procarray.c 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*-------------------------------------------------------------------------
 *
 * procarray.c
 *	  POSTGRES process array code.
 *
 *
 * This module maintains an unsorted array of the PGPROC structures for all
 * active backends.  Although there are several uses for this, the principal
 * one is as a means of determining the set of currently running transactions.
 *
 * Because of various subtle race conditions it is critical that a backend
 * hold the correct locks while setting or clearing its MyProc->xid field.
 * See notes in GetSnapshotData.
14 15 16 17 18
 *
 * The process array now also includes PGPROC structures representing
 * prepared transactions.  The xid and subxids fields of these are valid,
 * as is the procLocks list.  They can be distinguished from regular backend
 * PGPROCs at need by checking for pid == 0.
19 20 21 22 23 24 25
 * 
 *
 * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
T
Tatsuo Ishii 已提交
26
 *	  $PostgreSQL: pgsql/src/backend/storage/ipc/procarray.c,v 1.5 2005/08/20 01:26:36 ishii Exp $
27 28 29 30 31 32
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/subtrans.h"
33
#include "access/twophase.h"
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#include "miscadmin.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "utils/tqual.h"


/* Our shared memory area */
typedef struct ProcArrayStruct
{
	int			numProcs;		/* number of valid procs entries */
	int			maxProcs;		/* allocated size of procs array */

	/*
	 * We declare procs[] as 1 entry because C wants a fixed-size array,
	 * but actually it is maxProcs entries long.
	 */
	PGPROC	   *procs[1];		/* VARIABLE LENGTH ARRAY */
} ProcArrayStruct;

static ProcArrayStruct *procArray;


#ifdef XIDCACHE_DEBUG

/* counters for XidCache measurement */
static long xc_by_recent_xmin = 0;
static long xc_by_main_xid = 0;
static long xc_by_child_xid = 0;
static long xc_slow_answer = 0;

#define xc_by_recent_xmin_inc()		(xc_by_recent_xmin++)
#define xc_by_main_xid_inc()		(xc_by_main_xid++)
#define xc_by_child_xid_inc()		(xc_by_child_xid++)
#define xc_slow_answer_inc()		(xc_slow_answer++)

static void DisplayXidCache(void);

#else							/* !XIDCACHE_DEBUG */

#define xc_by_recent_xmin_inc()		((void) 0)
#define xc_by_main_xid_inc()		((void) 0)
#define xc_by_child_xid_inc()		((void) 0)
#define xc_slow_answer_inc()		((void) 0)

#endif   /* XIDCACHE_DEBUG */


/*
 * Report shared-memory space needed by CreateSharedProcArray.
 */
int
85
ProcArrayShmemSize(void)
86
{
87 88
	return MAXALIGN(offsetof(ProcArrayStruct, procs) +
					(MaxBackends + max_prepared_xacts) * sizeof(PGPROC *));
89 90 91 92 93 94
}

/*
 * Initialize the shared PGPROC array during postmaster startup.
 */
void
95
CreateSharedProcArray(void)
96 97 98 99 100
{
	bool		found;

	/* Create or attach to the ProcArray shared structure */
	procArray = (ProcArrayStruct *)
101
		ShmemInitStruct("Proc Array", ProcArrayShmemSize(), &found);
102 103 104 105 106 107 108

	if (!found)
	{
		/*
		 * We're the first - initialize.
		 */
		procArray->numProcs = 0;
109
		procArray->maxProcs = MaxBackends + max_prepared_xacts;
110 111 112 113
	}
}

/*
114
 * Add the specified PGPROC to the shared array.
115 116
 */
void
117
ProcArrayAdd(PGPROC *proc)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
{
	ProcArrayStruct *arrayP = procArray;

	LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);

	if (arrayP->numProcs >= arrayP->maxProcs)
	{
		/*
		 * Ooops, no room.  (This really shouldn't happen, since there is
		 * a fixed supply of PGPROC structs too, and so we should have
		 * failed earlier.)
		 */
		LWLockRelease(ProcArrayLock);
		ereport(FATAL,
				(errcode(ERRCODE_TOO_MANY_CONNECTIONS),
				 errmsg("sorry, too many clients already")));
	}

136
	arrayP->procs[arrayP->numProcs] = proc;
137 138 139 140 141 142
	arrayP->numProcs++;

	LWLockRelease(ProcArrayLock);
}

/*
143
 * Remove the specified PGPROC from the shared array.
144 145
 */
void
146
ProcArrayRemove(PGPROC *proc)
147 148 149 150 151
{
	ProcArrayStruct *arrayP = procArray;
	int			index;

#ifdef XIDCACHE_DEBUG
152 153 154
	/* dump stats at backend shutdown, but not prepared-xact end */
	if (proc->pid != 0)
		DisplayXidCache();
155 156 157 158 159 160
#endif

	LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);

	for (index = 0; index < arrayP->numProcs; index++)
	{
161
		if (arrayP->procs[index] == proc)
162 163 164 165 166 167 168 169 170 171 172
		{
			arrayP->procs[index] = arrayP->procs[arrayP->numProcs - 1];
			arrayP->numProcs--;
			LWLockRelease(ProcArrayLock);
			return;
		}
	}

	/* Ooops */
	LWLockRelease(ProcArrayLock);

173
	elog(LOG, "failed to find proc %p in ProcArray", proc);
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
}


/*
 * TransactionIdIsInProgress -- is given transaction running in some backend
 *
 * There are three possibilities for finding a running transaction:
 *
 * 1. the given Xid is a main transaction Id.  We will find this out cheaply
 * by looking at the PGPROC struct for each backend.
 *
 * 2. the given Xid is one of the cached subxact Xids in the PGPROC array.
 * We can find this out cheaply too.
 *
 * 3. Search the SubTrans tree to find the Xid's topmost parent, and then
 * see if that is running according to PGPROC.	This is the slowest, but
 * sadly it has to be done always if the other two failed, unless we see
 * that the cached subxact sets are complete (none have overflowed).
 *
 * ProcArrayLock has to be held while we do 1 and 2.  If we save the top Xids
 * while doing 1, we can release the ProcArrayLock while we do 3.  This buys
 * back some concurrency (we can't retrieve the main Xids from PGPROC again
 * anyway; see GetNewTransactionId).
 */
bool
TransactionIdIsInProgress(TransactionId xid)
{
	bool		result = false;
	ProcArrayStruct *arrayP = procArray;
	int			i,
				j;
	int			nxids = 0;
	TransactionId *xids;
	TransactionId topxid;
	bool		locked;

	/*
	 * Don't bother checking a transaction older than RecentXmin; it
	 * could not possibly still be running.
	 */
	if (TransactionIdPrecedes(xid, RecentXmin))
	{
		xc_by_recent_xmin_inc();
		return false;
	}

	/* Get workspace to remember main XIDs in */
	xids = (TransactionId *) palloc(sizeof(TransactionId) * arrayP->maxProcs);

	LWLockAcquire(ProcArrayLock, LW_SHARED);
	locked = true;

	for (i = 0; i < arrayP->numProcs; i++)
	{
		PGPROC	   *proc = arrayP->procs[i];

		/* Fetch xid just once - see GetNewTransactionId */
		TransactionId pxid = proc->xid;

		if (!TransactionIdIsValid(pxid))
			continue;

		/*
		 * Step 1: check the main Xid
		 */
		if (TransactionIdEquals(pxid, xid))
		{
			xc_by_main_xid_inc();
			result = true;
			goto result_known;
		}

		/*
		 * We can ignore main Xids that are younger than the target
		 * Xid, since the target could not possibly be their child.
		 */
		if (TransactionIdPrecedes(xid, pxid))
			continue;

		/*
		 * Step 2: check the cached child-Xids arrays
		 */
		for (j = proc->subxids.nxids - 1; j >= 0; j--)
		{
			/* Fetch xid just once - see GetNewTransactionId */
			TransactionId cxid = proc->subxids.xids[j];

			if (TransactionIdEquals(cxid, xid))
			{
				xc_by_child_xid_inc();
				result = true;
				goto result_known;
			}
		}

		/*
		 * Save the main Xid for step 3.  We only need to remember
		 * main Xids that have uncached children.  (Note: there is no
		 * race condition here because the overflowed flag cannot be
		 * cleared, only set, while we hold ProcArrayLock.  So we can't
		 * miss an Xid that we need to worry about.)
		 */
		if (proc->subxids.overflowed)
			xids[nxids++] = pxid;
	}

	LWLockRelease(ProcArrayLock);
	locked = false;

	/*
	 * If none of the relevant caches overflowed, we know the Xid is not
	 * running without looking at pg_subtrans.
	 */
	if (nxids == 0)
		goto result_known;

	/*
	 * Step 3: have to check pg_subtrans.
	 *
	 * At this point, we know it's either a subtransaction of one of the Xids
	 * in xids[], or it's not running.  If it's an already-failed
	 * subtransaction, we want to say "not running" even though its parent
	 * may still be running.  So first, check pg_clog to see if it's been
	 * aborted.
	 */
	xc_slow_answer_inc();

	if (TransactionIdDidAbort(xid))
		goto result_known;

	/*
	 * It isn't aborted, so check whether the transaction tree it belongs
	 * to is still running (or, more precisely, whether it was running
	 * when this routine started -- note that we already released
	 * ProcArrayLock).
	 */
	topxid = SubTransGetTopmostTransaction(xid);
	Assert(TransactionIdIsValid(topxid));
	if (!TransactionIdEquals(topxid, xid))
	{
		for (i = 0; i < nxids; i++)
		{
			if (TransactionIdEquals(xids[i], topxid))
			{
				result = true;
				break;
			}
		}
	}

result_known:
	if (locked)
		LWLockRelease(ProcArrayLock);

	pfree(xids);

	return result;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/*
 * TransactionIdIsActive -- is xid the top-level XID of an active backend?
 *
 * This differs from TransactionIdIsInProgress in that it ignores prepared
 * transactions.  Also, we ignore subtransactions since that's not needed
 * for current uses.
 */
bool
TransactionIdIsActive(TransactionId xid)
{
	bool		result = false;
	ProcArrayStruct *arrayP = procArray;
	int			i;

	/*
	 * Don't bother checking a transaction older than RecentXmin; it
	 * could not possibly still be running.
	 */
	if (TransactionIdPrecedes(xid, RecentXmin))
		return false;

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (i = 0; i < arrayP->numProcs; i++)
	{
		PGPROC	   *proc = arrayP->procs[i];

		/* Fetch xid just once - see GetNewTransactionId */
		TransactionId pxid = proc->xid;

		if (!TransactionIdIsValid(pxid))
			continue;

		if (proc->pid == 0)
			continue;			/* ignore prepared transactions */

		if (TransactionIdEquals(pxid, xid))
		{
			result = true;
			break;
		}
	}

	LWLockRelease(ProcArrayLock);

	return result;
}


382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/*
 * GetOldestXmin -- returns oldest transaction that was running
 *					when any current transaction was started.
 *
 * If allDbs is TRUE then all backends are considered; if allDbs is FALSE
 * then only backends running in my own database are considered.
 *
 * This is used by VACUUM to decide which deleted tuples must be preserved
 * in a table.	allDbs = TRUE is needed for shared relations, but allDbs =
 * FALSE is sufficient for non-shared relations, since only backends in my
 * own database could ever see the tuples in them.
 *
 * This is also used to determine where to truncate pg_subtrans.  allDbs
 * must be TRUE for that case.
 *
 * Note: we include the currently running xids in the set of considered xids.
 * This ensures that if a just-started xact has not yet set its snapshot,
 * when it does set the snapshot it cannot set xmin less than what we compute.
 */
TransactionId
GetOldestXmin(bool allDbs)
{
	ProcArrayStruct *arrayP = procArray;
	TransactionId result;
	int			index;

	/*
	 * Normally we start the min() calculation with our own XID.  But if
	 * called by checkpointer, we will not be inside a transaction, so use
	 * next XID as starting point for min() calculation.  (Note that if
	 * there are no xacts running at all, that will be the subtrans
	 * truncation point!)
	 */
	if (IsTransactionState())
		result = GetTopTransactionId();
	else
		result = ReadNewTransactionId();

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
		PGPROC	   *proc = arrayP->procs[index];

		if (allDbs || proc->databaseId == MyDatabaseId)
		{
			/* Fetch xid just once - see GetNewTransactionId */
			TransactionId xid = proc->xid;

			if (TransactionIdIsNormal(xid))
			{
				if (TransactionIdPrecedes(xid, result))
					result = xid;
				xid = proc->xmin;
				if (TransactionIdIsNormal(xid))
					if (TransactionIdPrecedes(xid, result))
						result = xid;
			}
		}
	}

	LWLockRelease(ProcArrayLock);

	return result;
}

/*----------
 * GetSnapshotData -- returns information about running transactions.
 *
 * The returned snapshot includes xmin (lowest still-running xact ID),
 * xmax (next xact ID to be assigned), and a list of running xact IDs
 * in the range xmin <= xid < xmax.  It is used as follows:
 *		All xact IDs < xmin are considered finished.
 *		All xact IDs >= xmax are considered still running.
 *		For an xact ID xmin <= xid < xmax, consult list to see whether
 *		it is considered running or not.
 * This ensures that the set of transactions seen as "running" by the
 * current xact will not change after it takes the snapshot.
 *
 * Note that only top-level XIDs are included in the snapshot.  We can
 * still apply the xmin and xmax limits to subtransaction XIDs, but we
 * need to work a bit harder to see if XIDs in [xmin..xmax) are running.
 *
 * We also update the following backend-global variables:
 *		TransactionXmin: the oldest xmin of any snapshot in use in the
 *			current transaction (this is the same as MyProc->xmin).  This
 *			is just the xmin computed for the first, serializable snapshot.
 *		RecentXmin: the xmin computed for the most recent snapshot.  XIDs
 *			older than this are known not running any more.
 *		RecentGlobalXmin: the global xmin (oldest TransactionXmin across all
 *			running transactions).  This is the same computation done by
 *			GetOldestXmin(TRUE).
 *----------
 */
Snapshot
GetSnapshotData(Snapshot snapshot, bool serializable)
{
	ProcArrayStruct *arrayP = procArray;
	TransactionId xmin;
	TransactionId xmax;
	TransactionId globalxmin;
	int			index;
	int			count = 0;

	Assert(snapshot != NULL);

	/* Serializable snapshot must be computed before any other... */
	Assert(serializable ?
		   !TransactionIdIsValid(MyProc->xmin) :
		   TransactionIdIsValid(MyProc->xmin));

	/*
494
	 * Allocating space for maxProcs xids is usually overkill;
495 496
	 * numProcs would be sufficient.  But it seems better to do the
	 * malloc while not holding the lock, so we can't look at numProcs.
497 498
	 *
	 * This does open a possibility for avoiding repeated malloc/free: since
499
	 * maxProcs does not change at runtime, we can simply reuse the
500 501 502 503 504 505 506 507 508
	 * previous xip array if any.  (This relies on the fact that all
	 * callers pass static SnapshotData structs.)
	 */
	if (snapshot->xip == NULL)
	{
		/*
		 * First call for this snapshot
		 */
		snapshot->xip = (TransactionId *)
509
			malloc(arrayP->maxProcs * sizeof(TransactionId));
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
		if (snapshot->xip == NULL)
			ereport(ERROR,
					(errcode(ERRCODE_OUT_OF_MEMORY),
					 errmsg("out of memory")));
	}

	globalxmin = xmin = GetTopTransactionId();

	/*
	 * If we are going to set MyProc->xmin then we'd better get exclusive
	 * lock; if not, this is a read-only operation so it can be shared.
	 */
	LWLockAcquire(ProcArrayLock, serializable ? LW_EXCLUSIVE : LW_SHARED);

	/*--------------------
	 * Unfortunately, we have to call ReadNewTransactionId() after acquiring
	 * ProcArrayLock above.  It's not good because ReadNewTransactionId() does
	 * LWLockAcquire(XidGenLock), but *necessary*.	We need to be sure that
	 * no transactions exit the set of currently-running transactions
	 * between the time we fetch xmax and the time we finish building our
	 * snapshot.  Otherwise we could have a situation like this:
	 *
	 *		1. Tx Old is running (in Read Committed mode).
	 *		2. Tx S reads new transaction ID into xmax, then
	 *		   is swapped out before acquiring ProcArrayLock.
	 *		3. Tx New gets new transaction ID (>= S' xmax),
	 *		   makes changes and commits.
	 *		4. Tx Old changes some row R changed by Tx New and commits.
	 *		5. Tx S finishes getting its snapshot data.  It sees Tx Old as
	 *		   done, but sees Tx New as still running (since New >= xmax).
	 *
	 * Now S will see R changed by both Tx Old and Tx New, *but* does not
	 * see other changes made by Tx New.  If S is supposed to be in
	 * Serializable mode, this is wrong.
	 *
	 * By locking ProcArrayLock before we read xmax, we ensure that TX Old
	 * cannot exit the set of running transactions seen by Tx S.  Therefore
	 * both Old and New will be seen as still running => no inconsistency.
	 *--------------------
	 */

	xmax = ReadNewTransactionId();

	for (index = 0; index < arrayP->numProcs; index++)
	{
		PGPROC	   *proc = arrayP->procs[index];

		/* Fetch xid just once - see GetNewTransactionId */
		TransactionId xid = proc->xid;

		/*
		 * Ignore my own proc (dealt with my xid above), procs not
		 * running a transaction, and xacts started since we read the
		 * next transaction ID.  There's no need to store XIDs above
		 * what we got from ReadNewTransactionId, since we'll treat
		 * them as running anyway.	We also assume that such xacts
		 * can't compute an xmin older than ours, so they needn't be
		 * considered in computing globalxmin.
		 */
		if (proc == MyProc ||
			!TransactionIdIsNormal(xid) ||
			TransactionIdFollowsOrEquals(xid, xmax))
			continue;

		if (TransactionIdPrecedes(xid, xmin))
			xmin = xid;
		snapshot->xip[count] = xid;
		count++;

		/* Update globalxmin to be the smallest valid xmin */
		xid = proc->xmin;
		if (TransactionIdIsNormal(xid))
			if (TransactionIdPrecedes(xid, globalxmin))
				globalxmin = xid;
	}

	if (serializable)
		MyProc->xmin = TransactionXmin = xmin;

	LWLockRelease(ProcArrayLock);

	/*
	 * Update globalxmin to include actual process xids.  This is a
	 * slightly different way of computing it than GetOldestXmin uses, but
	 * should give the same result.
	 */
	if (TransactionIdPrecedes(xmin, globalxmin))
		globalxmin = xmin;

	/* Update global variables too */
	RecentGlobalXmin = globalxmin;
	RecentXmin = xmin;

	snapshot->xmin = xmin;
	snapshot->xmax = xmax;
	snapshot->xcnt = count;

	snapshot->curcid = GetCurrentCommandId();

	return snapshot;
}

/*
 * DatabaseHasActiveBackends -- are there any backends running in the given DB
 *
 * If 'ignoreMyself' is TRUE, ignore this particular backend while checking
 * for backends in the target database.
 *
 * This function is used to interlock DROP DATABASE against there being
 * any active backends in the target DB --- dropping the DB while active
 * backends remain would be a Bad Thing.  Note that we cannot detect here
 * the possibility of a newly-started backend that is trying to connect
 * to the doomed database, so additional interlocking is needed during
 * backend startup.
 */
bool
DatabaseHasActiveBackends(Oid databaseId, bool ignoreMyself)
{
	bool		result = false;
	ProcArrayStruct *arrayP = procArray;
	int			index;

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
		PGPROC	   *proc = arrayP->procs[index];

		if (proc->databaseId == databaseId)
		{
			if (ignoreMyself && proc == MyProc)
				continue;

			result = true;
			break;
		}
	}

	LWLockRelease(ProcArrayLock);

	return result;
}

/*
 * BackendPidGetProc -- get a backend's PGPROC given its PID
655 656 657 658
 *
 * Returns NULL if not found.  Note that it is up to the caller to be
 * sure that the question remains meaningful for long enough for the
 * answer to be used ...
659
 */
660
PGPROC *
661 662 663 664 665 666
BackendPidGetProc(int pid)
{
	PGPROC	   *result = NULL;
	ProcArrayStruct *arrayP = procArray;
	int			index;

667 668 669
	if (pid == 0)				/* never match dummy PGPROCs */
		return NULL;

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
		PGPROC	   *proc = arrayP->procs[index];

		if (proc->pid == pid)
		{
			result = proc;
			break;
		}
	}

	LWLockRelease(ProcArrayLock);

	return result;
}

T
Tatsuo Ishii 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
/*
 * BackendXidGetPid -- get a backend's pid given its XID
 *
 * Returns 0 if not found or it's a prepared transaction.  Note that
 * it is up to the caller to be sure that the question remains
 * meaningful for long enough for the answer to be used ...
 * 
 * Only main transaction Ids are considered.  This function is mainly
 * useful for determining what backend owns a lock.
 */
int
BackendXidGetPid(TransactionId xid)
{
	int result = 0;
	ProcArrayStruct *arrayP = procArray;
	int			index;

	if (xid == InvalidTransactionId)	/* never match invalid xid */
		return 0;

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
		PGPROC	   *proc = arrayP->procs[index];

		if (proc->xid == xid)
		{
			result = proc->pid;
			break;
		}
	}

	LWLockRelease(ProcArrayLock);

	return result;
}

726 727 728 729 730 731 732 733 734 735 736 737 738 739
/*
 * IsBackendPid -- is a given pid a running backend
 */
bool
IsBackendPid(int pid)
{
	return (BackendPidGetProc(pid) != NULL);
}

/*
 * CountActiveBackends --- count backends (other than myself) that are in
 *		active transactions.  This is used as a heuristic to decide if
 *		a pre-XLOG-flush delay is worthwhile during commit.
 *
740 741
 * Do not count backends that are blocked waiting for locks, since they are
 * not going to get to run until someone else commits.
742 743 744 745 746 747 748 749 750 751
 */
int
CountActiveBackends(void)
{
	ProcArrayStruct *arrayP = procArray;
	int			count = 0;
	int			index;

	/*
	 * Note: for speed, we don't acquire ProcArrayLock.  This is a little bit
752
	 * bogus, but since we are only testing fields for zero or nonzero,
753 754 755 756 757 758 759 760 761
	 * it should be OK.  The result is only used for heuristic purposes
	 * anyway...
	 */
	for (index = 0; index < arrayP->numProcs; index++)
	{
		PGPROC	   *proc = arrayP->procs[index];

		if (proc == MyProc)
			continue;			/* do not count myself */
762 763 764
		if (proc->pid == 0)
			continue;			/* do not count prepared xacts */
		if (proc->xid == InvalidTransactionId)
765 766 767 768 769 770 771 772 773
			continue;			/* do not count if not in a transaction */
		if (proc->waitLock != NULL)
			continue;			/* do not count if blocked on a lock */
		count++;
	}

	return count;
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
/*
 * CountDBBackends --- count backends that are using specified database
 */
int
CountDBBackends(Oid databaseid)
{
	ProcArrayStruct *arrayP = procArray;
	int			count = 0;
	int			index;

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
		PGPROC	   *proc = arrayP->procs[index];

		if (proc->pid == 0)
			continue;			/* do not count prepared xacts */
		if (proc->databaseId == databaseid)
			count++;
	}

	LWLockRelease(ProcArrayLock);

	return count;
}

/*
 * CountUserBackends --- count backends that are used by specified user
 */
int
CountUserBackends(Oid roleid)
{
	ProcArrayStruct *arrayP = procArray;
	int			count = 0;
	int			index;

	LWLockAcquire(ProcArrayLock, LW_SHARED);

	for (index = 0; index < arrayP->numProcs; index++)
	{
		PGPROC	   *proc = arrayP->procs[index];

		if (proc->pid == 0)
			continue;			/* do not count prepared xacts */
		if (proc->roleId == roleid)
			count++;
	}

	LWLockRelease(ProcArrayLock);

	return count;
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

#define XidCacheRemove(i) \
	do { \
		MyProc->subxids.xids[i] = MyProc->subxids.xids[MyProc->subxids.nxids - 1]; \
		MyProc->subxids.nxids--; \
	} while (0)

/*
 * XidCacheRemoveRunningXids
 *
 * Remove a bunch of TransactionIds from the list of known-running
 * subtransactions for my backend.	Both the specified xid and those in
 * the xids[] array (of length nxids) are removed from the subxids cache.
 */
void
XidCacheRemoveRunningXids(TransactionId xid, int nxids, TransactionId *xids)
{
	int			i,
				j;

	Assert(!TransactionIdEquals(xid, InvalidTransactionId));

	/*
	 * We must hold ProcArrayLock exclusively in order to remove transactions
	 * from the PGPROC array.  (See notes in GetSnapshotData.)	It's
	 * possible this could be relaxed since we know this routine is only
	 * used to abort subtransactions, but pending closer analysis we'd
	 * best be conservative.
	 */
	LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);

	/*
	 * Under normal circumstances xid and xids[] will be in increasing
	 * order, as will be the entries in subxids.  Scan backwards to avoid
	 * O(N^2) behavior when removing a lot of xids.
	 */
	for (i = nxids - 1; i >= 0; i--)
	{
		TransactionId anxid = xids[i];

		for (j = MyProc->subxids.nxids - 1; j >= 0; j--)
		{
			if (TransactionIdEquals(MyProc->subxids.xids[j], anxid))
			{
				XidCacheRemove(j);
				break;
			}
		}
		/*
		 * Ordinarily we should have found it, unless the cache has overflowed.
		 * However it's also possible for this routine to be invoked multiple
		 * times for the same subtransaction, in case of an error during
		 * AbortSubTransaction.  So instead of Assert, emit a debug warning.
		 */
		if (j < 0 && !MyProc->subxids.overflowed)
			elog(WARNING, "did not find subXID %u in MyProc", anxid);
	}

	for (j = MyProc->subxids.nxids - 1; j >= 0; j--)
	{
		if (TransactionIdEquals(MyProc->subxids.xids[j], xid))
		{
			XidCacheRemove(j);
			break;
		}
	}
	/* Ordinarily we should have found it, unless the cache has overflowed */
	if (j < 0 && !MyProc->subxids.overflowed)
		elog(WARNING, "did not find subXID %u in MyProc", xid);

	LWLockRelease(ProcArrayLock);
}

#ifdef XIDCACHE_DEBUG

/*
 * Print stats about effectiveness of XID cache
 */
static void
DisplayXidCache(void)
{
	fprintf(stderr,
			"XidCache: xmin: %ld, mainxid: %ld, childxid: %ld, slow: %ld\n",
			xc_by_recent_xmin,
			xc_by_main_xid,
			xc_by_child_xid,
			xc_slow_answer);
}

#endif   /* XIDCACHE_DEBUG */