procarray.c 33.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*-------------------------------------------------------------------------
 *
 * procarray.c
 *	  POSTGRES process array code.
 *
 *
 * This module maintains an unsorted array of the PGPROC structures for all
 * active backends.  Although there are several uses for this, the principal
 * one is as a means of determining the set of currently running transactions.
 *
 * Because of various subtle race conditions it is critical that a backend
 * hold the correct locks while setting or clearing its MyProc->xid field.
 * See notes in GetSnapshotData.
14 15 16
 *
 * The process array now also includes PGPROC structures representing
 * prepared transactions.  The xid and subxids fields of these are valid,
17 18
 * as are the myProcLocks lists.  They can be distinguished from regular
 * backend PGPROCs at need by checking for pid == 0.
B
Bruce Momjian 已提交
19
 *
20
 *
21
 * Portions Copyright (c) 1996-2007, PostgreSQL Global Development Group
22 23 24 25
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
26
 *	  $PostgreSQL: pgsql/src/backend/storage/ipc/procarray.c,v 1.31 2007/09/07 00:58:56 tgl Exp $
27 28 29 30 31
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

32 33
#include <signal.h>

34
#include "access/subtrans.h"
35 36
#include "access/transam.h"
#include "access/xact.h"
37
#include "access/twophase.h"
38 39 40 41 42 43 44 45 46 47 48 49
#include "miscadmin.h"
#include "storage/procarray.h"
#include "utils/tqual.h"


/* Our shared memory area */
typedef struct ProcArrayStruct
{
	int			numProcs;		/* number of valid procs entries */
	int			maxProcs;		/* allocated size of procs array */

	/*
B
Bruce Momjian 已提交
50 51
	 * We declare procs[] as 1 entry because C wants a fixed-size array, but
	 * actually it is maxProcs entries long.
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
	 */
	PGPROC	   *procs[1];		/* VARIABLE LENGTH ARRAY */
} ProcArrayStruct;

static ProcArrayStruct *procArray;


#ifdef XIDCACHE_DEBUG

/* counters for XidCache measurement */
static long xc_by_recent_xmin = 0;
static long xc_by_main_xid = 0;
static long xc_by_child_xid = 0;
static long xc_slow_answer = 0;

#define xc_by_recent_xmin_inc()		(xc_by_recent_xmin++)
#define xc_by_main_xid_inc()		(xc_by_main_xid++)
#define xc_by_child_xid_inc()		(xc_by_child_xid++)
#define xc_slow_answer_inc()		(xc_slow_answer++)

static void DisplayXidCache(void);
#else							/* !XIDCACHE_DEBUG */

#define xc_by_recent_xmin_inc()		((void) 0)
#define xc_by_main_xid_inc()		((void) 0)
#define xc_by_child_xid_inc()		((void) 0)
#define xc_slow_answer_inc()		((void) 0)
#endif   /* XIDCACHE_DEBUG */


/*
 * Report shared-memory space needed by CreateSharedProcArray.
 */
85
Size
86
ProcArrayShmemSize(void)
87
{
88 89 90 91
	Size		size;

	size = offsetof(ProcArrayStruct, procs);
	size = add_size(size, mul_size(sizeof(PGPROC *),
B
Bruce Momjian 已提交
92
								 add_size(MaxBackends, max_prepared_xacts)));
93 94

	return size;
95 96 97 98 99 100
}

/*
 * Initialize the shared PGPROC array during postmaster startup.
 */
void
101
CreateSharedProcArray(void)
102 103 104 105 106
{
	bool		found;

	/* Create or attach to the ProcArray shared structure */
	procArray = (ProcArrayStruct *)
107
		ShmemInitStruct("Proc Array", ProcArrayShmemSize(), &found);
108 109 110 111 112 113 114

	if (!found)
	{
		/*
		 * We're the first - initialize.
		 */
		procArray->numProcs = 0;
115
		procArray->maxProcs = MaxBackends + max_prepared_xacts;
116 117 118 119
	}
}

/*
120
 * Add the specified PGPROC to the shared array.
121 122
 */
void
123
ProcArrayAdd(PGPROC *proc)
124 125 126 127 128 129 130 131
{
	ProcArrayStruct *arrayP = procArray;

	LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);

	if (arrayP->numProcs >= arrayP->maxProcs)
	{
		/*
B
Bruce Momjian 已提交
132 133 134
		 * Ooops, no room.	(This really shouldn't happen, since there is a
		 * fixed supply of PGPROC structs too, and so we should have failed
		 * earlier.)
135 136 137 138 139 140 141
		 */
		LWLockRelease(ProcArrayLock);
		ereport(FATAL,
				(errcode(ERRCODE_TOO_MANY_CONNECTIONS),
				 errmsg("sorry, too many clients already")));
	}

142
	arrayP->procs[arrayP->numProcs] = proc;
143 144 145 146 147 148
	arrayP->numProcs++;

	LWLockRelease(ProcArrayLock);
}

/*
149
 * Remove the specified PGPROC from the shared array.
150 151
 */
void
152
ProcArrayRemove(PGPROC *proc)
153 154 155 156 157
{
	ProcArrayStruct *arrayP = procArray;
	int			index;

#ifdef XIDCACHE_DEBUG
158 159 160
	/* dump stats at backend shutdown, but not prepared-xact end */
	if (proc->pid != 0)
		DisplayXidCache();
161 162 163 164 165 166
#endif

	LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);

	for (index = 0; index < arrayP->numProcs; index++)
	{
167
		if (arrayP->procs[index] == proc)
168 169 170 171 172 173 174 175 176 177 178
		{
			arrayP->procs[index] = arrayP->procs[arrayP->numProcs - 1];
			arrayP->numProcs--;
			LWLockRelease(ProcArrayLock);
			return;
		}
	}

	/* Ooops */
	LWLockRelease(ProcArrayLock);

179
	elog(LOG, "failed to find proc %p in ProcArray", proc);
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
}


/*
 * TransactionIdIsInProgress -- is given transaction running in some backend
 *
 * There are three possibilities for finding a running transaction:
 *
 * 1. the given Xid is a main transaction Id.  We will find this out cheaply
 * by looking at the PGPROC struct for each backend.
 *
 * 2. the given Xid is one of the cached subxact Xids in the PGPROC array.
 * We can find this out cheaply too.
 *
 * 3. Search the SubTrans tree to find the Xid's topmost parent, and then
 * see if that is running according to PGPROC.	This is the slowest, but
 * sadly it has to be done always if the other two failed, unless we see
 * that the cached subxact sets are complete (none have overflowed).
 *
 * ProcArrayLock has to be held while we do 1 and 2.  If we save the top Xids
 * while doing 1, we can release the ProcArrayLock while we do 3.  This buys
 * back some concurrency (we can't retrieve the main Xids from PGPROC again
 * anyway; see GetNewTransactionId).
 */
bool
TransactionIdIsInProgress(TransactionId xid)
{
	bool		result = false;
	ProcArrayStruct *arrayP = procArray;
	int			i,
				j;
	int			nxids = 0;
	TransactionId *xids;
	TransactionId topxid;
	bool		locked;

	/*
B
Bruce Momjian 已提交
217
	 * Don't bother checking a transaction older than RecentXmin; it could not
218 219 220
	 * possibly still be running.  (Note: in particular, this guarantees
	 * that we reject InvalidTransactionId, FrozenTransactionId, etc as
	 * not running.)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	 */
	if (TransactionIdPrecedes(xid, RecentXmin))
	{
		xc_by_recent_xmin_inc();
		return false;
	}

	/* Get workspace to remember main XIDs in */
	xids = (TransactionId *) palloc(sizeof(TransactionId) * arrayP->maxProcs);

	LWLockAcquire(ProcArrayLock, LW_SHARED);
	locked = true;

	for (i = 0; i < arrayP->numProcs; i++)
	{
236
		volatile PGPROC	   *proc = arrayP->procs[i];
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

		/* Fetch xid just once - see GetNewTransactionId */
		TransactionId pxid = proc->xid;

		if (!TransactionIdIsValid(pxid))
			continue;

		/*
		 * Step 1: check the main Xid
		 */
		if (TransactionIdEquals(pxid, xid))
		{
			xc_by_main_xid_inc();
			result = true;
			goto result_known;
		}

		/*
B
Bruce Momjian 已提交
255 256
		 * We can ignore main Xids that are younger than the target Xid, since
		 * the target could not possibly be their child.
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
		 */
		if (TransactionIdPrecedes(xid, pxid))
			continue;

		/*
		 * Step 2: check the cached child-Xids arrays
		 */
		for (j = proc->subxids.nxids - 1; j >= 0; j--)
		{
			/* Fetch xid just once - see GetNewTransactionId */
			TransactionId cxid = proc->subxids.xids[j];

			if (TransactionIdEquals(cxid, xid))
			{
				xc_by_child_xid_inc();
				result = true;
				goto result_known;
			}
		}

		/*
B
Bruce Momjian 已提交
278 279 280 281 282
		 * Save the main Xid for step 3.  We only need to remember main Xids
		 * that have uncached children.  (Note: there is no race condition
		 * here because the overflowed flag cannot be cleared, only set, while
		 * we hold ProcArrayLock.  So we can't miss an Xid that we need to
		 * worry about.)
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
		 */
		if (proc->subxids.overflowed)
			xids[nxids++] = pxid;
	}

	LWLockRelease(ProcArrayLock);
	locked = false;

	/*
	 * If none of the relevant caches overflowed, we know the Xid is not
	 * running without looking at pg_subtrans.
	 */
	if (nxids == 0)
		goto result_known;

	/*
	 * Step 3: have to check pg_subtrans.
	 *
301 302 303 304
	 * At this point, we know it's either a subtransaction of one of the Xids
	 * in xids[], or it's not running.  If it's an already-failed
	 * subtransaction, we want to say "not running" even though its parent may
	 * still be running.  So first, check pg_clog to see if it's been aborted.
305 306 307 308 309 310 311
	 */
	xc_slow_answer_inc();

	if (TransactionIdDidAbort(xid))
		goto result_known;

	/*
B
Bruce Momjian 已提交
312 313 314
	 * It isn't aborted, so check whether the transaction tree it belongs to
	 * is still running (or, more precisely, whether it was running when this
	 * routine started -- note that we already released ProcArrayLock).
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
	 */
	topxid = SubTransGetTopmostTransaction(xid);
	Assert(TransactionIdIsValid(topxid));
	if (!TransactionIdEquals(topxid, xid))
	{
		for (i = 0; i < nxids; i++)
		{
			if (TransactionIdEquals(xids[i], topxid))
			{
				result = true;
				break;
			}
		}
	}

result_known:
	if (locked)
		LWLockRelease(ProcArrayLock);

	pfree(xids);

	return result;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/*
 * TransactionIdIsActive -- is xid the top-level XID of an active backend?
 *
 * This differs from TransactionIdIsInProgress in that it ignores prepared
 * transactions.  Also, we ignore subtransactions since that's not needed
 * for current uses.
 */
bool
TransactionIdIsActive(TransactionId xid)
{
	bool		result = false;
	ProcArrayStruct *arrayP = procArray;
	int			i;

	/*
B
Bruce Momjian 已提交
354 355
	 * Don't bother checking a transaction older than RecentXmin; it could not
	 * possibly still be running.
356 357 358 359 360 361 362 363
	 */
	if (TransactionIdPrecedes(xid, RecentXmin))
		return false;

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (i = 0; i < arrayP->numProcs; i++)
	{
364
		volatile PGPROC	   *proc = arrayP->procs[i];
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

		/* Fetch xid just once - see GetNewTransactionId */
		TransactionId pxid = proc->xid;

		if (!TransactionIdIsValid(pxid))
			continue;

		if (proc->pid == 0)
			continue;			/* ignore prepared transactions */

		if (TransactionIdEquals(pxid, xid))
		{
			result = true;
			break;
		}
	}

	LWLockRelease(ProcArrayLock);

	return result;
}


388 389 390 391 392 393 394
/*
 * GetOldestXmin -- returns oldest transaction that was running
 *					when any current transaction was started.
 *
 * If allDbs is TRUE then all backends are considered; if allDbs is FALSE
 * then only backends running in my own database are considered.
 *
395 396
 * If ignoreVacuum is TRUE then backends with inVacuum set are ignored.
 *
397 398 399
 * This is used by VACUUM to decide which deleted tuples must be preserved
 * in a table.	allDbs = TRUE is needed for shared relations, but allDbs =
 * FALSE is sufficient for non-shared relations, since only backends in my
B
Bruce Momjian 已提交
400
 * own database could ever see the tuples in them.	Also, we can ignore
401 402
 * concurrently running lazy VACUUMs because (a) they must be working on other
 * tables, and (b) they don't need to do snapshot-based lookups.
403 404
 *
 * This is also used to determine where to truncate pg_subtrans.  allDbs
405
 * must be TRUE for that case, and ignoreVacuum FALSE.
406
 *
407
 * Note: we include all currently running xids in the set of considered xids.
408 409 410 411
 * This ensures that if a just-started xact has not yet set its snapshot,
 * when it does set the snapshot it cannot set xmin less than what we compute.
 */
TransactionId
412
GetOldestXmin(bool allDbs, bool ignoreVacuum)
413 414 415 416 417 418
{
	ProcArrayStruct *arrayP = procArray;
	TransactionId result;
	int			index;

	/*
419 420 421 422 423
	 * We need to initialize the MIN() calculation with something.
	 * ReadNewTransactionId() is guaranteed to work, but is relatively
	 * expensive due to locking; so first we try a couple of shortcuts.
	 * If we have a valid xmin in our own PGPROC entry, that will do;
	 * or if we have assigned ourselves an XID, that will do.
424
	 */
425
	result = MyProc ? MyProc->xmin : InvalidTransactionId;
426
	if (!TransactionIdIsValid(result))
427 428 429 430 431
	{
		result = GetTopTransactionIdIfAny();
		if (!TransactionIdIsValid(result))
			result = ReadNewTransactionId();
	}
432 433 434 435 436

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
437
		volatile PGPROC	   *proc = arrayP->procs[index];
438

439 440 441
		if (ignoreVacuum && proc->inVacuum)
			continue;

442 443 444 445 446
		if (allDbs || proc->databaseId == MyDatabaseId)
		{
			/* Fetch xid just once - see GetNewTransactionId */
			TransactionId xid = proc->xid;

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
			/* First consider the transaction's own Xid, if any */
			if (TransactionIdIsNormal(xid) &&
				TransactionIdPrecedes(xid, result))
				result = xid;

			/*
			 * Also consider the transaction's Xmin, if set.
			 *
			 * We must check both Xid and Xmin because a transaction might
			 * have an Xmin but not (yet) an Xid; conversely, if it has
			 * an Xid, that could determine some not-yet-set Xmin.
			 */
			xid = proc->xmin;	/* Fetch just once */
			if (TransactionIdIsNormal(xid) &&
				TransactionIdPrecedes(xid, result))
				result = xid;
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
		}
	}

	LWLockRelease(ProcArrayLock);

	return result;
}

/*----------
 * GetSnapshotData -- returns information about running transactions.
 *
 * The returned snapshot includes xmin (lowest still-running xact ID),
 * xmax (next xact ID to be assigned), and a list of running xact IDs
 * in the range xmin <= xid < xmax.  It is used as follows:
 *		All xact IDs < xmin are considered finished.
 *		All xact IDs >= xmax are considered still running.
 *		For an xact ID xmin <= xid < xmax, consult list to see whether
 *		it is considered running or not.
 * This ensures that the set of transactions seen as "running" by the
 * current xact will not change after it takes the snapshot.
 *
484 485 486 487 488
 * All running top-level XIDs are included in the snapshot.  We also try
 * to include running subtransaction XIDs, but since PGPROC has only a
 * limited cache area for subxact XIDs, full information may not be
 * available.  If we find any overflowed subxid arrays, we have to mark
 * the snapshot's subxid data as overflowed, and extra work will need to
489
 * be done to determine what's running (see XidInMVCCSnapshot() in tqual.c).
490 491 492 493 494 495 496 497
 *
 * We also update the following backend-global variables:
 *		TransactionXmin: the oldest xmin of any snapshot in use in the
 *			current transaction (this is the same as MyProc->xmin).  This
 *			is just the xmin computed for the first, serializable snapshot.
 *		RecentXmin: the xmin computed for the most recent snapshot.  XIDs
 *			older than this are known not running any more.
 *		RecentGlobalXmin: the global xmin (oldest TransactionXmin across all
498
 *			running transactions, except those running LAZY VACUUM).  This is
T
Tom Lane 已提交
499
 *			the same computation done by GetOldestXmin(true, true).
500 501 502 503 504 505 506 507 508 509 510
 *----------
 */
Snapshot
GetSnapshotData(Snapshot snapshot, bool serializable)
{
	ProcArrayStruct *arrayP = procArray;
	TransactionId xmin;
	TransactionId xmax;
	TransactionId globalxmin;
	int			index;
	int			count = 0;
511
	int			subcount = 0;
512 513 514 515 516 517 518 519 520

	Assert(snapshot != NULL);

	/* Serializable snapshot must be computed before any other... */
	Assert(serializable ?
		   !TransactionIdIsValid(MyProc->xmin) :
		   TransactionIdIsValid(MyProc->xmin));

	/*
B
Bruce Momjian 已提交
521 522
	 * Allocating space for maxProcs xids is usually overkill; numProcs would
	 * be sufficient.  But it seems better to do the malloc while not holding
523 524
	 * the lock, so we can't look at numProcs.  Likewise, we allocate much
	 * more subxip storage than is probably needed.
525 526
	 *
	 * This does open a possibility for avoiding repeated malloc/free: since
B
Bruce Momjian 已提交
527
	 * maxProcs does not change at runtime, we can simply reuse the previous
528
	 * xip arrays if any.  (This relies on the fact that all callers pass
B
Bruce Momjian 已提交
529
	 * static SnapshotData structs.)
530 531 532 533 534 535 536
	 */
	if (snapshot->xip == NULL)
	{
		/*
		 * First call for this snapshot
		 */
		snapshot->xip = (TransactionId *)
537
			malloc(arrayP->maxProcs * sizeof(TransactionId));
538 539 540 541
		if (snapshot->xip == NULL)
			ereport(ERROR,
					(errcode(ERRCODE_OUT_OF_MEMORY),
					 errmsg("out of memory")));
542 543 544 545 546 547 548
		Assert(snapshot->subxip == NULL);
		snapshot->subxip = (TransactionId *)
			malloc(arrayP->maxProcs * PGPROC_MAX_CACHED_SUBXIDS * sizeof(TransactionId));
		if (snapshot->subxip == NULL)
			ereport(ERROR,
					(errcode(ERRCODE_OUT_OF_MEMORY),
					 errmsg("out of memory")));
549 550 551
	}

	/*
B
Bruce Momjian 已提交
552 553
	 * It is sufficient to get shared lock on ProcArrayLock, even if we are
	 * computing a serializable snapshot and therefore will be setting
554 555 556 557
	 * MyProc->xmin.  This is because any two backends that have overlapping
	 * shared holds on ProcArrayLock will certainly compute the same xmin
	 * (since no xact, in particular not the oldest, can exit the set of
	 * running transactions while we hold ProcArrayLock --- see further
B
Bruce Momjian 已提交
558
	 * discussion just below).	So it doesn't matter whether another backend
559 560
	 * concurrently doing GetSnapshotData or GetOldestXmin sees our xmin as
	 * set or not; he'd compute the same xmin for himself either way.
561 562 563 564 565 566 567 568 569 570 571 572 573
	 * (We are assuming here that xmin can be set and read atomically,
	 * just like xid.)
	 *
	 * There is a corner case in which the above argument doesn't work: if
	 * there isn't any oldest xact, ie, all xids in the array are invalid.
	 * In that case we will compute xmin as the result of ReadNewTransactionId,
	 * and since GetNewTransactionId doesn't take the ProcArrayLock, it's not
	 * so obvious that two backends with overlapping shared locks will get
	 * the same answer.  But GetNewTransactionId is required to store the XID
	 * it assigned into the ProcArray before releasing XidGenLock.  Therefore
	 * the backend that did ReadNewTransactionId later will see that XID in
	 * the array, and will compute the same xmin as the earlier one that saw
	 * no XIDs in the array.
574
	 */
575
	LWLockAcquire(ProcArrayLock, LW_SHARED);
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

	/*--------------------
	 * Unfortunately, we have to call ReadNewTransactionId() after acquiring
	 * ProcArrayLock above.  It's not good because ReadNewTransactionId() does
	 * LWLockAcquire(XidGenLock), but *necessary*.	We need to be sure that
	 * no transactions exit the set of currently-running transactions
	 * between the time we fetch xmax and the time we finish building our
	 * snapshot.  Otherwise we could have a situation like this:
	 *
	 *		1. Tx Old is running (in Read Committed mode).
	 *		2. Tx S reads new transaction ID into xmax, then
	 *		   is swapped out before acquiring ProcArrayLock.
	 *		3. Tx New gets new transaction ID (>= S' xmax),
	 *		   makes changes and commits.
	 *		4. Tx Old changes some row R changed by Tx New and commits.
	 *		5. Tx S finishes getting its snapshot data.  It sees Tx Old as
	 *		   done, but sees Tx New as still running (since New >= xmax).
	 *
	 * Now S will see R changed by both Tx Old and Tx New, *but* does not
	 * see other changes made by Tx New.  If S is supposed to be in
	 * Serializable mode, this is wrong.
	 *
	 * By locking ProcArrayLock before we read xmax, we ensure that TX Old
	 * cannot exit the set of running transactions seen by Tx S.  Therefore
	 * both Old and New will be seen as still running => no inconsistency.
	 *--------------------
	 */

	xmax = ReadNewTransactionId();

606 607 608
	/* initialize xmin calculation with xmax */
	globalxmin = xmin = xmax;

B
Bruce Momjian 已提交
609 610 611 612 613
	/*
	 * Spin over procArray checking xid, xmin, and subxids.  The goal is
	 * to gather all active xids, find the lowest xmin, and try to record
	 * subxids.
	 */
614 615
	for (index = 0; index < arrayP->numProcs; index++)
	{
616
		volatile PGPROC	   *proc = arrayP->procs[index];
617 618 619 620 621 622 623 624 625 626 627
		TransactionId xid;

		/* Ignore procs running LAZY VACUUM */
		if (proc->inVacuum)
			continue;

		/* Update globalxmin to be the smallest valid xmin */
		xid = proc->xmin;		/* fetch just once */
		if (TransactionIdIsNormal(xid) &&
			TransactionIdPrecedes(xid, globalxmin))
			globalxmin = xid;
628 629

		/* Fetch xid just once - see GetNewTransactionId */
630
		xid = proc->xid;
631 632

		/*
633 634 635 636 637 638 639 640
		 * If the transaction has been assigned an xid < xmax we add it to the
		 * snapshot, and update xmin if necessary.  There's no need to store
		 * XIDs above what we got from ReadNewTransactionId, since we'll treat
		 * them as running anyway.  We don't bother to examine their subxids
		 * either.
		 *
		 * We don't include our own XID (if any) in the snapshot, but we must
		 * include it into xmin.
641 642
		 */
		if (TransactionIdIsNormal(xid))
643 644 645 646 647 648 649 650
		{
			if (TransactionIdFollowsOrEquals(xid, xmax))
				continue;
			if (proc != MyProc)
				snapshot->xip[count++] = xid;
			if (TransactionIdPrecedes(xid, xmin))
				xmin = xid;
		}
651 652 653 654 655 656 657

		/*
		 * Save subtransaction XIDs if possible (if we've already overflowed,
		 * there's no point).  Note that the subxact XIDs must be later than
		 * their parent, so no need to check them against xmin.
		 *
		 * The other backend can add more subxids concurrently, but cannot
B
Bruce Momjian 已提交
658 659 660
		 * remove any.	Hence it's important to fetch nxids just once. Should
		 * be safe to use memcpy, though.  (We needn't worry about missing any
		 * xids added concurrently, because they must postdate xmax.)
661 662
		 *
		 * Again, our own XIDs are not included in the snapshot.
663
		 */
664
		if (subcount >= 0 && proc != MyProc)
665 666
		{
			if (proc->subxids.overflowed)
B
Bruce Momjian 已提交
667
				subcount = -1;	/* overflowed */
668 669
			else
			{
B
Bruce Momjian 已提交
670
				int			nxids = proc->subxids.nxids;
671 672 673 674

				if (nxids > 0)
				{
					memcpy(snapshot->subxip + subcount,
675
						   (void *) proc->subxids.xids,
676 677 678 679 680
						   nxids * sizeof(TransactionId));
					subcount += nxids;
				}
			}
		}
681 682 683 684 685 686 687 688
	}

	if (serializable)
		MyProc->xmin = TransactionXmin = xmin;

	LWLockRelease(ProcArrayLock);

	/*
B
Bruce Momjian 已提交
689 690 691
	 * Update globalxmin to include actual process xids.  This is a slightly
	 * different way of computing it than GetOldestXmin uses, but should give
	 * the same result.
692 693 694 695 696 697 698 699 700 701 702
	 */
	if (TransactionIdPrecedes(xmin, globalxmin))
		globalxmin = xmin;

	/* Update global variables too */
	RecentGlobalXmin = globalxmin;
	RecentXmin = xmin;

	snapshot->xmin = xmin;
	snapshot->xmax = xmax;
	snapshot->xcnt = count;
703
	snapshot->subxcnt = subcount;
704 705 706 707 708 709

	snapshot->curcid = GetCurrentCommandId();

	return snapshot;
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
/*
 * GetTransactionsInCommit -- Get the XIDs of transactions that are committing
 *
 * Constructs an array of XIDs of transactions that are currently in commit
 * critical sections, as shown by having inCommit set in their PGPROC entries.
 *
 * *xids_p is set to a palloc'd array that should be freed by the caller.
 * The return value is the number of valid entries.
 *
 * Note that because backends set or clear inCommit without holding any lock,
 * the result is somewhat indeterminate, but we don't really care.  Even in
 * a multiprocessor with delayed writes to shared memory, it should be certain
 * that setting of inCommit will propagate to shared memory when the backend
 * takes the WALInsertLock, so we cannot fail to see an xact as inCommit if
 * it's already inserted its commit record.  Whether it takes a little while
 * for clearing of inCommit to propagate is unimportant for correctness.
 */
int
GetTransactionsInCommit(TransactionId **xids_p)
{
	ProcArrayStruct *arrayP = procArray;
	TransactionId *xids;
	int	nxids;
	int	index;

	xids = (TransactionId *) palloc(arrayP->maxProcs * sizeof(TransactionId));
	nxids = 0;

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
742
		volatile PGPROC	   *proc = arrayP->procs[index];
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
		/* Fetch xid just once - see GetNewTransactionId */
		TransactionId pxid = proc->xid;

		if (proc->inCommit && TransactionIdIsValid(pxid))
			xids[nxids++] = pxid;
	}

	LWLockRelease(ProcArrayLock);

	*xids_p = xids;
	return nxids;
}

/*
 * HaveTransactionsInCommit -- Are any of the specified XIDs in commit?
 *
 * This is used with the results of GetTransactionsInCommit to see if any
 * of the specified XIDs are still in their commit critical sections.
 *
 * Note: this is O(N^2) in the number of xacts that are/were in commit, but
 * those numbers should be small enough for it not to be a problem.
 */
bool
HaveTransactionsInCommit(TransactionId *xids, int nxids)
{
	bool result = false;
	ProcArrayStruct *arrayP = procArray;
	int	index;

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
776
		volatile PGPROC	   *proc = arrayP->procs[index];
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
		/* Fetch xid just once - see GetNewTransactionId */
		TransactionId pxid = proc->xid;

		if (proc->inCommit && TransactionIdIsValid(pxid))
		{
			int		i;

			for (i = 0; i < nxids; i++)
			{
				if (xids[i] == pxid)
				{
					result = true;
					break;
				}
			}
			if (result)
				break;
		}
	}

	LWLockRelease(ProcArrayLock);

	return result;
}

802 803
/*
 * BackendPidGetProc -- get a backend's PGPROC given its PID
804 805 806 807
 *
 * Returns NULL if not found.  Note that it is up to the caller to be
 * sure that the question remains meaningful for long enough for the
 * answer to be used ...
808
 */
809
PGPROC *
810 811 812 813 814 815
BackendPidGetProc(int pid)
{
	PGPROC	   *result = NULL;
	ProcArrayStruct *arrayP = procArray;
	int			index;

816 817 818
	if (pid == 0)				/* never match dummy PGPROCs */
		return NULL;

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
		PGPROC	   *proc = arrayP->procs[index];

		if (proc->pid == pid)
		{
			result = proc;
			break;
		}
	}

	LWLockRelease(ProcArrayLock);

	return result;
}

T
Tatsuo Ishii 已提交
837 838 839 840 841 842
/*
 * BackendXidGetPid -- get a backend's pid given its XID
 *
 * Returns 0 if not found or it's a prepared transaction.  Note that
 * it is up to the caller to be sure that the question remains
 * meaningful for long enough for the answer to be used ...
B
Bruce Momjian 已提交
843
 *
T
Tatsuo Ishii 已提交
844 845
 * Only main transaction Ids are considered.  This function is mainly
 * useful for determining what backend owns a lock.
846 847 848
 *
 * Beware that not every xact has an XID assigned.  However, as long as you
 * only call this using an XID found on disk, you're safe.
T
Tatsuo Ishii 已提交
849 850 851 852
 */
int
BackendXidGetPid(TransactionId xid)
{
B
Bruce Momjian 已提交
853
	int			result = 0;
T
Tatsuo Ishii 已提交
854 855 856 857 858 859 860 861 862 863
	ProcArrayStruct *arrayP = procArray;
	int			index;

	if (xid == InvalidTransactionId)	/* never match invalid xid */
		return 0;

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
864
		volatile PGPROC	   *proc = arrayP->procs[index];
T
Tatsuo Ishii 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877

		if (proc->xid == xid)
		{
			result = proc->pid;
			break;
		}
	}

	LWLockRelease(ProcArrayLock);

	return result;
}

878 879 880 881 882 883 884 885 886
/*
 * IsBackendPid -- is a given pid a running backend
 */
bool
IsBackendPid(int pid)
{
	return (BackendPidGetProc(pid) != NULL);
}

887 888 889 890 891 892 893

/*
 * GetCurrentVirtualXIDs -- returns an array of currently active VXIDs.
 *
 * The array is palloc'd and is terminated with an invalid VXID.
 *
 * If limitXmin is not InvalidTransactionId, we skip any backends
894 895
 * with xmin >= limitXmin.  If allDbs is false, we skip backends attached
 * to other databases.  Also, our own process is always skipped.
896 897
 */
VirtualTransactionId *
898
GetCurrentVirtualXIDs(TransactionId limitXmin, bool allDbs)
899 900 901 902 903 904 905 906 907 908 909 910 911 912
{
	VirtualTransactionId *vxids;
	ProcArrayStruct *arrayP = procArray;
	int			count = 0;
	int			index;

	/* allocate result space with room for a terminator */
	vxids = (VirtualTransactionId *)
		palloc(sizeof(VirtualTransactionId) * (arrayP->maxProcs + 1));

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
913
		volatile PGPROC	   *proc = arrayP->procs[index];
914 915 916 917

		if (proc == MyProc)
			continue;

918
		if (allDbs || proc->databaseId == MyDatabaseId)
919
		{
920 921 922 923 924 925 926 927 928 929 930
			/* Fetch xmin just once - might change on us? */
			TransactionId pxmin = proc->xmin;

			/*
			 * Note that InvalidTransactionId precedes all other XIDs, so a
			 * proc that hasn't set xmin yet will always be included.
			 */
			if (!TransactionIdIsValid(limitXmin) ||
				TransactionIdPrecedes(pxmin, limitXmin))
			{
				VirtualTransactionId vxid;
931

932 933 934 935
				GET_VXID_FROM_PGPROC(vxid, *proc);
				if (VirtualTransactionIdIsValid(vxid))
					vxids[count++] = vxid;
			}
936 937 938 939 940 941 942 943 944 945 946 947 948
		}
	}

	LWLockRelease(ProcArrayLock);

	/* add the terminator */
	vxids[count].backendId = InvalidBackendId;
	vxids[count].localTransactionId = InvalidLocalTransactionId;

	return vxids;
}


949 950 951 952 953
/*
 * CountActiveBackends --- count backends (other than myself) that are in
 *		active transactions.  This is used as a heuristic to decide if
 *		a pre-XLOG-flush delay is worthwhile during commit.
 *
954 955
 * Do not count backends that are blocked waiting for locks, since they are
 * not going to get to run until someone else commits.
956 957 958 959 960 961 962 963 964 965
 */
int
CountActiveBackends(void)
{
	ProcArrayStruct *arrayP = procArray;
	int			count = 0;
	int			index;

	/*
	 * Note: for speed, we don't acquire ProcArrayLock.  This is a little bit
B
Bruce Momjian 已提交
966 967
	 * bogus, but since we are only testing fields for zero or nonzero, it
	 * should be OK.  The result is only used for heuristic purposes anyway...
968 969 970
	 */
	for (index = 0; index < arrayP->numProcs; index++)
	{
971
		volatile PGPROC	   *proc = arrayP->procs[index];
972 973 974

		if (proc == MyProc)
			continue;			/* do not count myself */
975 976 977
		if (proc->pid == 0)
			continue;			/* do not count prepared xacts */
		if (proc->xid == InvalidTransactionId)
978
			continue;			/* do not count if no XID assigned */
979 980 981 982 983 984 985 986
		if (proc->waitLock != NULL)
			continue;			/* do not count if blocked on a lock */
		count++;
	}

	return count;
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/*
 * CountDBBackends --- count backends that are using specified database
 */
int
CountDBBackends(Oid databaseid)
{
	ProcArrayStruct *arrayP = procArray;
	int			count = 0;
	int			index;

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
1001
		volatile PGPROC	   *proc = arrayP->procs[index];
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

		if (proc->pid == 0)
			continue;			/* do not count prepared xacts */
		if (proc->databaseId == databaseid)
			count++;
	}

	LWLockRelease(ProcArrayLock);

	return count;
}

/*
 * CountUserBackends --- count backends that are used by specified user
 */
int
CountUserBackends(Oid roleid)
{
	ProcArrayStruct *arrayP = procArray;
	int			count = 0;
	int			index;

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
1028
		volatile PGPROC	   *proc = arrayP->procs[index];
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

		if (proc->pid == 0)
			continue;			/* do not count prepared xacts */
		if (proc->roleId == roleid)
			count++;
	}

	LWLockRelease(ProcArrayLock);

	return count;
}

1041 1042 1043 1044 1045
/*
 * CheckOtherDBBackends -- check for other backends running in the given DB
 *
 * If there are other backends in the DB, we will wait a maximum of 5 seconds
 * for them to exit.  Autovacuum backends are encouraged to exit early by
1046
 * sending them SIGTERM, but normal user backends are just waited for.
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
 *
 * The current backend is always ignored; it is caller's responsibility to
 * check whether the current backend uses the given DB, if it's important.
 *
 * Returns TRUE if there are (still) other backends in the DB, FALSE if not.
 *
 * This function is used to interlock DROP DATABASE and related commands
 * against there being any active backends in the target DB --- dropping the
 * DB while active backends remain would be a Bad Thing.  Note that we cannot
 * detect here the possibility of a newly-started backend that is trying to
 * connect to the doomed database, so additional interlocking is needed during
 * backend startup.  The caller should normally hold an exclusive lock on the
 * target DB before calling this, which is one reason we mustn't wait
 * indefinitely.
 */
bool
CheckOtherDBBackends(Oid databaseId)
{
	ProcArrayStruct *arrayP = procArray;
	int			tries;

	/* 50 tries with 100ms sleep between tries makes 5 sec total wait */
	for (tries = 0; tries < 50; tries++)
	{
		bool		found = false;
		int			index;

		CHECK_FOR_INTERRUPTS();

		LWLockAcquire(ProcArrayLock, LW_SHARED);

		for (index = 0; index < arrayP->numProcs; index++)
		{
1080
			volatile PGPROC	   *proc = arrayP->procs[index];
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

			if (proc->databaseId != databaseId)
				continue;
			if (proc == MyProc)
				continue;

			found = true;

			if (proc->isAutovacuum)
			{
1091
				/* an autovacuum --- send it SIGTERM before sleeping */
1092 1093 1094 1095 1096 1097 1098 1099 1100
				int		autopid = proc->pid;

				/*
				 * It's a bit awkward to release ProcArrayLock within the loop,
				 * but we'd probably better do so before issuing kill().  We
				 * have no idea what might block kill() inside the kernel...
				 */
				LWLockRelease(ProcArrayLock);

1101
				(void) kill(autopid, SIGTERM);		/* ignore any error */
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

				break;
			}
			else
			{
				LWLockRelease(ProcArrayLock);
				break;
			}
		}

		/* if found is set, we released the lock within the loop body */
		if (!found)
		{
			LWLockRelease(ProcArrayLock);
			return false;				/* no conflicting backends, so done */
		}

		/* else sleep and try again */
		pg_usleep(100 * 1000L);			/* 100ms */
	}

	return true;						/* timed out, still conflicts */
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

#define XidCacheRemove(i) \
	do { \
		MyProc->subxids.xids[i] = MyProc->subxids.xids[MyProc->subxids.nxids - 1]; \
		MyProc->subxids.nxids--; \
	} while (0)

/*
 * XidCacheRemoveRunningXids
 *
 * Remove a bunch of TransactionIds from the list of known-running
 * subtransactions for my backend.	Both the specified xid and those in
 * the xids[] array (of length nxids) are removed from the subxids cache.
 */
void
XidCacheRemoveRunningXids(TransactionId xid, int nxids, TransactionId *xids)
{
	int			i,
				j;

1146
	Assert(TransactionIdIsValid(xid));
1147 1148 1149

	/*
	 * We must hold ProcArrayLock exclusively in order to remove transactions
B
Bruce Momjian 已提交
1150 1151 1152
	 * from the PGPROC array.  (See notes in GetSnapshotData.)	It's possible
	 * this could be relaxed since we know this routine is only used to abort
	 * subtransactions, but pending closer analysis we'd best be conservative.
1153 1154 1155 1156
	 */
	LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);

	/*
B
Bruce Momjian 已提交
1157 1158 1159
	 * Under normal circumstances xid and xids[] will be in increasing order,
	 * as will be the entries in subxids.  Scan backwards to avoid O(N^2)
	 * behavior when removing a lot of xids.
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	 */
	for (i = nxids - 1; i >= 0; i--)
	{
		TransactionId anxid = xids[i];

		for (j = MyProc->subxids.nxids - 1; j >= 0; j--)
		{
			if (TransactionIdEquals(MyProc->subxids.xids[j], anxid))
			{
				XidCacheRemove(j);
				break;
			}
		}
B
Bruce Momjian 已提交
1173

1174
		/*
B
Bruce Momjian 已提交
1175 1176 1177 1178 1179
		 * Ordinarily we should have found it, unless the cache has
		 * overflowed. However it's also possible for this routine to be
		 * invoked multiple times for the same subtransaction, in case of an
		 * error during AbortSubTransaction.  So instead of Assert, emit a
		 * debug warning.
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		 */
		if (j < 0 && !MyProc->subxids.overflowed)
			elog(WARNING, "did not find subXID %u in MyProc", anxid);
	}

	for (j = MyProc->subxids.nxids - 1; j >= 0; j--)
	{
		if (TransactionIdEquals(MyProc->subxids.xids[j], xid))
		{
			XidCacheRemove(j);
			break;
		}
	}
	/* Ordinarily we should have found it, unless the cache has overflowed */
	if (j < 0 && !MyProc->subxids.overflowed)
		elog(WARNING, "did not find subXID %u in MyProc", xid);

	LWLockRelease(ProcArrayLock);
}

#ifdef XIDCACHE_DEBUG

/*
 * Print stats about effectiveness of XID cache
 */
static void
DisplayXidCache(void)
{
	fprintf(stderr,
			"XidCache: xmin: %ld, mainxid: %ld, childxid: %ld, slow: %ld\n",
			xc_by_recent_xmin,
			xc_by_main_xid,
			xc_by_child_xid,
			xc_slow_answer);
}

#endif   /* XIDCACHE_DEBUG */