analyze.c 62.6 KB
Newer Older
B
Bruce Momjian 已提交
1 2 3
/*-------------------------------------------------------------------------
 *
 * analyze.c
4
 *	  the Postgres statistics generator
B
Bruce Momjian 已提交
5
 *
B
Bruce Momjian 已提交
6
 * Portions Copyright (c) 1996-2004, PostgreSQL Global Development Group
B
Bruce Momjian 已提交
7 8 9 10
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
11
 *	  $PostgreSQL: pgsql/src/backend/commands/analyze.c,v 1.79 2004/11/14 02:04:13 neilc Exp $
B
Bruce Momjian 已提交
12 13 14
 *
 *-------------------------------------------------------------------------
 */
15 16
#include "postgres.h"

17
#include <math.h>
B
Bruce Momjian 已提交
18 19

#include "access/heapam.h"
20
#include "access/tuptoaster.h"
21
#include "catalog/catalog.h"
B
Bruce Momjian 已提交
22
#include "catalog/catname.h"
23
#include "catalog/index.h"
B
Bruce Momjian 已提交
24
#include "catalog/indexing.h"
25
#include "catalog/namespace.h"
B
Bruce Momjian 已提交
26 27
#include "catalog/pg_operator.h"
#include "commands/vacuum.h"
28
#include "executor/executor.h"
B
Bruce Momjian 已提交
29
#include "miscadmin.h"
30
#include "parser/parse_expr.h"
B
Bruce Momjian 已提交
31
#include "parser/parse_oper.h"
32
#include "parser/parse_relation.h"
B
Bruce Momjian 已提交
33 34
#include "utils/acl.h"
#include "utils/builtins.h"
35
#include "utils/datum.h"
B
Bruce Momjian 已提交
36
#include "utils/fmgroids.h"
37
#include "utils/lsyscache.h"
B
Bruce Momjian 已提交
38
#include "utils/syscache.h"
39
#include "utils/tuplesort.h"
B
Bruce Momjian 已提交
40 41


42 43 44
/* Data structure for Algorithm S from Knuth 3.4.2 */
typedef struct
{
B
Bruce Momjian 已提交
45
	BlockNumber N;				/* number of blocks, known in advance */
46
	int			n;				/* desired sample size */
B
Bruce Momjian 已提交
47
	BlockNumber t;				/* current block number */
48 49 50 51
	int			m;				/* blocks selected so far */
} BlockSamplerData;
typedef BlockSamplerData *BlockSampler;

52 53 54 55 56 57 58 59 60 61
/* Per-index data for ANALYZE */
typedef struct AnlIndexData
{
	IndexInfo  *indexInfo;		/* BuildIndexInfo result */
	double		tupleFract;		/* fraction of rows for partial index */
	VacAttrStats **vacattrstats;	/* index attrs to analyze */
	int			attr_cnt;
} AnlIndexData;


62
/* Default statistics target (GUC parameter) */
B
Bruce Momjian 已提交
63
int			default_statistics_target = 10;
64

B
Bruce Momjian 已提交
65
static int	elevel = -1;
66

67 68
static MemoryContext anl_context = NULL;

69

70
static void BlockSampler_Init(BlockSampler bs, BlockNumber nblocks,
B
Bruce Momjian 已提交
71
				  int samplesize);
72 73
static bool BlockSampler_HasMore(BlockSampler bs);
static BlockNumber BlockSampler_Next(BlockSampler bs);
74
static void compute_index_stats(Relation onerel, double totalrows,
B
Bruce Momjian 已提交
75 76 77
					AnlIndexData *indexdata, int nindexes,
					HeapTuple *rows, int numrows,
					MemoryContext col_context);
78 79
static VacAttrStats *examine_attribute(Relation onerel, int attnum);
static int acquire_sample_rows(Relation onerel, HeapTuple *rows,
80
					int targrows, double *totalrows);
81 82
static double random_fract(void);
static double init_selection_state(int n);
83
static double get_next_S(double t, int n, double *stateptr);
84
static int	compare_rows(const void *a, const void *b);
85
static void update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats);
86
static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
87
static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
B
Bruce Momjian 已提交
88

89 90
static bool std_typanalyze(VacAttrStats *stats);

B
Bruce Momjian 已提交
91 92

/*
93
 *	analyze_rel() -- analyze one relation
B
Bruce Momjian 已提交
94 95
 */
void
96
analyze_rel(Oid relid, VacuumStmt *vacstmt)
B
Bruce Momjian 已提交
97 98
{
	Relation	onerel;
99 100
	int			attr_cnt,
				tcnt,
101 102 103 104 105 106
				i,
				ind;
	Relation   *Irel;
	int			nindexes;
	bool		hasindex;
	bool		analyzableindex;
107
	VacAttrStats **vacattrstats;
108
	AnlIndexData *indexdata;
109 110
	int			targrows,
				numrows;
111
	double		totalrows;
112 113 114
	HeapTuple  *rows;

	if (vacstmt->verbose)
115
		elevel = INFO;
116
	else
117
		elevel = DEBUG2;
B
Bruce Momjian 已提交
118

119
	/*
B
Bruce Momjian 已提交
120 121 122
	 * Use the current context for storing analysis info.  vacuum.c
	 * ensures that this context will be cleared when I return, thus
	 * releasing the memory allocated here.
123 124 125
	 */
	anl_context = CurrentMemoryContext;

B
Bruce Momjian 已提交
126 127
	/*
	 * Check for user-requested abort.	Note we want this to be inside a
B
Bruce Momjian 已提交
128
	 * transaction, so xact.c doesn't issue useless WARNING.
B
Bruce Momjian 已提交
129
	 */
130
	CHECK_FOR_INTERRUPTS();
B
Bruce Momjian 已提交
131 132 133

	/*
	 * Race condition -- if the pg_class tuple has gone away since the
134
	 * last time we saw it, we don't need to process it.
B
Bruce Momjian 已提交
135
	 */
136 137 138
	if (!SearchSysCacheExists(RELOID,
							  ObjectIdGetDatum(relid),
							  0, 0, 0))
139
		return;
B
Bruce Momjian 已提交
140

B
Bruce Momjian 已提交
141
	/*
142 143
	 * Open the class, getting only a read lock on it, and check
	 * permissions. Permissions check should match vacuum's check!
B
Bruce Momjian 已提交
144
	 */
145 146 147
	onerel = relation_open(relid, AccessShareLock);

	if (!(pg_class_ownercheck(RelationGetRelid(onerel), GetUserId()) ||
148
		  (pg_database_ownercheck(MyDatabaseId, GetUserId()) && !onerel->rd_rel->relisshared)))
B
Bruce Momjian 已提交
149
	{
150 151
		/* No need for a WARNING if we already complained during VACUUM */
		if (!vacstmt->vacuum)
152
			ereport(WARNING,
153
					(errmsg("skipping \"%s\" --- only table or database owner can analyze it",
154
							RelationGetRelationName(onerel))));
155
		relation_close(onerel, AccessShareLock);
B
Bruce Momjian 已提交
156 157 158
		return;
	}

159
	/*
B
Bruce Momjian 已提交
160 161
	 * Check that it's a plain table; we used to do this in get_rel_oids()
	 * but seems safer to check after we've locked the relation.
162
	 */
163
	if (onerel->rd_rel->relkind != RELKIND_RELATION)
B
Bruce Momjian 已提交
164
	{
B
Bruce Momjian 已提交
165
		/* No need for a WARNING if we already complained during VACUUM */
166
		if (!vacstmt->vacuum)
167
			ereport(WARNING,
168
					(errmsg("skipping \"%s\" --- cannot analyze indexes, views, or special system tables",
169
							RelationGetRelationName(onerel))));
170 171 172 173
		relation_close(onerel, AccessShareLock);
		return;
	}

174 175
	/*
	 * Silently ignore tables that are temp tables of other backends ---
B
Bruce Momjian 已提交
176 177 178
	 * trying to analyze these is rather pointless, since their contents
	 * are probably not up-to-date on disk.  (We don't throw a warning
	 * here; it would just lead to chatter during a database-wide
179 180 181 182 183 184 185 186
	 * ANALYZE.)
	 */
	if (isOtherTempNamespace(RelationGetNamespace(onerel)))
	{
		relation_close(onerel, AccessShareLock);
		return;
	}

187 188 189
	/*
	 * We can ANALYZE any table except pg_statistic. See update_attstats
	 */
190
	if (IsSystemNamespace(RelationGetNamespace(onerel)) &&
B
Bruce Momjian 已提交
191
	 strcmp(RelationGetRelationName(onerel), StatisticRelationName) == 0)
192 193
	{
		relation_close(onerel, AccessShareLock);
B
Bruce Momjian 已提交
194 195 196
		return;
	}

197 198 199 200
	ereport(elevel,
			(errmsg("analyzing \"%s.%s\"",
					get_namespace_name(RelationGetNamespace(onerel)),
					RelationGetRelationName(onerel))));
B
Bruce Momjian 已提交
201

202 203 204 205 206 207
	/*
	 * Determine which columns to analyze
	 *
	 * Note that system attributes are never analyzed.
	 */
	if (vacstmt->va_cols != NIL)
B
Bruce Momjian 已提交
208
	{
209
		ListCell   *le;
B
Bruce Momjian 已提交
210

211
		vacattrstats = (VacAttrStats **) palloc(list_length(vacstmt->va_cols) *
212 213 214
												sizeof(VacAttrStats *));
		tcnt = 0;
		foreach(le, vacstmt->va_cols)
B
Bruce Momjian 已提交
215
		{
216
			char	   *col = strVal(lfirst(le));
B
Bruce Momjian 已提交
217

218 219
			i = attnameAttNum(onerel, col, false);
			vacattrstats[tcnt] = examine_attribute(onerel, i);
220 221 222 223 224 225 226
			if (vacattrstats[tcnt] != NULL)
				tcnt++;
		}
		attr_cnt = tcnt;
	}
	else
	{
227
		attr_cnt = onerel->rd_att->natts;
228 229
		vacattrstats = (VacAttrStats **)
			palloc(attr_cnt * sizeof(VacAttrStats *));
230
		tcnt = 0;
231
		for (i = 1; i <= attr_cnt; i++)
232
		{
233
			vacattrstats[tcnt] = examine_attribute(onerel, i);
234 235
			if (vacattrstats[tcnt] != NULL)
				tcnt++;
B
Bruce Momjian 已提交
236 237 238 239
		}
		attr_cnt = tcnt;
	}

240
	/*
B
Bruce Momjian 已提交
241 242 243 244
	 * Open all indexes of the relation, and see if there are any
	 * analyzable columns in the indexes.  We do not analyze index columns
	 * if there was an explicit column list in the ANALYZE command,
	 * however.
245
	 */
246
	vac_open_indexes(onerel, AccessShareLock, &nindexes, &Irel);
247 248 249 250 251 252 253 254 255
	hasindex = (nindexes > 0);
	indexdata = NULL;
	analyzableindex = false;
	if (hasindex)
	{
		indexdata = (AnlIndexData *) palloc0(nindexes * sizeof(AnlIndexData));
		for (ind = 0; ind < nindexes; ind++)
		{
			AnlIndexData *thisdata = &indexdata[ind];
B
Bruce Momjian 已提交
256
			IndexInfo  *indexInfo;
257 258

			thisdata->indexInfo = indexInfo = BuildIndexInfo(Irel[ind]);
B
Bruce Momjian 已提交
259
			thisdata->tupleFract = 1.0; /* fix later if partial */
260 261
			if (indexInfo->ii_Expressions != NIL && vacstmt->va_cols == NIL)
			{
262
				ListCell   *indexpr_item = list_head(indexInfo->ii_Expressions);
263 264 265 266 267 268 269 270 271 272 273 274 275

				thisdata->vacattrstats = (VacAttrStats **)
					palloc(indexInfo->ii_NumIndexAttrs * sizeof(VacAttrStats *));
				tcnt = 0;
				for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
				{
					int			keycol = indexInfo->ii_KeyAttrNumbers[i];

					if (keycol == 0)
					{
						/* Found an index expression */
						Node	   *indexkey;

B
Bruce Momjian 已提交
276
						if (indexpr_item == NULL)		/* shouldn't happen */
277
							elog(ERROR, "too few entries in indexprs list");
278 279
						indexkey = (Node *) lfirst(indexpr_item);
						indexpr_item = lnext(indexpr_item);
280 281

						/*
B
Bruce Momjian 已提交
282 283 284 285 286 287 288
						 * Can't analyze if the opclass uses a storage
						 * type different from the expression result type.
						 * We'd get confused because the type shown in
						 * pg_attribute for the index column doesn't match
						 * what we are getting from the expression.
						 * Perhaps this can be fixed someday, but for now,
						 * punt.
289 290 291 292 293 294
						 */
						if (exprType(indexkey) !=
							Irel[ind]->rd_att->attrs[i]->atttypid)
							continue;

						thisdata->vacattrstats[tcnt] =
B
Bruce Momjian 已提交
295
							examine_attribute(Irel[ind], i + 1);
296 297 298 299 300 301 302 303 304 305 306 307
						if (thisdata->vacattrstats[tcnt] != NULL)
						{
							tcnt++;
							analyzableindex = true;
						}
					}
				}
				thisdata->attr_cnt = tcnt;
			}
		}
	}

308 309 310
	/*
	 * Quit if no analyzable columns
	 */
311
	if (attr_cnt <= 0 && !analyzableindex)
312
	{
313
		vac_close_indexes(nindexes, Irel, AccessShareLock);
314
		relation_close(onerel, AccessShareLock);
315 316
		return;
	}
B
Bruce Momjian 已提交
317

318 319
	/*
	 * Determine how many rows we need to sample, using the worst case
320 321
	 * from all analyzable columns.  We use a lower bound of 100 rows to
	 * avoid possible overflow in Vitter's algorithm.
322 323
	 */
	targrows = 100;
B
Bruce Momjian 已提交
324 325
	for (i = 0; i < attr_cnt; i++)
	{
326 327 328
		if (targrows < vacattrstats[i]->minrows)
			targrows = vacattrstats[i]->minrows;
	}
329 330 331 332 333 334 335 336 337 338
	for (ind = 0; ind < nindexes; ind++)
	{
		AnlIndexData *thisdata = &indexdata[ind];

		for (i = 0; i < thisdata->attr_cnt; i++)
		{
			if (targrows < thisdata->vacattrstats[i]->minrows)
				targrows = thisdata->vacattrstats[i]->minrows;
		}
	}
339 340 341 342 343 344

	/*
	 * Acquire the sample rows
	 */
	rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
	numrows = acquire_sample_rows(onerel, rows, targrows, &totalrows);
B
Bruce Momjian 已提交
345

346
	/*
347
	 * Compute the statistics.	Temporary results during the calculations
348 349
	 * for each column are stored in a child context.  The calc routines
	 * are responsible to make sure that whatever they store into the
350
	 * VacAttrStats structure is allocated in anl_context.
351 352 353 354 355 356
	 */
	if (numrows > 0)
	{
		MemoryContext col_context,
					old_context;

357
		col_context = AllocSetContextCreate(anl_context,
358 359 360 361 362
											"Analyze Column",
											ALLOCSET_DEFAULT_MINSIZE,
											ALLOCSET_DEFAULT_INITSIZE,
											ALLOCSET_DEFAULT_MAXSIZE);
		old_context = MemoryContextSwitchTo(col_context);
363

364
		for (i = 0; i < attr_cnt; i++)
B
Bruce Momjian 已提交
365
		{
366 367 368 369 370 371 372 373
			VacAttrStats *stats = vacattrstats[i];

			stats->rows = rows;
			stats->tupDesc = onerel->rd_att;
			(*stats->compute_stats) (stats,
									 std_fetch_func,
									 numrows,
									 totalrows);
374
			MemoryContextResetAndDeleteChildren(col_context);
B
Bruce Momjian 已提交
375
		}
376 377 378 379 380 381 382

		if (hasindex)
			compute_index_stats(onerel, totalrows,
								indexdata, nindexes,
								rows, numrows,
								col_context);

383 384 385 386 387
		MemoryContextSwitchTo(old_context);
		MemoryContextDelete(col_context);

		/*
		 * Emit the completed stats rows into pg_statistic, replacing any
388 389 390
		 * previous statistics for the target columns.	(If there are
		 * stats in pg_statistic for columns we didn't process, we leave
		 * them alone.)
391 392
		 */
		update_attstats(relid, attr_cnt, vacattrstats);
393 394 395 396 397 398 399 400 401 402 403 404

		for (ind = 0; ind < nindexes; ind++)
		{
			AnlIndexData *thisdata = &indexdata[ind];

			update_attstats(RelationGetRelid(Irel[ind]),
							thisdata->attr_cnt, thisdata->vacattrstats);
		}
	}

	/*
	 * If we are running a standalone ANALYZE, update pages/tuples stats
B
Bruce Momjian 已提交
405 406 407 408
	 * in pg_class.  We know the accurate page count from the smgr, but
	 * only an approximate number of tuples; therefore, if we are part of
	 * VACUUM ANALYZE do *not* overwrite the accurate count already
	 * inserted by VACUUM.	The same consideration applies to indexes.
409 410 411 412
	 */
	if (!vacstmt->vacuum)
	{
		vac_update_relstats(RelationGetRelid(onerel),
413
							RelationGetNumberOfBlocks(onerel),
414 415 416 417 418 419 420 421 422 423 424 425 426
							totalrows,
							hasindex);
		for (ind = 0; ind < nindexes; ind++)
		{
			AnlIndexData *thisdata = &indexdata[ind];
			double		totalindexrows;

			totalindexrows = ceil(thisdata->tupleFract * totalrows);
			vac_update_relstats(RelationGetRelid(Irel[ind]),
								RelationGetNumberOfBlocks(Irel[ind]),
								totalindexrows,
								false);
		}
427 428
	}

429
	/* Done with indexes */
430
	vac_close_indexes(nindexes, Irel, NoLock);
431

432 433 434 435 436
	/*
	 * Close source relation now, but keep lock so that no one deletes it
	 * before we commit.  (If someone did, they'd fail to clean up the
	 * entries we made in pg_statistic.)
	 */
437
	relation_close(onerel, NoLock);
438 439
}

440 441 442 443 444 445 446 447 448 449
/*
 * Compute statistics about indexes of a relation
 */
static void
compute_index_stats(Relation onerel, double totalrows,
					AnlIndexData *indexdata, int nindexes,
					HeapTuple *rows, int numrows,
					MemoryContext col_context)
{
	MemoryContext ind_context,
B
Bruce Momjian 已提交
450
				old_context;
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	TupleDesc	heapDescriptor;
	Datum		attdata[INDEX_MAX_KEYS];
	char		nulls[INDEX_MAX_KEYS];
	int			ind,
				i;

	heapDescriptor = RelationGetDescr(onerel);

	ind_context = AllocSetContextCreate(anl_context,
										"Analyze Index",
										ALLOCSET_DEFAULT_MINSIZE,
										ALLOCSET_DEFAULT_INITSIZE,
										ALLOCSET_DEFAULT_MAXSIZE);
	old_context = MemoryContextSwitchTo(ind_context);

	for (ind = 0; ind < nindexes; ind++)
	{
		AnlIndexData *thisdata = &indexdata[ind];
B
Bruce Momjian 已提交
469
		IndexInfo  *indexInfo = thisdata->indexInfo;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
		int			attr_cnt = thisdata->attr_cnt;
		TupleTable	tupleTable;
		TupleTableSlot *slot;
		EState	   *estate;
		ExprContext *econtext;
		List	   *predicate;
		Datum	   *exprvals;
		bool	   *exprnulls;
		int			numindexrows,
					tcnt,
					rowno;
		double		totalindexrows;

		/* Ignore index if no columns to analyze and not partial */
		if (attr_cnt == 0 && indexInfo->ii_Predicate == NIL)
			continue;

		/*
		 * Need an EState for evaluation of index expressions and
		 * partial-index predicates.  Create it in the per-index context
		 * to be sure it gets cleaned up at the bottom of the loop.
		 */
		estate = CreateExecutorState();
		econtext = GetPerTupleExprContext(estate);
		/* Need a slot to hold the current heap tuple, too */
		tupleTable = ExecCreateTupleTable(1);
		slot = ExecAllocTableSlot(tupleTable);
		ExecSetSlotDescriptor(slot, heapDescriptor, false);

		/* Arrange for econtext's scan tuple to be the tuple under test */
		econtext->ecxt_scantuple = slot;

		/* Set up execution state for predicate. */
		predicate = (List *)
			ExecPrepareExpr((Expr *) indexInfo->ii_Predicate,
							estate);

		/* Compute and save index expression values */
508 509
		exprvals = (Datum *) palloc(numrows * attr_cnt * sizeof(Datum));
		exprnulls = (bool *) palloc(numrows * attr_cnt * sizeof(bool));
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
		numindexrows = 0;
		tcnt = 0;
		for (rowno = 0; rowno < numrows; rowno++)
		{
			HeapTuple	heapTuple = rows[rowno];

			/* Set up for predicate or expression evaluation */
			ExecStoreTuple(heapTuple, slot, InvalidBuffer, false);

			/* If index is partial, check predicate */
			if (predicate != NIL)
			{
				if (!ExecQual(predicate, econtext, false))
					continue;
			}
			numindexrows++;

			if (attr_cnt > 0)
			{
				/*
B
Bruce Momjian 已提交
530 531 532
				 * Evaluate the index row to compute expression values. We
				 * could do this by hand, but FormIndexDatum is
				 * convenient.
533 534 535 536 537 538 539
				 */
				FormIndexDatum(indexInfo,
							   heapTuple,
							   heapDescriptor,
							   estate,
							   attdata,
							   nulls);
B
Bruce Momjian 已提交
540

541 542 543 544 545 546
				/*
				 * Save just the columns we care about.
				 */
				for (i = 0; i < attr_cnt; i++)
				{
					VacAttrStats *stats = thisdata->vacattrstats[i];
B
Bruce Momjian 已提交
547
					int			attnum = stats->attr->attnum;
548

B
Bruce Momjian 已提交
549 550
					exprvals[tcnt] = attdata[attnum - 1];
					exprnulls[tcnt] = (nulls[attnum - 1] == 'n');
551 552 553 554 555 556 557
					tcnt++;
				}
			}
		}

		/*
		 * Having counted the number of rows that pass the predicate in
B
Bruce Momjian 已提交
558 559
		 * the sample, we can estimate the total number of rows in the
		 * index.
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
		 */
		thisdata->tupleFract = (double) numindexrows / (double) numrows;
		totalindexrows = ceil(thisdata->tupleFract * totalrows);

		/*
		 * Now we can compute the statistics for the expression columns.
		 */
		if (numindexrows > 0)
		{
			MemoryContextSwitchTo(col_context);
			for (i = 0; i < attr_cnt; i++)
			{
				VacAttrStats *stats = thisdata->vacattrstats[i];

				stats->exprvals = exprvals + i;
				stats->exprnulls = exprnulls + i;
				stats->rowstride = attr_cnt;
				(*stats->compute_stats) (stats,
										 ind_fetch_func,
										 numindexrows,
										 totalindexrows);
				MemoryContextResetAndDeleteChildren(col_context);
			}
		}

		/* And clean up */
		MemoryContextSwitchTo(ind_context);

		ExecDropTupleTable(tupleTable, true);
		FreeExecutorState(estate);
		MemoryContextResetAndDeleteChildren(ind_context);
	}

	MemoryContextSwitchTo(old_context);
	MemoryContextDelete(ind_context);
}

597 598 599 600 601 602 603 604 605
/*
 * examine_attribute -- pre-analysis of a single column
 *
 * Determine whether the column is analyzable; if so, create and initialize
 * a VacAttrStats struct for it.  If not, return NULL.
 */
static VacAttrStats *
examine_attribute(Relation onerel, int attnum)
{
606
	Form_pg_attribute attr = onerel->rd_att->attrs[attnum - 1];
607 608
	HeapTuple	typtuple;
	VacAttrStats *stats;
609
	bool		ok;
610

611
	/* Never analyze dropped columns */
612 613 614
	if (attr->attisdropped)
		return NULL;

615
	/* Don't analyze column if user has specified not to */
616
	if (attr->attstattarget == 0)
617 618 619
		return NULL;

	/*
620
	 * Create the VacAttrStats struct.
621
	 */
622
	stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
623 624 625 626 627 628
	stats->attr = (Form_pg_attribute) palloc(ATTRIBUTE_TUPLE_SIZE);
	memcpy(stats->attr, attr, ATTRIBUTE_TUPLE_SIZE);
	typtuple = SearchSysCache(TYPEOID,
							  ObjectIdGetDatum(attr->atttypid),
							  0, 0, 0);
	if (!HeapTupleIsValid(typtuple))
629
		elog(ERROR, "cache lookup failed for type %u", attr->atttypid);
630 631 632
	stats->attrtype = (Form_pg_type) palloc(sizeof(FormData_pg_type));
	memcpy(stats->attrtype, GETSTRUCT(typtuple), sizeof(FormData_pg_type));
	ReleaseSysCache(typtuple);
633 634
	stats->anl_context = anl_context;
	stats->tupattnum = attnum;
635 636

	/*
B
Bruce Momjian 已提交
637
	 * Call the type-specific typanalyze function.	If none is specified,
638
	 * use std_typanalyze().
639
	 */
640 641 642
	if (OidIsValid(stats->attrtype->typanalyze))
		ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
										   PointerGetDatum(stats)));
643
	else
644 645 646
		ok = std_typanalyze(stats);

	if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
647
	{
648 649 650 651
		pfree(stats->attrtype);
		pfree(stats->attr);
		pfree(stats);
		return NULL;
652 653 654 655
	}

	return stats;
}
B
Bruce Momjian 已提交
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
/*
 * BlockSampler_Init -- prepare for random sampling of blocknumbers
 *
 * BlockSampler is used for stage one of our new two-stage tuple
 * sampling mechanism as discussed on pgsql-hackers 2004-04-02 (subject
 * "Large DB").  It selects a random sample of samplesize blocks out of
 * the nblocks blocks in the table.  If the table has less than
 * samplesize blocks, all blocks are selected.
 *
 * Since we know the total number of blocks in advance, we can use the
 * straightforward Algorithm S from Knuth 3.4.2, rather than Vitter's
 * algorithm.
 */
static void
BlockSampler_Init(BlockSampler bs, BlockNumber nblocks, int samplesize)
{
	bs->N = nblocks;			/* measured table size */
B
Bruce Momjian 已提交
674

675
	/*
B
Bruce Momjian 已提交
676 677
	 * If we decide to reduce samplesize for tables that have less or not
	 * much more than samplesize blocks, here is the place to do it.
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	 */
	bs->n = samplesize;
	bs->t = 0;					/* blocks scanned so far */
	bs->m = 0;					/* blocks selected so far */
}

static bool
BlockSampler_HasMore(BlockSampler bs)
{
	return (bs->t < bs->N) && (bs->m < bs->n);
}

static BlockNumber
BlockSampler_Next(BlockSampler bs)
{
B
Bruce Momjian 已提交
693
	BlockNumber K = bs->N - bs->t;		/* remaining blocks */
694
	int			k = bs->n - bs->m;		/* blocks still to sample */
B
Bruce Momjian 已提交
695 696
	double		p;				/* probability to skip block */
	double		V;				/* random */
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712

	Assert(BlockSampler_HasMore(bs));	/* hence K > 0 and k > 0 */

	if ((BlockNumber) k >= K)
	{
		/* need all the rest */
		bs->m++;
		return bs->t++;
	}

	/*----------
	 * It is not obvious that this code matches Knuth's Algorithm S.
	 * Knuth says to skip the current block with probability 1 - k/K.
	 * If we are to skip, we should advance t (hence decrease K), and
	 * repeat the same probabilistic test for the next block.  The naive
	 * implementation thus requires a random_fract() call for each block
B
Bruce Momjian 已提交
713
	 * number.	But we can reduce this to one random_fract() call per
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	 * selected block, by noting that each time the while-test succeeds,
	 * we can reinterpret V as a uniform random number in the range 0 to p.
	 * Therefore, instead of choosing a new V, we just adjust p to be
	 * the appropriate fraction of its former value, and our next loop
	 * makes the appropriate probabilistic test.
	 *
	 * We have initially K > k > 0.  If the loop reduces K to equal k,
	 * the next while-test must fail since p will become exactly zero
	 * (we assume there will not be roundoff error in the division).
	 * (Note: Knuth suggests a "<=" loop condition, but we use "<" just
	 * to be doubly sure about roundoff error.)  Therefore K cannot become
	 * less than k, which means that we cannot fail to select enough blocks.
	 *----------
	 */
	V = random_fract();
	p = 1.0 - (double) k / (double) K;
	while (V < p)
	{
		/* skip */
		bs->t++;
		K--;					/* keep K == N - t */

		/* adjust p to be new cutoff point in reduced range */
		p *= 1.0 - (double) k / (double) K;
	}

	/* select */
	bs->m++;
	return bs->t++;
}

745 746 747
/*
 * acquire_sample_rows -- acquire a random sample of rows from the table
 *
748 749 750 751 752 753 754 755 756 757 758 759 760 761
 * As of May 2004 we use a new two-stage method:  Stage one selects up
 * to targrows random blocks (or all blocks, if there aren't so many).
 * Stage two scans these blocks and uses the Vitter algorithm to create
 * a random sample of targrows rows (or less, if there are less in the
 * sample of blocks).  The two stages are executed simultaneously: each
 * block is processed as soon as stage one returns its number and while
 * the rows are read stage two controls which ones are to be inserted
 * into the sample.
 *
 * Although every row has an equal chance of ending up in the final
 * sample, this sampling method is not perfect: not every possible
 * sample has an equal chance of being selected.  For large relations
 * the number of different blocks represented by the sample tends to be
 * too small.  We can live with that for now.  Improvements are welcome.
762 763
 *
 * We also estimate the total number of rows in the table, and return that
764 765 766 767 768
 * into *totalrows.  An important property of this sampling method is that
 * because we do look at a statistically unbiased set of blocks, we should
 * get an unbiased estimate of the average number of live rows per block.
 * The previous sampling method put too much credence in the row density near
 * the start of the table.
769 770 771 772 773 774
 *
 * The returned list of tuples is in order by physical position in the table.
 * (We will rely on this later to derive correlation estimates.)
 */
static int
acquire_sample_rows(Relation onerel, HeapTuple *rows, int targrows,
775
					double *totalrows)
776
{
B
Bruce Momjian 已提交
777 778
	int			numrows = 0;	/* # rows collected */
	double		liverows = 0;	/* # rows seen */
779
	double		deadrows = 0;
B
Bruce Momjian 已提交
780 781
	double		rowstoskip = -1;	/* -1 means not set yet */
	BlockNumber totalblocks;
782
	BlockSamplerData bs;
783 784 785
	double		rstate;

	Assert(targrows > 1);
786

787
	totalblocks = RelationGetNumberOfBlocks(onerel);
788

789 790 791
	/* Prepare for sampling block numbers */
	BlockSampler_Init(&bs, totalblocks, targrows);
	/* Prepare for sampling rows */
792
	rstate = init_selection_state(targrows);
793 794 795

	/* Outer loop over blocks to sample */
	while (BlockSampler_HasMore(&bs))
796
	{
797
		BlockNumber targblock = BlockSampler_Next(&bs);
798 799 800 801
		Buffer		targbuffer;
		Page		targpage;
		OffsetNumber targoffset,
					maxoffset;
802

803
		vacuum_delay_point();
804

805
		/*
806 807 808 809 810 811
		 * We must maintain a pin on the target page's buffer to ensure
		 * that the maxoffset value stays good (else concurrent VACUUM
		 * might delete tuples out from under us).	Hence, pin the page
		 * until we are done looking at it.  We don't maintain a lock on
		 * the page, so tuples could get added to it, but we ignore such
		 * tuples.
812 813 814 815 816 817 818
		 */
		targbuffer = ReadBuffer(onerel, targblock);
		LockBuffer(targbuffer, BUFFER_LOCK_SHARE);
		targpage = BufferGetPage(targbuffer);
		maxoffset = PageGetMaxOffsetNumber(targpage);
		LockBuffer(targbuffer, BUFFER_LOCK_UNLOCK);

819 820
		/* Inner loop over all tuples on the selected page */
		for (targoffset = FirstOffsetNumber; targoffset <= maxoffset; targoffset++)
B
Bruce Momjian 已提交
821
		{
822 823 824
			HeapTupleData targtuple;

			ItemPointerSet(&targtuple.t_self, targblock, targoffset);
825 826 827 828
			/* We use heap_release_fetch to avoid useless bufmgr traffic */
			if (heap_release_fetch(onerel, SnapshotNow,
								   &targtuple, &targbuffer,
								   true, NULL))
829 830
			{
				/*
831
				 * The first targrows live rows are simply copied into the
B
Bruce Momjian 已提交
832 833 834
				 * reservoir. Then we start replacing tuples in the sample
				 * until we reach the end of the relation.	This algorithm
				 * is from Jeff Vitter's paper (see full citation below).
835 836
				 * It works by repeatedly computing the number of tuples
				 * to skip before selecting a tuple, which replaces a
B
Bruce Momjian 已提交
837 838
				 * randomly chosen element of the reservoir (current set
				 * of tuples).	At all times the reservoir is a true
839 840
				 * random sample of the tuples we've passed over so far,
				 * so when we fall off the end of the relation we're done.
841
				 */
842 843 844 845 846
				if (numrows < targrows)
					rows[numrows++] = heap_copytuple(&targtuple);
				else
				{
					/*
B
Bruce Momjian 已提交
847 848 849 850
					 * t in Vitter's paper is the number of records
					 * already processed.  If we need to compute a new S
					 * value, we must use the not-yet-incremented value of
					 * liverows as t.
851 852 853 854 855 856 857
					 */
					if (rowstoskip < 0)
						rowstoskip = get_next_S(liverows, targrows, &rstate);

					if (rowstoskip <= 0)
					{
						/*
B
Bruce Momjian 已提交
858 859
						 * Found a suitable tuple, so save it, replacing
						 * one old tuple at random
860
						 */
B
Bruce Momjian 已提交
861
						int			k = (int) (targrows * random_fract());
862

863 864 865 866 867 868 869 870 871 872 873 874 875
						Assert(k >= 0 && k < targrows);
						heap_freetuple(rows[k]);
						rows[k] = heap_copytuple(&targtuple);
					}

					rowstoskip -= 1;
				}

				liverows += 1;
			}
			else
			{
				/*
B
Bruce Momjian 已提交
876 877 878
				 * Count dead rows, but not empty slots.  This information
				 * is currently not used, but it seems likely we'll want
				 * it someday.
879 880 881
				 */
				if (targtuple.t_data != NULL)
					deadrows += 1;
882
			}
B
Bruce Momjian 已提交
883
		}
884

885
		/* Now release the pin on the page */
886
		ReleaseBuffer(targbuffer);
B
Bruce Momjian 已提交
887 888
	}

889
	/*
B
Bruce Momjian 已提交
890 891
	 * If we didn't find as many tuples as we wanted then we're done. No
	 * sort is needed, since they're already in order.
892 893
	 *
	 * Otherwise we need to sort the collected tuples by position
B
Bruce Momjian 已提交
894 895
	 * (itempointer).  It's not worth worrying about corner cases where
	 * the tuples are already sorted.
896
	 */
897 898
	if (numrows == targrows)
		qsort((void *) rows, numrows, sizeof(HeapTuple), compare_rows);
B
Bruce Momjian 已提交
899

900
	/*
901
	 * Estimate total number of live rows in relation.
902
	 */
903 904 905 906
	if (bs.m > 0)
		*totalrows = floor((liverows * totalblocks) / bs.m + 0.5);
	else
		*totalrows = 0.0;
B
Bruce Momjian 已提交
907

908
	/*
B
Bruce Momjian 已提交
909
	 * Emit some interesting relation info
910
	 */
911
	ereport(elevel,
912 913 914
			(errmsg("\"%s\": scanned %d of %u pages, "
					"containing %.0f live rows and %.0f dead rows; "
					"%d rows in sample, %.0f estimated total rows",
915
					RelationGetRelationName(onerel),
916 917 918
					bs.m, totalblocks,
					liverows, deadrows,
					numrows, *totalrows)));
919

920 921
	return numrows;
}
B
Bruce Momjian 已提交
922

923 924 925 926
/* Select a random value R uniformly distributed in 0 < R < 1 */
static double
random_fract(void)
{
927
	long		z;
B
Bruce Momjian 已提交
928

929 930 931 932
	/* random() can produce endpoint values, try again if so */
	do
	{
		z = random();
933
	} while (z <= 0 || z >= MAX_RANDOM_VALUE);
934
	return (double) z / (double) MAX_RANDOM_VALUE;
B
Bruce Momjian 已提交
935 936 937
}

/*
938 939
 * These two routines embody Algorithm Z from "Random sampling with a
 * reservoir" by Jeffrey S. Vitter, in ACM Trans. Math. Softw. 11, 1
940 941 942 943
 * (Mar. 1985), Pages 37-57.  Vitter describes his algorithm in terms
 * of the count S of records to skip before processing another record.
 * It is computed primarily based on t, the number of records already read.
 * The only extra state needed between calls is W, a random state variable.
944
 *
945
 * init_selection_state computes the initial W value.
B
Bruce Momjian 已提交
946
 *
947 948 949
 * Given that we've already read t records (t >= n), get_next_S
 * determines the number of records to skip before the next record is
 * processed.
950 951 952 953 954
 */
static double
init_selection_state(int n)
{
	/* Initial value of W (for use when Algorithm Z is first applied) */
955
	return exp(-log(random_fract()) / n);
956 957
}

958
static double
959
get_next_S(double t, int n, double *stateptr)
960
{
961 962
	double		S;

963
	/* The magic constant here is T from Vitter's paper */
964
	if (t <= (22.0 * n))
965 966
	{
		/* Process records using Algorithm X until t is large enough */
967 968
		double		V,
					quot;
969 970

		V = random_fract();		/* Generate V */
971
		S = 0;
972
		t += 1;
973
		/* Note: "num" in Vitter's code is always equal to t - n */
974
		quot = (t - (double) n) / t;
975 976 977
		/* Find min S satisfying (4.1) */
		while (quot > V)
		{
978
			S += 1;
979 980
			t += 1;
			quot *= (t - (double) n) / t;
981 982 983 984 985
		}
	}
	else
	{
		/* Now apply Algorithm Z */
986 987
		double		W = *stateptr;
		double		term = t - (double) n + 1;
988 989 990

		for (;;)
		{
991 992 993 994 995 996 997 998 999
			double		numer,
						numer_lim,
						denom;
			double		U,
						X,
						lhs,
						rhs,
						y,
						tmp;
1000 1001 1002 1003

			/* Generate U and X */
			U = random_fract();
			X = t * (W - 1.0);
1004
			S = floor(X);		/* S is tentatively set to floor(X) */
1005
			/* Test if U <= h(S)/cg(X) in the manner of (6.3) */
1006
			tmp = (t + 1) / term;
1007 1008
			lhs = exp(log(((U * tmp * tmp) * (term + S)) / (t + X)) / n);
			rhs = (((t + X) / (term + S)) * term) / t;
1009 1010
			if (lhs <= rhs)
			{
1011
				W = rhs / lhs;
1012 1013 1014
				break;
			}
			/* Test if U <= f(S)/cg(X) */
1015
			y = (((U * (t + 1)) / term) * (t + S + 1)) / (t + X);
1016
			if ((double) n < S)
1017 1018 1019 1020 1021 1022
			{
				denom = t;
				numer_lim = term + S;
			}
			else
			{
1023
				denom = t - (double) n + S;
1024 1025
				numer_lim = t + 1;
			}
1026
			for (numer = t + S; numer >= numer_lim; numer -= 1)
1027
			{
1028 1029
				y *= numer / denom;
				denom -= 1;
1030
			}
1031 1032
			W = exp(-log(random_fract()) / n);	/* Generate W in advance */
			if (exp(log(y) / n) <= (t + X) / t)
1033 1034 1035 1036
				break;
		}
		*stateptr = W;
	}
1037
	return S;
1038 1039 1040
}

/*
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
 * qsort comparator for sorting rows[] array
 */
static int
compare_rows(const void *a, const void *b)
{
	HeapTuple	ha = *(HeapTuple *) a;
	HeapTuple	hb = *(HeapTuple *) b;
	BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self);
	OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self);
	BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self);
	OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self);

	if (ba < bb)
		return -1;
	if (ba > bb)
		return 1;
	if (oa < ob)
		return -1;
	if (oa > ob)
		return 1;
	return 0;
}


/*
 *	update_attstats() -- update attribute statistics for one relation
 *
 *		Statistics are stored in several places: the pg_class row for the
 *		relation has stats about the whole relation, and there is a
 *		pg_statistic row for each (non-system) attribute that has ever
 *		been analyzed.	The pg_class values are updated by VACUUM, not here.
 *
 *		pg_statistic rows are just added or updated normally.  This means
 *		that pg_statistic will probably contain some deleted rows at the
 *		completion of a vacuum cycle, unless it happens to get vacuumed last.
 *
 *		To keep things simple, we punt for pg_statistic, and don't try
 *		to compute or store rows for pg_statistic itself in pg_statistic.
 *		This could possibly be made to work, but it's not worth the trouble.
 *		Note analyze_rel() has seen to it that we won't come here when
 *		vacuuming pg_statistic itself.
 *
 *		Note: if two backends concurrently try to analyze the same relation,
 *		the second one is likely to fail here with a "tuple concurrently
 *		updated" error.  This is slightly annoying, but no real harm is done.
 *		We could prevent the problem by using a stronger lock on the
 *		relation for ANALYZE (ie, ShareUpdateExclusiveLock instead
 *		of AccessShareLock); but that cure seems worse than the disease,
 *		especially now that ANALYZE doesn't start a new transaction
 *		for each relation.	The lock could be held for a long time...
 */
static void
update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats)
{
	Relation	sd;
	int			attno;

1098 1099 1100
	if (natts <= 0)
		return;					/* nothing to do */

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	sd = heap_openr(StatisticRelationName, RowExclusiveLock);

	for (attno = 0; attno < natts; attno++)
	{
		VacAttrStats *stats = vacattrstats[attno];
		HeapTuple	stup,
					oldtup;
		int			i,
					k,
					n;
		Datum		values[Natts_pg_statistic];
		char		nulls[Natts_pg_statistic];
		char		replaces[Natts_pg_statistic];

		/* Ignore attr if we weren't able to collect stats */
		if (!stats->stats_valid)
			continue;

		/*
		 * Construct a new pg_statistic tuple
		 */
		for (i = 0; i < Natts_pg_statistic; ++i)
		{
			nulls[i] = ' ';
			replaces[i] = 'r';
		}

		i = 0;
		values[i++] = ObjectIdGetDatum(relid);	/* starelid */
B
Bruce Momjian 已提交
1130 1131
		values[i++] = Int16GetDatum(stats->attr->attnum);		/* staattnum */
		values[i++] = Float4GetDatum(stats->stanullfrac);		/* stanullfrac */
1132
		values[i++] = Int32GetDatum(stats->stawidth);	/* stawidth */
B
Bruce Momjian 已提交
1133
		values[i++] = Float4GetDatum(stats->stadistinct);		/* stadistinct */
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			values[i++] = Int16GetDatum(stats->stakind[k]);		/* stakindN */
		}
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			values[i++] = ObjectIdGetDatum(stats->staop[k]);	/* staopN */
		}
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			int			nnum = stats->numnumbers[k];

			if (nnum > 0)
			{
				Datum	   *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
				ArrayType  *arry;

				for (n = 0; n < nnum; n++)
					numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
				/* XXX knows more than it should about type float4: */
				arry = construct_array(numdatums, nnum,
									   FLOAT4OID,
									   sizeof(float4), false, 'i');
				values[i++] = PointerGetDatum(arry);	/* stanumbersN */
			}
			else
			{
				nulls[i] = 'n';
				values[i++] = (Datum) 0;
			}
		}
		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
		{
			if (stats->numvalues[k] > 0)
			{
				ArrayType  *arry;

				arry = construct_array(stats->stavalues[k],
									   stats->numvalues[k],
									   stats->attr->atttypid,
									   stats->attrtype->typlen,
									   stats->attrtype->typbyval,
									   stats->attrtype->typalign);
				values[i++] = PointerGetDatum(arry);	/* stavaluesN */
			}
			else
			{
				nulls[i] = 'n';
				values[i++] = (Datum) 0;
			}
		}

		/* Is there already a pg_statistic tuple for this attribute? */
		oldtup = SearchSysCache(STATRELATT,
								ObjectIdGetDatum(relid),
								Int16GetDatum(stats->attr->attnum),
								0, 0);

		if (HeapTupleIsValid(oldtup))
		{
			/* Yes, replace it */
			stup = heap_modifytuple(oldtup,
									sd,
									values,
									nulls,
									replaces);
			ReleaseSysCache(oldtup);
			simple_heap_update(sd, &stup->t_self, stup);
		}
		else
		{
			/* No, insert new tuple */
			stup = heap_formtuple(sd->rd_att, values, nulls);
			simple_heap_insert(sd, stup);
		}

		/* update indexes too */
		CatalogUpdateIndexes(sd, stup);

		heap_freetuple(stup);
	}

	heap_close(sd, RowExclusiveLock);
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/*
 * Standard fetch function for use by compute_stats subroutines.
 *
 * This exists to provide some insulation between compute_stats routines
 * and the actual storage of the sample data.
 */
static Datum
std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
{
	int			attnum = stats->tupattnum;
	HeapTuple	tuple = stats->rows[rownum];
	TupleDesc	tupDesc = stats->tupDesc;

	return heap_getattr(tuple, attnum, tupDesc, isNull);
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/*
 * Fetch function for analyzing index expressions.
 *
 * We have not bothered to construct index tuples, instead the data is
 * just in Datum arrays.
 */
static Datum
ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
{
	int			i;

	/* exprvals and exprnulls are already offset for proper column */
	i = rownum * stats->rowstride;
	*isNull = stats->exprnulls[i];
	return stats->exprvals[i];
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

/*==========================================================================
 *
 * Code below this point represents the "standard" type-specific statistics
 * analysis algorithms.  This code can be replaced on a per-data-type basis
 * by setting a nonzero value in pg_type.typanalyze.
 *
 *==========================================================================
 */


/*
 * To avoid consuming too much memory during analysis and/or too much space
 * in the resulting pg_statistic rows, we ignore varlena datums that are wider
 * than WIDTH_THRESHOLD (after detoasting!).  This is legitimate for MCV
 * and distinct-value calculations since a wide value is unlikely to be
 * duplicated at all, much less be a most-common value.  For the same reason,
 * ignoring wide values will not affect our estimates of histogram bin
 * boundaries very much.
 */
#define WIDTH_THRESHOLD  1024

#define swapInt(a,b)	do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
#define swapDatum(a,b)	do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)

/*
 * Extra information used by the default analysis routines
 */
typedef struct
{
	Oid			eqopr;			/* '=' operator for datatype, if any */
	Oid			eqfunc;			/* and associated function */
	Oid			ltopr;			/* '<' operator for datatype, if any */
} StdAnalyzeData;

typedef struct
{
	Datum		value;			/* a data value */
	int			tupno;			/* position index for tuple it came from */
} ScalarItem;

typedef struct
{
	int			count;			/* # of duplicates */
	int			first;			/* values[] index of first occurrence */
} ScalarMCVItem;


/* context information for compare_scalars() */
static FmgrInfo *datumCmpFn;
static SortFunctionKind datumCmpFnKind;
static int *datumCmpTupnoLink;


1306
static void compute_minimal_stats(VacAttrStatsP stats,
B
Bruce Momjian 已提交
1307 1308 1309
					  AnalyzeAttrFetchFunc fetchfunc,
					  int samplerows,
					  double totalrows);
1310
static void compute_scalar_stats(VacAttrStatsP stats,
B
Bruce Momjian 已提交
1311 1312 1313
					 AnalyzeAttrFetchFunc fetchfunc,
					 int samplerows,
					 double totalrows);
1314 1315 1316 1317 1318 1319
static int	compare_scalars(const void *a, const void *b);
static int	compare_mcvs(const void *a, const void *b);


/*
 * std_typanalyze -- the default type-specific typanalyze function
1320
 */
1321 1322
static bool
std_typanalyze(VacAttrStats *stats)
1323
{
1324 1325 1326 1327 1328 1329
	Form_pg_attribute attr = stats->attr;
	Operator	func_operator;
	Oid			eqopr = InvalidOid;
	Oid			eqfunc = InvalidOid;
	Oid			ltopr = InvalidOid;
	StdAnalyzeData *mystats;
1330

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	/* If the attstattarget column is negative, use the default value */
	/* NB: it is okay to scribble on stats->attr since it's a copy */
	if (attr->attstattarget < 0)
		attr->attstattarget = default_statistics_target;

	/* If column has no "=" operator, we can't do much of anything */
	func_operator = equality_oper(attr->atttypid, true);
	if (func_operator != NULL)
	{
		eqopr = oprid(func_operator);
		eqfunc = oprfuncid(func_operator);
		ReleaseSysCache(func_operator);
	}
	if (!OidIsValid(eqfunc))
		return false;

	/* Is there a "<" operator with suitable semantics? */
	func_operator = ordering_oper(attr->atttypid, true);
	if (func_operator != NULL)
	{
		ltopr = oprid(func_operator);
		ReleaseSysCache(func_operator);
	}

	/* Save the operator info for compute_stats routines */
	mystats = (StdAnalyzeData *) palloc(sizeof(StdAnalyzeData));
	mystats->eqopr = eqopr;
	mystats->eqfunc = eqfunc;
	mystats->ltopr = ltopr;
	stats->extra_data = mystats;

	/*
	 * Determine which standard statistics algorithm to use
	 */
	if (OidIsValid(ltopr))
	{
		/* Seems to be a scalar datatype */
		stats->compute_stats = compute_scalar_stats;
		/*--------------------
		 * The following choice of minrows is based on the paper
		 * "Random sampling for histogram construction: how much is enough?"
		 * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
		 * Proceedings of ACM SIGMOD International Conference on Management
		 * of Data, 1998, Pages 436-447.  Their Corollary 1 to Theorem 5
		 * says that for table size n, histogram size k, maximum relative
		 * error in bin size f, and error probability gamma, the minimum
		 * random sample size is
		 *		r = 4 * k * ln(2*n/gamma) / f^2
		 * Taking f = 0.5, gamma = 0.01, n = 1 million rows, we obtain
		 *		r = 305.82 * k
		 * Note that because of the log function, the dependence on n is
		 * quite weak; even at n = 1 billion, a 300*k sample gives <= 0.59
		 * bin size error with probability 0.99.  So there's no real need to
		 * scale for n, which is a good thing because we don't necessarily
		 * know it at this point.
		 *--------------------
		 */
		stats->minrows = 300 * attr->attstattarget;
	}
	else
	{
		/* Can't do much but the minimal stuff */
		stats->compute_stats = compute_minimal_stats;
		/* Might as well use the same minrows as above */
		stats->minrows = 300 * attr->attstattarget;
	}
1397

1398 1399
	return true;
}
1400 1401 1402

/*
 *	compute_minimal_stats() -- compute minimal column statistics
B
Bruce Momjian 已提交
1403
 *
1404
 *	We use this when we can find only an "=" operator for the datatype.
B
Bruce Momjian 已提交
1405
 *
1406 1407
 *	We determine the fraction of non-null rows, the average width, the
 *	most common values, and the (estimated) number of distinct values.
B
Bruce Momjian 已提交
1408
 *
1409 1410 1411 1412 1413 1414
 *	The most common values are determined by brute force: we keep a list
 *	of previously seen values, ordered by number of times seen, as we scan
 *	the samples.  A newly seen value is inserted just after the last
 *	multiply-seen value, causing the bottommost (oldest) singly-seen value
 *	to drop off the list.  The accuracy of this method, and also its cost,
 *	depend mainly on the length of the list we are willing to keep.
B
Bruce Momjian 已提交
1415 1416
 */
static void
1417 1418 1419 1420
compute_minimal_stats(VacAttrStatsP stats,
					  AnalyzeAttrFetchFunc fetchfunc,
					  int samplerows,
					  double totalrows)
B
Bruce Momjian 已提交
1421 1422
{
	int			i;
1423 1424 1425 1426 1427 1428
	int			null_cnt = 0;
	int			nonnull_cnt = 0;
	int			toowide_cnt = 0;
	double		total_width = 0;
	bool		is_varlena = (!stats->attr->attbyval &&
							  stats->attr->attlen == -1);
1429 1430
	bool		is_varwidth = (!stats->attr->attbyval &&
							   stats->attr->attlen < 0);
1431 1432 1433
	FmgrInfo	f_cmpeq;
	typedef struct
	{
1434 1435
		Datum		value;
		int			count;
1436 1437 1438 1439 1440
	} TrackItem;
	TrackItem  *track;
	int			track_cnt,
				track_max;
	int			num_mcv = stats->attr->attstattarget;
1441
	StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
1442

1443 1444 1445 1446
	/*
	 * We track up to 2*n values for an n-element MCV list; but at least
	 * 10
	 */
1447 1448 1449 1450 1451 1452
	track_max = 2 * num_mcv;
	if (track_max < 10)
		track_max = 10;
	track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
	track_cnt = 0;

1453
	fmgr_info(mystats->eqfunc, &f_cmpeq);
1454

1455
	for (i = 0; i < samplerows; i++)
B
Bruce Momjian 已提交
1456
	{
1457 1458
		Datum		value;
		bool		isnull;
1459 1460 1461
		bool		match;
		int			firstcount1,
					j;
1462

1463
		vacuum_delay_point();
1464

1465
		value = fetchfunc(stats, i, &isnull);
B
Bruce Momjian 已提交
1466

1467
		/* Check for null/nonnull */
B
Bruce Momjian 已提交
1468
		if (isnull)
1469
		{
1470
			null_cnt++;
1471 1472
			continue;
		}
1473
		nonnull_cnt++;
1474 1475

		/*
1476
		 * If it's a variable-width field, add up widths for average width
1477 1478 1479
		 * calculation.  Note that if the value is toasted, we use the
		 * toasted width.  We don't bother with this calculation if it's a
		 * fixed-width type.
1480
		 */
1481
		if (is_varlena)
B
Bruce Momjian 已提交
1482
		{
1483
			total_width += VARSIZE(DatumGetPointer(value));
1484

1485 1486
			/*
			 * If the value is toasted, we want to detoast it just once to
1487 1488 1489 1490
			 * avoid repeated detoastings and resultant excess memory
			 * usage during the comparisons.  Also, check to see if the
			 * value is excessively wide, and if so don't detoast at all
			 * --- just ignore the value.
1491 1492
			 */
			if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
B
Bruce Momjian 已提交
1493
			{
1494 1495
				toowide_cnt++;
				continue;
B
Bruce Momjian 已提交
1496
			}
1497
			value = PointerGetDatum(PG_DETOAST_DATUM(value));
1498
		}
1499 1500 1501 1502 1503
		else if (is_varwidth)
		{
			/* must be cstring */
			total_width += strlen(DatumGetCString(value)) + 1;
		}
B
Bruce Momjian 已提交
1504

1505 1506 1507 1508 1509 1510
		/*
		 * See if the value matches anything we're already tracking.
		 */
		match = false;
		firstcount1 = track_cnt;
		for (j = 0; j < track_cnt; j++)
1511
		{
1512
			if (DatumGetBool(FunctionCall2(&f_cmpeq, value, track[j].value)))
B
Bruce Momjian 已提交
1513
			{
1514 1515
				match = true;
				break;
B
Bruce Momjian 已提交
1516
			}
1517 1518 1519
			if (j < firstcount1 && track[j].count == 1)
				firstcount1 = j;
		}
1520

1521 1522 1523 1524 1525
		if (match)
		{
			/* Found a match */
			track[j].count++;
			/* This value may now need to "bubble up" in the track list */
1526
			while (j > 0 && track[j].count > track[j - 1].count)
B
Bruce Momjian 已提交
1527
			{
1528 1529
				swapDatum(track[j].value, track[j - 1].value);
				swapInt(track[j].count, track[j - 1].count);
1530
				j--;
B
Bruce Momjian 已提交
1531
			}
1532
		}
1533
		else
1534
		{
1535 1536 1537
			/* No match.  Insert at head of count-1 list */
			if (track_cnt < track_max)
				track_cnt++;
1538
			for (j = track_cnt - 1; j > firstcount1; j--)
1539
			{
1540 1541
				track[j].value = track[j - 1].value;
				track[j].count = track[j - 1].count;
1542 1543 1544 1545 1546 1547
			}
			if (firstcount1 < track_cnt)
			{
				track[firstcount1].value = value;
				track[firstcount1].count = 1;
			}
1548
		}
1549 1550 1551 1552 1553
	}

	/* We can only compute valid stats if we found some non-null values. */
	if (nonnull_cnt > 0)
	{
1554 1555
		int			nmultiple,
					summultiple;
1556 1557 1558

		stats->stats_valid = true;
		/* Do the simple null-frac and width stats */
1559
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
1560
		if (is_varwidth)
1561
			stats->stawidth = total_width / (double) nonnull_cnt;
1562
		else
1563
			stats->stawidth = stats->attrtype->typlen;
1564

1565 1566 1567
		/* Count the number of values we found multiple times */
		summultiple = 0;
		for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
1568
		{
1569 1570 1571
			if (track[nmultiple].count == 1)
				break;
			summultiple += track[nmultiple].count;
1572
		}
1573 1574

		if (nmultiple == 0)
1575
		{
1576 1577
			/* If we found no repeated values, assume it's a unique column */
			stats->stadistinct = -1.0;
1578
		}
1579 1580
		else if (track_cnt < track_max && toowide_cnt == 0 &&
				 nmultiple == track_cnt)
1581
		{
1582
			/*
1583 1584 1585
			 * Our track list includes every value in the sample, and
			 * every value appeared more than once.  Assume the column has
			 * just these values.
1586 1587
			 */
			stats->stadistinct = track_cnt;
B
Bruce Momjian 已提交
1588
		}
1589 1590 1591 1592
		else
		{
			/*----------
			 * Estimate the number of distinct values using the estimator
1593 1594 1595 1596 1597 1598 1599 1600 1601
			 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
			 *		n*d / (n - f1 + f1*n/N)
			 * where f1 is the number of distinct values that occurred
			 * exactly once in our sample of n rows (from a total of N),
			 * and d is the total number of distinct values in the sample.
			 * This is their Duj1 estimator; the other estimators they
			 * recommend are considerably more complex, and are numerically
			 * very unstable when n is much smaller than N.
			 *
1602 1603
			 * We assume (not very reliably!) that all the multiply-occurring
			 * values are reflected in the final track[] list, and the other
1604
			 * nonnull values all appeared but once.  (XXX this usually
1605
			 * results in a drastic overestimate of ndistinct.	Can we do
1606
			 * any better?)
1607 1608
			 *----------
			 */
1609
			int			f1 = nonnull_cnt - summultiple;
1610
			int			d = f1 + nmultiple;
B
Bruce Momjian 已提交
1611 1612 1613 1614
			double		numer,
						denom,
						stadistinct;

1615
			numer = (double) samplerows *(double) d;
1616

1617 1618
			denom = (double) (samplerows - f1) +
				(double) f1 *(double) samplerows / totalrows;
B
Bruce Momjian 已提交
1619

1620 1621 1622 1623 1624 1625 1626
			stadistinct = numer / denom;
			/* Clamp to sane range in case of roundoff error */
			if (stadistinct < (double) d)
				stadistinct = (double) d;
			if (stadistinct > totalrows)
				stadistinct = totalrows;
			stats->stadistinct = floor(stadistinct + 0.5);
1627
		}
B
Bruce Momjian 已提交
1628

1629 1630 1631 1632 1633 1634 1635
		/*
		 * If we estimated the number of distinct values at more than 10%
		 * of the total row count (a very arbitrary limit), then assume
		 * that stadistinct should scale with the row count rather than be
		 * a fixed value.
		 */
		if (stats->stadistinct > 0.1 * totalrows)
1636
			stats->stadistinct = -(stats->stadistinct / totalrows);
B
Bruce Momjian 已提交
1637

1638 1639 1640 1641
		/*
		 * Decide how many values are worth storing as most-common values.
		 * If we are able to generate a complete MCV list (all the values
		 * in the sample will fit, and we think these are all the ones in
1642 1643 1644 1645
		 * the table), then do so.	Otherwise, store only those values
		 * that are significantly more common than the (estimated)
		 * average. We set the threshold rather arbitrarily at 25% more
		 * than average, with at least 2 instances in the sample.
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
		 */
		if (track_cnt < track_max && toowide_cnt == 0 &&
			stats->stadistinct > 0 &&
			track_cnt <= num_mcv)
		{
			/* Track list includes all values seen, and all will fit */
			num_mcv = track_cnt;
		}
		else
		{
1656 1657 1658
			double		ndistinct = stats->stadistinct;
			double		avgcount,
						mincount;
1659 1660

			if (ndistinct < 0)
1661
				ndistinct = -ndistinct * totalrows;
1662
			/* estimate # of occurrences in sample of a typical value */
1663
			avgcount = (double) samplerows / ndistinct;
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
			/* set minimum threshold count to store a value */
			mincount = avgcount * 1.25;
			if (mincount < 2)
				mincount = 2;
			if (num_mcv > track_cnt)
				num_mcv = track_cnt;
			for (i = 0; i < num_mcv; i++)
			{
				if (track[i].count < mincount)
				{
					num_mcv = i;
					break;
				}
			}
		}

		/* Generate MCV slot entry */
1681
		if (num_mcv > 0)
B
Bruce Momjian 已提交
1682
		{
1683
			MemoryContext old_context;
1684 1685
			Datum	   *mcv_values;
			float4	   *mcv_freqs;
1686

1687
			/* Must copy the target values into anl_context */
1688
			old_context = MemoryContextSwitchTo(stats->anl_context);
1689 1690 1691 1692 1693 1694 1695
			mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
			mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
			for (i = 0; i < num_mcv; i++)
			{
				mcv_values[i] = datumCopy(track[i].value,
										  stats->attr->attbyval,
										  stats->attr->attlen);
1696
				mcv_freqs[i] = (double) track[i].count / (double) samplerows;
1697 1698 1699 1700
			}
			MemoryContextSwitchTo(old_context);

			stats->stakind[0] = STATISTIC_KIND_MCV;
1701
			stats->staop[0] = mystats->eqopr;
1702 1703 1704 1705
			stats->stanumbers[0] = mcv_freqs;
			stats->numnumbers[0] = num_mcv;
			stats->stavalues[0] = mcv_values;
			stats->numvalues[0] = num_mcv;
B
Bruce Momjian 已提交
1706 1707
		}
	}
1708 1709

	/* We don't need to bother cleaning up any of our temporary palloc's */
B
Bruce Momjian 已提交
1710 1711 1712 1713
}


/*
1714
 *	compute_scalar_stats() -- compute column statistics
B
Bruce Momjian 已提交
1715
 *
1716
 *	We use this when we can find "=" and "<" operators for the datatype.
1717
 *
1718 1719 1720
 *	We determine the fraction of non-null rows, the average width, the
 *	most common values, the (estimated) number of distinct values, the
 *	distribution histogram, and the correlation of physical to logical order.
B
Bruce Momjian 已提交
1721
 *
1722 1723
 *	The desired stats can be determined fairly easily after sorting the
 *	data values into order.
B
Bruce Momjian 已提交
1724 1725
 */
static void
1726 1727 1728 1729
compute_scalar_stats(VacAttrStatsP stats,
					 AnalyzeAttrFetchFunc fetchfunc,
					 int samplerows,
					 double totalrows)
B
Bruce Momjian 已提交
1730
{
1731 1732 1733 1734 1735 1736 1737
	int			i;
	int			null_cnt = 0;
	int			nonnull_cnt = 0;
	int			toowide_cnt = 0;
	double		total_width = 0;
	bool		is_varlena = (!stats->attr->attbyval &&
							  stats->attr->attlen == -1);
1738 1739
	bool		is_varwidth = (!stats->attr->attbyval &&
							   stats->attr->attlen < 0);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	double		corr_xysum;
	RegProcedure cmpFn;
	SortFunctionKind cmpFnKind;
	FmgrInfo	f_cmpfn;
	ScalarItem *values;
	int			values_cnt = 0;
	int		   *tupnoLink;
	ScalarMCVItem *track;
	int			track_cnt = 0;
	int			num_mcv = stats->attr->attstattarget;
1750
	int			num_bins = stats->attr->attstattarget;
1751
	StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
1752

1753 1754
	values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
	tupnoLink = (int *) palloc(samplerows * sizeof(int));
1755 1756
	track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));

1757
	SelectSortFunction(mystats->ltopr, &cmpFn, &cmpFnKind);
1758 1759 1760
	fmgr_info(cmpFn, &f_cmpfn);

	/* Initial scan to find sortable values */
1761
	for (i = 0; i < samplerows; i++)
B
Bruce Momjian 已提交
1762
	{
1763 1764
		Datum		value;
		bool		isnull;
B
Bruce Momjian 已提交
1765

1766
		vacuum_delay_point();
1767

1768
		value = fetchfunc(stats, i, &isnull);
B
Bruce Momjian 已提交
1769

1770 1771
		/* Check for null/nonnull */
		if (isnull)
B
Bruce Momjian 已提交
1772
		{
1773 1774
			null_cnt++;
			continue;
B
Bruce Momjian 已提交
1775
		}
1776
		nonnull_cnt++;
B
Bruce Momjian 已提交
1777

1778
		/*
1779
		 * If it's a variable-width field, add up widths for average width
1780 1781 1782
		 * calculation.  Note that if the value is toasted, we use the
		 * toasted width.  We don't bother with this calculation if it's a
		 * fixed-width type.
1783 1784
		 */
		if (is_varlena)
B
Bruce Momjian 已提交
1785
		{
1786
			total_width += VARSIZE(DatumGetPointer(value));
1787

1788 1789
			/*
			 * If the value is toasted, we want to detoast it just once to
1790 1791 1792 1793
			 * avoid repeated detoastings and resultant excess memory
			 * usage during the comparisons.  Also, check to see if the
			 * value is excessively wide, and if so don't detoast at all
			 * --- just ignore the value.
1794 1795
			 */
			if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
B
Bruce Momjian 已提交
1796
			{
1797 1798
				toowide_cnt++;
				continue;
B
Bruce Momjian 已提交
1799
			}
1800 1801
			value = PointerGetDatum(PG_DETOAST_DATUM(value));
		}
1802 1803 1804 1805 1806
		else if (is_varwidth)
		{
			/* must be cstring */
			total_width += strlen(DatumGetCString(value)) + 1;
		}
B
Bruce Momjian 已提交
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
		/* Add it to the list to be sorted */
		values[values_cnt].value = value;
		values[values_cnt].tupno = values_cnt;
		tupnoLink[values_cnt] = values_cnt;
		values_cnt++;
	}

	/* We can only compute valid stats if we found some sortable values. */
	if (values_cnt > 0)
	{
1818 1819 1820 1821 1822
		int			ndistinct,	/* # distinct values in sample */
					nmultiple,	/* # that appear multiple times */
					num_hist,
					dups_cnt;
		int			slot_idx = 0;
1823 1824 1825 1826 1827 1828 1829 1830 1831

		/* Sort the collected values */
		datumCmpFn = &f_cmpfn;
		datumCmpFnKind = cmpFnKind;
		datumCmpTupnoLink = tupnoLink;
		qsort((void *) values, values_cnt,
			  sizeof(ScalarItem), compare_scalars);

		/*
1832 1833
		 * Now scan the values in order, find the most common ones, and
		 * also accumulate ordering-correlation statistics.
1834 1835
		 *
		 * To determine which are most common, we first have to count the
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
		 * number of duplicates of each value.	The duplicates are
		 * adjacent in the sorted list, so a brute-force approach is to
		 * compare successive datum values until we find two that are not
		 * equal. However, that requires N-1 invocations of the datum
		 * comparison routine, which are completely redundant with work
		 * that was done during the sort.  (The sort algorithm must at
		 * some point have compared each pair of items that are adjacent
		 * in the sorted order; otherwise it could not know that it's
		 * ordered the pair correctly.) We exploit this by having
		 * compare_scalars remember the highest tupno index that each
		 * ScalarItem has been found equal to.	At the end of the sort, a
		 * ScalarItem's tupnoLink will still point to itself if and only
		 * if it is the last item of its group of duplicates (since the
		 * group will be ordered by tupno).
1850 1851 1852 1853 1854 1855 1856 1857 1858
		 */
		corr_xysum = 0;
		ndistinct = 0;
		nmultiple = 0;
		dups_cnt = 0;
		for (i = 0; i < values_cnt; i++)
		{
			int			tupno = values[i].tupno;

1859
			corr_xysum += ((double) i) * ((double) tupno);
1860 1861
			dups_cnt++;
			if (tupnoLink[tupno] == tupno)
B
Bruce Momjian 已提交
1862
			{
1863 1864 1865
				/* Reached end of duplicates of this value */
				ndistinct++;
				if (dups_cnt > 1)
B
Bruce Momjian 已提交
1866
				{
1867 1868
					nmultiple++;
					if (track_cnt < num_mcv ||
1869
						dups_cnt > track[track_cnt - 1].count)
1870 1871 1872 1873 1874 1875 1876
					{
						/*
						 * Found a new item for the mcv list; find its
						 * position, bubbling down old items if needed.
						 * Loop invariant is that j points at an empty/
						 * replaceable slot.
						 */
1877
						int			j;
1878 1879 1880

						if (track_cnt < num_mcv)
							track_cnt++;
1881
						for (j = track_cnt - 1; j > 0; j--)
1882
						{
1883
							if (dups_cnt <= track[j - 1].count)
1884
								break;
1885 1886
							track[j].count = track[j - 1].count;
							track[j].first = track[j - 1].first;
1887 1888 1889 1890 1891 1892 1893 1894
						}
						track[j].count = dups_cnt;
						track[j].first = i + 1 - dups_cnt;
					}
				}
				dups_cnt = 0;
			}
		}
B
Bruce Momjian 已提交
1895

1896 1897
		stats->stats_valid = true;
		/* Do the simple null-frac and width stats */
1898
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
1899
		if (is_varwidth)
1900 1901 1902
			stats->stawidth = total_width / (double) nonnull_cnt;
		else
			stats->stawidth = stats->attrtype->typlen;
B
Bruce Momjian 已提交
1903

1904 1905 1906 1907 1908 1909 1910 1911
		if (nmultiple == 0)
		{
			/* If we found no repeated values, assume it's a unique column */
			stats->stadistinct = -1.0;
		}
		else if (toowide_cnt == 0 && nmultiple == ndistinct)
		{
			/*
1912 1913
			 * Every value in the sample appeared more than once.  Assume
			 * the column has just these values.
1914 1915 1916 1917 1918 1919 1920
			 */
			stats->stadistinct = ndistinct;
		}
		else
		{
			/*----------
			 * Estimate the number of distinct values using the estimator
1921 1922 1923 1924 1925 1926 1927 1928 1929
			 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
			 *		n*d / (n - f1 + f1*n/N)
			 * where f1 is the number of distinct values that occurred
			 * exactly once in our sample of n rows (from a total of N),
			 * and d is the total number of distinct values in the sample.
			 * This is their Duj1 estimator; the other estimators they
			 * recommend are considerably more complex, and are numerically
			 * very unstable when n is much smaller than N.
			 *
1930 1931 1932
			 * Overwidth values are assumed to have been distinct.
			 *----------
			 */
1933
			int			f1 = ndistinct - nmultiple + toowide_cnt;
1934
			int			d = f1 + nmultiple;
B
Bruce Momjian 已提交
1935 1936 1937 1938
			double		numer,
						denom,
						stadistinct;

1939
			numer = (double) samplerows *(double) d;
1940

1941 1942
			denom = (double) (samplerows - f1) +
				(double) f1 *(double) samplerows / totalrows;
B
Bruce Momjian 已提交
1943

1944 1945 1946 1947 1948 1949 1950
			stadistinct = numer / denom;
			/* Clamp to sane range in case of roundoff error */
			if (stadistinct < (double) d)
				stadistinct = (double) d;
			if (stadistinct > totalrows)
				stadistinct = totalrows;
			stats->stadistinct = floor(stadistinct + 0.5);
1951 1952 1953 1954 1955 1956 1957 1958 1959
		}

		/*
		 * If we estimated the number of distinct values at more than 10%
		 * of the total row count (a very arbitrary limit), then assume
		 * that stadistinct should scale with the row count rather than be
		 * a fixed value.
		 */
		if (stats->stadistinct > 0.1 * totalrows)
1960
			stats->stadistinct = -(stats->stadistinct / totalrows);
1961

1962 1963 1964 1965
		/*
		 * Decide how many values are worth storing as most-common values.
		 * If we are able to generate a complete MCV list (all the values
		 * in the sample will fit, and we think these are all the ones in
1966 1967 1968 1969 1970 1971 1972 1973
		 * the table), then do so.	Otherwise, store only those values
		 * that are significantly more common than the (estimated)
		 * average. We set the threshold rather arbitrarily at 25% more
		 * than average, with at least 2 instances in the sample.  Also,
		 * we won't suppress values that have a frequency of at least 1/K
		 * where K is the intended number of histogram bins; such values
		 * might otherwise cause us to emit duplicate histogram bin
		 * boundaries.
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
		 */
		if (track_cnt == ndistinct && toowide_cnt == 0 &&
			stats->stadistinct > 0 &&
			track_cnt <= num_mcv)
		{
			/* Track list includes all values seen, and all will fit */
			num_mcv = track_cnt;
		}
		else
		{
1984 1985 1986 1987
			double		ndistinct = stats->stadistinct;
			double		avgcount,
						mincount,
						maxmincount;
1988 1989

			if (ndistinct < 0)
1990
				ndistinct = -ndistinct * totalrows;
1991
			/* estimate # of occurrences in sample of a typical value */
1992
			avgcount = (double) samplerows / ndistinct;
1993 1994 1995 1996 1997
			/* set minimum threshold count to store a value */
			mincount = avgcount * 1.25;
			if (mincount < 2)
				mincount = 2;
			/* don't let threshold exceed 1/K, however */
1998
			maxmincount = (double) samplerows / (double) num_bins;
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
			if (mincount > maxmincount)
				mincount = maxmincount;
			if (num_mcv > track_cnt)
				num_mcv = track_cnt;
			for (i = 0; i < num_mcv; i++)
			{
				if (track[i].count < mincount)
				{
					num_mcv = i;
					break;
				}
			}
		}

		/* Generate MCV slot entry */
2014 2015 2016
		if (num_mcv > 0)
		{
			MemoryContext old_context;
2017 2018
			Datum	   *mcv_values;
			float4	   *mcv_freqs;
2019

2020
			/* Must copy the target values into anl_context */
2021
			old_context = MemoryContextSwitchTo(stats->anl_context);
2022 2023 2024 2025 2026 2027 2028
			mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
			mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
			for (i = 0; i < num_mcv; i++)
			{
				mcv_values[i] = datumCopy(values[track[i].first].value,
										  stats->attr->attbyval,
										  stats->attr->attlen);
2029
				mcv_freqs[i] = (double) track[i].count / (double) samplerows;
B
Bruce Momjian 已提交
2030
			}
2031 2032 2033
			MemoryContextSwitchTo(old_context);

			stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
2034
			stats->staop[slot_idx] = mystats->eqopr;
2035 2036 2037 2038 2039 2040
			stats->stanumbers[slot_idx] = mcv_freqs;
			stats->numnumbers[slot_idx] = num_mcv;
			stats->stavalues[slot_idx] = mcv_values;
			stats->numvalues[slot_idx] = num_mcv;
			slot_idx++;
		}
B
Bruce Momjian 已提交
2041

2042 2043 2044 2045 2046 2047
		/*
		 * Generate a histogram slot entry if there are at least two
		 * distinct values not accounted for in the MCV list.  (This
		 * ensures the histogram won't collapse to empty or a singleton.)
		 */
		num_hist = ndistinct - num_mcv;
2048 2049
		if (num_hist > num_bins)
			num_hist = num_bins + 1;
2050 2051 2052
		if (num_hist >= 2)
		{
			MemoryContext old_context;
2053 2054
			Datum	   *hist_values;
			int			nvals;
B
Bruce Momjian 已提交
2055

2056 2057 2058
			/* Sort the MCV items into position order to speed next loop */
			qsort((void *) track, num_mcv,
				  sizeof(ScalarMCVItem), compare_mcvs);
B
Bruce Momjian 已提交
2059 2060

			/*
2061
			 * Collapse out the MCV items from the values[] array.
B
Bruce Momjian 已提交
2062
			 *
2063
			 * Note we destroy the values[] array here... but we don't need
2064 2065 2066
			 * it for anything more.  We do, however, still need
			 * values_cnt. nvals will be the number of remaining entries
			 * in values[].
B
Bruce Momjian 已提交
2067
			 */
2068
			if (num_mcv > 0)
B
Bruce Momjian 已提交
2069
			{
2070 2071 2072
				int			src,
							dest;
				int			j;
B
Bruce Momjian 已提交
2073

2074 2075 2076 2077
				src = dest = 0;
				j = 0;			/* index of next interesting MCV item */
				while (src < values_cnt)
				{
2078
					int			ncopy;
2079 2080 2081

					if (j < num_mcv)
					{
2082
						int			first = track[j].first;
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

						if (src >= first)
						{
							/* advance past this MCV item */
							src = first + track[j].count;
							j++;
							continue;
						}
						ncopy = first - src;
					}
					else
						ncopy = values_cnt - src;
					memmove(&values[dest], &values[src],
							ncopy * sizeof(ScalarItem));
					src += ncopy;
					dest += ncopy;
				}
				nvals = dest;
			}
			else
				nvals = values_cnt;
			Assert(nvals >= num_hist);
B
Bruce Momjian 已提交
2105

2106
			/* Must copy the target values into anl_context */
2107
			old_context = MemoryContextSwitchTo(stats->anl_context);
2108 2109 2110
			hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
			for (i = 0; i < num_hist; i++)
			{
2111
				int			pos;
B
Bruce Momjian 已提交
2112

2113 2114 2115 2116
				pos = (i * (nvals - 1)) / (num_hist - 1);
				hist_values[i] = datumCopy(values[pos].value,
										   stats->attr->attbyval,
										   stats->attr->attlen);
B
Bruce Momjian 已提交
2117
			}
2118 2119 2120
			MemoryContextSwitchTo(old_context);

			stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
2121
			stats->staop[slot_idx] = mystats->ltopr;
2122 2123 2124 2125 2126 2127 2128 2129 2130
			stats->stavalues[slot_idx] = hist_values;
			stats->numvalues[slot_idx] = num_hist;
			slot_idx++;
		}

		/* Generate a correlation entry if there are multiple values */
		if (values_cnt > 1)
		{
			MemoryContext old_context;
2131 2132 2133
			float4	   *corrs;
			double		corr_xsum,
						corr_x2sum;
2134

2135
			/* Must copy the target values into anl_context */
2136
			old_context = MemoryContextSwitchTo(stats->anl_context);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
			corrs = (float4 *) palloc(sizeof(float4));
			MemoryContextSwitchTo(old_context);

			/*----------
			 * Since we know the x and y value sets are both
			 *		0, 1, ..., values_cnt-1
			 * we have sum(x) = sum(y) =
			 *		(values_cnt-1)*values_cnt / 2
			 * and sum(x^2) = sum(y^2) =
			 *		(values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
			 *----------
			 */
2149 2150 2151 2152
			corr_xsum = ((double) (values_cnt - 1)) *
				((double) values_cnt) / 2.0;
			corr_x2sum = ((double) (values_cnt - 1)) *
				((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;
2153

2154 2155 2156 2157 2158
			/* And the correlation coefficient reduces to */
			corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
				(values_cnt * corr_x2sum - corr_xsum * corr_xsum);

			stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
2159
			stats->staop[slot_idx] = mystats->ltopr;
2160 2161 2162
			stats->stanumbers[slot_idx] = corrs;
			stats->numnumbers[slot_idx] = 1;
			slot_idx++;
B
Bruce Momjian 已提交
2163 2164
		}
	}
2165 2166

	/* We don't need to bother cleaning up any of our temporary palloc's */
B
Bruce Momjian 已提交
2167 2168 2169
}

/*
2170
 * qsort comparator for sorting ScalarItems
B
Bruce Momjian 已提交
2171
 *
2172
 * Aside from sorting the items, we update the datumCmpTupnoLink[] array
2173
 * whenever two ScalarItems are found to contain equal datums.	The array
2174 2175 2176
 * is indexed by tupno; for each ScalarItem, it contains the highest
 * tupno that that item's datum has been found to be equal to.  This allows
 * us to avoid additional comparisons in compute_scalar_stats().
B
Bruce Momjian 已提交
2177
 */
2178 2179
static int
compare_scalars(const void *a, const void *b)
B
Bruce Momjian 已提交
2180
{
2181 2182 2183 2184
	Datum		da = ((ScalarItem *) a)->value;
	int			ta = ((ScalarItem *) a)->tupno;
	Datum		db = ((ScalarItem *) b)->value;
	int			tb = ((ScalarItem *) b)->tupno;
2185
	int32		compare;
B
Bruce Momjian 已提交
2186

2187 2188 2189 2190
	compare = ApplySortFunction(datumCmpFn, datumCmpFnKind,
								da, false, db, false);
	if (compare != 0)
		return compare;
B
Bruce Momjian 已提交
2191

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	/*
	 * The two datums are equal, so update datumCmpTupnoLink[].
	 */
	if (datumCmpTupnoLink[ta] < tb)
		datumCmpTupnoLink[ta] = tb;
	if (datumCmpTupnoLink[tb] < ta)
		datumCmpTupnoLink[tb] = ta;

	/*
	 * For equal datums, sort by tupno
	 */
	return ta - tb;
}

/*
 * qsort comparator for sorting ScalarMCVItems by position
 */
static int
compare_mcvs(const void *a, const void *b)
{
	int			da = ((ScalarMCVItem *) a)->first;
	int			db = ((ScalarMCVItem *) b)->first;

	return da - db;
}