &&
1305 1306 1307
			LockCheckConflicts(lockMethodTable,
							   lockmode,
							   lock,
1308
							   proc->waitProcLock,
1309
							   proc) == STATUS_OK)
M
 
Marc G. Fournier 已提交
1310
		{
1311
			/* OK to waken */
1312
			GrantLock(lock, proc->waitProcLock, lockmode);
1313
			proc = ProcWakeup(proc, STATUS_OK);
B
Bruce Momjian 已提交
1314

1315
			/*
B
Bruce Momjian 已提交
1316 1317 1318
			 * ProcWakeup removes proc from the lock's waiting process queue
			 * and returns the next proc in chain; don't use proc's next-link,
			 * because it's been cleared.
1319
			 */
M
 
Marc G. Fournier 已提交
1320
		}
1321
		else
1322
		{
B
Bruce Momjian 已提交
1323
			/*
B
Bruce Momjian 已提交
1324
			 * Cannot wake this guy. Remember his request for later checks.
B
Bruce Momjian 已提交
1325
			 */
1326
			aheadRequests |= LOCKBIT_ON(lockmode);
1327
			proc = (PGPROC *) proc->links.next;
1328
		}
M
 
Marc G. Fournier 已提交
1329
	}
1330 1331

	Assert(waitQueue->size >= 0);
1332 1333
}

1334 1335 1336
/*
 * CheckDeadLock
 *
1337
 * We only get to this routine if we got SIGALRM after DeadlockTimeout
1338 1339
 * while waiting for a lock to be released by some other process.  Look
 * to see if there's a deadlock; if not, just return and continue waiting.
1340
 * (But signal ProcSleep to log a message, if log_lock_waits is true.)
1341 1342
 * If we have a real deadlock, remove ourselves from the lock's wait queue
 * and signal an error to ProcSleep.
1343 1344 1345
 *
 * NB: this is run inside a signal handler, so be very wary about what is done
 * here or in called routines.
1346
 */
1347
static void
1348
CheckDeadLock(void)
1349
{
1350 1351
	int			i;

1352
	/*
B
Bruce Momjian 已提交
1353 1354
	 * Acquire exclusive lock on the entire shared lock data structures. Must
	 * grab LWLocks in partition-number order to avoid LWLock deadlock.
1355 1356 1357 1358 1359 1360
	 *
	 * Note that the deadlock check interrupt had better not be enabled
	 * anywhere that this process itself holds lock partition locks, else this
	 * will wait forever.  Also note that LWLockAcquire creates a critical
	 * section, so that this routine cannot be interrupted by cancel/die
	 * interrupts.
1361
	 */
1362 1363
	for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
		LWLockAcquire(FirstLockMgrLock + i, LW_EXCLUSIVE);
1364

1365
	/*
1366 1367
	 * Check to see if we've been awoken by anyone in the interim.
	 *
1368
	 * If we have, we can return and resume our transaction -- happy day.
1369 1370
	 * Before we are awoken the process releasing the lock grants it to us so
	 * we know that we don't have to wait anymore.
1371
	 *
1372
	 * We check by looking to see if we've been unlinked from the wait queue.
B
Bruce Momjian 已提交
1373
	 * This is quicker than checking our semaphore's state, since no kernel
1374
	 * call is needed, and it is safe because we hold the lock partition lock.
1375
	 */
1376 1377
	if (MyProc->links.prev == NULL ||
		MyProc->links.next == NULL)
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		goto check_done;

#ifdef LOCK_DEBUG
	if (Debug_deadlocks)
		DumpAllLocks();
#endif

	/* Run the deadlock check, and set deadlock_state for use by ProcSleep */
	deadlock_state = DeadLockCheck(MyProc);

1388
	if (deadlock_state == DS_HARD_DEADLOCK)
B
Bruce Momjian 已提交
1389
	{
1390 1391 1392
		/*
		 * Oops.  We have a deadlock.
		 *
1393 1394 1395 1396
		 * Get this process out of wait state. (Note: we could do this more
		 * efficiently by relying on lockAwaited, but use this coding to
		 * preserve the flexibility to kill some other transaction than the
		 * one detecting the deadlock.)
1397 1398
		 *
		 * RemoveFromWaitQueue sets MyProc->waitStatus to STATUS_ERROR, so
1399 1400
		 * ProcSleep will report an error after we return from the signal
		 * handler.
1401 1402 1403
		 */
		Assert(MyProc->waitLock != NULL);
		RemoveFromWaitQueue(MyProc, LockTagHashCode(&(MyProc->waitLock->tag)));
1404

1405 1406 1407 1408 1409
		/*
		 * Unlock my semaphore so that the interrupted ProcSleep() call can
		 * finish.
		 */
		PGSemaphoreUnlock(&MyProc->sem);
1410

1411
		/*
1412 1413 1414 1415 1416 1417 1418 1419
		 * We're done here.  Transaction abort caused by the error that
		 * ProcSleep will raise will cause any other locks we hold to be
		 * released, thus allowing other processes to wake up; we don't need
		 * to do that here.  NOTE: an exception is that releasing locks we
		 * hold doesn't consider the possibility of waiters that were blocked
		 * behind us on the lock we just failed to get, and might now be
		 * wakable because we're not in front of them anymore.  However,
		 * RemoveFromWaitQueue took care of waking up any such processes.
1420 1421
		 */
	}
1422
	else if (log_lock_waits || deadlock_state == DS_BLOCKED_BY_AUTOVACUUM)
1423 1424 1425 1426
	{
		/*
		 * Unlock my semaphore so that the interrupted ProcSleep() call can
		 * print the log message (we daren't do it here because we are inside
B
Bruce Momjian 已提交
1427 1428
		 * a signal handler).  It will then sleep again until someone releases
		 * the lock.
1429 1430
		 *
		 * If blocked by autovacuum, this wakeup will enable ProcSleep to send
1431
		 * the canceling signal to the autovacuum worker.
1432 1433 1434
		 */
		PGSemaphoreUnlock(&MyProc->sem);
	}
1435 1436

	/*
B
Bruce Momjian 已提交
1437 1438 1439 1440 1441
	 * And release locks.  We do this in reverse order for two reasons: (1)
	 * Anyone else who needs more than one of the locks will be trying to lock
	 * them in increasing order; we don't want to release the other process
	 * until it can get all the locks it needs. (2) This avoids O(N^2)
	 * behavior inside LWLockRelease.
1442
	 */
1443
check_done:
B
Bruce Momjian 已提交
1444
	for (i = NUM_LOCK_PARTITIONS; --i >= 0;)
1445
		LWLockRelease(FirstLockMgrLock + i);
1446 1447 1448
}


1449 1450 1451 1452 1453 1454
/*
 * ProcWaitForSignal - wait for a signal from another backend.
 *
 * This can share the semaphore normally used for waiting for locks,
 * since a backend could never be waiting for a lock and a signal at
 * the same time.  As with locks, it's OK if the signal arrives just
B
Bruce Momjian 已提交
1455
 * before we actually reach the waiting state.	Also as with locks,
1456 1457
 * it's necessary that the caller be robust against bogus wakeups:
 * always check that the desired state has occurred, and wait again
B
Bruce Momjian 已提交
1458
 * if not.	This copes with possible "leftover" wakeups.
1459 1460 1461 1462
 */
void
ProcWaitForSignal(void)
{
1463
	PGSemaphoreLock(&MyProc->sem, true);
1464 1465 1466
}

/*
1467
 * ProcSendSignal - send a signal to a backend identified by PID
1468 1469
 */
void
1470
ProcSendSignal(int pid)
1471
{
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	PGPROC	   *proc = NULL;

	if (RecoveryInProgress())
	{
		/* use volatile pointer to prevent code rearrangement */
		volatile PROC_HDR *procglobal = ProcGlobal;

		SpinLockAcquire(ProcStructLock);

		/*
		 * Check to see whether it is the Startup process we wish to signal.
B
Bruce Momjian 已提交
1483 1484
		 * This call is made by the buffer manager when it wishes to wake up a
		 * process that has been waiting for a pin in so it can obtain a
1485
		 * cleanup lock using LockBufferForCleanup(). Startup is not a normal
B
Bruce Momjian 已提交
1486 1487
		 * backend, so BackendPidGetProc() will not return any pid at all. So
		 * we remember the information for this special case.
1488 1489 1490 1491 1492 1493 1494 1495 1496
		 */
		if (pid == procglobal->startupProcPid)
			proc = procglobal->startupProc;

		SpinLockRelease(ProcStructLock);
	}

	if (proc == NULL)
		proc = BackendPidGetProc(pid);
1497 1498

	if (proc != NULL)
1499
		PGSemaphoreUnlock(&proc->sem);
1500 1501 1502
}


1503 1504 1505 1506 1507 1508 1509 1510 1511
/*****************************************************************************
 * SIGALRM interrupt support
 *
 * Maybe these should be in pqsignal.c?
 *****************************************************************************/

/*
 * Enable the SIGALRM interrupt to fire after the specified delay
 *
1512
 * Delay is given in milliseconds.	Caller should be sure a SIGALRM
1513 1514
 * signal handler is installed before this is called.
 *
1515 1516
 * This code properly handles nesting of deadlock timeout alarms within
 * statement timeout alarms.
1517
 *
1518 1519 1520
 * Returns TRUE if okay, FALSE on failure.
 */
bool
1521
enable_sig_alarm(int delayms, bool is_statement_timeout)
1522
{
1523
	TimestampTz fin_time;
1524
	struct itimerval timeval;
1525

1526 1527
	if (is_statement_timeout)
	{
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
		/*
		 * Begin statement-level timeout
		 *
		 * Note that we compute statement_fin_time with reference to the
		 * statement_timestamp, but apply the specified delay without any
		 * correction; that is, we ignore whatever time has elapsed since
		 * statement_timestamp was set.  In the normal case only a small
		 * interval will have elapsed and so this doesn't matter, but there
		 * are corner cases (involving multi-statement query strings with
		 * embedded COMMIT or ROLLBACK) where we might re-initialize the
B
Bruce Momjian 已提交
1538 1539 1540 1541
		 * statement timeout long after initial receipt of the message. In
		 * such cases the enforcement of the statement timeout will be a bit
		 * inconsistent.  This annoyance is judged not worth the cost of
		 * performing an additional gettimeofday() here.
1542
		 */
1543
		Assert(!deadlock_timeout_active);
1544 1545
		fin_time = GetCurrentStatementStartTimestamp();
		fin_time = TimestampTzPlusMilliseconds(fin_time, delayms);
1546
		statement_fin_time = fin_time;
1547
		cancel_from_timeout = false;
1548
		statement_timeout_active = true;
1549 1550 1551 1552 1553 1554
	}
	else if (statement_timeout_active)
	{
		/*
		 * Begin deadlock timeout with statement-level timeout active
		 *
1555 1556 1557 1558
		 * Here, we want to interrupt at the closer of the two timeout times.
		 * If fin_time >= statement_fin_time then we need not touch the
		 * existing timer setting; else set up to interrupt at the deadlock
		 * timeout time.
1559 1560 1561
		 *
		 * NOTE: in this case it is possible that this routine will be
		 * interrupted by the previously-set timer alarm.  This is okay
B
Bruce Momjian 已提交
1562 1563 1564
		 * because the signal handler will do only what it should do according
		 * to the state variables.	The deadlock checker may get run earlier
		 * than normal, but that does no harm.
1565
		 */
1566 1567
		timeout_start_time = GetCurrentTimestamp();
		fin_time = TimestampTzPlusMilliseconds(timeout_start_time, delayms);
1568
		deadlock_timeout_active = true;
1569
		if (fin_time >= statement_fin_time)
1570 1571 1572 1573 1574 1575
			return true;
	}
	else
	{
		/* Begin deadlock timeout with no statement-level timeout */
		deadlock_timeout_active = true;
1576 1577 1578
		/* GetCurrentTimestamp can be expensive, so only do it if we must */
		if (log_lock_waits)
			timeout_start_time = GetCurrentTimestamp();
1579
	}
1580

1581
	/* If we reach here, okay to set the timer interrupt */
1582
	MemSet(&timeval, 0, sizeof(struct itimerval));
1583 1584
	timeval.it_value.tv_sec = delayms / 1000;
	timeval.it_value.tv_usec = (delayms % 1000) * 1000;
1585
	if (setitimer(ITIMER_REAL, &timeval, NULL))
1586
		return false;
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	return true;
}

/*
 * Cancel the SIGALRM timer, either for a deadlock timeout or a statement
 * timeout.  If a deadlock timeout is canceled, any active statement timeout
 * remains in force.
 *
 * Returns TRUE if okay, FALSE on failure.
 */
bool
disable_sig_alarm(bool is_statement_timeout)
{
	/*
	 * Always disable the interrupt if it is active; this avoids being
	 * interrupted by the signal handler and thereby possibly getting
	 * confused.
	 *
	 * We will re-enable the interrupt if necessary in CheckStatementTimeout.
	 */
	if (statement_timeout_active || deadlock_timeout_active)
1608
	{
1609
		struct itimerval timeval;
1610

1611
		MemSet(&timeval, 0, sizeof(struct itimerval));
1612
		if (setitimer(ITIMER_REAL, &timeval, NULL))
1613
		{
1614 1615 1616
			statement_timeout_active = false;
			cancel_from_timeout = false;
			deadlock_timeout_active = false;
1617 1618
			return false;
		}
1619 1620
	}

1621 1622 1623 1624
	/* Always cancel deadlock timeout, in case this is error cleanup */
	deadlock_timeout_active = false;

	/* Cancel or reschedule statement timeout */
1625
	if (is_statement_timeout)
1626
	{
1627
		statement_timeout_active = false;
1628 1629
		cancel_from_timeout = false;
	}
1630 1631 1632 1633 1634
	else if (statement_timeout_active)
	{
		if (!CheckStatementTimeout())
			return false;
	}
1635 1636 1637
	return true;
}

1638

1639
/*
1640 1641 1642
 * Check for statement timeout.  If the timeout time has come,
 * trigger a query-cancel interrupt; if not, reschedule the SIGALRM
 * interrupt to occur at the right time.
1643
 *
1644
 * Returns true if okay, false if failed to set the interrupt.
1645
 */
1646 1647
static bool
CheckStatementTimeout(void)
1648
{
1649
	TimestampTz now;
B
Bruce Momjian 已提交
1650

1651 1652 1653
	if (!statement_timeout_active)
		return true;			/* do nothing if not active */

1654
	now = GetCurrentTimestamp();
1655

1656
	if (now >= statement_fin_time)
1657
	{
1658 1659
		/* Time to die */
		statement_timeout_active = false;
1660
		cancel_from_timeout = true;
1661 1662 1663 1664
#ifdef HAVE_SETSID
		/* try to signal whole process group */
		kill(-MyProcPid, SIGINT);
#endif
1665
		kill(MyProcPid, SIGINT);
1666 1667 1668 1669
	}
	else
	{
		/* Not time yet, so (re)schedule the interrupt */
1670 1671
		long		secs;
		int			usecs;
1672 1673
		struct itimerval timeval;

1674 1675
		TimestampDifference(now, statement_fin_time,
							&secs, &usecs);
B
Bruce Momjian 已提交
1676

1677 1678 1679 1680 1681 1682
		/*
		 * It's possible that the difference is less than a microsecond;
		 * ensure we don't cancel, rather than set, the interrupt.
		 */
		if (secs == 0 && usecs == 0)
			usecs = 1;
1683
		MemSet(&timeval, 0, sizeof(struct itimerval));
1684 1685
		timeval.it_value.tv_sec = secs;
		timeval.it_value.tv_usec = usecs;
1686
		if (setitimer(ITIMER_REAL, &timeval, NULL))
1687 1688 1689
			return false;
	}

1690 1691
	return true;
}
1692 1693 1694


/*
1695
 * Signal handler for SIGALRM for normal user backends
1696 1697 1698 1699 1700
 *
 * Process deadlock check and/or statement timeout check, as needed.
 * To avoid various edge cases, we must be careful to do nothing
 * when there is nothing to be done.  We also need to be able to
 * reschedule the timer interrupt if called before end of statement.
1701 1702 1703 1704
 */
void
handle_sig_alarm(SIGNAL_ARGS)
{
1705 1706
	int			save_errno = errno;

1707 1708 1709 1710
	/* SIGALRM is cause for waking anything waiting on the process latch */
	if (MyProc)
		SetLatch(&MyProc->procLatch);

1711
	if (deadlock_timeout_active)
1712
	{
1713
		deadlock_timeout_active = false;
1714 1715
		CheckDeadLock();
	}
1716 1717 1718 1719 1720

	if (statement_timeout_active)
		(void) CheckStatementTimeout();

	errno = save_errno;
1721
}
1722 1723 1724 1725 1726 1727 1728

/*
 * Signal handler for SIGALRM in Startup process
 *
 * To avoid various edge cases, we must be careful to do nothing
 * when there is nothing to be done.  We also need to be able to
 * reschedule the timer interrupt if called before end of statement.
1729 1730 1731
 *
 * We set either deadlock_timeout_active or statement_timeout_active
 * or both. Interrupts are enabled if standby_timeout_active.
1732 1733
 */
bool
1734
enable_standby_sig_alarm(TimestampTz now, TimestampTz fin_time, bool deadlock_only)
1735
{
1736 1737
	TimestampTz deadlock_time = TimestampTzPlusMilliseconds(now,
															DeadlockTimeout);
1738

1739 1740 1741
	if (deadlock_only)
	{
		/*
1742
		 * Wake up at deadlock_time only, then wait forever
1743 1744 1745 1746 1747 1748 1749 1750
		 */
		statement_fin_time = deadlock_time;
		deadlock_timeout_active = true;
		statement_timeout_active = false;
	}
	else if (fin_time > deadlock_time)
	{
		/*
1751
		 * Wake up at deadlock_time, then again at fin_time
1752 1753 1754 1755 1756 1757 1758 1759 1760
		 */
		statement_fin_time = deadlock_time;
		statement_fin_time2 = fin_time;
		deadlock_timeout_active = true;
		statement_timeout_active = true;
	}
	else
	{
		/*
1761
		 * Wake only at fin_time because its fairly soon
1762 1763 1764 1765 1766
		 */
		statement_fin_time = fin_time;
		deadlock_timeout_active = false;
		statement_timeout_active = true;
	}
1767

1768 1769 1770 1771 1772
	if (deadlock_timeout_active || statement_timeout_active)
	{
		long		secs;
		int			usecs;
		struct itimerval timeval;
B
Bruce Momjian 已提交
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
		TimestampDifference(now, statement_fin_time,
							&secs, &usecs);
		if (secs == 0 && usecs == 0)
			usecs = 1;
		MemSet(&timeval, 0, sizeof(struct itimerval));
		timeval.it_value.tv_sec = secs;
		timeval.it_value.tv_usec = usecs;
		if (setitimer(ITIMER_REAL, &timeval, NULL))
			return false;
		standby_timeout_active = true;
	}
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

	return true;
}

bool
disable_standby_sig_alarm(void)
{
	/*
	 * Always disable the interrupt if it is active; this avoids being
	 * interrupted by the signal handler and thereby possibly getting
	 * confused.
	 *
	 * We will re-enable the interrupt if necessary in CheckStandbyTimeout.
	 */
	if (standby_timeout_active)
	{
		struct itimerval timeval;

		MemSet(&timeval, 0, sizeof(struct itimerval));
		if (setitimer(ITIMER_REAL, &timeval, NULL))
		{
			standby_timeout_active = false;
			return false;
		}
	}

	standby_timeout_active = false;

	return true;
}

/*
 * CheckStandbyTimeout() runs unconditionally in the Startup process
 * SIGALRM handler. Timers will only be set when InHotStandby.
 * We simply ignore any signals unless the timer has been set.
 */
static bool
CheckStandbyTimeout(void)
{
	TimestampTz now;
B
Bruce Momjian 已提交
1825
	bool		reschedule = false;
1826 1827 1828 1829 1830

	standby_timeout_active = false;

	now = GetCurrentTimestamp();

1831
	/*
B
Bruce Momjian 已提交
1832 1833
	 * Reschedule the timer if its not time to wake yet, or if we have both
	 * timers set and the first one has just been reached.
1834
	 */
1835
	if (now >= statement_fin_time)
1836 1837 1838 1839
	{
		if (deadlock_timeout_active)
		{
			/*
1840
			 * We're still waiting when we reach deadlock timeout, so send out
B
Bruce Momjian 已提交
1841 1842
			 * a request to have other backends check themselves for deadlock.
			 * Then continue waiting until statement_fin_time, if that's set.
1843 1844 1845 1846 1847
			 */
			SendRecoveryConflictWithBufferPin(PROCSIG_RECOVERY_CONFLICT_STARTUP_DEADLOCK);
			deadlock_timeout_active = false;

			/*
1848
			 * Begin second waiting period if required.
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
			 */
			if (statement_timeout_active)
			{
				reschedule = true;
				statement_fin_time = statement_fin_time2;
			}
		}
		else
		{
			/*
1859 1860
			 * We've now reached statement_fin_time, so ask all conflicts to
			 * leave, so we can press ahead with applying changes in recovery.
1861 1862 1863 1864
			 */
			SendRecoveryConflictWithBufferPin(PROCSIG_RECOVERY_CONFLICT_BUFFERPIN);
		}
	}
1865
	else
1866 1867 1868
		reschedule = true;

	if (reschedule)
1869 1870 1871 1872
	{
		long		secs;
		int			usecs;
		struct itimerval timeval;
B
Bruce Momjian 已提交
1873

1874 1875 1876 1877 1878 1879 1880 1881 1882
		TimestampDifference(now, statement_fin_time,
							&secs, &usecs);
		if (secs == 0 && usecs == 0)
			usecs = 1;
		MemSet(&timeval, 0, sizeof(struct itimerval));
		timeval.it_value.tv_sec = secs;
		timeval.it_value.tv_usec = usecs;
		if (setitimer(ITIMER_REAL, &timeval, NULL))
			return false;
1883
		standby_timeout_active = true;
1884 1885 1886 1887 1888 1889 1890 1891
	}

	return true;
}

void
handle_standby_sig_alarm(SIGNAL_ARGS)
{
B
Bruce Momjian 已提交
1892
	int			save_errno = errno;
1893 1894 1895 1896 1897 1898

	if (standby_timeout_active)
		(void) CheckStandbyTimeout();

	errno = save_errno;
}