planner.c 146.3 KB
Newer Older
1 2
/*-------------------------------------------------------------------------
 *
3
 * planner.c
4
 *	  The query optimizer external interface.
5
 *
B
Bruce Momjian 已提交
6
 * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
B
Add:  
Bruce Momjian 已提交
7
 * Portions Copyright (c) 1994, Regents of the University of California
8 9 10
 *
 *
 * IDENTIFICATION
11
 *	  src/backend/optimizer/plan/planner.c
12 13 14
 *
 *-------------------------------------------------------------------------
 */
M
Marc G. Fournier 已提交
15

16 17
#include "postgres.h"

18
#include <limits.h>
19
#include <math.h>
20

21
#include "access/htup_details.h"
22
#include "access/parallel.h"
23
#include "access/xact.h"
24
#include "executor/executor.h"
25
#include "executor/nodeAgg.h"
26
#include "foreign/fdwapi.h"
27
#include "miscadmin.h"
28
#include "lib/bipartite_match.h"
B
Bruce Momjian 已提交
29
#include "nodes/makefuncs.h"
30
#include "nodes/nodeFuncs.h"
31 32 33
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
B
Bruce Momjian 已提交
34
#include "optimizer/clauses.h"
35 36
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
37
#include "optimizer/paths.h"
38
#include "optimizer/plancat.h"
B
Bruce Momjian 已提交
39
#include "optimizer/planmain.h"
40 41
#include "optimizer/planner.h"
#include "optimizer/prep.h"
42
#include "optimizer/subselect.h"
43
#include "optimizer/tlist.h"
44
#include "parser/analyze.h"
45
#include "parser/parsetree.h"
46
#include "parser/parse_agg.h"
47
#include "rewrite/rewriteManip.h"
48
#include "storage/dsm_impl.h"
49
#include "utils/rel.h"
50
#include "utils/selfuncs.h"
51

52

53
/* GUC parameter */
54
double		cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION;
55

56 57 58 59
/* Hook for plugins to get control in planner() */
planner_hook_type planner_hook = NULL;


60
/* Expression kind codes for preprocess_expression */
61 62 63
#define EXPRKIND_QUAL			0
#define EXPRKIND_TARGET			1
#define EXPRKIND_RTFUNC			2
B
Bruce Momjian 已提交
64
#define EXPRKIND_RTFUNC_LATERAL 3
65
#define EXPRKIND_VALUES			4
B
Bruce Momjian 已提交
66
#define EXPRKIND_VALUES_LATERAL 5
67 68 69
#define EXPRKIND_LIMIT			6
#define EXPRKIND_APPINFO		7
#define EXPRKIND_PHV			8
B
Bruce Momjian 已提交
70
#define EXPRKIND_TABLESAMPLE	9
71

72 73 74 75 76
/* Passthrough data for standard_qp_callback */
typedef struct
{
	List	   *tlist;			/* preprocessed query targetlist */
	List	   *activeWindows;	/* active windows, if any */
77
	List	   *groupClause;	/* overrides parse->groupClause */
78
} standard_qp_extra;
79

80
/* Local functions */
81 82
static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
83
static Plan *inheritance_planner(PlannerInfo *root);
84
static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
85
static void preprocess_rowmarks(PlannerInfo *root);
86
static double preprocess_limit(PlannerInfo *root,
B
Bruce Momjian 已提交
87
				 double tuple_fraction,
B
Bruce Momjian 已提交
88
				 int64 *offset_est, int64 *count_est);
89
static bool limit_needed(Query *parse);
90 91 92
static List *preprocess_groupclause(PlannerInfo *root, List *force);
static List *extract_rollup_sets(List *groupingSets);
static List *reorder_grouping_sets(List *groupingSets, List *sortclause);
93
static void standard_qp_callback(PlannerInfo *root, void *extra);
94 95
static bool choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
96
					   double path_rows, int path_width,
97
					   Path *cheapest_path, Path *sorted_path,
98
					   double dNumGroups, AggClauseCosts *agg_costs);
99 100
static bool choose_hashed_distinct(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
101 102 103 104
					   double path_rows, int path_width,
					   Cost cheapest_startup_cost, Cost cheapest_total_cost,
					   Cost sorted_startup_cost, Cost sorted_total_cost,
					   List *sorted_pathkeys,
105
					   double dNumDistinctRows);
106
static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
107
					   AttrNumber **groupColIdx, bool *need_tlist_eval);
108
static int	get_grouping_column_index(Query *parse, TargetEntry *tle);
109
static void locate_grouping_columns(PlannerInfo *root,
B
Bruce Momjian 已提交
110 111 112
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx);
113
static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
T
Tom Lane 已提交
114
static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists);
115 116
static List *make_windowInputTargetList(PlannerInfo *root,
						   List *tlist, List *activeWindows);
T
Tom Lane 已提交
117
static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
118
						 List *tlist);
T
Tom Lane 已提交
119
static void get_column_info_for_window(PlannerInfo *root, WindowClause *wc,
120 121 122 123 124 125 126 127
						   List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators);
128
static Plan *build_grouping_chain(PlannerInfo *root,
B
Bruce Momjian 已提交
129 130 131 132 133 134 135 136 137
					 Query *parse,
					 List *tlist,
					 bool need_sort_for_grouping,
					 List *rollup_groupclauses,
					 List *rollup_lists,
					 AttrNumber *groupColIdx,
					 AggClauseCosts *agg_costs,
					 long numGroups,
					 Plan *result_plan);
138 139 140

/*****************************************************************************
 *
141 142
 *	   Query optimizer entry point
 *
143 144 145 146 147 148 149 150
 * To support loadable plugins that monitor or modify planner behavior,
 * we provide a hook variable that lets a plugin get control before and
 * after the standard planning process.  The plugin would normally call
 * standard_planner().
 *
 * Note to plugin authors: standard_planner() scribbles on its Query input,
 * so you'd better copy that data structure if you want to plan more than once.
 *
151
 *****************************************************************************/
152
PlannedStmt *
153
planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
154 155 156 157 158 159 160 161 162 163 164 165
{
	PlannedStmt *result;

	if (planner_hook)
		result = (*planner_hook) (parse, cursorOptions, boundParams);
	else
		result = standard_planner(parse, cursorOptions, boundParams);
	return result;
}

PlannedStmt *
standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
166
{
167
	PlannedStmt *result;
168
	PlannerGlobal *glob;
169
	double		tuple_fraction;
170 171
	PlannerInfo *root;
	Plan	   *top_plan;
172
	ListCell   *lp,
173
			   *lr;
174

175 176 177 178 179
	/* Cursor options may come from caller or from DECLARE CURSOR stmt */
	if (parse->utilityStmt &&
		IsA(parse->utilityStmt, DeclareCursorStmt))
		cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;

180
	/*
181 182 183 184
	 * Set up global state for this planner invocation.  This data is needed
	 * across all levels of sub-Query that might exist in the given command,
	 * so we keep it in a separate struct that's linked to by each per-Query
	 * PlannerInfo.
185
	 */
186
	glob = makeNode(PlannerGlobal);
187

188
	glob->boundParams = boundParams;
189
	glob->subplans = NIL;
190
	glob->subroots = NIL;
191
	glob->rewindPlanIDs = NULL;
192
	glob->finalrtable = NIL;
193
	glob->finalrowmarks = NIL;
194
	glob->resultRelations = NIL;
195
	glob->relationOids = NIL;
196
	glob->invalItems = NIL;
197
	glob->nParamExec = 0;
198
	glob->lastPHId = 0;
199
	glob->lastRowMarkId = 0;
R
Robert Haas 已提交
200
	glob->lastPlanNodeId = 0;
201
	glob->transientPlan = false;
202
	glob->hasRowSecurity = false;
203
	glob->hasForeignJoin = false;
204

205
	/*
206 207 208 209 210
	 * Assess whether it's feasible to use parallel mode for this query. We
	 * can't do this in a standalone backend, or if the command will try to
	 * modify any data, or if this is a cursor operation, or if GUCs are set
	 * to values that don't permit parallelism, or if parallel-unsafe
	 * functions are present in the query tree.
211
	 *
212 213
	 * For now, we don't try to use parallel mode if we're running inside a
	 * parallel worker.  We might eventually be able to relax this
214 215
	 * restriction, but for now it seems best not to have parallel workers
	 * trying to create their own parallel workers.
216 217 218 219 220 221
	 *
	 * We can't use parallelism in serializable mode because the predicate
	 * locking code is not parallel-aware.  It's not catastrophic if someone
	 * tries to run a parallel plan in serializable mode; it just won't get
	 * any workers and will run serially.  But it seems like a good heuristic
	 * to assume that the same serialization level will be in effect at plan
222 223
	 * time and execution time, so don't generate a parallel plan if we're in
	 * serializable mode.
224 225 226 227
	 */
	glob->parallelModeOK = (cursorOptions & CURSOR_OPT_PARALLEL_OK) != 0 &&
		IsUnderPostmaster && dynamic_shared_memory_type != DSM_IMPL_NONE &&
		parse->commandType == CMD_SELECT && !parse->hasModifyingCTE &&
228 229 230
		parse->utilityStmt == NULL && max_parallel_degree > 0 &&
		!IsParallelWorker() && !IsolationIsSerializable() &&
		!has_parallel_hazard((Node *) parse, true);
231 232 233 234 235 236 237 238 239 240 241 242

	/*
	 * glob->parallelModeOK should tell us whether it's necessary to impose
	 * the parallel mode restrictions, but we don't actually want to impose
	 * them unless we choose a parallel plan, so that people who mislabel
	 * their functions but don't use parallelism anyway aren't harmed.
	 * However, it's useful for testing purposes to be able to force the
	 * restrictions to be imposed whenever a parallel plan is actually chosen
	 * or not.
	 *
	 * (It's been suggested that we should always impose these restrictions
	 * whenever glob->parallelModeOK is true, so that it's easier to notice
243 244 245
	 * incorrectly-labeled functions sooner.  That might be the right thing to
	 * do, but for now I've taken this approach.  We could also control this
	 * with a GUC.)
246 247 248 249 250 251 252
	 */
#ifdef FORCE_PARALLEL_MODE
	glob->parallelModeNeeded = glob->parallelModeOK;
#else
	glob->parallelModeNeeded = false;
#endif

253
	/* Determine what fraction of the plan is likely to be scanned */
254
	if (cursorOptions & CURSOR_OPT_FAST_PLAN)
255 256
	{
		/*
B
Bruce Momjian 已提交
257
		 * We have no real idea how many tuples the user will ultimately FETCH
258 259 260 261 262 263 264 265
		 * from a cursor, but it is often the case that he doesn't want 'em
		 * all, or would prefer a fast-start plan anyway so that he can
		 * process some of the tuples sooner.  Use a GUC parameter to decide
		 * what fraction to optimize for.
		 */
		tuple_fraction = cursor_tuple_fraction;

		/*
266
		 * We document cursor_tuple_fraction as simply being a fraction, which
B
Bruce Momjian 已提交
267
		 * means the edge cases 0 and 1 have to be treated specially here.  We
268
		 * convert 1 to 0 ("all the tuples") and 0 to a very small fraction.
269
		 */
270 271 272 273
		if (tuple_fraction >= 1.0)
			tuple_fraction = 0.0;
		else if (tuple_fraction <= 0.0)
			tuple_fraction = 1e-10;
274 275 276 277 278 279 280
	}
	else
	{
		/* Default assumption is we need all the tuples */
		tuple_fraction = 0.0;
	}

281
	/* primary planning entry point (may recurse for subqueries) */
282 283
	top_plan = subquery_planner(glob, parse, NULL,
								false, tuple_fraction, &root);
284

285
	/*
B
Bruce Momjian 已提交
286 287
	 * If creating a plan for a scrollable cursor, make sure it can run
	 * backwards on demand.  Add a Material node at the top at need.
288
	 */
289
	if (cursorOptions & CURSOR_OPT_SCROLL)
290
	{
291 292
		if (!ExecSupportsBackwardScan(top_plan))
			top_plan = materialize_finished_plan(top_plan);
293 294
	}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	/*
	 * If any Params were generated, run through the plan tree and compute
	 * each plan node's extParam/allParam sets.  Ideally we'd merge this into
	 * set_plan_references' tree traversal, but for now it has to be separate
	 * because we need to visit subplans before not after main plan.
	 */
	if (glob->nParamExec > 0)
	{
		Assert(list_length(glob->subplans) == list_length(glob->subroots));
		forboth(lp, glob->subplans, lr, glob->subroots)
		{
			Plan	   *subplan = (Plan *) lfirst(lp);
			PlannerInfo *subroot = (PlannerInfo *) lfirst(lr);

			SS_finalize_plan(subroot, subplan);
		}
		SS_finalize_plan(root, top_plan);
	}

314
	/* final cleanup of the plan */
315
	Assert(glob->finalrtable == NIL);
316
	Assert(glob->finalrowmarks == NIL);
317
	Assert(glob->resultRelations == NIL);
318
	top_plan = set_plan_references(root, top_plan);
319
	/* ... and the subplans (both regular subplans and initplans) */
320 321
	Assert(list_length(glob->subplans) == list_length(glob->subroots));
	forboth(lp, glob->subplans, lr, glob->subroots)
322
	{
B
Bruce Momjian 已提交
323
		Plan	   *subplan = (Plan *) lfirst(lp);
324
		PlannerInfo *subroot = (PlannerInfo *) lfirst(lr);
325

326
		lfirst(lp) = set_plan_references(subroot, subplan);
327
	}
328 329 330 331 332

	/* build the PlannedStmt result */
	result = makeNode(PlannedStmt);

	result->commandType = parse->commandType;
333
	result->queryId = parse->queryId;
334
	result->hasReturning = (parse->returningList != NIL);
335
	result->hasModifyingCTE = parse->hasModifyingCTE;
336
	result->canSetTag = parse->canSetTag;
337
	result->transientPlan = glob->transientPlan;
338
	result->planTree = top_plan;
339
	result->rtable = glob->finalrtable;
340
	result->resultRelations = glob->resultRelations;
341
	result->utilityStmt = parse->utilityStmt;
342
	result->subplans = glob->subplans;
343
	result->rewindPlanIDs = glob->rewindPlanIDs;
344
	result->rowMarks = glob->finalrowmarks;
345
	result->relationOids = glob->relationOids;
346
	result->invalItems = glob->invalItems;
347
	result->nParamExec = glob->nParamExec;
348
	result->hasRowSecurity = glob->hasRowSecurity;
349
	result->parallelModeNeeded = glob->parallelModeNeeded;
350
	result->hasForeignJoin = glob->hasForeignJoin;
351 352

	return result;
353
}
354

355

356
/*--------------------
357 358 359
 * subquery_planner
 *	  Invokes the planner on a subquery.  We recurse to here for each
 *	  sub-SELECT found in the query tree.
360
 *
361
 * glob is the global state for the current planner run.
362
 * parse is the querytree produced by the parser & rewriter.
363 364
 * parent_root is the immediate parent Query's info (NULL at the top level).
 * hasRecursion is true if this is a recursive WITH query.
365
 * tuple_fraction is the fraction of tuples we expect will be retrieved.
366
 * tuple_fraction is interpreted as explained for grouping_planner, below.
367
 *
368 369
 * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
 * among other things this tells the output sort ordering of the plan.
370
 *
371
 * Basically, this routine does the stuff that should only be done once
372 373 374 375 376
 * per Query object.  It then calls grouping_planner.  At one time,
 * grouping_planner could be invoked recursively on the same Query object;
 * that's not currently true, but we keep the separation between the two
 * routines anyway, in case we need it again someday.
 *
377 378
 * subquery_planner will be called recursively to handle sub-Query nodes
 * found within the query's expressions and rangetable.
379
 *
380 381
 * Returns a query plan.
 *--------------------
382
 */
383
Plan *
384
subquery_planner(PlannerGlobal *glob, Query *parse,
385 386
				 PlannerInfo *parent_root,
				 bool hasRecursion, double tuple_fraction,
387
				 PlannerInfo **subroot)
388
{
389
	PlannerInfo *root;
390
	Plan	   *plan;
391
	List	   *newWithCheckOptions;
392
	List	   *newHaving;
393
	bool		hasOuterJoins;
394
	ListCell   *l;
395

396 397 398
	/* Create a PlannerInfo data structure for this subquery */
	root = makeNode(PlannerInfo);
	root->parse = parse;
399
	root->glob = glob;
400 401
	root->query_level = parent_root ? parent_root->query_level + 1 : 1;
	root->parent_root = parent_root;
402
	root->plan_params = NIL;
403
	root->outer_params = NULL;
404
	root->planner_cxt = CurrentMemoryContext;
405
	root->init_plans = NIL;
406
	root->cte_plan_ids = NIL;
407
	root->multiexpr_params = NIL;
408
	root->eq_classes = NIL;
409
	root->append_rel_list = NIL;
410
	root->rowMarks = NIL;
411
	root->hasInheritedTarget = false;
412
	root->grouping_map = NULL;
413

414 415
	root->hasRecursion = hasRecursion;
	if (hasRecursion)
416
		root->wt_param_id = SS_assign_special_param(root);
417 418 419 420 421
	else
		root->wt_param_id = -1;
	root->non_recursive_plan = NULL;

	/*
422 423
	 * If there is a WITH list, process each WITH query and build an initplan
	 * SubPlan structure for it.
424 425 426 427
	 */
	if (parse->cteList)
		SS_process_ctes(root);

428
	/*
429 430 431 432
	 * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
	 * to transform them into joins.  Note that this step does not descend
	 * into subqueries; if we pull up any subqueries below, their SubLinks are
	 * processed just before pulling them up.
433 434
	 */
	if (parse->hasSubLinks)
435
		pull_up_sublinks(root);
436

437
	/*
438 439
	 * Scan the rangetable for set-returning functions, and inline them if
	 * possible (producing subqueries that might get pulled up next).
440
	 * Recursion issues here are handled in the same way as for SubLinks.
441 442 443
	 */
	inline_set_returning_functions(root);

444
	/*
445 446
	 * Check to see if any subqueries in the jointree can be merged into this
	 * query.
447
	 */
448
	pull_up_subqueries(root);
B
Bruce Momjian 已提交
449

450
	/*
451 452 453
	 * If this is a simple UNION ALL query, flatten it into an appendrel. We
	 * do this now because it requires applying pull_up_subqueries to the leaf
	 * queries of the UNION ALL, which weren't touched above because they
454 455 456 457 458
	 * weren't referenced by the jointree (they will be after we do this).
	 */
	if (parse->setOperations)
		flatten_simple_union_all(root);

459
	/*
B
Bruce Momjian 已提交
460 461
	 * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
	 * avoid the expense of doing flatten_join_alias_vars().  Also check for
462 463 464
	 * outer joins --- if none, we can skip reduce_outer_joins().  And check
	 * for LATERAL RTEs, too.  This must be done after we have done
	 * pull_up_subqueries(), of course.
465
	 */
466
	root->hasJoinRTEs = false;
467
	root->hasLateralRTEs = false;
468
	hasOuterJoins = false;
469
	foreach(l, parse->rtable)
470
	{
471
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
472 473 474

		if (rte->rtekind == RTE_JOIN)
		{
475
			root->hasJoinRTEs = true;
476
			if (IS_OUTER_JOIN(rte->jointype))
477
				hasOuterJoins = true;
478
		}
479 480
		if (rte->lateral)
			root->hasLateralRTEs = true;
481 482
	}

483
	/*
B
Bruce Momjian 已提交
484
	 * Preprocess RowMark information.  We need to do this after subquery
485 486 487
	 * pullup (so that all non-inherited RTEs are present) and before
	 * inheritance expansion (so that the info is available for
	 * expand_inherited_tables to examine and modify).
488
	 */
489
	preprocess_rowmarks(root);
490

491 492 493 494 495 496 497 498 499 500
	/*
	 * Expand any rangetable entries that are inheritance sets into "append
	 * relations".  This can add entries to the rangetable, but they must be
	 * plain base relations not joins, so it's OK (and marginally more
	 * efficient) to do it after checking for join RTEs.  We must do it after
	 * pulling up subqueries, else we'd fail to handle inherited tables in
	 * subqueries.
	 */
	expand_inherited_tables(root);

501 502
	/*
	 * Set hasHavingQual to remember if HAVING clause is present.  Needed
B
Bruce Momjian 已提交
503 504
	 * because preprocess_expression will reduce a constant-true condition to
	 * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
505
	 */
506
	root->hasHavingQual = (parse->havingQual != NULL);
507

508 509 510
	/* Clear this flag; might get set in distribute_qual_to_rels */
	root->hasPseudoConstantQuals = false;

511
	/*
512 513 514 515
	 * Do expression preprocessing on targetlist and quals, as well as other
	 * random expressions in the querytree.  Note that we do not need to
	 * handle sort/group expressions explicitly, because they are actually
	 * part of the targetlist.
516
	 */
517
	parse->targetList = (List *)
518
		preprocess_expression(root, (Node *) parse->targetList,
519 520
							  EXPRKIND_TARGET);

521 522 523 524 525 526 527 528 529 530 531 532
	newWithCheckOptions = NIL;
	foreach(l, parse->withCheckOptions)
	{
		WithCheckOption *wco = (WithCheckOption *) lfirst(l);

		wco->qual = preprocess_expression(root, wco->qual,
										  EXPRKIND_QUAL);
		if (wco->qual != NULL)
			newWithCheckOptions = lappend(newWithCheckOptions, wco);
	}
	parse->withCheckOptions = newWithCheckOptions;

533 534 535 536
	parse->returningList = (List *)
		preprocess_expression(root, (Node *) parse->returningList,
							  EXPRKIND_TARGET);

537
	preprocess_qual_conditions(root, (Node *) parse->jointree);
538

539
	parse->havingQual = preprocess_expression(root, parse->havingQual,
540 541
											  EXPRKIND_QUAL);

542 543 544 545 546 547 548 549 550 551 552
	foreach(l, parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(l);

		/* partitionClause/orderClause are sort/group expressions */
		wc->startOffset = preprocess_expression(root, wc->startOffset,
												EXPRKIND_LIMIT);
		wc->endOffset = preprocess_expression(root, wc->endOffset,
											  EXPRKIND_LIMIT);
	}

553
	parse->limitOffset = preprocess_expression(root, parse->limitOffset,
554
											   EXPRKIND_LIMIT);
555
	parse->limitCount = preprocess_expression(root, parse->limitCount,
556 557
											  EXPRKIND_LIMIT);

558 559 560 561 562 563 564 565 566 567 568
	if (parse->onConflict)
	{
		parse->onConflict->onConflictSet = (List *)
			preprocess_expression(root, (Node *) parse->onConflict->onConflictSet,
								  EXPRKIND_TARGET);

		parse->onConflict->onConflictWhere =
			preprocess_expression(root, (Node *) parse->onConflict->onConflictWhere,
								  EXPRKIND_QUAL);
	}

569 570
	root->append_rel_list = (List *)
		preprocess_expression(root, (Node *) root->append_rel_list,
571
							  EXPRKIND_APPINFO);
572

573
	/* Also need to preprocess expressions within RTEs */
574
	foreach(l, parse->rtable)
575
	{
576
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
577
		int			kind;
578

579 580 581
		if (rte->rtekind == RTE_RELATION)
		{
			if (rte->tablesample)
582 583 584
				rte->tablesample = (TableSampleClause *)
					preprocess_expression(root,
										  (Node *) rte->tablesample,
585 586 587
										  EXPRKIND_TABLESAMPLE);
		}
		else if (rte->rtekind == RTE_SUBQUERY)
588 589 590 591 592 593 594 595 596 597 598 599 600 601
		{
			/*
			 * We don't want to do all preprocessing yet on the subquery's
			 * expressions, since that will happen when we plan it.  But if it
			 * contains any join aliases of our level, those have to get
			 * expanded now, because planning of the subquery won't do it.
			 * That's only possible if the subquery is LATERAL.
			 */
			if (rte->lateral && root->hasJoinRTEs)
				rte->subquery = (Query *)
					flatten_join_alias_vars(root, (Node *) rte->subquery);
		}
		else if (rte->rtekind == RTE_FUNCTION)
		{
602
			/* Preprocess the function expression(s) fully */
603
			kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC;
604
			rte->functions = (List *) preprocess_expression(root, (Node *) rte->functions, kind);
605
		}
606
		else if (rte->rtekind == RTE_VALUES)
607 608 609
		{
			/* Preprocess the values lists fully */
			kind = rte->lateral ? EXPRKIND_VALUES_LATERAL : EXPRKIND_VALUES;
610
			rte->values_lists = (List *)
611 612
				preprocess_expression(root, (Node *) rte->values_lists, kind);
		}
613 614
	}

615
	/*
B
Bruce Momjian 已提交
616 617 618
	 * In some cases we may want to transfer a HAVING clause into WHERE. We
	 * cannot do so if the HAVING clause contains aggregates (obviously) or
	 * volatile functions (since a HAVING clause is supposed to be executed
619 620 621 622
	 * only once per group).  Also, it may be that the clause is so expensive
	 * to execute that we're better off doing it only once per group, despite
	 * the loss of selectivity.  This is hard to estimate short of doing the
	 * entire planning process twice, so we use a heuristic: clauses
B
Bruce Momjian 已提交
623
	 * containing subplans are left in HAVING.  Otherwise, we move or copy the
B
Bruce Momjian 已提交
624
	 * HAVING clause into WHERE, in hopes of eliminating tuples before
625 626
	 * aggregation instead of after.
	 *
627 628 629 630 631 632 633 634
	 * If the query has explicit grouping then we can simply move such a
	 * clause into WHERE; any group that fails the clause will not be in the
	 * output because none of its tuples will reach the grouping or
	 * aggregation stage.  Otherwise we must have a degenerate (variable-free)
	 * HAVING clause, which we put in WHERE so that query_planner() can use it
	 * in a gating Result node, but also keep in HAVING to ensure that we
	 * don't emit a bogus aggregated row. (This could be done better, but it
	 * seems not worth optimizing.)
635 636
	 *
	 * Note that both havingQual and parse->jointree->quals are in
B
Bruce Momjian 已提交
637 638
	 * implicitly-ANDed-list form at this point, even though they are declared
	 * as Node *.
639 640
	 */
	newHaving = NIL;
641
	foreach(l, (List *) parse->havingQual)
642
	{
643
		Node	   *havingclause = (Node *) lfirst(l);
644

645 646
		if (contain_agg_clause(havingclause) ||
			contain_volatile_functions(havingclause) ||
647
			contain_subplans(havingclause))
648 649
		{
			/* keep it in HAVING */
650
			newHaving = lappend(newHaving, havingclause);
651
		}
652
		else if (parse->groupClause && !parse->groupingSets)
653 654
		{
			/* move it to WHERE */
655 656
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals, havingclause);
657 658 659 660 661 662 663 664 665
		}
		else
		{
			/* put a copy in WHERE, keep it in HAVING */
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals,
						copyObject(havingclause));
			newHaving = lappend(newHaving, havingclause);
		}
666 667 668
	}
	parse->havingQual = (Node *) newHaving;

669
	/*
B
Bruce Momjian 已提交
670 671
	 * If we have any outer joins, try to reduce them to plain inner joins.
	 * This step is most easily done after we've done expression
B
Bruce Momjian 已提交
672
	 * preprocessing.
673
	 */
674
	if (hasOuterJoins)
675
		reduce_outer_joins(root);
676

677
	/*
B
Bruce Momjian 已提交
678 679
	 * Do the main planning.  If we have an inherited target relation, that
	 * needs special processing, else go straight to grouping_planner.
680
	 */
681
	if (parse->resultRelation &&
682 683
		rt_fetch(parse->resultRelation, parse->rtable)->inh)
		plan = inheritance_planner(root);
684
	else
685
	{
686
		plan = grouping_planner(root, tuple_fraction);
687 688 689
		/* If it's not SELECT, we need a ModifyTable node */
		if (parse->commandType != CMD_SELECT)
		{
690
			List	   *withCheckOptionLists;
B
Bruce Momjian 已提交
691 692
			List	   *returningLists;
			List	   *rowMarks;
693

694
			/*
695 696
			 * Set up the WITH CHECK OPTION and RETURNING lists-of-lists, if
			 * needed.
697
			 */
698 699 700 701 702
			if (parse->withCheckOptions)
				withCheckOptionLists = list_make1(parse->withCheckOptions);
			else
				withCheckOptionLists = NIL;

703
			if (parse->returningList)
704
				returningLists = list_make1(parse->returningList);
705 706 707
			else
				returningLists = NIL;

708
			/*
B
Bruce Momjian 已提交
709 710 711
			 * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node
			 * will have dealt with fetching non-locked marked rows, else we
			 * need to have ModifyTable do that.
712 713 714 715 716 717
			 */
			if (parse->rowMarks)
				rowMarks = NIL;
			else
				rowMarks = root->rowMarks;

T
Tom Lane 已提交
718 719
			plan = (Plan *) make_modifytable(root,
											 parse->commandType,
720
											 parse->canSetTag,
721
											 parse->resultRelation,
722
									   list_make1_int(parse->resultRelation),
723
											 list_make1(plan),
724
											 withCheckOptionLists,
725 726
											 returningLists,
											 rowMarks,
727
											 parse->onConflict,
728
											 SS_assign_special_param(root));
729 730
		}
	}
731 732

	/*
733 734 735 736 737 738 739 740 741
	 * Capture the set of outer-level param IDs we have access to, for use in
	 * extParam/allParam calculations later.
	 */
	SS_identify_outer_params(root);

	/*
	 * If any initPlans were created in this query level, attach them to the
	 * topmost plan node for the level, and increment that node's cost to
	 * account for them.
742
	 */
743
	SS_attach_initplans(root, plan);
B
Bruce Momjian 已提交
744

745 746 747
	/* Return internal info if caller wants it */
	if (subroot)
		*subroot = root;
748

749
	return plan;
750
}
751

752 753 754 755
/*
 * preprocess_expression
 *		Do subquery_planner's preprocessing work for an expression,
 *		which can be a targetlist, a WHERE clause (including JOIN/ON
756
 *		conditions), a HAVING clause, or a few other things.
757 758
 */
static Node *
759
preprocess_expression(PlannerInfo *root, Node *expr, int kind)
760
{
761
	/*
B
Bruce Momjian 已提交
762 763 764
	 * Fall out quickly if expression is empty.  This occurs often enough to
	 * be worth checking.  Note that null->null is the correct conversion for
	 * implicit-AND result format, too.
765 766 767 768
	 */
	if (expr == NULL)
		return NULL;

769 770
	/*
	 * If the query has any join RTEs, replace join alias variables with
771 772
	 * base-relation variables.  We must do this before sublink processing,
	 * else sublinks expanded out from join aliases would not get processed.
773 774 775
	 * We can skip it in non-lateral RTE functions, VALUES lists, and
	 * TABLESAMPLE clauses, however, since they can't contain any Vars of the
	 * current query level.
776
	 */
777
	if (root->hasJoinRTEs &&
778 779 780
		!(kind == EXPRKIND_RTFUNC ||
		  kind == EXPRKIND_VALUES ||
		  kind == EXPRKIND_TABLESAMPLE))
781
		expr = flatten_join_alias_vars(root, expr);
782

783
	/*
784
	 * Simplify constant expressions.
785
	 *
786
	 * Note: an essential effect of this is to convert named-argument function
B
Bruce Momjian 已提交
787 788 789 790 791
	 * calls to positional notation and insert the current actual values of
	 * any default arguments for functions.  To ensure that happens, we *must*
	 * process all expressions here.  Previous PG versions sometimes skipped
	 * const-simplification if it didn't seem worth the trouble, but we can't
	 * do that anymore.
792
	 *
793 794 795 796 797
	 * Note: this also flattens nested AND and OR expressions into N-argument
	 * form.  All processing of a qual expression after this point must be
	 * careful to maintain AND/OR flatness --- that is, do not generate a tree
	 * with AND directly under AND, nor OR directly under OR.
	 */
798
	expr = eval_const_expressions(root, expr);
799 800 801

	/*
	 * If it's a qual or havingQual, canonicalize it.
802
	 */
803
	if (kind == EXPRKIND_QUAL)
804
	{
805
		expr = (Node *) canonicalize_qual((Expr *) expr);
806 807 808 809 810 811

#ifdef OPTIMIZER_DEBUG
		printf("After canonicalize_qual()\n");
		pprint(expr);
#endif
	}
812

813
	/* Expand SubLinks to SubPlans */
814
	if (root->parse->hasSubLinks)
815
		expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
816

817
	/*
B
Bruce Momjian 已提交
818 819
	 * XXX do not insert anything here unless you have grokked the comments in
	 * SS_replace_correlation_vars ...
820 821
	 */

822
	/* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
823 824
	if (root->query_level > 1)
		expr = SS_replace_correlation_vars(root, expr);
825

826
	/*
B
Bruce Momjian 已提交
827 828 829
	 * If it's a qual or havingQual, convert it to implicit-AND format. (We
	 * don't want to do this before eval_const_expressions, since the latter
	 * would be unable to simplify a top-level AND correctly. Also,
830
	 * SS_process_sublinks expects explicit-AND format.)
831 832 833 834
	 */
	if (kind == EXPRKIND_QUAL)
		expr = (Node *) make_ands_implicit((Expr *) expr);

835 836 837 838 839 840 841 842 843
	return expr;
}

/*
 * preprocess_qual_conditions
 *		Recursively scan the query's jointree and do subquery_planner's
 *		preprocessing work on each qual condition found therein.
 */
static void
844
preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
845 846 847 848 849 850 851 852 853 854
{
	if (jtnode == NULL)
		return;
	if (IsA(jtnode, RangeTblRef))
	{
		/* nothing to do here */
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
855
		ListCell   *l;
856

857
		foreach(l, f->fromlist)
858
			preprocess_qual_conditions(root, lfirst(l));
859

860
		f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
861 862 863 864 865
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

866 867
		preprocess_qual_conditions(root, j->larg);
		preprocess_qual_conditions(root, j->rarg);
868

869
		j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
870 871
	}
	else
872 873
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
874
}
875

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
/*
 * preprocess_phv_expression
 *	  Do preprocessing on a PlaceHolderVar expression that's been pulled up.
 *
 * If a LATERAL subquery references an output of another subquery, and that
 * output must be wrapped in a PlaceHolderVar because of an intermediate outer
 * join, then we'll push the PlaceHolderVar expression down into the subquery
 * and later pull it back up during find_lateral_references, which runs after
 * subquery_planner has preprocessed all the expressions that were in the
 * current query level to start with.  So we need to preprocess it then.
 */
Expr *
preprocess_phv_expression(PlannerInfo *root, Expr *expr)
{
	return (Expr *) preprocess_expression(root, (Node *) expr, EXPRKIND_PHV);
}

893
/*
894 895 896 897
 * inheritance_planner
 *	  Generate a plan in the case where the result relation is an
 *	  inheritance set.
 *
898 899 900 901
 * We have to handle this case differently from cases where a source relation
 * is an inheritance set. Source inheritance is expanded at the bottom of the
 * plan tree (see allpaths.c), but target inheritance has to be expanded at
 * the top.  The reason is that for UPDATE, each target relation needs a
902
 * different targetlist matching its own column set.  Fortunately,
903 904
 * the UPDATE/DELETE target can never be the nullable side of an outer join,
 * so it's OK to generate the plan this way.
905 906 907 908
 *
 * Returns a query plan.
 */
static Plan *
909
inheritance_planner(PlannerInfo *root)
910
{
911
	Query	   *parse = root->parse;
912
	int			parentRTindex = parse->resultRelation;
913 914 915
	Bitmapset  *resultRTindexes;
	Bitmapset  *subqueryRTindexes;
	Bitmapset  *modifiableARIindexes;
916
	int			nominalRelation = -1;
917 918 919
	List	   *final_rtable = NIL;
	int			save_rel_array_size = 0;
	RelOptInfo **save_rel_array = NULL;
920
	List	   *subplans = NIL;
921
	List	   *resultRelations = NIL;
922
	List	   *withCheckOptionLists = NIL;
923
	List	   *returningLists = NIL;
924
	List	   *rowMarks;
925
	ListCell   *lc;
926
	Index		rti;
927

928 929
	Assert(parse->commandType != CMD_INSERT);

930 931 932 933 934 935 936 937 938 939 940 941 942 943
	/*
	 * We generate a modified instance of the original Query for each target
	 * relation, plan that, and put all the plans into a list that will be
	 * controlled by a single ModifyTable node.  All the instances share the
	 * same rangetable, but each instance must have its own set of subquery
	 * RTEs within the finished rangetable because (1) they are likely to get
	 * scribbled on during planning, and (2) it's not inconceivable that
	 * subqueries could get planned differently in different cases.  We need
	 * not create duplicate copies of other RTE kinds, in particular not the
	 * target relations, because they don't have either of those issues.  Not
	 * having to duplicate the target relations is important because doing so
	 * (1) would result in a rangetable of length O(N^2) for N targets, with
	 * at least O(N^3) work expended here; and (2) would greatly complicate
	 * management of the rowMarks list.
944 945 946
	 *
	 * Note that any RTEs with security barrier quals will be turned into
	 * subqueries during planning, and so we must create copies of them too,
B
Bruce Momjian 已提交
947 948
	 * except where they are target relations, which will each only be used in
	 * a single plan.
949 950
	 *
	 * To begin with, we'll need a bitmapset of the target relation relids.
951
	 */
952
	resultRTindexes = bms_make_singleton(parentRTindex);
953 954 955
	foreach(lc, root->append_rel_list)
	{
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
B
Bruce Momjian 已提交
956

957 958 959 960 961
		if (appinfo->parent_relid == parentRTindex)
			resultRTindexes = bms_add_member(resultRTindexes,
											 appinfo->child_relid);
	}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	/*
	 * Now, generate a bitmapset of the relids of the subquery RTEs, including
	 * security-barrier RTEs that will become subqueries, as just explained.
	 */
	subqueryRTindexes = NULL;
	rti = 1;
	foreach(lc, parse->rtable)
	{
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);

		if (rte->rtekind == RTE_SUBQUERY ||
			(rte->securityQuals != NIL &&
			 !bms_is_member(rti, resultRTindexes)))
			subqueryRTindexes = bms_add_member(subqueryRTindexes, rti);
		rti++;
	}

	/*
	 * Next, we want to identify which AppendRelInfo items contain references
	 * to any of the aforesaid subquery RTEs.  These items will need to be
	 * copied and modified to adjust their subquery references; whereas the
	 * other ones need not be touched.  It's worth being tense over this
	 * because we can usually avoid processing most of the AppendRelInfo
	 * items, thereby saving O(N^2) space and time when the target is a large
	 * inheritance tree.  We can identify AppendRelInfo items by their
	 * child_relid, since that should be unique within the list.
	 */
	modifiableARIindexes = NULL;
	if (subqueryRTindexes != NULL)
	{
		foreach(lc, root->append_rel_list)
		{
			AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);

			if (bms_is_member(appinfo->parent_relid, subqueryRTindexes) ||
				bms_is_member(appinfo->child_relid, subqueryRTindexes) ||
				bms_overlap(pull_varnos((Node *) appinfo->translated_vars),
							subqueryRTindexes))
				modifiableARIindexes = bms_add_member(modifiableARIindexes,
													  appinfo->child_relid);
		}
	}

	/*
	 * And now we can get on with generating a plan for each child table.
	 */
1008
	foreach(lc, root->append_rel_list)
1009
	{
1010 1011
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
		PlannerInfo subroot;
B
Bruce Momjian 已提交
1012
		Plan	   *subplan;
1013

1014 1015 1016 1017
		/* append_rel_list contains all append rels; ignore others */
		if (appinfo->parent_relid != parentRTindex)
			continue;

1018
		/*
1019 1020
		 * We need a working copy of the PlannerInfo so that we can control
		 * propagation of information back to the main copy.
1021 1022
		 */
		memcpy(&subroot, root, sizeof(PlannerInfo));
1023 1024 1025 1026 1027 1028 1029

		/*
		 * Generate modified query with this rel as target.  We first apply
		 * adjust_appendrel_attrs, which copies the Query and changes
		 * references to the parent RTE to refer to the current child RTE,
		 * then fool around with subquery RTEs.
		 */
1030
		subroot.parse = (Query *)
1031 1032
			adjust_appendrel_attrs(root,
								   (Node *) parse,
1033
								   appinfo);
1034 1035 1036

		/*
		 * The rowMarks list might contain references to subquery RTEs, so
1037 1038 1039
		 * make a copy that we can apply ChangeVarNodes to.  (Fortunately, the
		 * executor doesn't need to see the modified copies --- we can just
		 * pass it the original rowMarks list.)
1040 1041 1042
		 */
		subroot.rowMarks = (List *) copyObject(root->rowMarks);

1043 1044 1045
		/*
		 * The append_rel_list likewise might contain references to subquery
		 * RTEs (if any subqueries were flattenable UNION ALLs).  So prepare
1046 1047 1048 1049 1050 1051
		 * to apply ChangeVarNodes to that, too.  As explained above, we only
		 * want to copy items that actually contain such references; the rest
		 * can just get linked into the subroot's append_rel_list.
		 *
		 * If we know there are no such references, we can just use the outer
		 * append_rel_list unmodified.
1052
		 */
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		if (modifiableARIindexes != NULL)
		{
			ListCell   *lc2;

			subroot.append_rel_list = NIL;
			foreach(lc2, root->append_rel_list)
			{
				AppendRelInfo *appinfo2 = (AppendRelInfo *) lfirst(lc2);

				if (bms_is_member(appinfo2->child_relid, modifiableARIindexes))
					appinfo2 = (AppendRelInfo *) copyObject(appinfo2);

				subroot.append_rel_list = lappend(subroot.append_rel_list,
												  appinfo2);
			}
		}
1069

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		/*
		 * Add placeholders to the child Query's rangetable list to fill the
		 * RT indexes already reserved for subqueries in previous children.
		 * These won't be referenced, so there's no need to make them very
		 * valid-looking.
		 */
		while (list_length(subroot.parse->rtable) < list_length(final_rtable))
			subroot.parse->rtable = lappend(subroot.parse->rtable,
											makeNode(RangeTblEntry));

		/*
		 * If this isn't the first child Query, generate duplicates of all
1082 1083 1084 1085 1086
		 * subquery (or subquery-to-be) RTEs, and adjust Var numbering to
		 * reference the duplicates.  To simplify the loop logic, we scan the
		 * original rtable not the copy just made by adjust_appendrel_attrs;
		 * that should be OK since subquery RTEs couldn't contain any
		 * references to the target rel.
1087
		 */
1088
		if (final_rtable != NIL && subqueryRTindexes != NULL)
1089 1090 1091 1092 1093 1094 1095 1096
		{
			ListCell   *lr;

			rti = 1;
			foreach(lr, parse->rtable)
			{
				RangeTblEntry *rte = (RangeTblEntry *) lfirst(lr);

1097
				if (bms_is_member(rti, subqueryRTindexes))
1098
				{
1099
					Index		newrti;
1100 1101 1102

					/*
					 * The RTE can't contain any references to its own RT
1103 1104 1105
					 * index, except in the security barrier quals, so we can
					 * save a few cycles by applying ChangeVarNodes before we
					 * append the RTE to the rangetable.
1106 1107 1108 1109
					 */
					newrti = list_length(subroot.parse->rtable) + 1;
					ChangeVarNodes((Node *) subroot.parse, rti, newrti, 0);
					ChangeVarNodes((Node *) subroot.rowMarks, rti, newrti, 0);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
					/* Skip processing unchanging parts of append_rel_list */
					if (modifiableARIindexes != NULL)
					{
						ListCell   *lc2;

						foreach(lc2, subroot.append_rel_list)
						{
							AppendRelInfo *appinfo2 = (AppendRelInfo *) lfirst(lc2);

							if (bms_is_member(appinfo2->child_relid,
											  modifiableARIindexes))
								ChangeVarNodes((Node *) appinfo2, rti, newrti, 0);
						}
					}
1124
					rte = copyObject(rte);
1125
					ChangeVarNodes((Node *) rte->securityQuals, rti, newrti, 0);
1126 1127 1128 1129 1130 1131 1132
					subroot.parse->rtable = lappend(subroot.parse->rtable,
													rte);
				}
				rti++;
			}
		}

1133
		/* There shouldn't be any OJ info to translate, as yet */
1134
		Assert(subroot.join_info_list == NIL);
1135 1136
		/* and we haven't created PlaceHolderInfos, either */
		Assert(subroot.placeholder_list == NIL);
1137 1138
		/* hack to mark target relation as an inheritance partition */
		subroot.hasInheritedTarget = true;
1139

1140
		/* Generate plan */
1141 1142
		subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );

1143
		/*
B
Bruce Momjian 已提交
1144 1145
		 * Planning may have modified the query result relation (if there were
		 * security barrier quals on the result RTE).
1146 1147 1148
		 */
		appinfo->child_relid = subroot.parse->resultRelation;

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		/*
		 * We'll use the first child relation (even if it's excluded) as the
		 * nominal target relation of the ModifyTable node.  Because of the
		 * way expand_inherited_rtentry works, this should always be the RTE
		 * representing the parent table in its role as a simple member of the
		 * inheritance set.  (It would be logically cleaner to use the
		 * inheritance parent RTE as the nominal target; but since that RTE
		 * will not be otherwise referenced in the plan, doing so would give
		 * rise to confusing use of multiple aliases in EXPLAIN output for
		 * what the user will think is the "same" table.)
		 */
		if (nominalRelation < 0)
			nominalRelation = appinfo->child_relid;

1163
		/*
B
Bruce Momjian 已提交
1164
		 * If this child rel was excluded by constraint exclusion, exclude it
1165
		 * from the result plan.
1166 1167 1168
		 */
		if (is_dummy_plan(subplan))
			continue;
B
Bruce Momjian 已提交
1169

1170 1171
		subplans = lappend(subplans, subplan);

1172 1173 1174 1175 1176 1177 1178 1179
		/*
		 * If this is the first non-excluded child, its post-planning rtable
		 * becomes the initial contents of final_rtable; otherwise, append
		 * just its modified subquery RTEs to final_rtable.
		 */
		if (final_rtable == NIL)
			final_rtable = subroot.parse->rtable;
		else
1180 1181
		{
			List	   *tmp_rtable = NIL;
B
Bruce Momjian 已提交
1182 1183
			ListCell   *cell1,
					   *cell2;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

			/*
			 * Check to see if any of the original RTEs were turned into
			 * subqueries during planning.  Currently, this should only ever
			 * happen due to securityQuals being involved which push a
			 * relation down under a subquery, to ensure that the security
			 * barrier quals are evaluated first.
			 *
			 * When this happens, we want to use the new subqueries in the
			 * final rtable.
			 */
			forboth(cell1, final_rtable, cell2, subroot.parse->rtable)
			{
				RangeTblEntry *rte1 = (RangeTblEntry *) lfirst(cell1);
				RangeTblEntry *rte2 = (RangeTblEntry *) lfirst(cell2);

				if (rte1->rtekind == RTE_RELATION &&
					rte2->rtekind == RTE_SUBQUERY)
				{
					/* Should only be when there are securityQuals today */
					Assert(rte1->securityQuals != NIL);
					tmp_rtable = lappend(tmp_rtable, rte2);
				}
				else
					tmp_rtable = lappend(tmp_rtable, rte1);
			}

			final_rtable = list_concat(tmp_rtable,
1212
									   list_copy_tail(subroot.parse->rtable,
1213
												 list_length(final_rtable)));
1214
		}
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

		/*
		 * We need to collect all the RelOptInfos from all child plans into
		 * the main PlannerInfo, since setrefs.c will need them.  We use the
		 * last child's simple_rel_array (previous ones are too short), so we
		 * have to propagate forward the RelOptInfos that were already built
		 * in previous children.
		 */
		Assert(subroot.simple_rel_array_size >= save_rel_array_size);
		for (rti = 1; rti < save_rel_array_size; rti++)
		{
			RelOptInfo *brel = save_rel_array[rti];

			if (brel)
				subroot.simple_rel_array[rti] = brel;
		}
		save_rel_array_size = subroot.simple_rel_array_size;
		save_rel_array = subroot.simple_rel_array;

1234
		/* Make sure any initplans from this rel get into the outer list */
1235
		root->init_plans = subroot.init_plans;
1236

1237
		/* Build list of target-relation RT indexes */
1238 1239
		resultRelations = lappend_int(resultRelations, appinfo->child_relid);

1240 1241 1242 1243
		/* Build lists of per-relation WCO and RETURNING targetlists */
		if (parse->withCheckOptions)
			withCheckOptionLists = lappend(withCheckOptionLists,
										   subroot.parse->withCheckOptions);
1244
		if (parse->returningList)
1245 1246
			returningLists = lappend(returningLists,
									 subroot.parse->returningList);
1247 1248

		Assert(!parse->onConflict);
1249 1250
	}

1251 1252 1253 1254
	/* Mark result as unordered (probably unnecessary) */
	root->query_pathkeys = NIL;

	/*
B
Bruce Momjian 已提交
1255 1256
	 * If we managed to exclude every child rel, return a dummy plan; it
	 * doesn't even need a ModifyTable node.
1257 1258
	 */
	if (subplans == NIL)
1259 1260
	{
		/* although dummy, it must have a valid tlist for executor */
1261 1262
		List	   *tlist;

1263
		tlist = preprocess_targetlist(root, parse->targetList);
1264 1265
		return (Plan *) make_result(root,
									tlist,
1266 1267 1268
									(Node *) list_make1(makeBoolConst(false,
																	  false)),
									NULL);
1269
	}
1270

1271
	/*
1272
	 * Put back the final adjusted rtable into the master copy of the Query.
1273
	 */
1274 1275 1276
	parse->rtable = final_rtable;
	root->simple_rel_array_size = save_rel_array_size;
	root->simple_rel_array = save_rel_array;
1277

1278
	/*
B
Bruce Momjian 已提交
1279 1280
	 * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node will
	 * have dealt with fetching non-locked marked rows, else we need to have
B
Bruce Momjian 已提交
1281
	 * ModifyTable do that.
1282 1283 1284 1285 1286 1287
	 */
	if (parse->rowMarks)
		rowMarks = NIL;
	else
		rowMarks = root->rowMarks;

1288
	/* And last, tack on a ModifyTable node to do the UPDATE/DELETE work */
T
Tom Lane 已提交
1289 1290
	return (Plan *) make_modifytable(root,
									 parse->commandType,
1291
									 parse->canSetTag,
1292
									 nominalRelation,
1293
									 resultRelations,
B
Bruce Momjian 已提交
1294
									 subplans,
1295
									 withCheckOptionLists,
1296 1297
									 returningLists,
									 rowMarks,
1298
									 NULL,
1299
									 SS_assign_special_param(root));
1300 1301 1302 1303 1304 1305 1306
}

/*--------------------
 * grouping_planner
 *	  Perform planning steps related to grouping, aggregation, etc.
 *	  This primarily means adding top-level processing to the basic
 *	  query plan produced by query_planner.
1307 1308 1309 1310
 *
 * tuple_fraction is the fraction of tuples we expect will be retrieved
 *
 * tuple_fraction is interpreted as follows:
1311
 *	  0: expect all tuples to be retrieved (normal case)
1312 1313 1314 1315 1316
 *	  0 < tuple_fraction < 1: expect the given fraction of tuples available
 *		from the plan to be retrieved
 *	  tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
 *		expected to be retrieved (ie, a LIMIT specification)
 *
1317
 * Returns a query plan.  Also, root->query_pathkeys is returned as the
1318
 * actual output ordering of the plan (in pathkey format).
1319 1320
 *--------------------
 */
1321
static Plan *
1322
grouping_planner(PlannerInfo *root, double tuple_fraction)
1323
{
1324
	Query	   *parse = root->parse;
1325
	List	   *tlist = parse->targetList;
B
Bruce Momjian 已提交
1326 1327
	int64		offset_est = 0;
	int64		count_est = 0;
1328
	double		limit_tuples = -1.0;
1329 1330
	Plan	   *result_plan;
	List	   *current_pathkeys;
1331
	double		dNumGroups = 0;
1332 1333
	bool		use_hashed_distinct = false;
	bool		tested_hashed_distinct = false;
1334

1335 1336
	/* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
	if (parse->limitCount || parse->limitOffset)
1337
	{
1338 1339
		tuple_fraction = preprocess_limit(root, tuple_fraction,
										  &offset_est, &count_est);
B
Bruce Momjian 已提交
1340

1341
		/*
B
Bruce Momjian 已提交
1342 1343
		 * If we have a known LIMIT, and don't have an unknown OFFSET, we can
		 * estimate the effects of using a bounded sort.
1344 1345 1346 1347
		 */
		if (count_est > 0 && offset_est >= 0)
			limit_tuples = (double) count_est + (double) offset_est;
	}
1348

1349
	if (parse->setOperations)
B
Bruce Momjian 已提交
1350
	{
B
Bruce Momjian 已提交
1351
		List	   *set_sortclauses;
1352

1353
		/*
B
Bruce Momjian 已提交
1354
		 * If there's a top-level ORDER BY, assume we have to fetch all the
B
Bruce Momjian 已提交
1355
		 * tuples.  This might be too simplistic given all the hackery below
1356 1357
		 * to possibly avoid the sort; but the odds of accurate estimates here
		 * are pretty low anyway.
1358 1359 1360 1361
		 */
		if (parse->sortClause)
			tuple_fraction = 0.0;

1362
		/*
B
Bruce Momjian 已提交
1363
		 * Construct the plan for set operations.  The result will not need
1364 1365 1366
		 * any work except perhaps a top-level sort and/or LIMIT.  Note that
		 * any special work for recursive unions is the responsibility of
		 * plan_set_operations.
1367
		 */
1368
		result_plan = plan_set_operations(root, tuple_fraction,
1369 1370 1371
										  &set_sortclauses);

		/*
B
Bruce Momjian 已提交
1372 1373 1374
		 * Calculate pathkeys representing the sort order (if any) of the set
		 * operation's result.  We have to do this before overwriting the sort
		 * key information...
1375
		 */
1376 1377
		current_pathkeys = make_pathkeys_for_sortclauses(root,
														 set_sortclauses,
B
Bruce Momjian 已提交
1378
													result_plan->targetlist);
1379 1380

		/*
B
Bruce Momjian 已提交
1381
		 * We should not need to call preprocess_targetlist, since we must be
B
Bruce Momjian 已提交
1382
		 * in a SELECT query node.  Instead, use the targetlist returned by
B
Bruce Momjian 已提交
1383 1384 1385
		 * plan_set_operations (since this tells whether it returned any
		 * resjunk columns!), and transfer any sort key information from the
		 * original tlist.
1386 1387
		 */
		Assert(parse->commandType == CMD_SELECT);
1388

1389 1390
		tlist = postprocess_setop_tlist(copyObject(result_plan->targetlist),
										tlist);
1391

1392
		/*
B
Bruce Momjian 已提交
1393 1394
		 * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have
		 * checked already, but let's make sure).
1395 1396
		 */
		if (parse->rowMarks)
1397 1398
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
B
Bruce Momjian 已提交
1399 1400
			/*------
			  translator: %s is a SQL row locking clause such as FOR UPDATE */
1401 1402
					 errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT",
							LCS_asString(((RowMarkClause *)
B
Bruce Momjian 已提交
1403
									linitial(parse->rowMarks))->strength))));
1404

1405
		/*
1406
		 * Calculate pathkeys that represent result ordering requirements
1407
		 */
1408
		Assert(parse->distinctClause == NIL);
1409 1410
		root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
															parse->sortClause,
1411
															tlist);
B
Bruce Momjian 已提交
1412
	}
1413
	else
1414
	{
1415
		/* No set operations, do regular planning */
1416
		long		numGroups = 0;
1417
		AggClauseCosts agg_costs;
1418
		int			numGroupCols;
1419 1420
		double		path_rows;
		int			path_width;
1421
		bool		use_hashed_grouping = false;
T
Tom Lane 已提交
1422 1423
		WindowFuncLists *wflists = NULL;
		List	   *activeWindows = NIL;
1424
		OnConflictExpr *onconfl;
1425 1426 1427 1428 1429 1430 1431 1432
		int			maxref = 0;
		List	   *rollup_lists = NIL;
		List	   *rollup_groupclauses = NIL;
		standard_qp_extra qp_extra;
		RelOptInfo *final_rel;
		Path	   *cheapest_path;
		Path	   *sorted_path;
		Path	   *best_path;
1433

1434
		MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
1435

1436 1437 1438
		/* A recursive query should always have setOperations */
		Assert(!root->hasRecursion);

1439
		/* Preprocess grouping sets, if any */
1440 1441
		if (parse->groupingSets)
		{
1442 1443
			int		   *tleref_to_colnum_map;
			List	   *sets;
1444
			ListCell   *lc;
1445 1446
			ListCell   *lc2;
			ListCell   *lc_set;
1447

1448 1449 1450 1451
			parse->groupingSets = expand_grouping_sets(parse->groupingSets, -1);

			/* Identify max SortGroupRef in groupClause, for array sizing */
			/* (note this value will be used again later) */
1452 1453 1454
			foreach(lc, parse->groupClause)
			{
				SortGroupClause *gc = lfirst(lc);
B
Bruce Momjian 已提交
1455

1456 1457 1458 1459
				if (gc->tleSortGroupRef > maxref)
					maxref = gc->tleSortGroupRef;
			}

1460 1461
			/* Allocate workspace array for remapping */
			tleref_to_colnum_map = (int *) palloc((maxref + 1) * sizeof(int));
1462

1463 1464
			/* Examine the rollup sets */
			sets = extract_rollup_sets(parse->groupingSets);
1465 1466 1467

			foreach(lc_set, sets)
			{
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
				List	   *current_sets = (List *) lfirst(lc_set);
				List	   *groupclause;
				int			ref;

				/*
				 * Reorder the current list of grouping sets into correct
				 * prefix order.  If only one aggregation pass is needed, try
				 * to make the list match the ORDER BY clause; if more than
				 * one pass is needed, we don't bother with that.
				 */
				current_sets = reorder_grouping_sets(current_sets,
													 (list_length(sets) == 1
													  ? parse->sortClause
													  : NIL));

				/*
				 * Order the groupClause appropriately.  If the first grouping
				 * set is empty, this can match regular GROUP BY
				 * preprocessing, otherwise we have to force the groupClause
				 * to match that grouping set's order.
				 */
				groupclause = preprocess_groupclause(root,
													 linitial(current_sets));
1491 1492 1493 1494 1495 1496 1497 1498

				/*
				 * Now that we've pinned down an order for the groupClause for
				 * this list of grouping sets, we need to remap the entries in
				 * the grouping sets from sortgrouprefs to plain indices
				 * (0-based) into the groupClause for this collection of
				 * grouping sets.
				 */
1499
				ref = 0;
1500 1501 1502
				foreach(lc, groupclause)
				{
					SortGroupClause *gc = lfirst(lc);
B
Bruce Momjian 已提交
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
					tleref_to_colnum_map[gc->tleSortGroupRef] = ref++;
				}

				foreach(lc, current_sets)
				{
					foreach(lc2, (List *) lfirst(lc))
					{
						lfirst_int(lc2) = tleref_to_colnum_map[lfirst_int(lc2)];
					}
				}

1515
				/* Save the reordered sets and corresponding groupclauses */
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
				rollup_lists = lcons(current_sets, rollup_lists);
				rollup_groupclauses = lcons(groupclause, rollup_groupclauses);
			}
		}
		else
		{
			/* Preprocess GROUP BY clause, if any */
			if (parse->groupClause)
				parse->groupClause = preprocess_groupclause(root, NIL);
			rollup_groupclauses = list_make1(parse->groupClause);
		}

1528 1529
		numGroupCols = list_length(parse->groupClause);

1530
		/* Preprocess targetlist */
1531
		tlist = preprocess_targetlist(root, tlist);
B
Bruce Momjian 已提交
1532

1533 1534 1535 1536 1537 1538 1539
		onconfl = parse->onConflict;
		if (onconfl)
			onconfl->onConflictSet =
				preprocess_onconflict_targetlist(onconfl->onConflictSet,
												 parse->resultRelation,
												 parse->rtable);

1540 1541 1542 1543 1544
		/*
		 * Expand any rangetable entries that have security barrier quals.
		 * This may add new security barrier subquery RTEs to the rangetable.
		 */
		expand_security_quals(root, tlist);
1545 1546
		if (parse->hasRowSecurity)
			root->glob->hasRowSecurity = true;
1547

T
Tom Lane 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		/*
		 * Locate any window functions in the tlist.  (We don't need to look
		 * anywhere else, since expressions used in ORDER BY will be in there
		 * too.)  Note that they could all have been eliminated by constant
		 * folding, in which case we don't need to do any more work.
		 */
		if (parse->hasWindowFuncs)
		{
			wflists = find_window_functions((Node *) tlist,
											list_length(parse->windowClause));
			if (wflists->numWindowFuncs > 0)
				activeWindows = select_active_windows(root, wflists);
			else
				parse->hasWindowFuncs = false;
		}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		/*
		 * Do aggregate preprocessing, if the query has any aggs.
		 *
		 * Note: think not that we can turn off hasAggs if we find no aggs. It
		 * is possible for constant-expression simplification to remove all
		 * explicit references to aggs, but we still have to follow the
		 * aggregate semantics (eg, producing only one output row).
		 */
		if (parse->hasAggs)
		{
			/*
B
Bruce Momjian 已提交
1575 1576
			 * Collect statistics about aggregates for estimating costs. Note:
			 * we do not attempt to detect duplicate aggregates here; a
1577
			 * somewhat-overestimated cost is okay for our present purposes.
1578
			 */
1579 1580
			count_agg_clauses(root, (Node *) tlist, &agg_costs);
			count_agg_clauses(root, parse->havingQual, &agg_costs);
1581 1582

			/*
1583 1584 1585 1586
			 * Preprocess MIN/MAX aggregates, if any.  Note: be careful about
			 * adding logic between here and the optimize_minmax_aggregates
			 * call.  Anything that is needed in MIN/MAX-optimizable cases
			 * will have to be duplicated in planagg.c.
1587 1588 1589 1590
			 */
			preprocess_minmax_aggregates(root, tlist);
		}

1591 1592 1593
		/* Make tuple_fraction accessible to lower-level routines */
		root->tuple_fraction = tuple_fraction;

1594 1595 1596 1597 1598 1599 1600
		/*
		 * Figure out whether there's a hard limit on the number of rows that
		 * query_planner's result subplan needs to return.  Even if we know a
		 * hard limit overall, it doesn't apply if the query has any
		 * grouping/aggregation operations.
		 */
		if (parse->groupClause ||
1601
			parse->groupingSets ||
1602 1603 1604 1605
			parse->distinctClause ||
			parse->hasAggs ||
			parse->hasWindowFuncs ||
			root->hasHavingQual)
1606
			root->limit_tuples = -1.0;
1607
		else
1608
			root->limit_tuples = limit_tuples;
1609

1610 1611 1612
		/* Set up data needed by standard_qp_callback */
		qp_extra.tlist = tlist;
		qp_extra.activeWindows = activeWindows;
1613
		qp_extra.groupClause = llast(rollup_groupclauses);
1614

1615
		/*
B
Bruce Momjian 已提交
1616
		 * Generate the best unsorted and presorted paths for this Query (but
B
Bruce Momjian 已提交
1617
		 * note there may not be any presorted paths).  We also generate (in
1618
		 * standard_qp_callback) pathkey representations of the query's sort
1619
		 * clause, distinct clause, etc.
1620
		 */
1621
		final_rel = query_planner(root, tlist,
1622
								  standard_qp_callback, &qp_extra);
1623

1624
		/*
1625 1626 1627
		 * Extract rowcount and width estimates for use below.  If final_rel
		 * has been proven dummy, its rows estimate will be zero; clamp it to
		 * one to avoid zero-divide in subsequent calculations.
1628
		 */
1629
		path_rows = clamp_row_est(final_rel->rows);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		path_width = final_rel->width;

		/*
		 * If there's grouping going on, estimate the number of result groups.
		 * We couldn't do this any earlier because it depends on relation size
		 * estimates that are created within query_planner().
		 *
		 * Then convert tuple_fraction to fractional form if it is absolute,
		 * and if grouping or aggregation is involved, adjust tuple_fraction
		 * to describe the fraction of the underlying un-aggregated tuples
		 * that will be fetched.
		 */
		dNumGroups = 1;			/* in case not grouping */

		if (parse->groupClause)
		{
			List	   *groupExprs;

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
			if (parse->groupingSets)
			{
				ListCell   *lc,
						   *lc2;

				dNumGroups = 0;

				forboth(lc, rollup_groupclauses, lc2, rollup_lists)
				{
					ListCell   *lc3;

					groupExprs = get_sortgrouplist_exprs(lfirst(lc),
														 parse->targetList);

					foreach(lc3, lfirst(lc2))
					{
B
Bruce Momjian 已提交
1664
						List	   *gset = lfirst(lc3);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680

						dNumGroups += estimate_num_groups(root,
														  groupExprs,
														  path_rows,
														  &gset);
					}
				}
			}
			else
			{
				groupExprs = get_sortgrouplist_exprs(parse->groupClause,
													 parse->targetList);

				dNumGroups = estimate_num_groups(root, groupExprs, path_rows,
												 NULL);
			}
1681 1682 1683

			/*
			 * In GROUP BY mode, an absolute LIMIT is relative to the number
B
Bruce Momjian 已提交
1684
			 * of groups not the number of tuples.  If the caller gave us a
1685 1686 1687 1688 1689 1690
			 * fraction, keep it as-is.  (In both cases, we are effectively
			 * assuming that all the groups are about the same size.)
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= dNumGroups;

1691 1692 1693 1694 1695 1696 1697
			/*
			 * If there's more than one grouping set, we'll have to sort the
			 * entire input.
			 */
			if (list_length(rollup_lists) > 1)
				tuple_fraction = 0.0;

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
			/*
			 * If both GROUP BY and ORDER BY are specified, we will need two
			 * levels of sort --- and, therefore, certainly need to read all
			 * the tuples --- unless ORDER BY is a subset of GROUP BY.
			 * Likewise if we have both DISTINCT and GROUP BY, or if we have a
			 * window specification not compatible with the GROUP BY.
			 */
			if (!pathkeys_contained_in(root->sort_pathkeys,
									   root->group_pathkeys) ||
				!pathkeys_contained_in(root->distinct_pathkeys,
									   root->group_pathkeys) ||
				!pathkeys_contained_in(root->window_pathkeys,
									   root->group_pathkeys))
				tuple_fraction = 0.0;
		}
1713
		else if (parse->hasAggs || root->hasHavingQual || parse->groupingSets)
1714
		{
1715 1716
			/*
			 * Ungrouped aggregate will certainly want to read all the tuples,
1717 1718 1719
			 * and it will deliver a single result row per grouping set (or 1
			 * if no grouping sets were explicitly given, in which case leave
			 * dNumGroups as-is)
1720 1721
			 */
			tuple_fraction = 0.0;
1722 1723
			if (parse->groupingSets)
				dNumGroups = list_length(parse->groupingSets);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		}
		else if (parse->distinctClause)
		{
			/*
			 * Since there was no grouping or aggregation, it's reasonable to
			 * assume the UNIQUE filter has effects comparable to GROUP BY.
			 * (If DISTINCT is used with grouping, we ignore its effects for
			 * rowcount estimation purposes; this amounts to assuming the
			 * grouped rows are distinct already.)
			 */
			List	   *distinctExprs;

			distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
													parse->targetList);
1738
			dNumGroups = estimate_num_groups(root, distinctExprs, path_rows, NULL);
1739 1740 1741 1742 1743 1744

			/*
			 * Adjust tuple_fraction the same way as for GROUP BY, too.
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= dNumGroups;
1745 1746
		}
		else
1747
		{
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
			/*
			 * Plain non-grouped, non-aggregated query: an absolute tuple
			 * fraction can be divided by the number of tuples.
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= path_rows;
		}

		/*
		 * Pick out the cheapest-total path as well as the cheapest presorted
		 * path for the requested pathkeys (if there is one).  We should take
		 * the tuple fraction into account when selecting the cheapest
		 * presorted path, but not when selecting the cheapest-total path,
		 * since if we have to sort then we'll have to fetch all the tuples.
		 * (But there's a special case: if query_pathkeys is NIL, meaning
		 * order doesn't matter, then the "cheapest presorted" path will be
		 * the cheapest overall for the tuple fraction.)
		 */
		cheapest_path = final_rel->cheapest_total_path;

		sorted_path =
			get_cheapest_fractional_path_for_pathkeys(final_rel->pathlist,
													  root->query_pathkeys,
													  NULL,
													  tuple_fraction);

		/* Don't consider same path in both guises; just wastes effort */
		if (sorted_path == cheapest_path)
			sorted_path = NULL;

		/*
		 * Forget about the presorted path if it would be cheaper to sort the
		 * cheapest-total path.  Here we need consider only the behavior at
		 * the tuple_fraction point.  Also, limit_tuples is only relevant if
		 * not grouping/aggregating, so use root->limit_tuples in the
		 * cost_sort call.
		 */
		if (sorted_path)
		{
			Path		sort_path;		/* dummy for result of cost_sort */

			if (root->query_pathkeys == NIL ||
				pathkeys_contained_in(root->query_pathkeys,
									  cheapest_path->pathkeys))
			{
				/* No sort needed for cheapest path */
				sort_path.startup_cost = cheapest_path->startup_cost;
				sort_path.total_cost = cheapest_path->total_cost;
			}
			else
			{
				/* Figure cost for sorting */
				cost_sort(&sort_path, root, root->query_pathkeys,
						  cheapest_path->total_cost,
						  path_rows, path_width,
						  0.0, work_mem, root->limit_tuples);
			}

			if (compare_fractional_path_costs(sorted_path, &sort_path,
											  tuple_fraction) > 0)
			{
				/* Presorted path is a loser */
				sorted_path = NULL;
			}
1812
		}
1813

1814 1815 1816
		/*
		 * Consider whether we want to use hashing instead of sorting.
		 */
1817 1818
		if (parse->groupClause)
		{
1819
			/*
1820
			 * If grouping, decide whether to use sorted or hashed grouping.
1821 1822
			 * If grouping sets are present, we can currently do only sorted
			 * grouping.
1823
			 */
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

			if (parse->groupingSets)
			{
				use_hashed_grouping = false;
			}
			else
			{
				use_hashed_grouping =
					choose_hashed_grouping(root,
										   tuple_fraction, limit_tuples,
										   path_rows, path_width,
										   cheapest_path, sorted_path,
										   dNumGroups, &agg_costs);
			}

1839 1840
			/* Also convert # groups to long int --- but 'ware overflow! */
			numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
1841
		}
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
		else if (parse->distinctClause && sorted_path &&
				 !root->hasHavingQual && !parse->hasAggs && !activeWindows)
		{
			/*
			 * We'll reach the DISTINCT stage without any intermediate
			 * processing, so figure out whether we will want to hash or not
			 * so we can choose whether to use cheapest or sorted path.
			 */
			use_hashed_distinct =
				choose_hashed_distinct(root,
									   tuple_fraction, limit_tuples,
									   path_rows, path_width,
									   cheapest_path->startup_cost,
									   cheapest_path->total_cost,
									   sorted_path->startup_cost,
									   sorted_path->total_cost,
									   sorted_path->pathkeys,
									   dNumGroups);
			tested_hashed_distinct = true;
		}
1862

B
Bruce Momjian 已提交
1863
		/*
1864
		 * Select the best path.  If we are doing hashed grouping, we will
B
Bruce Momjian 已提交
1865
		 * always read all the input tuples, so use the cheapest-total path.
1866
		 * Otherwise, the comparison above is correct.
1867
		 */
1868
		if (use_hashed_grouping || use_hashed_distinct || !sorted_path)
1869
			best_path = cheapest_path;
1870
		else
1871
			best_path = sorted_path;
1872

1873
		/*
B
Bruce Momjian 已提交
1874 1875 1876 1877
		 * Check to see if it's possible to optimize MIN/MAX aggregates. If
		 * so, we will forget all the work we did so far to choose a "regular"
		 * path ... but we had to do it anyway to be able to tell which way is
		 * cheaper.
1878
		 */
1879
		result_plan = optimize_minmax_aggregates(root,
1880
												 tlist,
1881
												 &agg_costs,
1882 1883 1884 1885
												 best_path);
		if (result_plan != NULL)
		{
			/*
B
Bruce Momjian 已提交
1886 1887
			 * optimize_minmax_aggregates generated the full plan, with the
			 * right tlist, and it has no sort order.
1888 1889 1890 1891
			 */
			current_pathkeys = NIL;
		}
		else
1892
		{
1893
			/*
1894 1895
			 * Normal case --- create a plan according to query_planner's
			 * results.
1896
			 */
1897 1898 1899
			List	   *sub_tlist;
			AttrNumber *groupColIdx = NULL;
			bool		need_tlist_eval = true;
1900
			bool		need_sort_for_grouping = false;
1901

1902
			result_plan = create_plan(root, best_path);
1903 1904
			current_pathkeys = best_path->pathkeys;

1905 1906
			/* Detect if we'll need an explicit sort for grouping */
			if (parse->groupClause && !use_hashed_grouping &&
B
Bruce Momjian 已提交
1907
			  !pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
1908
				need_sort_for_grouping = true;
1909

1910 1911 1912 1913 1914 1915 1916
			/*
			 * Generate appropriate target list for scan/join subplan; may be
			 * different from tlist if grouping or aggregation is needed.
			 */
			sub_tlist = make_subplanTargetList(root, tlist,
											   &groupColIdx,
											   &need_tlist_eval);
1917

1918
			/*
1919 1920 1921 1922
			 * create_plan returns a plan with just a "flat" tlist of required
			 * Vars.  Usually we need to insert the sub_tlist as the tlist of
			 * the top plan node.  However, we can skip that if we determined
			 * that whatever create_plan chose to return will be good enough.
1923 1924 1925 1926
			 *
			 * If we need_sort_for_grouping, always override create_plan's
			 * tlist, so that we don't sort useless data from a "physical"
			 * tlist.
1927
			 */
1928
			if (need_tlist_eval || need_sort_for_grouping)
1929
			{
1930 1931
				/*
				 * If the top-level plan node is one that cannot do expression
1932 1933
				 * evaluation and its existing target list isn't already what
				 * we need, we must insert a Result node to project the
1934 1935
				 * desired tlist.
				 */
1936 1937
				if (!is_projection_capable_plan(result_plan) &&
					!tlist_same_exprs(sub_tlist, result_plan->targetlist))
1938
				{
1939 1940 1941
					result_plan = (Plan *) make_result(root,
													   sub_tlist,
													   NULL,
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
													   result_plan);
				}
				else
				{
					/*
					 * Otherwise, just replace the subplan's flat tlist with
					 * the desired tlist.
					 */
					result_plan->targetlist = sub_tlist;
				}

				/*
				 * Also, account for the cost of evaluation of the sub_tlist.
1955
				 * See comments for add_tlist_costs_to_plan() for more info.
1956
				 */
1957
				add_tlist_costs_to_plan(root, result_plan, sub_tlist);
1958 1959 1960 1961
			}
			else
			{
				/*
1962
				 * Since we're using create_plan's tlist and not the one
1963 1964
				 * make_subplanTargetList calculated, we have to refigure any
				 * grouping-column indexes make_subplanTargetList computed.
1965
				 */
1966
				locate_grouping_columns(root, tlist, result_plan->targetlist,
1967
										groupColIdx);
1968
			}
B
Bruce Momjian 已提交
1969

1970 1971
			/*
			 * groupColIdx is now cast in stone, so record a mapping from
1972
			 * tleSortGroupRef to column index.  setrefs.c will need this to
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
			 * finalize GROUPING() operations.
			 */
			if (parse->groupingSets)
			{
				AttrNumber *grouping_map = palloc0(sizeof(AttrNumber) * (maxref + 1));
				ListCell   *lc;
				int			i = 0;

				foreach(lc, parse->groupClause)
				{
					SortGroupClause *gc = lfirst(lc);
B
Bruce Momjian 已提交
1984

1985 1986 1987 1988 1989 1990
					grouping_map[gc->tleSortGroupRef] = groupColIdx[i++];
				}

				root->grouping_map = grouping_map;
			}

1991
			/*
1992 1993
			 * Insert AGG or GROUP node if needed, plus an explicit sort step
			 * if necessary.
1994
			 *
1995
			 * HAVING clause, if any, becomes qual of the Agg or Group node.
1996
			 */
1997 1998 1999
			if (use_hashed_grouping)
			{
				/* Hashed aggregate plan --- no sort needed */
2000
				result_plan = (Plan *) make_agg(root,
2001 2002 2003
												tlist,
												(List *) parse->havingQual,
												AGG_HASHED,
2004
												&agg_costs,
2005 2006
												numGroupCols,
												groupColIdx,
B
Bruce Momjian 已提交
2007
									extract_grouping_ops(parse->groupClause),
2008
												NIL,
2009
												numGroups,
R
Robert Haas 已提交
2010 2011
												false,
												true,
2012 2013 2014 2015
												result_plan);
				/* Hashed aggregation produces randomly-ordered results */
				current_pathkeys = NIL;
			}
2016 2017
			else if (parse->hasAggs ||
					 (parse->groupingSets && parse->groupClause))
2018
			{
2019
				/*
2020 2021
				 * Aggregation and/or non-degenerate grouping sets.
				 *
B
Bruce Momjian 已提交
2022 2023 2024
				 * Output is in sorted order by group_pathkeys if, and only
				 * if, there is a single rollup operation on a non-empty list
				 * of grouping expressions.
2025 2026 2027 2028
				 */
				if (list_length(rollup_groupclauses) == 1
					&& list_length(linitial(rollup_groupclauses)) > 0)
					current_pathkeys = root->group_pathkeys;
2029 2030 2031
				else
					current_pathkeys = NIL;

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
				result_plan = build_grouping_chain(root,
												   parse,
												   tlist,
												   need_sort_for_grouping,
												   rollup_groupclauses,
												   rollup_lists,
												   groupColIdx,
												   &agg_costs,
												   numGroups,
												   result_plan);
2042 2043
			}
			else if (parse->groupClause)
2044
			{
2045 2046 2047 2048
				/*
				 * GROUP BY without aggregation, so insert a group node (plus
				 * the appropriate sort node, if necessary).
				 *
2049 2050
				 * Add an explicit sort if we couldn't make the path come out
				 * the way the GROUP node needs it.
2051
				 */
2052
				if (need_sort_for_grouping)
2053
				{
2054
					result_plan = (Plan *)
2055
						make_sort_from_groupcols(root,
2056 2057 2058
												 parse->groupClause,
												 groupColIdx,
												 result_plan);
2059
					current_pathkeys = root->group_pathkeys;
2060
				}
B
Bruce Momjian 已提交
2061

2062
				result_plan = (Plan *) make_group(root,
2063 2064 2065 2066
												  tlist,
												  (List *) parse->havingQual,
												  numGroupCols,
												  groupColIdx,
2067
									extract_grouping_ops(parse->groupClause),
2068 2069 2070
												  dNumGroups,
												  result_plan);
				/* The Group node won't change sort ordering */
2071
			}
2072
			else if (root->hasHavingQual || parse->groupingSets)
2073
			{
B
Bruce Momjian 已提交
2074
				int			nrows = list_length(parse->groupingSets);
2075

2076
				/*
B
Bruce Momjian 已提交
2077 2078
				 * No aggregates, and no GROUP BY, but we have a HAVING qual
				 * or grouping sets (which by elimination of cases above must
2079 2080 2081
				 * consist solely of empty grouping sets, since otherwise
				 * groupClause will be non-empty).
				 *
2082
				 * This is a degenerate case in which we are supposed to emit
B
Bruce Momjian 已提交
2083 2084 2085 2086
				 * either 0 or 1 row for each grouping set depending on
				 * whether HAVING succeeds.  Furthermore, there cannot be any
				 * variables in either HAVING or the targetlist, so we
				 * actually do not need the FROM table at all!	We can just
T
Tom Lane 已提交
2087 2088 2089 2090
				 * throw away the plan-so-far and generate a Result node. This
				 * is a sufficiently unusual corner case that it's not worth
				 * contorting the structure of this routine to avoid having to
				 * generate the plan in the first place.
2091
				 */
2092 2093
				result_plan = (Plan *) make_result(root,
												   tlist,
2094 2095
												   parse->havingQual,
												   NULL);
2096 2097 2098 2099 2100 2101 2102 2103

				/*
				 * Doesn't seem worthwhile writing code to cons up a
				 * generate_series or a values scan to emit multiple rows.
				 * Instead just clone the result in an Append.
				 */
				if (nrows > 1)
				{
B
Bruce Momjian 已提交
2104
					List	   *plans = list_make1(result_plan);
2105 2106 2107 2108 2109 2110

					while (--nrows > 0)
						plans = lappend(plans, copyObject(result_plan));

					result_plan = (Plan *) make_append(plans, tlist);
				}
2111
			}
2112
		}						/* end of non-minmax-aggregate case */
T
Tom Lane 已提交
2113 2114

		/*
2115 2116 2117
		 * Since each window function could require a different sort order, we
		 * stack up a WindowAgg node for each window, with sort steps between
		 * them as needed.
T
Tom Lane 已提交
2118 2119 2120 2121 2122 2123 2124 2125
		 */
		if (activeWindows)
		{
			List	   *window_tlist;
			ListCell   *l;

			/*
			 * If the top-level plan node is one that cannot do expression
2126 2127
			 * evaluation, we must insert a Result node to project the desired
			 * tlist.  (In some cases this might not really be required, but
2128 2129 2130
			 * it's not worth trying to avoid it.  In particular, think not to
			 * skip adding the Result if the initial window_tlist matches the
			 * top-level plan node's output, because we might change the tlist
B
Bruce Momjian 已提交
2131
			 * inside the following loop.)	Note that on second and subsequent
2132 2133 2134
			 * passes through the following loop, the top-level node will be a
			 * WindowAgg which we know can project; so we only need to check
			 * once.
T
Tom Lane 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
			 */
			if (!is_projection_capable_plan(result_plan))
			{
				result_plan = (Plan *) make_result(root,
												   NIL,
												   NULL,
												   result_plan);
			}

			/*
2145
			 * The "base" targetlist for all steps of the windowing process is
B
Bruce Momjian 已提交
2146
			 * a flat tlist of all Vars and Aggs needed in the result.  (In
2147 2148 2149
			 * some cases we wouldn't need to propagate all of these all the
			 * way to the top, since they might only be needed as inputs to
			 * WindowFuncs.  It's probably not worth trying to optimize that
2150 2151 2152
			 * though.)  We also add window partitioning and sorting
			 * expressions to the base tlist, to ensure they're computed only
			 * once at the bottom of the stack (that's critical for volatile
B
Bruce Momjian 已提交
2153
			 * functions).  As we climb up the stack, we'll add outputs for
2154 2155 2156 2157 2158 2159 2160 2161
			 * the WindowFuncs computed at each level.
			 */
			window_tlist = make_windowInputTargetList(root,
													  tlist,
													  activeWindows);

			/*
			 * The copyObject steps here are needed to ensure that each plan
B
Bruce Momjian 已提交
2162
			 * node has a separately modifiable tlist.  (XXX wouldn't a
2163
			 * shallow list copy do for that?)
T
Tom Lane 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
			 */
			result_plan->targetlist = (List *) copyObject(window_tlist);

			foreach(l, activeWindows)
			{
				WindowClause *wc = (WindowClause *) lfirst(l);
				List	   *window_pathkeys;
				int			partNumCols;
				AttrNumber *partColIdx;
				Oid		   *partOperators;
				int			ordNumCols;
				AttrNumber *ordColIdx;
				Oid		   *ordOperators;

				window_pathkeys = make_pathkeys_for_window(root,
														   wc,
2180
														   tlist);
T
Tom Lane 已提交
2181 2182 2183 2184 2185 2186

				/*
				 * This is a bit tricky: we build a sort node even if we don't
				 * really have to sort.  Even when no explicit sort is needed,
				 * we need to have suitable resjunk items added to the input
				 * plan's tlist for any partitioning or ordering columns that
2187 2188
				 * aren't plain Vars.  (In theory, make_windowInputTargetList
				 * should have provided all such columns, but let's not assume
B
Bruce Momjian 已提交
2189
				 * that here.)	Furthermore, this way we can use existing
2190 2191
				 * infrastructure to identify which input columns are the
				 * interesting ones.
T
Tom Lane 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
				 */
				if (window_pathkeys)
				{
					Sort	   *sort_plan;

					sort_plan = make_sort_from_pathkeys(root,
														result_plan,
														window_pathkeys,
														-1.0);
					if (!pathkeys_contained_in(window_pathkeys,
											   current_pathkeys))
					{
						/* we do indeed need to sort */
						result_plan = (Plan *) sort_plan;
						current_pathkeys = window_pathkeys;
					}
					/* In either case, extract the per-column information */
					get_column_info_for_window(root, wc, tlist,
											   sort_plan->numCols,
											   sort_plan->sortColIdx,
											   &partNumCols,
											   &partColIdx,
											   &partOperators,
											   &ordNumCols,
											   &ordColIdx,
											   &ordOperators);
				}
				else
				{
					/* empty window specification, nothing to sort */
					partNumCols = 0;
					partColIdx = NULL;
					partOperators = NULL;
					ordNumCols = 0;
					ordColIdx = NULL;
					ordOperators = NULL;
				}

				if (lnext(l))
				{
					/* Add the current WindowFuncs to the running tlist */
					window_tlist = add_to_flat_tlist(window_tlist,
2234
										   wflists->windowFuncs[wc->winref]);
T
Tom Lane 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
				}
				else
				{
					/* Install the original tlist in the topmost WindowAgg */
					window_tlist = tlist;
				}

				/* ... and make the WindowAgg plan node */
				result_plan = (Plan *)
					make_windowagg(root,
								   (List *) copyObject(window_tlist),
2246
								   wflists->windowFuncs[wc->winref],
2247
								   wc->winref,
T
Tom Lane 已提交
2248 2249 2250 2251 2252 2253
								   partNumCols,
								   partColIdx,
								   partOperators,
								   ordNumCols,
								   ordColIdx,
								   ordOperators,
2254
								   wc->frameOptions,
2255 2256
								   wc->startOffset,
								   wc->endOffset,
T
Tom Lane 已提交
2257 2258 2259
								   result_plan);
			}
		}
B
Bruce Momjian 已提交
2260
	}							/* end of if (setOperations) */
2261

2262
	/*
2263
	 * If there is a DISTINCT clause, add the necessary node(s).
2264
	 */
2265
	if (parse->distinctClause)
2266
	{
2267 2268
		double		dNumDistinctRows;
		long		numDistinctRows;
2269 2270 2271 2272 2273

		/*
		 * If there was grouping or aggregation, use the current number of
		 * rows as the estimated number of DISTINCT rows (ie, assume the
		 * result was already mostly unique).  If not, use the number of
2274
		 * distinct-groups calculated previously.
2275
		 */
2276
		if (parse->groupClause || parse->groupingSets || root->hasHavingQual || parse->hasAggs)
2277 2278 2279 2280 2281 2282 2283
			dNumDistinctRows = result_plan->plan_rows;
		else
			dNumDistinctRows = dNumGroups;

		/* Also convert to long int --- but 'ware overflow! */
		numDistinctRows = (long) Min(dNumDistinctRows, (double) LONG_MAX);

2284 2285
		/* Choose implementation method if we didn't already */
		if (!tested_hashed_distinct)
2286
		{
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
			/*
			 * At this point, either hashed or sorted grouping will have to
			 * work from result_plan, so we pass that as both "cheapest" and
			 * "sorted".
			 */
			use_hashed_distinct =
				choose_hashed_distinct(root,
									   tuple_fraction, limit_tuples,
									   result_plan->plan_rows,
									   result_plan->plan_width,
									   result_plan->startup_cost,
									   result_plan->total_cost,
									   result_plan->startup_cost,
									   result_plan->total_cost,
									   current_pathkeys,
									   dNumDistinctRows);
2303 2304 2305 2306 2307 2308 2309 2310 2311
		}

		if (use_hashed_distinct)
		{
			/* Hashed aggregate plan --- no sort needed */
			result_plan = (Plan *) make_agg(root,
											result_plan->targetlist,
											NIL,
											AGG_HASHED,
2312
											NULL,
2313 2314 2315 2316
										  list_length(parse->distinctClause),
								 extract_grouping_cols(parse->distinctClause,
													result_plan->targetlist),
								 extract_grouping_ops(parse->distinctClause),
2317
											NIL,
2318
											numDistinctRows,
R
Robert Haas 已提交
2319 2320
											false,
											true,
2321 2322 2323 2324 2325 2326 2327 2328 2329
											result_plan);
			/* Hashed aggregation produces randomly-ordered results */
			current_pathkeys = NIL;
		}
		else
		{
			/*
			 * Use a Unique node to implement DISTINCT.  Add an explicit sort
			 * if we couldn't make the path come out the way the Unique node
2330 2331 2332 2333
			 * needs it.  If we do have to sort, always sort by the more
			 * rigorous of DISTINCT and ORDER BY, to avoid a second sort
			 * below.  However, for regular DISTINCT, don't sort now if we
			 * don't have to --- sorting afterwards will likely be cheaper,
2334 2335 2336
			 * and also has the possibility of optimizing via LIMIT.  But for
			 * DISTINCT ON, we *must* force the final sort now, else it won't
			 * have the desired behavior.
2337
			 */
2338
			List	   *needed_pathkeys;
2339 2340 2341 2342 2343 2344 2345 2346 2347

			if (parse->hasDistinctOn &&
				list_length(root->distinct_pathkeys) <
				list_length(root->sort_pathkeys))
				needed_pathkeys = root->sort_pathkeys;
			else
				needed_pathkeys = root->distinct_pathkeys;

			if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
			{
				if (list_length(root->distinct_pathkeys) >=
					list_length(root->sort_pathkeys))
					current_pathkeys = root->distinct_pathkeys;
				else
				{
					current_pathkeys = root->sort_pathkeys;
					/* Assert checks that parser didn't mess up... */
					Assert(pathkeys_contained_in(root->distinct_pathkeys,
												 current_pathkeys));
				}

				result_plan = (Plan *) make_sort_from_pathkeys(root,
															   result_plan,
2362
															current_pathkeys,
2363 2364 2365 2366 2367 2368 2369
															   -1.0);
			}

			result_plan = (Plan *) make_unique(result_plan,
											   parse->distinctClause);
			result_plan->plan_rows = dNumDistinctRows;
			/* The Unique node won't change sort ordering */
2370
		}
2371
	}
2372 2373

	/*
2374 2375
	 * If ORDER BY was given and we were not able to make the plan come out in
	 * the right order, add an explicit sort step.
2376
	 */
2377
	if (parse->sortClause)
2378
	{
2379 2380 2381 2382
		if (!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		{
			result_plan = (Plan *) make_sort_from_pathkeys(root,
														   result_plan,
2383
														 root->sort_pathkeys,
2384 2385 2386
														   limit_tuples);
			current_pathkeys = root->sort_pathkeys;
		}
2387
	}
2388

2389
	/*
B
Bruce Momjian 已提交
2390 2391 2392
	 * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node.
	 * (Note: we intentionally test parse->rowMarks not root->rowMarks here.
	 * If there are only non-locking rowmarks, they should be handled by the
B
Bruce Momjian 已提交
2393
	 * ModifyTable node instead.)
2394 2395 2396 2397
	 */
	if (parse->rowMarks)
	{
		result_plan = (Plan *) make_lockrows(result_plan,
2398 2399
											 root->rowMarks,
											 SS_assign_special_param(root));
B
Bruce Momjian 已提交
2400

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
		/*
		 * The result can no longer be assumed sorted, since locking might
		 * cause the sort key columns to be replaced with new values.
		 */
		current_pathkeys = NIL;
	}

	/*
	 * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
	 */
2411
	if (limit_needed(parse))
2412 2413 2414 2415 2416 2417
	{
		result_plan = (Plan *) make_limit(result_plan,
										  parse->limitOffset,
										  parse->limitCount,
										  offset_est,
										  count_est);
2418 2419
	}

2420
	/*
B
Bruce Momjian 已提交
2421 2422
	 * Return the actual output ordering in query_pathkeys for possible use by
	 * an outer query level.
2423
	 */
2424
	root->query_pathkeys = current_pathkeys;
2425

2426
	return result_plan;
2427 2428
}

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

/*
 * Given a groupclause for a collection of grouping sets, produce the
 * corresponding groupColIdx.
 *
 * root->grouping_map maps the tleSortGroupRef to the actual column position in
 * the input tuple. So we get the ref from the entries in the groupclause and
 * look them up there.
 */
static AttrNumber *
remap_groupColIdx(PlannerInfo *root, List *groupClause)
{
	AttrNumber *grouping_map = root->grouping_map;
	AttrNumber *new_grpColIdx;
	ListCell   *lc;
	int			i;

	Assert(grouping_map);

	new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause));

	i = 0;
	foreach(lc, groupClause)
	{
		SortGroupClause *clause = lfirst(lc);
B
Bruce Momjian 已提交
2454

2455 2456 2457 2458 2459 2460 2461 2462
		new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
	}

	return new_grpColIdx;
}

/*
 * Build Agg and Sort nodes to implement sorted grouping with one or more
2463
 * grouping sets.  A plain GROUP BY or just the presence of aggregates counts
2464
 * for this purpose as a single grouping set; the calling code is responsible
2465 2466
 * for providing a single-element rollup_groupclauses list for such cases,
 * though rollup_lists may be nil.
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
 *
 * The last entry in rollup_groupclauses (which is the one the input is sorted
 * on, if at all) is the one used for the returned Agg node. Any additional
 * rollups are attached, with corresponding sort info, to subsidiary Agg and
 * Sort nodes attached to the side of the real Agg node; these nodes don't
 * participate in the plan directly, but they are both a convenient way to
 * represent the required data and a convenient way to account for the costs
 * of execution.
 */
static Plan *
build_grouping_chain(PlannerInfo *root,
B
Bruce Momjian 已提交
2478 2479 2480 2481 2482
					 Query *parse,
					 List *tlist,
					 bool need_sort_for_grouping,
					 List *rollup_groupclauses,
					 List *rollup_lists,
2483 2484
					 AttrNumber *groupColIdx,
					 AggClauseCosts *agg_costs,
B
Bruce Momjian 已提交
2485 2486
					 long numGroups,
					 Plan *result_plan)
2487 2488 2489 2490 2491 2492 2493 2494
{
	AttrNumber *top_grpColIdx = groupColIdx;
	List	   *chain = NIL;

	/*
	 * Prepare the grpColIdx for the real Agg node first, because we may need
	 * it for sorting
	 */
2495 2496
	if (parse->groupingSets)
		top_grpColIdx = remap_groupColIdx(root, llast(rollup_groupclauses));
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

	/*
	 * If we need a Sort operation on the input, generate that.
	 */
	if (need_sort_for_grouping)
	{
		result_plan = (Plan *)
			make_sort_from_groupcols(root,
									 llast(rollup_groupclauses),
									 top_grpColIdx,
									 result_plan);
	}

	/*
	 * Generate the side nodes that describe the other sort and group
	 * operations besides the top one.
	 */
2514
	if (list_length(rollup_groupclauses) > 1)
2515
	{
2516 2517
		ListCell   *lc,
				   *lc2;
2518

2519 2520 2521 2522 2523 2524 2525 2526
		Assert(list_length(rollup_groupclauses) == list_length(rollup_lists));
		forboth(lc, rollup_groupclauses, lc2, rollup_lists)
		{
			List	   *groupClause = (List *) lfirst(lc);
			List	   *gsets = (List *) lfirst(lc2);
			AttrNumber *new_grpColIdx;
			Plan	   *sort_plan;
			Plan	   *agg_plan;
2527

2528 2529 2530
			/* We want to iterate over all but the last rollup list elements */
			if (lnext(lc) == NULL)
				break;
2531

2532
			new_grpColIdx = remap_groupColIdx(root, groupClause);
2533

2534 2535 2536 2537 2538
			sort_plan = (Plan *)
				make_sort_from_groupcols(root,
										 groupClause,
										 new_grpColIdx,
										 result_plan);
2539

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
			/*
			 * sort_plan includes the cost of result_plan, which is not what
			 * we want (since we'll not actually run that plan again).  So
			 * correct the cost figures.
			 */
			sort_plan->startup_cost -= result_plan->total_cost;
			sort_plan->total_cost -= result_plan->total_cost;

			agg_plan = (Plan *) make_agg(root,
										 tlist,
										 (List *) parse->havingQual,
										 AGG_SORTED,
										 agg_costs,
										 list_length(linitial(gsets)),
										 new_grpColIdx,
										 extract_grouping_ops(groupClause),
										 gsets,
										 numGroups,
R
Robert Haas 已提交
2558 2559
										 false,
										 true,
2560
										 sort_plan);
2561

2562 2563 2564 2565 2566
			/*
			 * Nuke stuff we don't need to avoid bloating debug output.
			 */
			sort_plan->targetlist = NIL;
			sort_plan->lefttree = NULL;
2567

2568 2569
			agg_plan->targetlist = NIL;
			agg_plan->qual = NIL;
2570

2571 2572
			chain = lappend(chain, agg_plan);
		}
2573 2574 2575 2576 2577 2578
	}

	/*
	 * Now make the final Agg node
	 */
	{
2579 2580
		List	   *groupClause = (List *) llast(rollup_groupclauses);
		List	   *gsets = rollup_lists ? (List *) llast(rollup_lists) : NIL;
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
		int			numGroupCols;
		ListCell   *lc;

		if (gsets)
			numGroupCols = list_length(linitial(gsets));
		else
			numGroupCols = list_length(parse->groupClause);

		result_plan = (Plan *) make_agg(root,
										tlist,
										(List *) parse->havingQual,
B
Bruce Momjian 已提交
2592
								 (numGroupCols > 0) ? AGG_SORTED : AGG_PLAIN,
2593 2594 2595 2596 2597 2598
										agg_costs,
										numGroupCols,
										top_grpColIdx,
										extract_grouping_ops(groupClause),
										gsets,
										numGroups,
R
Robert Haas 已提交
2599 2600
										false,
										true,
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
										result_plan);

		((Agg *) result_plan)->chain = chain;

		/*
		 * Add the additional costs. But only the total costs count, since the
		 * additional sorts aren't run on startup.
		 */
		foreach(lc, chain)
		{
B
Bruce Momjian 已提交
2611
			Plan	   *subplan = lfirst(lc);
2612 2613 2614 2615 2616 2617 2618 2619

			result_plan->total_cost += subplan->total_cost;
		}
	}

	return result_plan;
}

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
/*
 * add_tlist_costs_to_plan
 *
 * Estimate the execution costs associated with evaluating the targetlist
 * expressions, and add them to the cost estimates for the Plan node.
 *
 * If the tlist contains set-returning functions, also inflate the Plan's cost
 * and plan_rows estimates accordingly.  (Hence, this must be called *after*
 * any logic that uses plan_rows to, eg, estimate qual evaluation costs.)
 *
 * Note: during initial stages of planning, we mostly consider plan nodes with
 * "flat" tlists, containing just Vars.  So their evaluation cost is zero
 * according to the model used by cost_qual_eval() (or if you prefer, the cost
 * is factored into cpu_tuple_cost).  Thus we can avoid accounting for tlist
 * cost throughout query_planner() and subroutines.  But once we apply a
 * tlist that might contain actual operators, sub-selects, etc, we'd better
 * account for its cost.  Any set-returning functions in the tlist must also
 * affect the estimated rowcount.
 *
 * Once grouping_planner() has applied a general tlist to the topmost
 * scan/join plan node, any tlist eval cost for added-on nodes should be
B
Bruce Momjian 已提交
2641
 * accounted for as we create those nodes.  Presently, of the node types we
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
 * can add on later, only Agg, WindowAgg, and Group project new tlists (the
 * rest just copy their input tuples) --- so make_agg(), make_windowagg() and
 * make_group() are responsible for calling this function to account for their
 * tlist costs.
 */
void
add_tlist_costs_to_plan(PlannerInfo *root, Plan *plan, List *tlist)
{
	QualCost	tlist_cost;
	double		tlist_rows;

	cost_qual_eval(&tlist_cost, tlist, root);
	plan->startup_cost += tlist_cost.startup;
	plan->total_cost += tlist_cost.startup +
		tlist_cost.per_tuple * plan->plan_rows;

	tlist_rows = tlist_returns_set_rows(tlist);
	if (tlist_rows > 1)
	{
		/*
		 * We assume that execution costs of the tlist proper were all
		 * accounted for by cost_qual_eval.  However, it still seems
		 * appropriate to charge something more for the executor's general
		 * costs of processing the added tuples.  The cost is probably less
		 * than cpu_tuple_cost, though, so we arbitrarily use half of that.
		 */
		plan->total_cost += plan->plan_rows * (tlist_rows - 1) *
			cpu_tuple_cost / 2;

		plan->plan_rows *= tlist_rows;
	}
}

2675 2676 2677 2678 2679
/*
 * Detect whether a plan node is a "dummy" plan created when a relation
 * is deemed not to need scanning due to constraint exclusion.
 *
 * Currently, such dummy plans are Result nodes with constant FALSE
2680 2681 2682
 * filter quals (see set_dummy_rel_pathlist and create_append_plan).
 *
 * XXX this probably ought to be somewhere else, but not clear where.
2683
 */
2684
bool
2685 2686 2687 2688
is_dummy_plan(Plan *plan)
{
	if (IsA(plan, Result))
	{
B
Bruce Momjian 已提交
2689
		List	   *rcqual = (List *) ((Result *) plan)->resconstantqual;
2690 2691 2692

		if (list_length(rcqual) == 1)
		{
B
Bruce Momjian 已提交
2693
			Const	   *constqual = (Const *) linitial(rcqual);
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705

			if (constqual && IsA(constqual, Const))
			{
				if (!constqual->constisnull &&
					!DatumGetBool(constqual->constvalue))
					return true;
			}
		}
	}
	return false;
}

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
/*
 * Create a bitmapset of the RT indexes of live base relations
 *
 * Helper for preprocess_rowmarks ... at this point in the proceedings,
 * the only good way to distinguish baserels from appendrel children
 * is to see what is in the join tree.
 */
static Bitmapset *
get_base_rel_indexes(Node *jtnode)
{
	Bitmapset  *result;

	if (jtnode == NULL)
		return NULL;
	if (IsA(jtnode, RangeTblRef))
	{
		int			varno = ((RangeTblRef *) jtnode)->rtindex;

		result = bms_make_singleton(varno);
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
		ListCell   *l;

		result = NULL;
		foreach(l, f->fromlist)
			result = bms_join(result,
							  get_base_rel_indexes(lfirst(l)));
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

		result = bms_join(get_base_rel_indexes(j->larg),
						  get_base_rel_indexes(j->rarg));
	}
	else
	{
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
		result = NULL;			/* keep compiler quiet */
	}
	return result;
}

/*
 * preprocess_rowmarks - set up PlanRowMarks if needed
 */
static void
preprocess_rowmarks(PlannerInfo *root)
{
	Query	   *parse = root->parse;
	Bitmapset  *rels;
	List	   *prowmarks;
	ListCell   *l;
	int			i;

	if (parse->rowMarks)
	{
		/*
B
Bruce Momjian 已提交
2767 2768 2769
		 * We've got trouble if FOR [KEY] UPDATE/SHARE appears inside
		 * grouping, since grouping renders a reference to individual tuple
		 * CTIDs invalid.  This is also checked at parse time, but that's
2770 2771
		 * insufficient because of rule substitution, query pullup, etc.
		 */
2772
		CheckSelectLocking(parse, ((RowMarkClause *)
B
Bruce Momjian 已提交
2773
								   linitial(parse->rowMarks))->strength);
2774 2775 2776 2777
	}
	else
	{
		/*
B
Bruce Momjian 已提交
2778 2779
		 * We only need rowmarks for UPDATE, DELETE, or FOR [KEY]
		 * UPDATE/SHARE.
2780 2781 2782 2783 2784 2785 2786
		 */
		if (parse->commandType != CMD_UPDATE &&
			parse->commandType != CMD_DELETE)
			return;
	}

	/*
B
Bruce Momjian 已提交
2787 2788
	 * We need to have rowmarks for all base relations except the target. We
	 * make a bitmapset of all base rels and then remove the items we don't
2789
	 * need or have FOR [KEY] UPDATE/SHARE marks for.
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
	 */
	rels = get_base_rel_indexes((Node *) parse->jointree);
	if (parse->resultRelation)
		rels = bms_del_member(rels, parse->resultRelation);

	/*
	 * Convert RowMarkClauses to PlanRowMark representation.
	 */
	prowmarks = NIL;
	foreach(l, parse->rowMarks)
	{
		RowMarkClause *rc = (RowMarkClause *) lfirst(l);
2802 2803
		RangeTblEntry *rte = rt_fetch(rc->rti, parse->rtable);
		PlanRowMark *newrc;
2804

2805
		/*
2806
		 * Currently, it is syntactically impossible to have FOR UPDATE et al
B
Bruce Momjian 已提交
2807
		 * applied to an update/delete target rel.  If that ever becomes
2808 2809
		 * possible, we should drop the target from the PlanRowMark list.
		 */
2810
		Assert(rc->rti != parse->resultRelation);
2811 2812

		/*
B
Bruce Momjian 已提交
2813 2814 2815 2816
		 * Ignore RowMarkClauses for subqueries; they aren't real tables and
		 * can't support true locking.  Subqueries that got flattened into the
		 * main query should be ignored completely.  Any that didn't will get
		 * ROW_MARK_COPY items in the next loop.
2817 2818 2819 2820
		 */
		if (rte->rtekind != RTE_RELATION)
			continue;

2821 2822
		rels = bms_del_member(rels, rc->rti);

2823
		newrc = makeNode(PlanRowMark);
2824
		newrc->rti = newrc->prti = rc->rti;
2825
		newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2826
		newrc->markType = select_rowmark_type(rte, rc->strength);
2827 2828
		newrc->allMarkTypes = (1 << newrc->markType);
		newrc->strength = rc->strength;
2829
		newrc->waitPolicy = rc->waitPolicy;
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
		newrc->isParent = false;

		prowmarks = lappend(prowmarks, newrc);
	}

	/*
	 * Now, add rowmarks for any non-target, non-locked base relations.
	 */
	i = 0;
	foreach(l, parse->rtable)
	{
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
		PlanRowMark *newrc;

		i++;
		if (!bms_is_member(i, rels))
			continue;

		newrc = makeNode(PlanRowMark);
		newrc->rti = newrc->prti = i;
2850
		newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2851
		newrc->markType = select_rowmark_type(rte, LCS_NONE);
2852 2853
		newrc->allMarkTypes = (1 << newrc->markType);
		newrc->strength = LCS_NONE;
2854
		newrc->waitPolicy = LockWaitBlock;		/* doesn't matter */
2855 2856 2857 2858 2859 2860 2861 2862
		newrc->isParent = false;

		prowmarks = lappend(prowmarks, newrc);
	}

	root->rowMarks = prowmarks;
}

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
/*
 * Select RowMarkType to use for a given table
 */
RowMarkType
select_rowmark_type(RangeTblEntry *rte, LockClauseStrength strength)
{
	if (rte->rtekind != RTE_RELATION)
	{
		/* If it's not a table at all, use ROW_MARK_COPY */
		return ROW_MARK_COPY;
	}
	else if (rte->relkind == RELKIND_FOREIGN_TABLE)
	{
2876 2877 2878 2879 2880 2881
		/* Let the FDW select the rowmark type, if it wants to */
		FdwRoutine *fdwroutine = GetFdwRoutineByRelId(rte->relid);

		if (fdwroutine->GetForeignRowMarkType != NULL)
			return fdwroutine->GetForeignRowMarkType(rte, strength);
		/* Otherwise, use ROW_MARK_COPY by default */
2882 2883 2884 2885 2886 2887 2888 2889
		return ROW_MARK_COPY;
	}
	else
	{
		/* Regular table, apply the appropriate lock type */
		switch (strength)
		{
			case LCS_NONE:
B
Bruce Momjian 已提交
2890

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
				/*
				 * We don't need a tuple lock, only the ability to re-fetch
				 * the row.  Regular tables support ROW_MARK_REFERENCE, but if
				 * this RTE has security barrier quals, it will be turned into
				 * a subquery during planning, so use ROW_MARK_COPY.
				 *
				 * This is only necessary for LCS_NONE, since real tuple locks
				 * on an RTE with security barrier quals are supported by
				 * pushing the lock down into the subquery --- see
				 * expand_security_qual.
				 */
				if (rte->securityQuals != NIL)
					return ROW_MARK_COPY;
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
				return ROW_MARK_REFERENCE;
				break;
			case LCS_FORKEYSHARE:
				return ROW_MARK_KEYSHARE;
				break;
			case LCS_FORSHARE:
				return ROW_MARK_SHARE;
				break;
			case LCS_FORNOKEYUPDATE:
				return ROW_MARK_NOKEYEXCLUSIVE;
				break;
			case LCS_FORUPDATE:
				return ROW_MARK_EXCLUSIVE;
				break;
		}
		elog(ERROR, "unrecognized LockClauseStrength %d", (int) strength);
		return ROW_MARK_EXCLUSIVE;		/* keep compiler quiet */
	}
}

2924
/*
2925
 * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
2926
 *
2927
 * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
B
Bruce Momjian 已提交
2928
 * results back in *count_est and *offset_est.  These variables are set to
2929 2930 2931 2932 2933 2934 2935 2936
 * 0 if the corresponding clause is not present, and -1 if it's present
 * but we couldn't estimate the value for it.  (The "0" convention is OK
 * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
 * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
 * usual practice of never estimating less than one row.)  These values will
 * be passed to make_limit, which see if you change this code.
 *
 * The return value is the suitably adjusted tuple_fraction to use for
B
Bruce Momjian 已提交
2937
 * planning the query.  This adjustment is not overridable, since it reflects
2938 2939
 * plan actions that grouping_planner() will certainly take, not assumptions
 * about context.
2940 2941
 */
static double
2942
preprocess_limit(PlannerInfo *root, double tuple_fraction,
B
Bruce Momjian 已提交
2943
				 int64 *offset_est, int64 *count_est)
2944 2945
{
	Query	   *parse = root->parse;
2946 2947
	Node	   *est;
	double		limit_fraction;
2948

2949 2950
	/* Should not be called unless LIMIT or OFFSET */
	Assert(parse->limitCount || parse->limitOffset);
2951 2952

	/*
2953 2954
	 * Try to obtain the clause values.  We use estimate_expression_value
	 * primarily because it can sometimes do something useful with Params.
2955
	 */
2956
	if (parse->limitCount)
2957
	{
2958
		est = estimate_expression_value(root, parse->limitCount);
2959
		if (est && IsA(est, Const))
2960
		{
2961
			if (((Const *) est)->constisnull)
2962
			{
2963
				/* NULL indicates LIMIT ALL, ie, no limit */
B
Bruce Momjian 已提交
2964
				*count_est = 0; /* treat as not present */
2965 2966 2967
			}
			else
			{
B
Bruce Momjian 已提交
2968
				*count_est = DatumGetInt64(((Const *) est)->constvalue);
2969 2970
				if (*count_est <= 0)
					*count_est = 1;		/* force to at least 1 */
2971 2972
			}
		}
2973 2974
		else
			*count_est = -1;	/* can't estimate */
2975 2976
	}
	else
2977 2978 2979
		*count_est = 0;			/* not present */

	if (parse->limitOffset)
2980
	{
2981
		est = estimate_expression_value(root, parse->limitOffset);
2982 2983 2984 2985 2986
		if (est && IsA(est, Const))
		{
			if (((Const *) est)->constisnull)
			{
				/* Treat NULL as no offset; the executor will too */
B
Bruce Momjian 已提交
2987
				*offset_est = 0;	/* treat as not present */
2988 2989 2990
			}
			else
			{
B
Bruce Momjian 已提交
2991
				*offset_est = DatumGetInt64(((Const *) est)->constvalue);
2992
				if (*offset_est < 0)
2993
					*offset_est = 0;	/* treat as not present */
2994 2995 2996 2997
			}
		}
		else
			*offset_est = -1;	/* can't estimate */
2998
	}
2999 3000
	else
		*offset_est = 0;		/* not present */
3001

3002
	if (*count_est != 0)
3003
	{
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
		/*
		 * A LIMIT clause limits the absolute number of tuples returned.
		 * However, if it's not a constant LIMIT then we have to guess; for
		 * lack of a better idea, assume 10% of the plan's result is wanted.
		 */
		if (*count_est < 0 || *offset_est < 0)
		{
			/* LIMIT or OFFSET is an expression ... punt ... */
			limit_fraction = 0.10;
		}
		else
		{
			/* LIMIT (plus OFFSET, if any) is max number of tuples needed */
			limit_fraction = (double) *count_est + (double) *offset_est;
		}

3020 3021
		/*
		 * If we have absolute limits from both caller and LIMIT, use the
3022 3023 3024 3025
		 * smaller value; likewise if they are both fractional.  If one is
		 * fractional and the other absolute, we can't easily determine which
		 * is smaller, but we use the heuristic that the absolute will usually
		 * be smaller.
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute */
				tuple_fraction = Min(tuple_fraction, limit_fraction);
			}
			else
			{
3036
				/* caller absolute, limit fractional; use caller's value */
3037 3038 3039 3040 3041 3042
			}
		}
		else if (tuple_fraction > 0.0)
		{
			if (limit_fraction >= 1.0)
			{
3043 3044
				/* caller fractional, limit absolute; use limit */
				tuple_fraction = limit_fraction;
3045 3046 3047 3048
			}
			else
			{
				/* both fractional */
3049
				tuple_fraction = Min(tuple_fraction, limit_fraction);
3050 3051 3052 3053 3054 3055 3056 3057
			}
		}
		else
		{
			/* no info from caller, just use limit */
			tuple_fraction = limit_fraction;
		}
	}
3058 3059 3060
	else if (*offset_est != 0 && tuple_fraction > 0.0)
	{
		/*
B
Bruce Momjian 已提交
3061
		 * We have an OFFSET but no LIMIT.  This acts entirely differently
B
Bruce Momjian 已提交
3062 3063 3064 3065
		 * from the LIMIT case: here, we need to increase rather than decrease
		 * the caller's tuple_fraction, because the OFFSET acts to cause more
		 * tuples to be fetched instead of fewer.  This only matters if we got
		 * a tuple_fraction > 0, however.
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
		 *
		 * As above, use 10% if OFFSET is present but unestimatable.
		 */
		if (*offset_est < 0)
			limit_fraction = 0.10;
		else
			limit_fraction = (double) *offset_est;

		/*
		 * If we have absolute counts from both caller and OFFSET, add them
B
Bruce Momjian 已提交
3076
		 * together; likewise if they are both fractional.  If one is
B
Bruce Momjian 已提交
3077 3078
		 * fractional and the other absolute, we want to take the larger, and
		 * we heuristically assume that's the fractional one.
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute, so add them together */
				tuple_fraction += limit_fraction;
			}
			else
			{
				/* caller absolute, limit fractional; use limit */
				tuple_fraction = limit_fraction;
			}
		}
		else
		{
			if (limit_fraction >= 1.0)
			{
				/* caller fractional, limit absolute; use caller's value */
			}
			else
			{
				/* both fractional, so add them together */
				tuple_fraction += limit_fraction;
				if (tuple_fraction >= 1.0)
B
Bruce Momjian 已提交
3104
					tuple_fraction = 0.0;		/* assume fetch all */
3105 3106 3107
			}
		}
	}
3108 3109 3110 3111

	return tuple_fraction;
}

3112 3113 3114 3115 3116
/*
 * limit_needed - do we actually need a Limit plan node?
 *
 * If we have constant-zero OFFSET and constant-null LIMIT, we can skip adding
 * a Limit node.  This is worth checking for because "OFFSET 0" is a common
B
Bruce Momjian 已提交
3117
 * locution for an optimization fence.  (Because other places in the planner
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
 * merely check whether parse->limitOffset isn't NULL, it will still work as
 * an optimization fence --- we're just suppressing unnecessary run-time
 * overhead.)
 *
 * This might look like it could be merged into preprocess_limit, but there's
 * a key distinction: here we need hard constants in OFFSET/LIMIT, whereas
 * in preprocess_limit it's good enough to consider estimated values.
 */
static bool
limit_needed(Query *parse)
{
	Node	   *node;

	node = parse->limitCount;
	if (node)
	{
		if (IsA(node, Const))
		{
			/* NULL indicates LIMIT ALL, ie, no limit */
			if (!((Const *) node)->constisnull)
				return true;	/* LIMIT with a constant value */
		}
		else
			return true;		/* non-constant LIMIT */
	}

	node = parse->limitOffset;
	if (node)
	{
		if (IsA(node, Const))
		{
			/* Treat NULL as no offset; the executor would too */
			if (!((Const *) node)->constisnull)
			{
B
Bruce Momjian 已提交
3152
				int64		offset = DatumGetInt64(((Const *) node)->constvalue);
3153

3154 3155
				if (offset != 0)
					return true;	/* OFFSET with a nonzero value */
3156 3157 3158 3159 3160 3161 3162 3163 3164
			}
		}
		else
			return true;		/* non-constant OFFSET */
	}

	return false;				/* don't need a Limit plan node */
}

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177

/*
 * preprocess_groupclause - do preparatory work on GROUP BY clause
 *
 * The idea here is to adjust the ordering of the GROUP BY elements
 * (which in itself is semantically insignificant) to match ORDER BY,
 * thereby allowing a single sort operation to both implement the ORDER BY
 * requirement and set up for a Unique step that implements GROUP BY.
 *
 * In principle it might be interesting to consider other orderings of the
 * GROUP BY elements, which could match the sort ordering of other
 * possible plans (eg an indexscan) and thereby reduce cost.  We don't
 * bother with that, though.  Hashed grouping will frequently win anyway.
3178 3179 3180
 *
 * Note: we need no comparable processing of the distinctClause because
 * the parser already enforced that that matches ORDER BY.
3181 3182 3183 3184 3185
 *
 * For grouping sets, the order of items is instead forced to agree with that
 * of the grouping set (and items not in the grouping set are skipped). The
 * work of sorting the order of grouping set elements to match the ORDER BY if
 * possible is done elsewhere.
3186
 */
3187 3188
static List *
preprocess_groupclause(PlannerInfo *root, List *force)
3189 3190
{
	Query	   *parse = root->parse;
3191
	List	   *new_groupclause = NIL;
3192 3193 3194 3195
	bool		partial_match;
	ListCell   *sl;
	ListCell   *gl;

3196 3197 3198 3199 3200
	/* For grouping sets, we need to force the ordering */
	if (force)
	{
		foreach(sl, force)
		{
B
Bruce Momjian 已提交
3201
			Index		ref = lfirst_int(sl);
3202 3203 3204 3205 3206 3207 3208 3209
			SortGroupClause *cl = get_sortgroupref_clause(ref, parse->groupClause);

			new_groupclause = lappend(new_groupclause, cl);
		}

		return new_groupclause;
	}

3210
	/* If no ORDER BY, nothing useful to do here */
3211
	if (parse->sortClause == NIL)
3212
		return parse->groupClause;
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242

	/*
	 * Scan the ORDER BY clause and construct a list of matching GROUP BY
	 * items, but only as far as we can make a matching prefix.
	 *
	 * This code assumes that the sortClause contains no duplicate items.
	 */
	foreach(sl, parse->sortClause)
	{
		SortGroupClause *sc = (SortGroupClause *) lfirst(sl);

		foreach(gl, parse->groupClause)
		{
			SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

			if (equal(gc, sc))
			{
				new_groupclause = lappend(new_groupclause, gc);
				break;
			}
		}
		if (gl == NULL)
			break;				/* no match, so stop scanning */
	}

	/* Did we match all of the ORDER BY list, or just some of it? */
	partial_match = (sl != NULL);

	/* If no match at all, no point in reordering GROUP BY */
	if (new_groupclause == NIL)
3243
		return parse->groupClause;
3244 3245

	/*
3246 3247 3248 3249 3250 3251
	 * Add any remaining GROUP BY items to the new list, but only if we were
	 * able to make a complete match.  In other words, we only rearrange the
	 * GROUP BY list if the result is that one list is a prefix of the other
	 * --- otherwise there's no possibility of a common sort.  Also, give up
	 * if there are any non-sortable GROUP BY items, since then there's no
	 * hope anyway.
3252 3253 3254 3255 3256 3257 3258 3259
	 */
	foreach(gl, parse->groupClause)
	{
		SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

		if (list_member_ptr(new_groupclause, gc))
			continue;			/* it matched an ORDER BY item */
		if (partial_match)
3260
			return parse->groupClause;	/* give up, no common sort possible */
3261
		if (!OidIsValid(gc->sortop))
3262
			return parse->groupClause;	/* give up, GROUP BY can't be sorted */
3263 3264 3265 3266 3267
		new_groupclause = lappend(new_groupclause, gc);
	}

	/* Success --- install the rearranged GROUP BY list */
	Assert(list_length(parse->groupClause) == list_length(new_groupclause));
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	return new_groupclause;
}

/*
 * Extract lists of grouping sets that can be implemented using a single
 * rollup-type aggregate pass each. Returns a list of lists of grouping sets.
 *
 * Input must be sorted with smallest sets first. Result has each sublist
 * sorted with smallest sets first.
 *
 * We want to produce the absolute minimum possible number of lists here to
 * avoid excess sorts. Fortunately, there is an algorithm for this; the problem
 * of finding the minimal partition of a partially-ordered set into chains
 * (which is what we need, taking the list of grouping sets as a poset ordered
 * by set inclusion) can be mapped to the problem of finding the maximum
 * cardinality matching on a bipartite graph, which is solvable in polynomial
 * time with a worst case of no worse than O(n^2.5) and usually much
 * better. Since our N is at most 4096, we don't need to consider fallbacks to
 * heuristic or approximate methods.  (Planning time for a 12-d cube is under
 * half a second on my modest system even with optimization off and assertions
 * on.)
 */
static List *
extract_rollup_sets(List *groupingSets)
{
	int			num_sets_raw = list_length(groupingSets);
	int			num_empty = 0;
B
Bruce Momjian 已提交
3295
	int			num_sets = 0;	/* distinct sets */
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	int			num_chains = 0;
	List	   *result = NIL;
	List	  **results;
	List	  **orig_sets;
	Bitmapset **set_masks;
	int		   *chains;
	short	  **adjacency;
	short	   *adjacency_buf;
	BipartiteMatchState *state;
	int			i;
	int			j;
	int			j_size;
	ListCell   *lc1 = list_head(groupingSets);
	ListCell   *lc;

	/*
	 * Start by stripping out empty sets.  The algorithm doesn't require this,
	 * but the planner currently needs all empty sets to be returned in the
	 * first list, so we strip them here and add them back after.
	 */
	while (lc1 && lfirst(lc1) == NIL)
	{
		++num_empty;
		lc1 = lnext(lc1);
	}

	/* bail out now if it turns out that all we had were empty sets. */
	if (!lc1)
		return list_make1(groupingSets);

T
Tom Lane 已提交
3326
	/*----------
B
Bruce Momjian 已提交
3327 3328
	 * We don't strictly need to remove duplicate sets here, but if we don't,
	 * they tend to become scattered through the result, which is a bit
T
Tom Lane 已提交
3329 3330
	 * confusing (and irritating if we ever decide to optimize them out).
	 * So we remove them here and add them back after.
3331 3332 3333
	 *
	 * For each non-duplicate set, we fill in the following:
	 *
T
Tom Lane 已提交
3334 3335 3336
	 * orig_sets[i] = list of the original set lists
	 * set_masks[i] = bitmapset for testing inclusion
	 * adjacency[i] = array [n, v1, v2, ... vn] of adjacency indices
3337 3338 3339
	 *
	 * chains[i] will be the result group this set is assigned to.
	 *
T
Tom Lane 已提交
3340 3341 3342
	 * We index all of these from 1 rather than 0 because it is convenient
	 * to leave 0 free for the NIL node in the graph algorithm.
	 *----------
3343
	 */
B
Bruce Momjian 已提交
3344
	orig_sets = palloc0((num_sets_raw + 1) * sizeof(List *));
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
	set_masks = palloc0((num_sets_raw + 1) * sizeof(Bitmapset *));
	adjacency = palloc0((num_sets_raw + 1) * sizeof(short *));
	adjacency_buf = palloc((num_sets_raw + 1) * sizeof(short));

	j_size = 0;
	j = 0;
	i = 1;

	for_each_cell(lc, lc1)
	{
		List	   *candidate = lfirst(lc);
		Bitmapset  *candidate_set = NULL;
		ListCell   *lc2;
		int			dup_of = 0;

		foreach(lc2, candidate)
		{
			candidate_set = bms_add_member(candidate_set, lfirst_int(lc2));
		}

		/* we can only be a dup if we're the same length as a previous set */
		if (j_size == list_length(candidate))
		{
B
Bruce Momjian 已提交
3368 3369
			int			k;

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
			for (k = j; k < i; ++k)
			{
				if (bms_equal(set_masks[k], candidate_set))
				{
					dup_of = k;
					break;
				}
			}
		}
		else if (j_size < list_length(candidate))
		{
			j_size = list_length(candidate);
			j = i;
		}

		if (dup_of > 0)
		{
			orig_sets[dup_of] = lappend(orig_sets[dup_of], candidate);
			bms_free(candidate_set);
		}
		else
		{
B
Bruce Momjian 已提交
3392 3393
			int			k;
			int			n_adj = 0;
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435

			orig_sets[i] = list_make1(candidate);
			set_masks[i] = candidate_set;

			/* fill in adjacency list; no need to compare equal-size sets */

			for (k = j - 1; k > 0; --k)
			{
				if (bms_is_subset(set_masks[k], candidate_set))
					adjacency_buf[++n_adj] = k;
			}

			if (n_adj > 0)
			{
				adjacency_buf[0] = n_adj;
				adjacency[i] = palloc((n_adj + 1) * sizeof(short));
				memcpy(adjacency[i], adjacency_buf, (n_adj + 1) * sizeof(short));
			}
			else
				adjacency[i] = NULL;

			++i;
		}
	}

	num_sets = i - 1;

	/*
	 * Apply the graph matching algorithm to do the work.
	 */
	state = BipartiteMatch(num_sets, num_sets, adjacency);

	/*
	 * Now, the state->pair* fields have the info we need to assign sets to
	 * chains. Two sets (u,v) belong to the same chain if pair_uv[u] = v or
	 * pair_vu[v] = u (both will be true, but we check both so that we can do
	 * it in one pass)
	 */
	chains = palloc0((num_sets + 1) * sizeof(int));

	for (i = 1; i <= num_sets; ++i)
	{
B
Bruce Momjian 已提交
3436 3437
		int			u = state->pair_vu[i];
		int			v = state->pair_uv[i];
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447

		if (u > 0 && u < i)
			chains[i] = chains[u];
		else if (v > 0 && v < i)
			chains[i] = chains[v];
		else
			chains[i] = ++num_chains;
	}

	/* build result lists. */
B
Bruce Momjian 已提交
3448
	results = palloc0((num_chains + 1) * sizeof(List *));
3449 3450 3451

	for (i = 1; i <= num_sets; ++i)
	{
B
Bruce Momjian 已提交
3452
		int			c = chains[i];
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493

		Assert(c > 0);

		results[c] = list_concat(results[c], orig_sets[i]);
	}

	/* push any empty sets back on the first list. */
	while (num_empty-- > 0)
		results[1] = lcons(NIL, results[1]);

	/* make result list */
	for (i = 1; i <= num_chains; ++i)
		result = lappend(result, results[i]);

	/*
	 * Free all the things.
	 *
	 * (This is over-fussy for small sets but for large sets we could have
	 * tied up a nontrivial amount of memory.)
	 */
	BipartiteMatchFree(state);
	pfree(results);
	pfree(chains);
	for (i = 1; i <= num_sets; ++i)
		if (adjacency[i])
			pfree(adjacency[i]);
	pfree(adjacency);
	pfree(adjacency_buf);
	pfree(orig_sets);
	for (i = 1; i <= num_sets; ++i)
		bms_free(set_masks[i]);
	pfree(set_masks);

	return result;
}

/*
 * Reorder the elements of a list of grouping sets such that they have correct
 * prefix relationships.
 *
 * The input must be ordered with smallest sets first; the result is returned
3494 3495
 * with largest sets first.  Note that the result shares no list substructure
 * with the input, so it's safe for the caller to modify it later.
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
 *
 * If we're passed in a sortclause, we follow its order of columns to the
 * extent possible, to minimize the chance that we add unnecessary sorts.
 * (We're trying here to ensure that GROUPING SETS ((a,b,c),(c)) ORDER BY c,b,a
 * gets implemented in one pass.)
 */
static List *
reorder_grouping_sets(List *groupingsets, List *sortclause)
{
	ListCell   *lc;
	ListCell   *lc2;
	List	   *previous = NIL;
	List	   *result = NIL;

	foreach(lc, groupingsets)
	{
B
Bruce Momjian 已提交
3512 3513
		List	   *candidate = lfirst(lc);
		List	   *new_elems = list_difference_int(candidate, previous);
3514 3515 3516 3517 3518 3519

		if (list_length(new_elems) > 0)
		{
			while (list_length(sortclause) > list_length(previous))
			{
				SortGroupClause *sc = list_nth(sortclause, list_length(previous));
B
Bruce Momjian 已提交
3520 3521
				int			ref = sc->tleSortGroupRef;

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
				if (list_member_int(new_elems, ref))
				{
					previous = lappend_int(previous, ref);
					new_elems = list_delete_int(new_elems, ref);
				}
				else
				{
					/* diverged from the sortclause; give up on it */
					sortclause = NIL;
					break;
				}
			}

			foreach(lc2, new_elems)
			{
				previous = lappend_int(previous, lfirst_int(lc2));
			}
		}

		result = lcons(list_copy(previous), result);
		list_free(new_elems);
	}

	list_free(previous);

	return result;
3548 3549
}

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
/*
 * Compute query_pathkeys and other pathkeys during plan generation
 */
static void
standard_qp_callback(PlannerInfo *root, void *extra)
{
	Query	   *parse = root->parse;
	standard_qp_extra *qp_extra = (standard_qp_extra *) extra;
	List	   *tlist = qp_extra->tlist;
	List	   *activeWindows = qp_extra->activeWindows;

	/*
	 * Calculate pathkeys that represent grouping/ordering requirements.  The
	 * sortClause is certainly sort-able, but GROUP BY and DISTINCT might not
	 * be, in which case we just leave their pathkeys empty.
	 */
3566 3567
	if (qp_extra->groupClause &&
		grouping_is_sortable(qp_extra->groupClause))
3568 3569
		root->group_pathkeys =
			make_pathkeys_for_sortclauses(root,
3570
										  qp_extra->groupClause,
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
										  tlist);
	else
		root->group_pathkeys = NIL;

	/* We consider only the first (bottom) window in pathkeys logic */
	if (activeWindows != NIL)
	{
		WindowClause *wc = (WindowClause *) linitial(activeWindows);

		root->window_pathkeys = make_pathkeys_for_window(root,
														 wc,
														 tlist);
	}
	else
		root->window_pathkeys = NIL;

	if (parse->distinctClause &&
		grouping_is_sortable(parse->distinctClause))
		root->distinct_pathkeys =
			make_pathkeys_for_sortclauses(root,
										  parse->distinctClause,
										  tlist);
	else
		root->distinct_pathkeys = NIL;

	root->sort_pathkeys =
		make_pathkeys_for_sortclauses(root,
									  parse->sortClause,
									  tlist);

	/*
	 * Figure out whether we want a sorted result from query_planner.
	 *
	 * If we have a sortable GROUP BY clause, then we want a result sorted
	 * properly for grouping.  Otherwise, if we have window functions to
	 * evaluate, we try to sort for the first window.  Otherwise, if there's a
	 * sortable DISTINCT clause that's more rigorous than the ORDER BY clause,
	 * we try to produce output that's sufficiently well sorted for the
	 * DISTINCT.  Otherwise, if there is an ORDER BY clause, we want to sort
	 * by the ORDER BY clause.
	 *
	 * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a superset
	 * of GROUP BY, it would be tempting to request sort by ORDER BY --- but
	 * that might just leave us failing to exploit an available sort order at
	 * all.  Needs more thought.  The choice for DISTINCT versus ORDER BY is
	 * much easier, since we know that the parser ensured that one is a
	 * superset of the other.
	 */
	if (root->group_pathkeys)
		root->query_pathkeys = root->group_pathkeys;
	else if (root->window_pathkeys)
		root->query_pathkeys = root->window_pathkeys;
	else if (list_length(root->distinct_pathkeys) >
			 list_length(root->sort_pathkeys))
		root->query_pathkeys = root->distinct_pathkeys;
	else if (root->sort_pathkeys)
		root->query_pathkeys = root->sort_pathkeys;
	else
		root->query_pathkeys = NIL;
}

3632 3633
/*
 * choose_hashed_grouping - should we use hashed grouping?
3634
 *
3635
 * Returns TRUE to select hashing, FALSE to select sorting.
3636 3637
 */
static bool
3638 3639
choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
3640
					   double path_rows, int path_width,
3641
					   Path *cheapest_path, Path *sorted_path,
3642
					   double dNumGroups, AggClauseCosts *agg_costs)
3643
{
3644 3645 3646 3647
	Query	   *parse = root->parse;
	int			numGroupCols = list_length(parse->groupClause);
	bool		can_hash;
	bool		can_sort;
3648
	Size		hashentrysize;
3649
	List	   *target_pathkeys;
3650 3651 3652 3653
	List	   *current_pathkeys;
	Path		hashed_p;
	Path		sorted_p;

3654 3655
	/*
	 * Executor doesn't support hashed aggregation with DISTINCT or ORDER BY
B
Bruce Momjian 已提交
3656
	 * aggregates.  (Doing so would imply storing *all* the input values in
3657
	 * the hash table, and/or running many sorts in parallel, either of which
3658 3659 3660
	 * seems like a certain loser.)  We similarly don't support ordered-set
	 * aggregates in hashed aggregation, but that case is included in the
	 * numOrderedAggs count.
3661
	 */
3662
	can_hash = (agg_costs->numOrderedAggs == 0 &&
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
				grouping_is_hashable(parse->groupClause));
	can_sort = grouping_is_sortable(parse->groupClause);

	/* Quick out if only one choice is workable */
	if (!(can_hash && can_sort))
	{
		if (can_hash)
			return true;
		else if (can_sort)
			return false;
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("could not implement GROUP BY"),
					 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
	}

3680
	/* Prefer sorting when enable_hashagg is off */
3681 3682 3683 3684 3685 3686 3687 3688 3689
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */

	/* Estimate per-hash-entry space at tuple width... */
3690
	hashentrysize = MAXALIGN(path_width) + MAXALIGN(SizeofMinimalTupleHeader);
3691
	/* plus space for pass-by-ref transition values... */
3692
	hashentrysize += agg_costs->transitionSpace;
3693
	/* plus the per-hash-entry overhead */
3694
	hashentrysize += hash_agg_entry_size(agg_costs->numAggs);
3695 3696 3697 3698

	if (hashentrysize * dNumGroups > work_mem * 1024L)
		return false;

3699 3700
	/*
	 * When we have both GROUP BY and DISTINCT, use the more-rigorous of
3701 3702 3703 3704
	 * DISTINCT and ORDER BY as the assumed required output sort order. This
	 * is an oversimplification because the DISTINCT might get implemented via
	 * hashing, but it's not clear that the case is common enough (or that our
	 * estimates are good enough) to justify trying to solve it exactly.
3705 3706 3707 3708 3709 3710 3711
	 */
	if (list_length(root->distinct_pathkeys) >
		list_length(root->sort_pathkeys))
		target_pathkeys = root->distinct_pathkeys;
	else
		target_pathkeys = root->sort_pathkeys;

3712
	/*
B
Bruce Momjian 已提交
3713 3714 3715 3716
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
3717
	 *
3718 3719 3720
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * either cheapest_path [+ sort] + group or agg [+ final sort] or
	 * presorted_path + group or agg [+ final sort] where brackets indicate a
3721 3722
	 * step that may not be needed.  We assume grouping_planner() will have
	 * passed us a presorted path only if it's a winner compared to
3723
	 * cheapest_path for this purpose.
3724
	 *
3725 3726
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
3727
	 */
3728
	cost_agg(&hashed_p, root, AGG_HASHED, agg_costs,
3729 3730
			 numGroupCols, dNumGroups,
			 cheapest_path->startup_cost, cheapest_path->total_cost,
3731
			 path_rows);
3732
	/* Result of hashed agg is always unsorted */
3733 3734
	if (target_pathkeys)
		cost_sort(&hashed_p, root, target_pathkeys, hashed_p.total_cost,
3735 3736
				  dNumGroups, path_width,
				  0.0, work_mem, limit_tuples);
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749

	if (sorted_path)
	{
		sorted_p.startup_cost = sorted_path->startup_cost;
		sorted_p.total_cost = sorted_path->total_cost;
		current_pathkeys = sorted_path->pathkeys;
	}
	else
	{
		sorted_p.startup_cost = cheapest_path->startup_cost;
		sorted_p.total_cost = cheapest_path->total_cost;
		current_pathkeys = cheapest_path->pathkeys;
	}
3750
	if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
3751
	{
3752
		cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
3753 3754
				  path_rows, path_width,
				  0.0, work_mem, -1.0);
3755
		current_pathkeys = root->group_pathkeys;
3756 3757
	}

3758
	if (parse->hasAggs)
3759
		cost_agg(&sorted_p, root, AGG_SORTED, agg_costs,
3760 3761
				 numGroupCols, dNumGroups,
				 sorted_p.startup_cost, sorted_p.total_cost,
3762
				 path_rows);
3763
	else
3764
		cost_group(&sorted_p, root, numGroupCols, dNumGroups,
3765
				   sorted_p.startup_cost, sorted_p.total_cost,
3766
				   path_rows);
3767
	/* The Agg or Group node will preserve ordering */
3768 3769 3770
	if (target_pathkeys &&
		!pathkeys_contained_in(target_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, target_pathkeys, sorted_p.total_cost,
3771 3772
				  dNumGroups, path_width,
				  0.0, work_mem, limit_tuples);
3773 3774

	/*
3775
	 * Now make the decision using the top-level tuple fraction.
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
	 */
	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

3786 3787 3788 3789 3790
/*
 * choose_hashed_distinct - should we use hashing for DISTINCT?
 *
 * This is fairly similar to choose_hashed_grouping, but there are enough
 * differences that it doesn't seem worth trying to unify the two functions.
3791 3792 3793
 * (One difference is that we sometimes apply this after forming a Plan,
 * so the input alternatives can't be represented as Paths --- instead we
 * pass in the costs as individual variables.)
3794 3795
 *
 * But note that making the two choices independently is a bit bogus in
B
Bruce Momjian 已提交
3796
 * itself.  If the two could be combined into a single choice operation
3797 3798 3799 3800 3801 3802
 * it'd probably be better, but that seems far too unwieldy to be practical,
 * especially considering that the combination of GROUP BY and DISTINCT
 * isn't very common in real queries.  By separating them, we are giving
 * extra preference to using a sorting implementation when a common sort key
 * is available ... and that's not necessarily wrong anyway.
 *
3803
 * Returns TRUE to select hashing, FALSE to select sorting.
3804 3805 3806 3807
 */
static bool
choose_hashed_distinct(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
3808 3809 3810 3811
					   double path_rows, int path_width,
					   Cost cheapest_startup_cost, Cost cheapest_total_cost,
					   Cost sorted_startup_cost, Cost sorted_total_cost,
					   List *sorted_pathkeys,
3812 3813
					   double dNumDistinctRows)
{
3814 3815 3816 3817
	Query	   *parse = root->parse;
	int			numDistinctCols = list_length(parse->distinctClause);
	bool		can_sort;
	bool		can_hash;
3818 3819
	Size		hashentrysize;
	List	   *current_pathkeys;
3820
	List	   *needed_pathkeys;
3821 3822 3823
	Path		hashed_p;
	Path		sorted_p;

3824
	/*
B
Bruce Momjian 已提交
3825 3826
	 * If we have a sortable DISTINCT ON clause, we always use sorting. This
	 * enforces the expected behavior of DISTINCT ON.
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
	 */
	can_sort = grouping_is_sortable(parse->distinctClause);
	if (can_sort && parse->hasDistinctOn)
		return false;

	can_hash = grouping_is_hashable(parse->distinctClause);

	/* Quick out if only one choice is workable */
	if (!(can_hash && can_sort))
	{
		if (can_hash)
			return true;
		else if (can_sort)
			return false;
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("could not implement DISTINCT"),
					 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
	}

3848 3849 3850 3851 3852 3853 3854 3855
	/* Prefer sorting when enable_hashagg is off */
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */
3856 3857

	/* Estimate per-hash-entry space at tuple width... */
3858
	hashentrysize = MAXALIGN(path_width) + MAXALIGN(SizeofMinimalTupleHeader);
3859 3860
	/* plus the per-hash-entry overhead */
	hashentrysize += hash_agg_entry_size(0);
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870

	if (hashentrysize * dNumDistinctRows > work_mem * 1024L)
		return false;

	/*
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
	 *
3871 3872
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * sorted_path [+ sort] + group [+ final sort] where brackets indicate a
3873
	 * step that may not be needed.
3874 3875 3876 3877
	 *
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
	 */
3878
	cost_agg(&hashed_p, root, AGG_HASHED, NULL,
3879
			 numDistinctCols, dNumDistinctRows,
3880 3881
			 cheapest_startup_cost, cheapest_total_cost,
			 path_rows);
3882

3883
	/*
3884 3885
	 * Result of hashed agg is always unsorted, so if ORDER BY is present we
	 * need to charge for the final sort.
3886
	 */
3887
	if (parse->sortClause)
3888
		cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
3889 3890
				  dNumDistinctRows, path_width,
				  0.0, work_mem, limit_tuples);
3891

3892
	/*
B
Bruce Momjian 已提交
3893
	 * Now for the GROUP case.  See comments in grouping_planner about the
3894 3895
	 * sorting choices here --- this code should match that code.
	 */
3896 3897 3898 3899
	sorted_p.startup_cost = sorted_startup_cost;
	sorted_p.total_cost = sorted_total_cost;
	current_pathkeys = sorted_pathkeys;
	if (parse->hasDistinctOn &&
3900 3901 3902 3903 3904 3905
		list_length(root->distinct_pathkeys) <
		list_length(root->sort_pathkeys))
		needed_pathkeys = root->sort_pathkeys;
	else
		needed_pathkeys = root->distinct_pathkeys;
	if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
3906 3907 3908 3909 3910 3911 3912
	{
		if (list_length(root->distinct_pathkeys) >=
			list_length(root->sort_pathkeys))
			current_pathkeys = root->distinct_pathkeys;
		else
			current_pathkeys = root->sort_pathkeys;
		cost_sort(&sorted_p, root, current_pathkeys, sorted_p.total_cost,
3913 3914
				  path_rows, path_width,
				  0.0, work_mem, -1.0);
3915 3916 3917
	}
	cost_group(&sorted_p, root, numDistinctCols, dNumDistinctRows,
			   sorted_p.startup_cost, sorted_p.total_cost,
3918 3919
			   path_rows);
	if (parse->sortClause &&
3920 3921
		!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
3922 3923
				  dNumDistinctRows, path_width,
				  0.0, work_mem, limit_tuples);
3924 3925

	/*
3926
	 * Now make the decision using the top-level tuple fraction.
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
	 */
	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

3937
/*
3938
 * make_subplanTargetList
3939
 *	  Generate appropriate target list when grouping is required.
3940
 *
3941 3942 3943 3944 3945
 * When grouping_planner inserts grouping or aggregation plan nodes
 * above the scan/join plan constructed by query_planner+create_plan,
 * we typically want the scan/join plan to emit a different target list
 * than the outer plan nodes should have.  This routine generates the
 * correct target list for the scan/join subplan.
3946 3947 3948 3949
 *
 * The initial target list passed from the parser already contains entries
 * for all ORDER BY and GROUP BY expressions, but it will not have entries
 * for variables used only in HAVING clauses; so we need to add those
3950 3951 3952 3953
 * variables to the subplan target list.  Also, we flatten all expressions
 * except GROUP BY items into their component variables; the other expressions
 * will be computed by the inserted nodes rather than by the subplan.
 * For example, given a query like
3954 3955
 *		SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
 * we want to pass this targetlist to the subplan:
3956
 *		a+b,c,d
3957
 * where the a+b target will be used by the Sort/Group steps, and the
3958
 * other targets will be used for computing the final results.
3959
 *
3960 3961 3962
 * If we are grouping or aggregating, *and* there are no non-Var grouping
 * expressions, then the returned tlist is effectively dummy; we do not
 * need to force it to be evaluated, because all the Vars it contains
3963 3964 3965 3966
 * should be present in the "flat" tlist generated by create_plan, though
 * possibly in a different order.  In that case we'll use create_plan's tlist,
 * and the tlist made here is only needed as input to query_planner to tell
 * it which Vars are needed in the output of the scan/join plan.
3967
 *
3968
 * 'tlist' is the query's target list.
3969
 * 'groupColIdx' receives an array of column numbers for the GROUP BY
3970
 *			expressions (if there are any) in the returned target list.
3971
 * 'need_tlist_eval' is set true if we really need to evaluate the
3972 3973
 *			returned tlist as-is.  (Note: locate_grouping_columns assumes
 *			that if this is FALSE, all grouping columns are simple Vars.)
3974
 *
3975
 * The result is the targetlist to be passed to query_planner.
3976 3977
 */
static List *
3978
make_subplanTargetList(PlannerInfo *root,
3979
					   List *tlist,
3980 3981
					   AttrNumber **groupColIdx,
					   bool *need_tlist_eval)
3982
{
3983
	Query	   *parse = root->parse;
3984
	List	   *sub_tlist;
3985 3986
	List	   *non_group_cols;
	List	   *non_group_vars;
3987 3988 3989 3990
	int			numCols;

	*groupColIdx = NULL;

B
Bruce Momjian 已提交
3991
	/*
3992
	 * If we're not grouping or aggregating, there's nothing to do here;
3993 3994
	 * query_planner should receive the unmodified target list.
	 */
3995
	if (!parse->hasAggs && !parse->groupClause && !parse->groupingSets && !root->hasHavingQual &&
T
Tom Lane 已提交
3996
		!parse->hasWindowFuncs)
3997 3998
	{
		*need_tlist_eval = true;
3999
		return tlist;
4000
	}
4001

B
Bruce Momjian 已提交
4002
	/*
4003 4004
	 * Otherwise, we must build a tlist containing all grouping columns, plus
	 * any other Vars mentioned in the targetlist and HAVING qual.
4005
	 */
4006 4007
	sub_tlist = NIL;
	non_group_cols = NIL;
4008
	*need_tlist_eval = false;	/* only eval if not flat tlist */
4009

4010
	numCols = list_length(parse->groupClause);
4011
	if (numCols > 0)
4012
	{
4013 4014 4015 4016 4017 4018 4019
		/*
		 * If grouping, create sub_tlist entries for all GROUP BY columns, and
		 * make an array showing where the group columns are in the sub_tlist.
		 *
		 * Note: with this implementation, the array entries will always be
		 * 1..N, but we don't want callers to assume that.
		 */
4020
		AttrNumber *grpColIdx;
4021
		ListCell   *tl;
4022

4023
		grpColIdx = (AttrNumber *) palloc0(sizeof(AttrNumber) * numCols);
4024
		*groupColIdx = grpColIdx;
4025

4026
		foreach(tl, tlist)
4027
		{
4028 4029
			TargetEntry *tle = (TargetEntry *) lfirst(tl);
			int			colno;
4030

4031 4032 4033 4034 4035 4036 4037 4038
			colno = get_grouping_column_index(parse, tle);
			if (colno >= 0)
			{
				/*
				 * It's a grouping column, so add it to the result tlist and
				 * remember its resno in grpColIdx[].
				 */
				TargetEntry *newtle;
4039

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
				newtle = makeTargetEntry(tle->expr,
										 list_length(sub_tlist) + 1,
										 NULL,
										 false);
				sub_tlist = lappend(sub_tlist, newtle);

				Assert(grpColIdx[colno] == 0);	/* no dups expected */
				grpColIdx[colno] = newtle->resno;

				if (!(newtle->expr && IsA(newtle->expr, Var)))
					*need_tlist_eval = true;	/* tlist contains non Vars */
			}
			else
4053
			{
4054
				/*
4055 4056
				 * Non-grouping column, so just remember the expression for
				 * later call to pull_var_clause.  There's no need for
4057 4058 4059
				 * pull_var_clause to examine the TargetEntry node itself.
				 */
				non_group_cols = lappend(non_group_cols, tle->expr);
4060 4061 4062
			}
		}
	}
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
	else
	{
		/*
		 * With no grouping columns, just pass whole tlist to pull_var_clause.
		 * Need (shallow) copy to avoid damaging input tlist below.
		 */
		non_group_cols = list_copy(tlist);
	}

	/*
	 * If there's a HAVING clause, we'll need the Vars it uses, too.
	 */
	if (parse->havingQual)
		non_group_cols = lappend(non_group_cols, parse->havingQual);

	/*
	 * Pull out all the Vars mentioned in non-group cols (plus HAVING), and
	 * add them to the result tlist if not already present.  (A Var used
	 * directly as a GROUP BY item will be present already.)  Note this
	 * includes Vars used in resjunk items, so we are covering the needs of
B
Bruce Momjian 已提交
4083
	 * ORDER BY and window specifications.  Vars used within Aggrefs will be
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
	 * pulled out here, too.
	 */
	non_group_vars = pull_var_clause((Node *) non_group_cols,
									 PVC_RECURSE_AGGREGATES,
									 PVC_INCLUDE_PLACEHOLDERS);
	sub_tlist = add_to_flat_tlist(sub_tlist, non_group_vars);

	/* clean up cruft */
	list_free(non_group_vars);
	list_free(non_group_cols);
4094 4095 4096 4097

	return sub_tlist;
}

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
/*
 * get_grouping_column_index
 *		Get the GROUP BY column position, if any, of a targetlist entry.
 *
 * Returns the index (counting from 0) of the TLE in the GROUP BY list, or -1
 * if it's not a grouping column.  Note: the result is unique because the
 * parser won't make multiple groupClause entries for the same TLE.
 */
static int
get_grouping_column_index(Query *parse, TargetEntry *tle)
{
	int			colno = 0;
	Index		ressortgroupref = tle->ressortgroupref;
	ListCell   *gl;

	/* No need to search groupClause if TLE hasn't got a sortgroupref */
	if (ressortgroupref == 0)
		return -1;

	foreach(gl, parse->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);

		if (grpcl->tleSortGroupRef == ressortgroupref)
			return colno;
		colno++;
	}

	return -1;
}

4129 4130
/*
 * locate_grouping_columns
4131
 *		Locate grouping columns in the tlist chosen by create_plan.
4132 4133
 *
 * This is only needed if we don't use the sub_tlist chosen by
B
Bruce Momjian 已提交
4134
 * make_subplanTargetList.  We have to forget the column indexes found
T
Tom Lane 已提交
4135
 * by that routine and re-locate the grouping exprs in the real sub_tlist.
4136
 * We assume the grouping exprs are just Vars (see make_subplanTargetList).
4137 4138
 */
static void
4139
locate_grouping_columns(PlannerInfo *root,
4140 4141 4142 4143 4144
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx)
{
	int			keyno = 0;
4145
	ListCell   *gl;
4146 4147 4148 4149

	/*
	 * No work unless grouping.
	 */
4150
	if (!root->parse->groupClause)
4151 4152 4153 4154 4155 4156
	{
		Assert(groupColIdx == NULL);
		return;
	}
	Assert(groupColIdx != NULL);

4157
	foreach(gl, root->parse->groupClause)
4158
	{
4159
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
4160 4161
		Var		   *groupexpr = (Var *) get_sortgroupclause_expr(grpcl, tlist);
		TargetEntry *te;
4162

4163 4164
		/*
		 * The grouping column returned by create_plan might not have the same
B
Bruce Momjian 已提交
4165
		 * typmod as the original Var.  (This can happen in cases where a
4166 4167 4168
		 * set-returning function has been inlined, so that we now have more
		 * knowledge about what it returns than we did when the original Var
		 * was created.)  So we can't use tlist_member() to search the tlist;
B
Bruce Momjian 已提交
4169
		 * instead use tlist_member_match_var.  For safety, still check that
4170 4171 4172 4173 4174
		 * the vartype matches.
		 */
		if (!(groupexpr && IsA(groupexpr, Var)))
			elog(ERROR, "grouping column is not a Var as expected");
		te = tlist_member_match_var(groupexpr, sub_tlist);
T
Tom Lane 已提交
4175
		if (!te)
4176
			elog(ERROR, "failed to locate grouping columns");
4177
		Assert(((Var *) te->expr)->vartype == groupexpr->vartype);
4178
		groupColIdx[keyno++] = te->resno;
4179 4180 4181
	}
}

4182 4183 4184 4185 4186 4187 4188
/*
 * postprocess_setop_tlist
 *	  Fix up targetlist returned by plan_set_operations().
 *
 * We need to transpose sort key info from the orig_tlist into new_tlist.
 * NOTE: this would not be good enough if we supported resjunk sort keys
 * for results of set operations --- then, we'd need to project a whole
4189
 * new tlist to evaluate the resjunk columns.  For now, just ereport if we
4190 4191 4192 4193 4194
 * find any resjunk columns in orig_tlist.
 */
static List *
postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
{
4195 4196
	ListCell   *l;
	ListCell   *orig_tlist_item = list_head(orig_tlist);
4197 4198 4199 4200 4201 4202 4203

	foreach(l, new_tlist)
	{
		TargetEntry *new_tle = (TargetEntry *) lfirst(l);
		TargetEntry *orig_tle;

		/* ignore resjunk columns in setop result */
4204
		if (new_tle->resjunk)
4205 4206
			continue;

4207 4208 4209
		Assert(orig_tlist_item != NULL);
		orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
		orig_tlist_item = lnext(orig_tlist_item);
B
Bruce Momjian 已提交
4210
		if (orig_tle->resjunk)	/* should not happen */
4211
			elog(ERROR, "resjunk output columns are not implemented");
4212 4213
		Assert(new_tle->resno == orig_tle->resno);
		new_tle->ressortgroupref = orig_tle->ressortgroupref;
4214
	}
4215
	if (orig_tlist_item != NULL)
4216
		elog(ERROR, "resjunk output columns are not implemented");
4217 4218
	return new_tlist;
}
T
Tom Lane 已提交
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250

/*
 * select_active_windows
 *		Create a list of the "active" window clauses (ie, those referenced
 *		by non-deleted WindowFuncs) in the order they are to be executed.
 */
static List *
select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
{
	List	   *result;
	List	   *actives;
	ListCell   *lc;

	/* First, make a list of the active windows */
	actives = NIL;
	foreach(lc, root->parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);

		/* It's only active if wflists shows some related WindowFuncs */
		Assert(wc->winref <= wflists->maxWinRef);
		if (wflists->windowFuncs[wc->winref] != NIL)
			actives = lappend(actives, wc);
	}

	/*
	 * Now, ensure that windows with identical partitioning/ordering clauses
	 * are adjacent in the list.  This is required by the SQL standard, which
	 * says that only one sort is to be used for such windows, even if they
	 * are otherwise distinct (eg, different names or framing clauses).
	 *
	 * There is room to be much smarter here, for example detecting whether
4251 4252 4253 4254
	 * one window's sort keys are a prefix of another's (so that sorting for
	 * the latter would do for the former), or putting windows first that
	 * match a sort order available for the underlying query.  For the moment
	 * we are content with meeting the spec.
T
Tom Lane 已提交
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
	 */
	result = NIL;
	while (actives != NIL)
	{
		WindowClause *wc = (WindowClause *) linitial(actives);
		ListCell   *prev;
		ListCell   *next;

		/* Move wc from actives to result */
		actives = list_delete_first(actives);
		result = lappend(result, wc);

		/* Now move any matching windows from actives to result */
		prev = NULL;
		for (lc = list_head(actives); lc; lc = next)
		{
			WindowClause *wc2 = (WindowClause *) lfirst(lc);

			next = lnext(lc);
4274
			/* framing options are NOT to be compared here! */
T
Tom Lane 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
			if (equal(wc->partitionClause, wc2->partitionClause) &&
				equal(wc->orderClause, wc2->orderClause))
			{
				actives = list_delete_cell(actives, lc, prev);
				result = lappend(result, wc2);
			}
			else
				prev = lc;
		}
	}

	return result;
}

4289
/*
4290 4291 4292 4293 4294
 * make_windowInputTargetList
 *	  Generate appropriate target list for initial input to WindowAgg nodes.
 *
 * When grouping_planner inserts one or more WindowAgg nodes into the plan,
 * this function computes the initial target list to be computed by the node
B
Bruce Momjian 已提交
4295
 * just below the first WindowAgg.  This list must contain all values needed
4296 4297 4298 4299 4300 4301 4302
 * to evaluate the window functions, compute the final target list, and
 * perform any required final sort step.  If multiple WindowAggs are needed,
 * each intermediate one adds its window function results onto this tlist;
 * only the topmost WindowAgg computes the actual desired target list.
 *
 * This function is much like make_subplanTargetList, though not quite enough
 * like it to share code.  As in that function, we flatten most expressions
B
Bruce Momjian 已提交
4303
 * into their component variables.  But we do not want to flatten window
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
 * PARTITION BY/ORDER BY clauses, since that might result in multiple
 * evaluations of them, which would be bad (possibly even resulting in
 * inconsistent answers, if they contain volatile functions).  Also, we must
 * not flatten GROUP BY clauses that were left unflattened by
 * make_subplanTargetList, because we may no longer have access to the
 * individual Vars in them.
 *
 * Another key difference from make_subplanTargetList is that we don't flatten
 * Aggref expressions, since those are to be computed below the window
 * functions and just referenced like Vars above that.
 *
 * 'tlist' is the query's final target list.
 * 'activeWindows' is the list of active windows previously identified by
 *			select_active_windows.
 *
 * The result is the targetlist to be computed by the plan node immediately
 * below the first WindowAgg node.
4321 4322
 */
static List *
4323 4324 4325
make_windowInputTargetList(PlannerInfo *root,
						   List *tlist,
						   List *activeWindows)
4326
{
4327 4328 4329 4330 4331
	Query	   *parse = root->parse;
	Bitmapset  *sgrefs;
	List	   *new_tlist;
	List	   *flattenable_cols;
	List	   *flattenable_vars;
4332 4333
	ListCell   *lc;

4334 4335 4336 4337 4338 4339 4340
	Assert(parse->hasWindowFuncs);

	/*
	 * Collect the sortgroupref numbers of window PARTITION/ORDER BY clauses
	 * into a bitmapset for convenient reference below.
	 */
	sgrefs = NULL;
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
	foreach(lc, activeWindows)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);
		ListCell   *lc2;

		foreach(lc2, wc->partitionClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
		foreach(lc2, wc->orderClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
	}

4360 4361 4362 4363 4364 4365 4366 4367
	/* Add in sortgroupref numbers of GROUP BY clauses, too */
	foreach(lc, parse->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(lc);

		sgrefs = bms_add_member(sgrefs, grpcl->tleSortGroupRef);
	}

4368
	/*
4369 4370
	 * Construct a tlist containing all the non-flattenable tlist items, and
	 * save aside the others for a moment.
4371
	 */
4372 4373 4374
	new_tlist = NIL;
	flattenable_cols = NIL;

4375 4376 4377 4378
	foreach(lc, tlist)
	{
		TargetEntry *tle = (TargetEntry *) lfirst(lc);

4379 4380 4381 4382 4383
		/*
		 * Don't want to deconstruct window clauses or GROUP BY items.  (Note
		 * that such items can't contain window functions, so it's okay to
		 * compute them below the WindowAgg nodes.)
		 */
4384
		if (tle->ressortgroupref != 0 &&
4385
			bms_is_member(tle->ressortgroupref, sgrefs))
4386
		{
4387
			/* Don't want to deconstruct this value, so add to new_tlist */
4388 4389 4390
			TargetEntry *newtle;

			newtle = makeTargetEntry(tle->expr,
4391
									 list_length(new_tlist) + 1,
4392 4393
									 NULL,
									 false);
4394
			/* Preserve its sortgroupref marking, in case it's volatile */
4395
			newtle->ressortgroupref = tle->ressortgroupref;
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
			new_tlist = lappend(new_tlist, newtle);
		}
		else
		{
			/*
			 * Column is to be flattened, so just remember the expression for
			 * later call to pull_var_clause.  There's no need for
			 * pull_var_clause to examine the TargetEntry node itself.
			 */
			flattenable_cols = lappend(flattenable_cols, tle->expr);
4406 4407 4408
		}
	}

4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
	/*
	 * Pull out all the Vars and Aggrefs mentioned in flattenable columns, and
	 * add them to the result tlist if not already present.  (Some might be
	 * there already because they're used directly as window/group clauses.)
	 *
	 * Note: it's essential to use PVC_INCLUDE_AGGREGATES here, so that the
	 * Aggrefs are placed in the Agg node's tlist and not left to be computed
	 * at higher levels.
	 */
	flattenable_vars = pull_var_clause((Node *) flattenable_cols,
									   PVC_INCLUDE_AGGREGATES,
									   PVC_INCLUDE_PLACEHOLDERS);
	new_tlist = add_to_flat_tlist(new_tlist, flattenable_vars);

	/* clean up cruft */
	list_free(flattenable_vars);
	list_free(flattenable_cols);

	return new_tlist;
4428 4429
}

T
Tom Lane 已提交
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
/*
 * make_pathkeys_for_window
 *		Create a pathkeys list describing the required input ordering
 *		for the given WindowClause.
 *
 * The required ordering is first the PARTITION keys, then the ORDER keys.
 * In the future we might try to implement windowing using hashing, in which
 * case the ordering could be relaxed, but for now we always sort.
 */
static List *
make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
4441
						 List *tlist)
T
Tom Lane 已提交
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
{
	List	   *window_pathkeys;
	List	   *window_sortclauses;

	/* Throw error if can't sort */
	if (!grouping_is_sortable(wc->partitionClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window PARTITION BY"),
				 errdetail("Window partitioning columns must be of sortable datatypes.")));
	if (!grouping_is_sortable(wc->orderClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window ORDER BY"),
4456
		errdetail("Window ordering columns must be of sortable datatypes.")));
T
Tom Lane 已提交
4457 4458 4459 4460 4461 4462

	/* Okay, make the combined pathkeys */
	window_sortclauses = list_concat(list_copy(wc->partitionClause),
									 list_copy(wc->orderClause));
	window_pathkeys = make_pathkeys_for_sortclauses(root,
													window_sortclauses,
4463
													tlist);
T
Tom Lane 已提交
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
	list_free(window_sortclauses);
	return window_pathkeys;
}

/*----------
 * get_column_info_for_window
 *		Get the partitioning/ordering column numbers and equality operators
 *		for a WindowAgg node.
 *
 * This depends on the behavior of make_pathkeys_for_window()!
 *
 * We are given the target WindowClause and an array of the input column
B
Bruce Momjian 已提交
4476
 * numbers associated with the resulting pathkeys.  In the easy case, there
T
Tom Lane 已提交
4477 4478 4479 4480 4481 4482 4483
 * are the same number of pathkey columns as partitioning + ordering columns
 * and we just have to copy some data around.  However, it's possible that
 * some of the original partitioning + ordering columns were eliminated as
 * redundant during the transformation to pathkeys.  (This can happen even
 * though the parser gets rid of obvious duplicates.  A typical scenario is a
 * window specification "PARTITION BY x ORDER BY y" coupled with a clause
 * "WHERE x = y" that causes the two sort columns to be recognized as
4484
 * redundant.)	In that unusual case, we have to work a lot harder to
T
Tom Lane 已提交
4485 4486 4487
 * determine which keys are significant.
 *
 * The method used here is a bit brute-force: add the sort columns to a list
B
Bruce Momjian 已提交
4488
 * one at a time and note when the resulting pathkey list gets longer.  But
T
Tom Lane 已提交
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
 * it's a sufficiently uncommon case that a faster way doesn't seem worth
 * the amount of code refactoring that'd be needed.
 *----------
 */
static void
get_column_info_for_window(PlannerInfo *root, WindowClause *wc, List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators)
{
	int			numPart = list_length(wc->partitionClause);
	int			numOrder = list_length(wc->orderClause);

	if (numSortCols == numPart + numOrder)
	{
		/* easy case */
		*partNumCols = numPart;
		*partColIdx = sortColIdx;
		*partOperators = extract_grouping_ops(wc->partitionClause);
		*ordNumCols = numOrder;
		*ordColIdx = sortColIdx + numPart;
		*ordOperators = extract_grouping_ops(wc->orderClause);
	}
	else
	{
		List	   *sortclauses;
		List	   *pathkeys;
		int			scidx;
		ListCell   *lc;

		/* first, allocate what's certainly enough space for the arrays */
		*partNumCols = 0;
		*partColIdx = (AttrNumber *) palloc(numPart * sizeof(AttrNumber));
		*partOperators = (Oid *) palloc(numPart * sizeof(Oid));
		*ordNumCols = 0;
		*ordColIdx = (AttrNumber *) palloc(numOrder * sizeof(AttrNumber));
		*ordOperators = (Oid *) palloc(numOrder * sizeof(Oid));
		sortclauses = NIL;
		pathkeys = NIL;
		scidx = 0;
		foreach(lc, wc->partitionClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
4541
														 tlist);
T
Tom Lane 已提交
4542 4543 4544
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
4545 4546
				(*partColIdx)[*partNumCols] = sortColIdx[scidx++];
				(*partOperators)[*partNumCols] = sgc->eqop;
T
Tom Lane 已提交
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
				(*partNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		foreach(lc, wc->orderClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
4559
														 tlist);
T
Tom Lane 已提交
4560 4561 4562
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
4563 4564
				(*ordColIdx)[*ordNumCols] = sortColIdx[scidx++];
				(*ordOperators)[*ordNumCols] = sgc->eqop;
T
Tom Lane 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573
				(*ordNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		/* complain if we didn't eat exactly the right number of sort cols */
		if (scidx != numSortCols)
			elog(ERROR, "failed to deconstruct sort operators into partitioning/ordering operators");
	}
}
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587


/*
 * expression_planner
 *		Perform planner's transformations on a standalone expression.
 *
 * Various utility commands need to evaluate expressions that are not part
 * of a plannable query.  They can do so using the executor's regular
 * expression-execution machinery, but first the expression has to be fed
 * through here to transform it from parser output to something executable.
 *
 * Currently, we disallow sublinks in standalone expressions, so there's no
 * real "planning" involved here.  (That might not always be true though.)
 * What we must do is run eval_const_expressions to ensure that any function
4588 4589 4590 4591
 * calls are converted to positional notation and function default arguments
 * get inserted.  The fact that constant subexpressions get simplified is a
 * side-effect that is useful when the expression will get evaluated more than
 * once.  Also, we must fix operator function IDs.
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
 *
 * Note: this must not make any damaging changes to the passed-in expression
 * tree.  (It would actually be okay to apply fix_opfuncids to it, but since
 * we first do an expression_tree_mutator-based walk, what is returned will
 * be a new node tree.)
 */
Expr *
expression_planner(Expr *expr)
{
	Node	   *result;

4603 4604 4605 4606
	/*
	 * Convert named-argument function calls, insert default arguments and
	 * simplify constant subexprs
	 */
4607 4608 4609 4610 4611 4612 4613
	result = eval_const_expressions(NULL, (Node *) expr);

	/* Fill in opfuncid values if missing */
	fix_opfuncids(result);

	return (Expr *) result;
}
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659


/*
 * plan_cluster_use_sort
 *		Use the planner to decide how CLUSTER should implement sorting
 *
 * tableOid is the OID of a table to be clustered on its index indexOid
 * (which is already known to be a btree index).  Decide whether it's
 * cheaper to do an indexscan or a seqscan-plus-sort to execute the CLUSTER.
 * Return TRUE to use sorting, FALSE to use an indexscan.
 *
 * Note: caller had better already hold some type of lock on the table.
 */
bool
plan_cluster_use_sort(Oid tableOid, Oid indexOid)
{
	PlannerInfo *root;
	Query	   *query;
	PlannerGlobal *glob;
	RangeTblEntry *rte;
	RelOptInfo *rel;
	IndexOptInfo *indexInfo;
	QualCost	indexExprCost;
	Cost		comparisonCost;
	Path	   *seqScanPath;
	Path		seqScanAndSortPath;
	IndexPath  *indexScanPath;
	ListCell   *lc;

	/* Set up mostly-dummy planner state */
	query = makeNode(Query);
	query->commandType = CMD_SELECT;

	glob = makeNode(PlannerGlobal);

	root = makeNode(PlannerInfo);
	root->parse = query;
	root->glob = glob;
	root->query_level = 1;
	root->planner_cxt = CurrentMemoryContext;
	root->wt_param_id = -1;

	/* Build a minimal RTE for the rel */
	rte = makeNode(RangeTblEntry);
	rte->rtekind = RTE_RELATION;
	rte->relid = tableOid;
B
Bruce Momjian 已提交
4660
	rte->relkind = RELKIND_RELATION;	/* Don't be too picky. */
4661
	rte->lateral = false;
4662 4663 4664 4665
	rte->inh = false;
	rte->inFromCl = true;
	query->rtable = list_make1(rte);

4666 4667
	/* Set up RTE/RelOptInfo arrays */
	setup_simple_rel_arrays(root);
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679

	/* Build RelOptInfo */
	rel = build_simple_rel(root, 1, RELOPT_BASEREL);

	/* Locate IndexOptInfo for the target index */
	indexInfo = NULL;
	foreach(lc, rel->indexlist)
	{
		indexInfo = (IndexOptInfo *) lfirst(lc);
		if (indexInfo->indexoid == indexOid)
			break;
	}
4680 4681 4682 4683 4684 4685 4686 4687

	/*
	 * It's possible that get_relation_info did not generate an IndexOptInfo
	 * for the desired index; this could happen if it's not yet reached its
	 * indcheckxmin usability horizon, or if it's a system index and we're
	 * ignoring system indexes.  In such cases we should tell CLUSTER to not
	 * trust the index contents but use seqscan-and-sort.
	 */
4688
	if (lc == NULL)				/* not in the list? */
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
		return true;			/* use sort */

	/*
	 * Rather than doing all the pushups that would be needed to use
	 * set_baserel_size_estimates, just do a quick hack for rows and width.
	 */
	rel->rows = rel->tuples;
	rel->width = get_relation_data_width(tableOid, NULL);

	root->total_table_pages = rel->pages;
4699 4700 4701

	/*
	 * Determine eval cost of the index expressions, if any.  We need to
4702 4703 4704
	 * charge twice that amount for each tuple comparison that happens during
	 * the sort, since tuplesort.c will have to re-evaluate the index
	 * expressions each time.  (XXX that's pretty inefficient...)
4705 4706 4707 4708 4709
	 */
	cost_qual_eval(&indexExprCost, indexInfo->indexprs, root);
	comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple);

	/* Estimate the cost of seq scan + sort */
4710
	seqScanPath = create_seqscan_path(root, rel, NULL, 0);
4711 4712 4713 4714 4715 4716
	cost_sort(&seqScanAndSortPath, root, NIL,
			  seqScanPath->total_cost, rel->tuples, rel->width,
			  comparisonCost, maintenance_work_mem, -1.0);

	/* Estimate the cost of index scan */
	indexScanPath = create_index_path(root, indexInfo,
4717
									  NIL, NIL, NIL, NIL, NIL,
4718 4719
									  ForwardScanDirection, false,
									  NULL, 1.0);
4720 4721 4722

	return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost);
}